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Zusammenfassung

Geladene Teilchen emittieren elektromagnetische Strahlung, wenn sie beschleunigt wer-
den. Die anschließende Auswirkung auf die Trajektorie muss durch die Energie- und Im-
pulserhaltung in einer selbstkonsistenten Bewegungsgleichung, wie der Landau-Lifshitz-
Gleichung (LL), berücksichtigt werden. Dieser Effekt, der als „radiation reaction“ (RR)
bekannt ist, wird für relativistische Teilchen in Gegenwart von extrem starken elektro-
magnetischen Feldern, wie einem intensiven Laserpuls oder einer Pulsarmagnetosphäre,
bedeutsam. Die LL-Gleichung wird in der Regel entweder analytisch gelöst, wobei jedes
Teilchen unabhängig von den anderen Teilchen in einem externen Feld behandelt wird,
oder numerisch, wobei ein mittleres Feld durch eine Ladungsverteilung zusätzlich zu einem
externen Feld erzeugt wird, wie in „Particle-in-Cell“ (PIC)-Codes. Der erste Ansatz ist je-
doch prinzipiell inkonsistent, während der zweite die punktförmige Natur der strahlenden
Teilchen vernachlässigt. Wir erweitern die LL-Gleichung in ihrer reduzierten Form, um
die Liénard-Wiechert-Felder von benachbarten Teilchen einzubeziehen, was unseres Wis-
sens nach zum ersten Mal numerisch gelöst wird. Für die Kollision eines relativistischen
Elektron-Positron-Bündels mit einem intensiven Laserpuls identifizieren wir ein Regime,
in dem Mikrobündel durch die reflektierte Strahlung erzeugt werden, was zu kohärenter
Emission über einen breiten Frequenzbereich im Röntgenbereich führt, in dem die RR eine
bedeutende Rolle spielen kann. Eine ähnliche kohärent verstärkte RR wird auch in einem
konstanten und einheitlichen Magnetfeld mit schwächeren Mikrobündeln beobachtet. In
beiden Fällen fällt diese „kollektive RR“ mit einer Phasenraumerweiterung zusammen und
ist daher vorübergehend.

Abstract

Charged particles emit electromagnetic radiation when accelerated, and the subsequent
impact on the trajectory must be accounted for by energy and momentum conservation
in a self-consistent equation of motion, such as the Landau-Lifshitz (LL) equation. This
effect, known as radiation reaction (RR), becomes significant for relativistic particles in
the presence of extremely strong electromagnetic fields, such as an intense laser pulse
or pulsar magnetosphere. The LL equation is typically solved either analytically, while
treating each particle independently in an external field, or numerically, with a mean field
generated by a charge distribution in addition to an external field, as in particle-in-cell
(PIC) codes. Yet, the first approach is in principle inconsistent, while the latter neglects
the point-like nature of particles which gives rise to RR. We extend the LL equation in its
reduced form to include the Liénard-Wiechert fields from neighbouring particles, which is
solved numerically for the first time, to our knowledge. For the collision of a relativistic
electron-positron bunch with an intense laser pulse, we identify a regime in which micro-
bunches are created by the reflected radiation, which leads to coherent emission across a
broad range of frequencies in the X-ray domain, in which RR can play a significant role.
A similar, coherently enhanced RR is also observed in a constant and uniform magnetic
field, with a weaker form of micro-bunching. In both cases, this ‘collective RR’ coincides
with a phase space expansion and is therefore transient.
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Units and conventions

Throughout this thesis we will frequently consider relativistic bodies, such that it
is convenient to set the reduced Planck constant ℏ and speed of light in vacuum c
to unity

ℏ = c = 1.

Note that this convention applies even on graph axes. Following the classical liter-
ature on electromagnetism and radiation reaction we employ the so called ‘natural’
units

4πϵ0 = 1.

This removes any dependence on the permittivity ϵ0 or permeability µ0 of free
space. With these units, a factor of 4π does not appear in Coulomb’s law. How-
ever, when defining a quantity with physical units we employ S.I. conventions, for
example the critical magnetic field of Quantum Electrodynamics Bcr ≈ 4.41×109 T
is written in units of Tesla, as opposed to Gauss (or C.G.S units).

Four vectors are denoted by Greek indices xµ while three vectors are written in
bold typeface x. We employ the Minkowski metric throughout

ηµν = ηµν =


+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 ,
and shorthand notation for Lorentz scalars (ab) = aµbµ = aµbµ is used sparingly.
The minus sign then appears on the covariant vector xµ = (t,−x) as opposed to the
contravariant vector xµ = (t, x). Following this logic we can also write the four
vector gradient in terms of its temporal and spatial derivatives:

∂µ =
∂

∂xµ
= (∂t, ∇x) , ∂ µ =

∂

∂xµ
= (∂t,−∇x).



Notation and abbreviations

Symbols e and m refer to the charge and mass of the particle in question, often
either an electron e = −|e| or positron e = +|e| where |e| ≈ 1.6 × 10−19 C is the
elementary unit of charge. Specifically for electrons and positrons (e−/e+), the
term ‘particle(s)’ will often be used to refer to both species without distinction.

When considering many body problems, we tend to attach a Latin index to quan-
tities pertaining to a specific particle, for example the i th particle’s charge and
velocity are ei and uµi respectively.

We will often consider scenarios in which particles of various species are inter-
acting. To that end, we define ‘interparticle’ as referring to interactions between
particles of any species, and ‘intraspecies’ as referring to interactions between par-
ticles of the same species.

For brevity, we will also employ the following abbreviations:

RR Radiation Reaction

LAD Lorentz-Abraham-Dirac

LL Landau-Lifshitz

QED Quantum Electrodynamics

LW Liénard-Wiechert

FWHM Full Width at Half Maximum

RMS root-mean-squared

adv advanced [field]

ret retarded [field]

ext external [field]

sc synchrotron

cv curvature
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Chapter 1

Introduction

"Nature never did betray the heart that loved her...
for she can so inform the mind that is within us,
so impress with quietness and beauty"

— W. Wordsworth, Tintern Abbey

The discovery of the electron by J. J. Thomson profoundly altered our understand-
ing and application of classical electromagnetism. At first, attempts were made to
model the electron as a classical1 object with an extended distribution in space;
in particular, the charged sphere model of Lorentz and Abraham. Despite their
inherent instability, these models could explain the electron mass entirely from an
electromagnetic origin. Later, Einstein’s energy-mass equivalency appeared to ren-
der this point obsolete. Physicists at the time were already aware of the conversion
of mass into binding energy within Helium nuclei, although nucleons themselves
were thought to be fundamental before the standard model was developed. The the-
ory of extended electrons was then succeeded by point like electrons, which would
provide an excellent approximation except at length scales where the concept of a
localised electron breaks down and classical physics no longer applies; notice that
the electron Compton wavelength λe = 1/m ≈ 2.4×10−12 m is orders of magnitude
above the classical electron radius re = e2/m ≈ 2.8 × 10−15 m.

Charged particles emit electromagnetic radiation when accelerated. Yet the Lorentz
equation neglects this emission when describing the trajectory, thus violating en-
ergy and momentum conservation. The radiation reaction problem refers to how
one should incorporate the particle’s self-field to create a self-consistent equation
of motion. This typically involves the inclusion of a self-force which intimately
depends on the particle’s structure. Abraham deduced the equation of motion for
a small and rigid charged sphere [4], while Dirac derived the same equation in
the limit of a point particle [5, 6]. The resulting, manifestly covariant equation of
motion is then named the Lorentz-Abraham-Dirac (LAD) equation in their honour.
Unfortunately, the LAD equation admits unphysical solutions, including indefinite
acceleration in the absence of an external field, and acceleration from future fields,
known as pre-acceleration [7]. These problems can be resolved by a perturbative
expansion, by which one obtains the Landau-Lifshitz (LL) equation [8]. Following

1Here ‘classical’ pertains to relativistic mechanics but excludes quantum mechanics.
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2 Introduction

this logic we favour the LL equation, though a lively debate continues about the
‘correct’ equation of motion to this day. Suggestions have been made to discern
between these equations with high intensity lasers, within the classical regime [9],
but to our knowledge, this has not yet been achieved in the laboratory. The LL
equation was derived assuming that the rest frame fields remain small compared to
the classical critical value Fc = m2/e3 ≈ 1.8 × 1020 V/m and approximately con-
stant over the classical length scale re. These conditions are automatically satisfied
in the classical regime, providing the rest frame fields are small compared to the
critical value of Quantum Electrodynamics (QED) Fcr = α f Fc and are approxi-
mately constant over the quantum length scale λe, where α f = e2/4π ≈ 1/137 is
the fine structure constant.

In short, the radiation reaction phenomena arises when we derive an equation of
motion which is consistent with the principle of energy and momentum conserva-
tion. In his original derivation, Abraham mentioned as a counter proof to his equa-
tion the example of N electrons moving in a circle due to the influence of an ex-
ternal, electromagnetic field [4]. Under the limit N → ∞, this system constitutes a
steady current and emits no radiation, and as such there would be no radiation reac-
tion effect. Yet, if one evaluated either the LAD or LL equations while treating each
particle independently, that is only considering the external field, one might esti-
mate the total energy radiated as a sum of the energies lost by all particles, which
would be non-zero. This point was reviewed more recently by Gromes [10], who
emphasised that the Poynting vector (and therefore self-force) vary quadratically
with the fields; any approach which treats particles independently is then inconsis-
tent with the principle of energy and momentum conservation. Both Dirac [5] and
Rohrlich [6] provided generalisations of the LAD equation to many point particles,
but to our knowledge this system of equations has never been solved for a given
external field, perhaps due to the lack of closed form solutions. Following their ap-
proach, we suggest to evaluate the LL equation with the total electromagnetic field
as seen by each particle, including the Liénard–Wiechert fields from neighbouring
particles in addition to the external field.

Classical radiation reaction tends to become relevant when the rest frame field is a
few orders of magnitude below the critical field of QED. Approaching the afore-
mentioned field is challenging in the laboratory, and so experimental observation
of radiation reaction remained a remote prospect during much of the 20th century.
Two innovations are responsible for changing this status quo. First, the produc-
tion of GeV-energy electrons from conventional and later plasma-based particle
accelerators. Second, the development of intense optical lasers (I ≳ 1020 W/cm2)
following the advent of chirped pulse amplification [11]. A recent experimental
campaign involving the collision of ultra-relativistic electrons with an intense laser
pulse, has provided the first observations of radiation reaction with both classi-
cal and quantum characteristics [12, 13]. Another technique leverages the strong
electromagnetic fields experienced as ultra-relativistic electrons propagate through
aligned crystals, providing good agreement with the LL equation as a model for
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the spectrum of emitted radiation [14–16]. We need not limit our search to the
laboratory; radiation reaction is thought to be relevant in a variety of astrophysical
contexts, for example as relativistic, charged particles propagate along the strong
magnetic fields permeating the pulsar magnetosphere [17, 18].

We note that a few papers have suggested the possibility of a ‘coherently enhanced
radiation reaction’ effect [19–21]. As the LAD self-force is proportional to the
classical electron radius re = e2/m, they argue a ‘small bunch’ of N electrons
could be approximated as a single point particle, which would experience a coher-
ently enhanced self-force proportional to (Ne)2/Nm = Nre. We refer to this as the
‘model of effective electron radius Nre’. We interpret ‘small’ with respect to the
characteristic wavelengths of radiation emitted in a predetermined external field.
In short, the purpose of this thesis is to explore the interplay between coherent
emission, collective behaviour and radiation reaction in a self-consistent manner,
for a series of point particles. Specifically, we consider two cases: (i) the collision
of an electron-positron (e−/e+) bunch with an intense laser pulse, as may be seen
in the laboratory, and (ii) a cylindrical beam of e−/e+ in the presence of a constant
and uniform magnetic field, with an interest towards astrophysical applications.

This thesis is then structured as follows; chapter 2 will describe the solution of
Maxwell’s equations for a point charge and their subsequent incorporation to cre-
ate the self-consistent LAD and LL equations of motion. Their generalisation to
systems of many point particles in the presence of an external electromagnetic field
is demonstrated, and the leading order terms identified. Chapter 3 describes the de-
velopment of our numerical code, which can numerically integrate the reduced LL
equation for many point particles, and can evaluate the spectrum of emitted radi-
ation. Chapter 4 then describes the application of this code to the collision of an
e−/e+ bunch and laser pulse, modelled as a plane wave pulse. Here, we demon-
strate a microscopic instability created by the reflected radiation, which is respon-
sible for the broad, coherent amplification of the spectrum. Chapter 5 proceeds
analogously with the previous chapter, instead considering a constant and uniform
magnetic field. Here we observe a similar, weaker instability driven by the emis-
sion of low frequency radiation along the magnetic field lines, in the synchrotron
regime.
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Chapter 2

Classical dynamics of point particles and electro-
magnetic fields

"It is the classical theory of electromagnetic mass that is re-examined
here. And why, after all these years, and in view of its apparent
irrelevance to the real world? Quite simply, because it still isn’t right."

— J. Schwinger [22]

The development of classical electromagnetism initially followed the same path
as Newtonian gravity, with Coulomb’s law bearing a striking resemblance to New-
ton’s universal law of gravitation, both depending on the inverse square of the sepa-
ration between two particles. From our point of view, the major distinction between
gravity and electromagnetism remains the empirical observation that gravitational
forces tend to be attractive, while electromagnetic forces can be either attractive or
repulsive.

After gradual advances in theory and observation regarding electricity, magnetism
and optics, spanning more than a century, a unified theory encompassing each was
created by Maxwell in 1873. As with Newtonian mechanics, Maxwell’s laws were
initially applied to large scale, macroscopic bodies, with continuous charge and
current distributions. These developments coincided with advent of atomic theory
and the eventual discovery of the electron in 1897, the first known sub-atomic
particle. It would require several years more before the concept of an extended
electron was retired in favour of the point particle we are familiar with today.

This chapter then seeks to describe the classical dynamics of charged point parti-
cles. We begin by reviewing the solution of Maxwell’s equations for a point like
source, following the Green’s function method of Jackson [23]. Then, we identify
the Lorentz-Abraham-Dirac equation of motion which respects energy and mo-
mentum conservation, following the method of Dirac [5], which is compared with
Teitelboim’s approach of splitting the energy-momentum tensor [24–26]. A short
explanation of the deficiencies of this equation is provided, which are resolved by
the perturbative expansion of Landau and Lifshitz [8]. At this point we extend
our discussion to many point particles, and highlight the importance of evaluat-
ing the radiation reaction equations of motion with the total electromagnetic field,
particularly when coherent emission occurs.

5



6 Electrodynamics of point particles

2.1 Green’s function solution to Maxwell’s equations

Maxwell’s equations describe the electromagnetic potential Aµ(x) from a source,
four current density Jµ(x). These quantities, defined at position xµ in Minkowski
space, are related by a second order differential equation

∂2Aµ(x) = 4πJµ(x). (2.1)

Where we have chosen to work in the Lorenz gauge (∂A(x)) = 0. We seek to
measure the response of this differential equation for a point like source, or in
other words, we seek to solve with Green’s functions

∂2D(x) = δ(4)(x). (2.2)

This procedure is carefully laid out by Jackson [23, Ch. 12.11], and as such we
will review only the key steps here; that this is necessary reflects how regularly we
refer to these fields throughout this thesis. Once the Green’s functions are known,
the potential from any source can be derived from the superposition of each current
element at position x′µ = (t′, x′)

Aµ(x) = Aµ0 + 4π
∫ +∞

−∞

D(x − x′) Jµ(x′) d4x′. (2.3)

Here Aµ0 is a constant determined by the application of boundary conditions for the
specific problem in question. By performing a Fourier transform

D(x) =
1

(2π)4

∫ +∞

−∞

D̃(k) e−i(kx) d4k, (2.4)

we can move from a differential equation in space xµ to an equation in frequency
space kµ = (k0, k) which can be solved algebraically

D̃(k) = −
1
k2 . (2.5)

With the Green’s function in frequency space now known, one can find the cor-
responding function in space by evaluating the Fourier transform. We divide this
problem into integrals over the time like k0 and space like k components

D(x − x′) = −
1

(2π)4

∫ +∞

−∞

eik·(x−x′)
∫ +∞

−∞

e−ik0(t−t′)

k2
0 − κ

2
dk0 d3 k, (2.6)
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Im(k0)

Re(k0)

×

−|k| − i0
×

+|k| − i0

Γ

Figure 2.1: Contour of integration for the retarded Green’s function in Eq. 2.7. As usual,
the circular part of the contour Γ does not contribute as the radius tends to infinity, and one
is simply left with an integral along the real axis.

we notice the presence of two poles on the real axis at ±κ, where κ = |k| is the
magnitude of the wave vector. First, consider the retarded case D(x− x′) = Dret(x−
x′) for t > t′, where the signal propagates from the source at t′ to an observer at t.
Here, the effect occurs after the cause. For t > t′, the time like integral converges
in the lower half plane and can be solved by the residue theorem with contour Γ, as
shown in Fig. 2.1

∫ +∞

−∞

e−ik0(t−t′)

k2
0 − κ

2
dk0 =

∮
Γ

e−iz(t−t′)

z2 − κ2 + i0
dz = −

2π
κ

sin
(
κ(t − t′)

)
. (2.7)

While the remaining space like integral can be solved using spherical coordinates,
to obtain the retarded Green’s function

Dret(x − x′) =
1

4πR
δ(t − t′ − R), (2.8)

where R = |x − x′| is the separation of the observer and source, respectively. If
we return momentarily to physical units, one can recognise the retarded condition
t = t′ + R/c respects the finite speed of light in vacuum. This can be interpreted
by inserting the retarded Green’s function into our integral for the potential Aµ(x)
in Eq. (2.3), which has the effect of localising the integral; only current elements
which satisfy the retarded condition will contribute to the potential. Similarly, one
can solve for the advanced case D(x − x′) = Dadv(x − x′) for t < t′, by displacing
the poles into a contour in the upper half plane

Dadv(x − x′) =
1

4πR
δ(t − t′ + R). (2.9)

As the advanced solution does not respect causality, it is said to be unphysical. One
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could interpret the advanced case as describing the potential seen in the present,
with an origin which lies in the future.

As will be discussed later in the section on the radiation reaction problem, one
can add or subtract the retarded and advanced Green’s functions; these auxiliary
Green’s functions have corresponding potentials, or fields, via Eq. (2.3). It is diffi-
cult to explain the physicality of these fields given that they do not respect causality.
However, they are mathematically convenient when evaluating the self-field close
to the world line, as shown by Dirac [5].

2.2 Liénard–Wiechert field

Having described the electromagnetic potential from a general charge and current
distribution, we can specialise to a point charge. Consider then, a particle of charge
e and mass m moving along a trajectory zµ(τ) with proper time τ. A point charge
is then defined as having a current density which is localised to its world line by a
delta function

Jµ(x) = e
∫ +∞

−∞

δ(4)(x − z(τ)) uµ(τ) dτ. (2.10)

By substituting this current density into our equation for the four vector potential
Eq. (2.3), along with the retarded Green’s function (2.9), one can define the cor-
responding potential simply by using the elementary properties of the delta func-
tion [23]

δ[ f (x)] =
δ(x − x0)
| f ′(x0)|

, (2.11)

where f (x0) = 0 is a root of the function in question, which must be well behaved,
i.e. real and analytic. In the retarded case, the appropriate root is the retarded
proper time τret. Following this method, one can determine the retarded poten-
tial, though we will often refer to it as the Liénard–Wiechert (LW) potential for
historical reasons

Aµret(x) =
[

e uµ

(nu)R

]
τret

. (2.12)

This potential constitutes a solution to Maxwell’s equations for a point charge,
which respects causality.

Here we have defined a four vector nµ = (1, n) which points from the particle to
observer and satisfies the null condition n2 = 0. Note that every quantity inside
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the square brackets of Eq. (2.12) must be evaluated at the retarded proper time,
except the charge and position of the observer xµ which are treated as constant.
This potential can be differentiated with respect to the observer’s position to obtain
the LW (or retarded) field in the usual way

Fµνret(x) = ∂µAνret(x) − ∂νAµret(x). (2.13)

To explain the physical significance of this result, we separate the LW field into
‘velocity’ and ‘acceleration’ parts [24]

Fµνret(x) = Fµνvel(x) + Fµνacc(x), (2.14)

Fµνvel(x) =
[

e
R2

nµuν − nνuµ

(nu)3

]
τret

, (2.15)

Fµνacc(x) =
[

e
R

nµuν − nνuµ

(nu)2 (na) +
e
R

nµaν − nνaµ

(nu)2

]
τret

. (2.16)

Where we have defined the acceleration four vector aµ = duµ/dτ. At first glance,
the separation into velocity and acceleration fields seems artificial. However, an
important physical distinction exists. The velocity fields represent energy and mo-
mentum bound to the charge. It is therefore nonsensical to talk of a potential, or
velocity field irrespective of a source. This field depends on the inverse square of
the separation from the source, and as such decays quickly with distance. If one
boosts into the rest frame of the source, one can see the velocity field is simply a
Coulomb field.

The acceleration fields represent the emission of electromagnetic radiation which
propagates away freely, removing energy and momentum from the single particle
system. Note that the particle only radiates when accelerated. As these fields decay
slowly, with the inverse of the separation from the source, one often assumes the
acceleration fields can be treated independently of their source. In a way, we can
interpret the velocity and acceleration fields as asymptotic forms of the LW field,
which dominate in the limit of small or large distances respectively. Note that,
when the LW field from one particle is evaluated on the world line of another,
distinct particle, we refer to it as an ‘interparticle’ field.

We point out that a near identical procedure can be carried out, utilising a point
like current density with the advanced Green’s function (2.9), to determine the
advanced potential Aadv. The subsequent field Fµνadv changes little except for a
global minus sign, and of course, it must be evaluated at the advanced proper time
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τadv. The fields in the retarded and advanced case, are found in the next section in
Eq. (2.19).

2.3 The radiation reaction problem

Having established that a point particle radiates when accelerated it is natural to
ask how we should describe its trajectory, in a way which conserves energy and
momentum. Consider then, the electromagnetic energy-momentum tensor for a
general field1

T µν =
1

4π

[
FµαFαν +

1
4
ηµνFαβFαβ

]
. (2.17)

For brevity, we will omit the spatial dependence of the energy-momentum tensor
T µν = T µν(x), field tensor Fµν = Fµν(x) and current density Jµ = Jµ(x) here. Note
the indentation which arises for tensors with mixed covariant and contravariant
indices, defined by F ν

µ = ηµαFαν and Fµν = Fµαηαν. By applying Maxwell’s
equations, one can relate the divergence of the energy-momentum tensor to the
current density

∂µT µν + FνµJµ = 0. (2.18)

In vacuum, the energy-momentum tensor is divergenceless, reflecting conservation
of energy and momentum. As noted by Teitelboim [26], for a continuous distribu-
tion there is no distinction between the field at xµ from all charges excluding the
charge at xµ, and the field at xµ from all charges including the charge at xµ, because
the amount of charge at each point is zero. Only a volume will contain a non-zero
amount of charge. For a point particle, however, the charge and current density
are localised by a delta function, such that the stress energy-tensor is no longer
divergenceless on the world line, although it is divergenceless everywhere else. By
consistency with Eq. (2.18), one should then impose energy and momentum con-
servation on the world line of the particle. The ‘radiation reaction problem’ refers
to how one should account for the divergence of the self-field on the world line,
in particular the Coulomb-like field which is proportional to 1/R2 and diverges
rapidly as R → 0. This problem was first solved by Dirac [5], whose method we
will follow here.

Consider then, a point particle in the presence of an external electromagnetic field.
The solution of Maxwell’s equations for such a particle were derived earlier, and
are known as the retarded and advanced fields [6, Ch. 6.5]

1A derivation of the energy-momentum tensor can be found in any textbook on classical electro-
magnetism, including those by Jackson [23, Ch. 12.10] or Landau and Lifshitz [8, Sec. § 33-34].
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Fµνret
adv

(x) = ∓
[

2e
(nu)R

d
dτ

(
u[µnν]

(nu)

)]
τret
τadv

. (2.19)

Note that when square brackets appear around the Lorentz indices we take only the
anti-symmetric part, a[µbν] = 1

2 (aµbν − aνbµ). Now, consider a frame of reference
in which the particle is simultaneously at rest, at position zµ(τ0) on the world line,
when the field is seen by an observer at xµ. For brevity, we omit the dependence of
the particle’s position zµ = zµ(τ0), velocity uµ = uµ(τ0), acceleration a = a(τ0) and
its derivative when defined at this proper time, which we set to zero for convenience
τ0 = 0. In this chapter, a dot denotes a derivative with respect to the proper time.
The position of the particle at the retarded and advanced proper time(s) can be
determined by an expansion up to τ ∼ R

z ret
adv
≡ z(∓τ) = zµ ∓ τuµ +

τ2

2
aµ ∓

τ3

6
ȧµ + O(τ4). (2.20)

One can then substitute the trajectory and its derivatives into our equations for the
advanced and retarded field(s). The algebra involved is described in detail by both
Dirac [5, Eqs. (55)-(60)] and Rohrlich [6, Ch. 6.5], and so will be omitted here.
Following this procedure, we can describe the leading order terms of the fields
close to the world line2.

Fµνret
adv

(x) = 2e
[
−

u[µnν]

R2 −
a[µuν] + (na)u[µnν]

2R
−

3
4

(na)a[µuν]

+
a2

8
u[µnν] +

1
2

ȧ[µnν] ±
2
3

ȧ[µuν] + O(R)
]
.

(2.21)

Dirac noticed that the retarded and advanced fields differ only by the last term,
and so it is convenient to construct the difference Fµν− as shown below. In the
limit R → 0 one can see this field remains finite on the world line, and vanishes
everywhere as the source charge tends to zero. Conversely, the sum F+ does not
vanish in this limit, on the world line, and to leading order is simply the velocity
field (2.15) in the rest frame, better known as the Coulomb field

Fµν− =
1
2

(
Fµνret − Fµνadv

)
=

4e
3

ȧ[µuν] + O(R), (2.22a)

Fµν+ =
1
2

(
Fµνret + Fµνadv

)
=

2e
R2 n[µuν] + O(1/R). (2.22b)

2Equation (2.21) was obtained by performing an expansion for small R of Eq. (60) in Dirac’s
paper [5], both in the retarded and advanced cases. Note that we use the same metric signature
(+,-,-,-) as Dirac, but both Rohrlich and Teitelboim use the (-,+,+,+) metric.
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We seek to provide an interpretation for the auxiliary fields F± introduced above.
The total field Fµν can be written as the sum of the external field, and the retarded
field produced by the particle (which respects causality)

Fµν = Fµνext + Fµνret = Fµνext + Fµν+ + Fµν− . (2.23)

Where we have decomposed the retarded field into a sum of the auxiliary fields
F± introduced above. Due to its resemblance with the Coulomb field, one can
interpret Fµν+ as being associated with energy and momentum bound to the system.
Following this logic, one can argue the total field can separated Fµν = Fµν+ + f µν

into bound and unbound3 parts, respectively. One then argues the unbound field
includes both the external field, and a field associated with the ‘radiation reaction’
of the particle f µν − Fµνext = Fµν− .

Having evaluated the field(s) from the particle, as seen close to the world line
(2.21), we would like to determine the electromagnetic energy and momentum
leaving the system. This can be found by integrating the divergence of the energy-
momentum tensor over a volume of Minkowski space, or with Gauss’ theorem, by
integrating over a closed surface with normal nµ

∫
∂µT µν d4x =

∮
T µν nµ d3σ. (2.24)

A surface must be defined before this integral can be solved; Dirac employed a
small tube in Minkowski space surrounding the world line. This corresponds to a
three-dimensional surface d3σ, which consists of a time-like element dτ′ as mea-
sured at xµ that can be related4 to an element of proper time for the particle dτ,
and a two-dimensional surface d2σ = R2dΩ, where dΩ is a solid angle element.
To solve, one should construct the energy-momentum tensor with the total field
Fµν according to Eq. (2.17). The algebra is lengthy, though greatly simplified by
requiring only the component along nµ, and so we present only the final result as
derived by Dirac [5, Eqs. (67)-(68)]

−

∮
T µν nµd3σ =

∫ (
e2

2R
aµ + eFµνextuν + eFµν− uν

)
dτ. (2.25)

The integration limits on the right hand side are determined by the length of the
tube, and the section of world line it encloses. One notices the first term under the

3The ‘unbound’ or ‘free’ field is f µν in Dirac’s notation or equivalently Fµν in Rohrlich’s nota-
tion [6]. In fact, both authors make use of a large number of auxiliary fields which we have attempted
to eliminate in so far as this is possible, within our own interpretation of Dirac’s work.

4To relate the proper time of the observer and particle, see Eq. (66) of Dirac’s paper [5], or
alternatively Eq. (3.9b) of Teitelboim’s paper [24]; the geometry of this surface integral is particularly
well illustrated in Fig. 3 of the latter paper.
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integral is the electrostatic energy (outside the sphere) of a charged sphere at rest
mC = e2/2R, which by energy-mass equivalency we refer to as the Coulomb mass
mC . This corresponds to the bound field Fµν+ introduced earlier. The second and
third terms are the force due to the external field and the self-force (due to radiation
reaction), respectively. Now consider that this particle has a bare mass mb, and a
corresponding change in mechanical momentum

∫
dpµ = mb

∫
aµdτ. By energy

and momentum conservation, this can be equated with the flux of electromagnetic
momentum leaving the tube from Eq. (2.25)

(mb − mC) aµ = eFµνextuν + eFµν− uν + O(R). (2.26)

Note that we have discarded the integral as this equation must be satisfied for
an arbitrary set of limits. The meaning of the minus sign in Eq. (2.25) now be-
comes clear; as electromagnetic momentum leaves the tube it must correspond to
a loss of mechanical energy by the particle. By contracting our definition of Fµν− in
Eq. (2.22a) with the velocity, one can show

Fµν− uν =
2
3

e
[
ȧµ + a2uµ

]
, (2.27)

where we have used both the on-shell condition u2 = 1 and its second derivative
(ȧu) = −a2. Finally, we are ready to write down an appropriate equation of motion
for a point particle, which requires that we take the limit R → 0. In this limit,
the Coulomb mass will diverge mC → +∞ and so we require the bare mass to
diverge mb → −∞ to compensate, such that the coefficient of the acceleration is
the finite, experimentally measured electron mass. This is the somewhat infamous
‘classical’ mass renormalisation performed by Dirac [5], and as with renormalisa-
tion in quantum field theories it can only be justified by empirical observation and
not by theory (to our knowledge). The Lorentz-Abraham-Dirac (LAD) equation of
motion can then be written [5, Eq. (24)]

maµ = eFµνextuν +
2
3

e2
(
ȧµ + a2uµ

)
. (2.28)

While the LAD equation has been derived in a specific frame of reference, one ar-
gues that as this equation is manifestly covariant, it is in fact general. The method
presented here closely follows that employed by Dirac in 1938, about eighty-five
years ago at the time of writing. As such, a large body of literature has developed
to review this important result; it seems prescient to mention their contributions
here. First, one notices this derivation employs the advanced field which violates
causality. It is commonly assumed this leads to the Schott force 2

3 e2ȧµ, which
allows for solutions of the LAD equation which violate causality themselves [7].
However, Teitelboim later demonstrated in 1970 that one can derive the LAD equa-
tion without reference to the advanced fields [24]. Teitelboim’s approach involves
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separating the energy-momentum tensor into bound and unbound parts which are
treated independently. In particular, he shows that by assuming the particle posses
a pure Coulomb field in the rest frame, which we identified with F+, we are as-
suming it posses a straight world line in the whole of its history. Upon relaxing
this condition, an additional term emerges which corresponds exactly to the Schott
force.

Note that in the interest of avoiding a simple regurgitation of the literature we have
omitted many important details. For example, we have conflated the radius of our
particle with that of the tube (and its spherical surface) through which the energy-
momentum flux passes. One should consider two tubes of identical length; a small
tube which encloses the world line, enclosed within a large tube [24, see Fig. 3].
One evaluates the flux passing through the large tube, eventually taking the limit
that its radius tends to infinity, while the radius of the small tube (and particle)
tends to zero, and so the boundary problem is treated carefully before these lim-
its are applied. We avoided a critical error due to this omission only because the
energy-momentum tensor is divergenceless in the volume of Minkowski space be-
tween the tubes. There are more details besides on the origins of radiation reaction
which have been glanced over here. To gain a more complete understanding we
recommend the reader consult the original paper by Dirac [5] which was reviewed
later by Erber [27] and Eliezer [28], the alternative derivation put forward by Teit-
elboim [24–26], as well as the book by Rohrlich [6] and references therein, which
is perhaps the most comprehensive guide to radiation reaction yet written.

2.4 Deficiencies of the Lorentz-Abraham-Dirac equation

In the previous section, we described how the phenomena of radiation reaction
arises when we demand conservation of energy and momentum on the world line
of a point particle. This lead to the LAD equation of motion in the presence of an
external electromagnetic field

maµ = eFµνuν +
2
3

e2
(
daµ

dτ
+ a2uµ

)
. (2.29)

For now, we will continue with the consideration of only a single particle in the
presence of an external field Fµν = Fµν(x). The purpose of this section is to dis-
cuss the shortcomings of this equation. First, due to the presence of the Schott
term, one can solve the LAD equation with an integrating factor to obtain solu-
tions which are non-local in time, or in other words, which break causality [6,
Ch. 6.6, Eq. 6-80]. This is clearly alarming at first glance. However, signals from
the future are exponentially suppressed and only become relevant over time scales
outside the classical regime, for which the LAD equation is no longer valid. The
time scale in question is τe = 2e2/3m, which becomes τe = 2re/3 ≈ 6.27 × 10−24 s
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for the charge and mass of the electron or positron. This problem could then be
neglected as an excellent approximation.

Far more troublesome is the simple observation made by Rohrlich, that the ac-
celeration is not identically zero for a null external field, violating Newton’s first
law [7]. To demonstrate why this is a critical failing, we can set the external field
to zero Fµν = 0, and contract with the acceleration to identify the infamous ‘run
away’ solution

d(a2)
dτ
=

2
τe

a2, (2.30a)

a2(τ) = a2
0 e2τ/τe . (2.30b)

Where the acceleration satisfies aµ(τ = 0) = aµ0 at the initial proper time. This
solution suggests indefinite acceleration in the absence of an external field, and
is therefore unphysical. Worse, this occurs rapidly within the classical regime, as
the time scale τe is small. It is challenging to see how such a critical error can be
overlooked, and in fact Rohrlich went as far as suggesting the LAD equation ought
to be abandoned in light of its flaws [7].

2.5 Landau-Lifshitz equation of motion

As described above, the LAD equation admits unphysical solutions. We then seek
to replace it with an alternative equation of motion, which does not admit unphys-
ical behaviour. This problem was addressed by Landau and Lifshitz, who proceed
by assuming a frame of reference exists in which the self-force (terms proportional
to e2 on the right hand side of the LAD equation (2.29)) is much smaller than
the Lorentz force. One can then perform a perturbative expansion, by substituting
maµ = eFµνuν and its derivative into the self-force. The result is referred to as the
Landau-Lifshitz (LL) equation, and can be written as follows [8, § 76, Eq. (76.3)]

maµ = eFµνuν +
2
3

e2
[

e
m

(∂αFµν)uαuν+

e2

m2 FµνFναuα +
e2

m2 (Fu)2uµ
]
.

(2.31)

By setting the external field to zero one can see the acceleration will vanish identi-
cally, and so the LL equation avoids the critical flaw of the LAD equation. Follow-
ing this argument, Rohrlich suggests the LAD equation should be replaced with
that of LL [7], even going as far as suggesting the LL equation is the ‘correct’
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one. Yet, it is challenging to justify how one can obtain a ‘correct’ equation as an
approximation to one which is apparently incorrect. To avoid unphysical solutions
when solving the LAD equation, Dirac suggested the acceleration should vanish
asymptotically a(τ) → 0 under the limit τ → +∞, in addition to the usual require-
ment that the initial position and velocity are known [5]. Spohn later demonstrated
this condition restricts the solutions of the LAD equation to a critical surface, which
can be determined perturbatively, such that the equation on this surface is the LL
equation [29]. The perturbative expansion employed in deriving the LL equation
can, of course, be extended to include second order corrections in terms of the
small quantity τe [30]. However, it is difficult to see how these corrections could
become experimentally relevant within the classical regime.

Alternatively, one can offer justification for utilising the LL equation from its agree-
ment with experimental results. One approach involves leveraging the strong elec-
tromagnetic fields experienced by ultra-relativistic, charged particles as they pene-
trate aligned crystals [16, 31, 32]. Applying this method in the regime χ0 ≲ 0.05,
Nielsen et al [14, 15] demonstrate that a model based on the LL equation, with
corrections for photon recoil and spin, provides excellent agreement with the spec-
trum of radiation emitted. Therefore, in this regime the classical approach can
still provide at least the leading order corrections to the trajectories and spectrum
of emitted radiation. Alternative schemes involve the collision of a relativistically
strong laser pulse a0 ≳ 10 with ultra-relativistic electrons γ ≫ 1. With this method,
Cole et al [13] consider electrons with γ ≈ 103 which experience moderately strong
rest frame fields χ0 ∼ 0.1; they find the classical LL model provides reasonably
good agreement with the spectrum of emitted radiation, though a description start-
ing from QED provides better agreement. Poder et al [12] consider a similar setup
with more energetic electrons γ ≈ 4×103 which experience a considerably stronger
rest-frame field χ0 ∼ 0.25 at which the classical model is expected to break down;
they compare the spectrum of final particle energies with two models, one devel-
oped from strong field QED and another following a semi-classical approach based
on the LL equation. As it happens, the semi-classical model was found to provide
better agreement with the data.

Landau and Lifshitz note that their equation is only valid when the rest frame
field is smaller than the classical critical value Fc = m2/e3 ≈ 1.8 × 1020 V/m,
and providing the field is approximately constant over distances comparable to the
classical electron radius re ∼ 10−15 m [8, 33]. However, it was later shown both
theoretically [34, 35] and experimentally [36] that quantum effects already become
important before this, when the rest frame field is an appreciable fraction of the
critical field of QED Fcr = α f Fc, where α f ≈ 1/137 is the fine structure constant.
By a similar argument, the relevant length scale over which the fields must remain
constant is in fact the electron Compton wavelength λe ∼ 10−12 m.
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2.6 Reduced Landau-Lifshitz equation of motion

The LL equation has been solved both analytically and numerically for one parti-
cle in a variety of electromagnetic fields, including: a plane wave [33, 37], focused
laser [38] Coulomb potential [39], and a rotating magnetic dipole [17, 18]. When
solving analytically, one often considers scenarios such as a constant electromag-
netic field in which the derivatives of the fields vanish [40]. In fact this term is
often neglected in general, as it is far smaller than the spin correction [41, 42], and
therefore outside the regime of validity for the LL equation. This results in the so
called ‘reduced LL equation’ which is commonly applied in numerical codes [43]

m aµ = eFµνuν +
2
3

e4

m2

[
FµνFναuα + (Fu)2uµ

]
. (2.32)

By contracting the LL and reduced LL equations with the velocity uµ, one can
show both equations satisfy the on-shell condition. In the LL self-force, one can
see the term (Fu)2 < 0 is friction-like due to the anti-symmetric nature of the field
tensor. As this term is proportional to γ3, it tends to dominate when considering an
ultra-relativistic particle. It is tempting then, to approximate the LL self-force with
this friction-like term alone, however, such an equation of motion would no longer
satisfy the on-shell condition.

We seek to summarise our discussion on the origin and applications of radiation
reaction before proceeding. The LAD and LL equations are derived by imposing
energy and momentum conservation on the world line of a point particle. The
conceptual foundation of the radiation reaction phenomena is, therefore, strong. It
is somewhat less clear, however, which equation of motion correctly incorporates
this effect.

2.7 Generalisation to many point particles

Until now, our consideration of radiation reaction has been limited to a single point
particle in an external, electromagnetic field. Indeed, most analytical solutions of
these equations consider only one electron [33, 37, 44]. For many particle sys-
tems, one typically assumes the trajectory can be solved independently for each
particle, considering only the external field. To challenge this approach, consider
N equally spaced particles moving in a circle due to the influence of an external
field. Under the limit N → ∞ this constitutes a steady current, and would emit
no electromagnetic radiation. However, if one solved the LAD or LL equation for
each particle independently, and found the total energy radiated by adding the en-
ergy lost by each particle, the result would be non-zero. This simple example was
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originally developed as a counter proof to the LAD equation by Abraham5, and
has been reviewed more recently by Gromes [10]; their key argument being that
each particle cannot be treated independently as the energy-momentum tensor and
self-force vary quadratically with the total field.

This criticism does not necessarily imply the previous work, which treats parti-
cles independently, is inaccurate. Radiation reaction tends to become significant
for relativistic particles propagating in strong electromagnetic fields, which often
experience a non-negligible fraction of the critical field of QED in the rest frame.
Yet, a relativistic beam of particles will often emit radiation at high frequencies
(via the Doppler shift), which tend to be incoherent if the ‘size’ of the beam is
larger than the typical wavelength emitted. These are exactly the scenarios which
have been studied previously [12, 13], and indeed the analytical solutions for the
energy lost, in which particles are treated independently, provide good agreement
with the experimental data; in practice, we have little reason to doubt their validity.
We conclude that in principle, one should evaluate the trajectory in terms of the
total field, but in practice fields from neighbouring particles can be neglected as a
good approximation in scenarios like the one outlined above.

It is interesting then, to consider scenarios in which the particles can no longer be
treated independently. We suggest to look for situations in which coherent emission
and subsequently strong collective behaviour occur. For this, we would need to
generalise our equation of motion to systems of many point particles. Following
the argument from previous sections, we begin from the reduced LL equation in
an external field (2.32). We should now take care to define an external field, as
one which is unperturbed by the presence of charges within the system. Given that
the reduced LL equation is an appropriate equation of motion for one particle, we
argue by consistency that for many particle systems it should be evaluated with the
total field

Fµνi (xi) = Fµνext(xi) +
N∑

j=1
j,i

Fµνret j(xi). (2.33)

In the case of one particle N = 1, this will reduce to the previous equation (2.32).
Here we have defined the total field Fµνi = Fµνi (xi) acting on particle i at position
xµi on the world line, as the sum of an external field Fµνext = Fµνext(xi) and LW fields
from all other particles in the system Fµνret j = Fµνret j(xi), excluding itself i , j. The
LW field from particle j is evaluated with the historical trajectory {xµj , u

µ
j , a
µ
j } at the

retarded time from Eq. (2.14). In general, the charge ei and mass mi of the particle
in question are not necessarily the same as the particle which produces the LW
field, which has charge e j and mass m j. For completeness, we can write the full

5Abraham’s current loop counter-proof to the LAD equation can be found in Ch. 2 §15 pp. 134-
135 of his book [4].
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equation of motion for i by substituting the total field (2.33) into the reduced LL
equation (2.32)

mia
µ
i =

{
eiF
µν
extui,ν + ei

N∑
j=1
j,i

(
Fµνret jui,ν

)

+
2
3

e4
i

m2
i

[
FµνextFext,ναu

α
i +

(
Fextui

)2uµi
]

+
2
3

e4
i

m2
i

N∑
j=1
j,i

(
FµνextFret j,ναu

α
i + Fµνret jFext,ναu

α
i

+ Fναextui,αFret j,νσuσi uµi + Fναret jui,αFext,νσuσi uµi
)

+
2
3

e4
i

m2
i

N∑
j,k=1
j,k,i

(
Fµνret jFret k,ναu

α
i + Fναret jui,αFret k,νσuσi uµi

) }
.

(2.34)

The terms have been grouped together in order of decreasing significance, assum-
ing the external field dominates the motion. The first line is simply the Lorentz
force including interparticle fields, while the second line refers to the self-force
due to the external field only. The third and fourth lines contain cross terms within
the self-force, in which we see the contraction of the external and interparticle
fields. Finally, the fifth line is the self-force evaluated with contractions of the in-
terparticle fields (this includes a double sum over both particle indices j and k).
The full, quadratic dependence on the fields is now apparent. In short, the central
problem of this thesis involves evaluating the above equation of motion, which to
our knowledge has not been solved previously for N > 1.

It is worth investigating why our replacement of the external with total field as
shown in Eq. (2.33) is valid. The radiation reaction problem arose because of the
divergence of the self-field on the world line. We argue the derivation for a system
of many point particles should be virtually identical to that of a single particle, as
the interparticle fields do not diverge providing the world lines of all particles never
cross, so that the interparticle fields can be treated in the same way as the external
field. Or in other words, recall that the divergence of the energy-momentum tensor
is non-zero only on the world line of the particle; one can always construct an in-
finitesimally small tube in Minkowski space around the world line of each particle
independently providing they do not cross. Finally, we note that both Dirac [5,
Eq. (41)] and Rohrlich [6, Ch. 7.1, Eq. (7-12)] considered the generalisation of the
LAD equation to many particles. Their approach is more lengthy, starting instead
from first principles by considering an action for many particles. From our under-
standing of their derivations, we have applied a similar logic to the reduced LL
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equation here.

Finally, we note that as the interparticle fields are not simultaneously defined6 a
closed form solution to Eq. (2.34) seems unlikely. Instead, we will solve for the
trajectories numerically, as seen in the next chapter. In fact, a wide variety of
particle-in-cell (PIC) codes [43, 45, 46] already solve variants of the LAD and LL
equations of motion in the presence of an external field and mean field generated by
the charge distribution. However, PIC codes utilise macroparticles, each of which
represents many real particles occupying a region of phase space [47, 48]. From
our perspective, it is not clear why the radiation reaction equations of motion can
be applied to any charge distribution other than point particles, unless further as-
sumptions are made, which need to be clarified. Perhaps this requires neglecting
the impact of coherent emission as seen ‘inside’ the macroparticle. We opted in-
stead to proceed from first principles, evaluating the LW fields by interpolating the
historical trajectories, instead of solving Maxwell’s equations on a discrete grid as
with PIC codes [47, 48].

2.8 Limitations of classical radiation reaction

Before proceeding to the next chapter, note that our classical description will break
down when quantum mechanical behaviour becomes important. For example, con-
sider two oppositely charged particles for which a common rest frame exists; we
expect quantum effects to emerge as their separation tends to the Bohr radius, such
as the formation of bound states. It may well be that a sufficiently strong external
electromagnetic field is present which would ionise any bound system, but one can-
not safely say that quantum mechanical behaviour is irrelevant in such a scenario.
In addition, the classical approach will of course break down if the rest frame field
is sufficiently close to the critical field of QED [49–51]; the quantum regime can
be defined as χ ≳ 1, in terms of the quantum parameter

χ =

√∣∣∣(Fu)2
∣∣∣

Fcr
. (2.35)

Here χ is written for a particle of velocity uµ and field tensor Fµν. A modulus is
required as the inner product of the field and velocity constitutes a space like four
vector, because the field tensor is anti-symmetric. This parameter governs a variety
of QED effects which have been neglected here, including recoil from emission of
a photon, and electron-positron pair production. Strictly speaking, χ should be
evaluated in terms of the total field. However, we will often assume the external

6The LW field from each particle is defined at the respective, retarded (proper) time as seen in
Eq. (2.14).
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field dominates the scenario under consideration when calculating χ, which can be
confirmed later with the simulation results.



22 Electrodynamics of point particles



Chapter 3

Numerical code

Previously, we described the application of the LL equation to many particle sys-
tems, where one should seek to evaluate the equation of motion with the total elec-
tromagnetic field. Starting from first principles, we constructed the total field from
an external field and LW fields from every other particle in the system, each eval-
uated at their respective retarded time. As the fields are no longer simultaneously
defined, a closed form solution for the trajectory seems unlikely. Instead, one can
solve numerically.

This chapter describes the development of our numerical code, which calculates
the trajectories of point particles in a self-consistent manner. Here we describe how
the LW fields can be evaluated by interpolation at the respective retarded time(s),
providing the historical trajectories are stored in the memory at discrete, evenly
spaced intervals. When the total field is known, one can then numerically integrate
the equation of motion. With the complete trajectories known, the physical system
in question can be understood completely, and the spectrum of electromagnetic
radiation emitted can be evaluated to ensure consistency.

3.1 Calculation of the fields

Consider a distribution of N particles occupying a volume of phase space at time
tn. The position x, velocity u and acceleration u̇ = du/dt of all particles i ∈ [1,N]
are determined simultaneously at discrete intervals tn = t0 + n∆t in the past, as
shown in Tab. 3.1, starting from an initial time t0. Note that t0 is not necessarily the
beginning of the simulation, but rather the earliest time we can store in the random
access memory (RAM), as determined by the time step ∆t, number of particles and
available memory of the system.

To advance the trajectory to time tn+1 = tn+∆t, we need to numerically integrate an
appropriate equation of motion with the total electromagnetic field, as seen by each
particle. For point particles, this requires evaluating the LW fields at the retarded
time (2.14). To that end, we define a function which relates the propagation of a
light signal seen by an observer at position x and time t, from a particle j at position
x j(t j) and time t j

23
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Historical trajectory of ith particle

t0 , t1 , ... tn

x0
i , x1

i , ... xn
i

u0
i , u1

i , ... un
i

u̇0
i , u̇1

i , ... u̇n
i

Table 3.1: Schematic showing the ith particle’s position, velocity and acceleration at dis-
crete time steps. This data is stored in the RAM for all particles, from an initial time t0 to
the current time tn.

T j(t j) = t − t j − R j(t j), , (3.1a)

R j(t j) = |x − x j(t j)|. (3.1b)

It should be clear that our intention is to evaluate this function on the world line of
another, distinct particle, i.e. our observer becomes a particle i at the current time
t = tn with position x = xn

i . For now, however, we will consider a general observer
at t = tn to avoid overcomplicating the notation, otherwise we would need to attach
another Latin index i to every quantity.

Our goal is to find the root of this function T j(tret j) = 0, which is known as the
retarded time. The cost of this operation scales quadratically O(N2) for many par-
ticles N ≫ 1. To alleviate this, each interaction is computed in parallel on a GPU.
The cost could be further reduced to O(N ln N) with the Barnes-Hut algorithm; this
requires dividing the particles into cells in space, treating interactions with nearby
particles individually, and approximating the position of distant particles with the
cell centre [52]. While increasing performance, this requires discarding informa-
tion, and as such we have not implemented this technique so far.

For a particle at the current time t j = tn, the function T j(tn) = −R j(tn) < 0 is
strictly negative. However, at the initial time there are two possible cases; either
the retarded time is outside (i) or inside (ii) the historical trajectory retained in the
memory, as shown in Tab. 3.1. For (i), that is T j(t0) < 0, one must extrapolate the
trajectory backwards in time. For example one could assume the motion is ballistic
for t < t0, the retarded time can then be determined from the quadratic equation
(only one solution will respect causality). Yet, this is completely inaccurate if the
initial acceleration is non-zero. Alternatively, as the external field is defined at all
times (unlike the interparticle fields), one could numerically integrate the trajectory
backwards in time using only the external field. This introduces a discontinuity in
the fields at t0, and effectively requires the assumption that interparticle fields are
perturbatively small compared to the external field. We have rejected this procedure
due to the high cost and circular logic; this would require integrating backwards in



3.1. CALCULATION OF THE FIELDS 25

time, to evaluate the fields at the retarded time, to integrate forward at the current
time.

In practice, to address (i) we simply set the field from j to zero. That is, if two
particles are sufficiently far apart that we cannot accurately determine the retarded
time, then we assume this field is small and can be neglected. Clearly this is not
ideal, so we record each instance and check a posteriori that the percentage of
interactions that cannot be resolved lies below a predefined threshold [0.5%, of
N(N − 1) total interactions] throughout the simulation. The number of particles N
and time step ∆t should be restricted to meet this requirement, otherwise the results
cannot be considered reliable.

For (ii), that is T j(t0) ≥ 0, the retarded time lies within the historical trajectory,
in the memory. We search the array to find the step before T j(tk) > 0 and after
T j(tk+1) < 0 the retarded time, which can be determined approximately by linear
interpolation

M =
∆t

T j(tk+1) − T j(tk)
, (3.2a)

tret j ≈ tk −MT j(tk). (3.2b)

Where M is the gradient, and the approximation indicates that terms of second
order and above have been neglected. This procedure is only possible as T j(t j)
decreases monotonically due to the finite speed of light, such that the retarded time
is uniquely determined. One can similarly perform a linear interpolation for the
position x j(t j) between time tk and tk+1, which can be evaluated at the retarded
time xret j = x j(tret j)

mx =
xk+1

j − xk
j

∆t
, (3.3a)

cx = xk
j − mxtk, (3.3b)

xret j ≈ mxtret j + cx. (3.3c)

Where mx and cx are the three vector gradient and intercept respectively.
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This interpolation procedure can similarly be applied to determine the velocity
uret j = u j(t j) and acceleration u̇ret j = u̇ j(tret j) at the retarded time, from which we
can evaluate the LW field from particle j

Evel j(t, x) =

 e j(γ jnj − u j)

(γ j − nj · u j)3R2
j


tret j

, (3.4a)

Eacc j(t, x) =

e jnj ×
(
nj × [γ2

j u̇ j − (u j · u̇ j)u j] + γ ju̇ j × u j
)

(γ j − nj · u j)3R j


tret j

, (3.4b)

Eret j(t, x) = Evel j(t, x) + Eacc j(t, x) (3.4c)

Which we have separated into acceleration and velocity components as described in
Eqs. (2.16) and (2.15). As before, R j(t j) = |x−x j(t j)| is the separation of the source
and observer in the direction defined by unit vector nj(t j) = [x− x j(t j)]/R j(t j). The
transverse magnetic field can be constructed in a similar way

Bret j(t, x) = nj(tret j) × Eret j(t, x). (3.5)

In summary, providing the historical trajectories are known, we can evaluate the
LW fields seen by a general observer from each particle. When evaluating the LW
fields on the world line of other particles within the system, we refer to them as
‘interparticle’ fields. In addition, we can artificially ‘switch off’ the interaction
between particles of different species; we refer to this case as ‘intraspecies fields’.

We can then construct the total electric field Ei observed by particle i at time ti and
position xi, as the superposition of an external field Eext and LW fields from all
other particles excluding itself

Ei(ti, xi) = Eext(ti, xi) +
N∑

j=1
i, j

Eret j(ti, xi), (3.6a)

Bi(ti, xi) = Bext(ti, xi) +
N∑

j=1
i, j

Bret j(ti, xi). (3.6b)

Where an identical superposition has been carried out for the magnetic field. We as-
sume the external field is defined everywhere, unlike the interparticle fields which
must be evaluated by interpolation. Specifically, we wish to determine the to-
tal field at the current time step tn of the simulation, that is En

i = Ei(tn, xn
i ) and

Bn
i = Bi(tn, xn

i ), such that we can advance the trajectory.
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3.2 Integrating the equation of motion

In the previous section, we explained how the total field observed by a particle
can be constructed, providing the historical trajectories are known at discrete time
steps. With the total field known, the equation of motion can be integrated numer-
ically.

3.2.1 Lorentz integrator

First consider the Lorentz equation below, which describes the trajectory of particle
i, and can be discretised according to a second order leapfrog scheme

mi
dui

dt
= ei

(
Ei +

ui

γi
× Bi

)
, (3.7a)

mi
un+1/2

i − un−1/2
i

∆t
= ei

(
En

i +
un

i

γn
i
× Bn

i

)
+ O(∆t2). (3.7b)

Where the position and fields are defined at integer steps, and the velocity at half
integer steps. The discretised Lorentz equation is commonly solved with the Boris
algorithm [53][47, Ch. 15-4], which assumes the velocity at the midpoint un on the
right hand side of Eq. (3.7b), can be approximated by the average

un
i =

un+1/2
i + un−1/2

i

2
. (3.8)

This step introduces a symmetry which can be exploited; first, the velocity is trans-
lated by the electric field

u+ = un+1/2
i −

ei∆t
2mi

En
i , (3.9a)

u− = un−1/2
i +

ei∆t
2mi

En
i . (3.9b)

Then, the discretised Lorentz equation reduces to a rotation around the magnetic
field b = ei∆tBn

i /2miγ
n
i , written here in normalised units,

u+ − u− = (u+ + u−) × b. (3.10)

By taking the scalar product with (u+ + u−), one can show the Lorentz factor is
invariant under the rotation γn

i =
√

1 + (u−)2 =
√

1 + (u+)2 around the magnetic
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field. Instead of evaluating the Lorentz factor at the midpoint un, one assumes it
can be evaluated from the known quantity u−. Note that this approximation can
break down for ultra-relativistic particles, as the force due to the magnetic field is
of the same magnitude as that of the electric field; as such we will consider only
mildly relativistic particles. By taking the cross product with b, one can solve
algebraically for the unknown velocity u+

u+ = u− + 2
(
u− + u− × b

)
×

b
1 + b2 . (3.11)

Finally, the velocity at the next half integer time step un+1/2 can be found by another
translation with the electric field, seen by rearranging Eq. (3.9a)

un+1/2
i = u+ +

ei∆t
2mi

En
i + O(∆t3) , (3.12)

from which the Lorentz factor is evaluated γn+1/2 =
√

1 + (un+1/2)2 . One can see
we have re-inserted the error term, omitted in previous steps for brevity. While this
method is locally accurate to third order, for a simulation of duration Tsim which
requires Tsim/∆t steps, we expect the accumulated (or global) error to be second
order TsimO(∆t3)/∆t = TsimO(∆t2). Due to its simple implementation and low
computational cost, the Boris approach is the de-factor standard in PIC codes [45,
46]. As it preserves the structure of the Lorentz equation, it leaves the on-shell
condition intact. Further, the Boris algorithm conserves the volume of phase space
occupied by our particles (independent of the time step chosen), which leads to
excellent long term stability compared to explicit Runge-Kutta integrators [54].

3.2.2 Landau-Lifshitz integrator

We seek to apply a similar leapfrog scheme to the LL equation, which includes
radiation reaction. Consider an equation of motion for particle i

mi
dui

dt
= fL + fR, (3.13)

which includes the Lorentz force fL,i = fL,i(Ei , Bi ,ui) acting on i, written as a
function of the total fields and velocity

fL,i = ei

(
Ei +

ui

γi
× Bi

)
. (3.14)

In addition, we incorporate another force fR,i = fR,i(Ei , Bi ,ui) which includes the
radiation reaction effect
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fR,i =
2e4

i

3m3
i

{ (
Ei +

ui

γi
× Bi

)
× Bi +

(
ui

γi
· Ei

)
Ei

− γi

[Ei +
ui

γi
× Bi

]2

−

[
ui

γi
· Ei

]2 ui

}
.

(3.15)

This is known as the reduced LL equation, so called as we have neglected terms
involving derivatives of the fields, arguing that they are smaller than spin correc-
tions and therefore negligible in a classical theory [42]. This assumption is widely
applied in a number of PIC codes [43, 45]. As with the Lorentz equation, we
discretise this equation with a second order leapfrog scheme

mi
un+1/2

i − un−1/2
i

∆t
= f n

L,i + f n
R,i + O(∆t3), (3.16)

Here the respective forces f n
L,i = fL,i(En

i , B
n
i ,u

n
i ) and f n

R,i = fL,i(En
i , B

n
i ,u

n
i ) are

evaluated at integer time steps. As before, the key problem involves the presence
of the velocity un

i on the right hand side of our equation.

It is challenging to see how such an equation can be solved algebraically, as the
force fR breaks the symmetry of the equation; we can no longer solve by translating
with the electric field and rotating around the magnetic field, as we did with only
the Lorentz force. Instead, we follow the perturbative approach of Tamburini et
al [41]. First, we advance the velocity according to the Lorentz equation alone
using the Boris algorithm to find un+1/2

L,i ≡ un+1/2
i from Eq. (3.12). Then we apply

the Boris assumption to determine the velocity at the midpoint

un
i ≈

un+1/2
L,i + un−1/2

i

2
. (3.17)

As before, the Lorentz factor γn
i =

√
1 + (un

i )2 is determined via the on shell
condition. After evaluating the respective forces f n

L,i and f n
R,i with the velocity at

the midpoint, we can directly advance to the next time step

un+1/2
i = un−1/2

i +
∆t
mi

(
f n
L,i + f n

R,i

)
+ O(∆t3). (3.18)

This approach is expected to be accurate providing the Lorentz force dominates the
motion f n

L,i ≫ f n
R,i, a requirement which is usually satisfied in the classical regime,

providing we are not in the radiation dominated regime [55, 56]. Regardless of
the equation of motion chosen, advancing the position of particle i with a leapfrog
scheme is trivial once the velocity is known
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dx
dt
=

u
γ
, (3.19a)

xn+1 − xn

∆t
=

un+1/2

γn+1/2 + O(∆t3). (3.19b)

Following the scheme laid out in this section, the complete trajectories of all point
particles can be determined in a self-consistent manner. A careful reader will no-
tice that when evaluating the interparticle fields we assumed the historical trajec-
tory was determined at integer time steps {tn, xn,un, u̇n}, as seen in Tab. 3.1, yet
the integrator above defines the velocity at half integer steps. At the end of each
step both the previous un−1/2 and new un+1/2 velocity are known, from which one
can estimate the average un according to Eq. (3.8). This interpolation should be
reasonably accurate providing the time step is small enough to properly resolve
the trajectory. With the fields and velocity simultaneously known at each step, one
can simply evaluate the equation of motion to recover the acceleration u̇n, which is
necessary to calculate the radiation part of the LW fields (2.16).

We note here the limitations of this approach. We are, of course, restricted to
the classical regime χ ≪ 1 for the LL equation to be valid, and in principle one
should evaluate the quantum parameter χ with the total field as opposed to the ex-
ternal field, for each particle. However, as the number of particles we can consider
is severely limited by the available memory and computational cost, the external
field is expected to dominate over interparticle fields in practice. A more pressing
requirement arises from the 1/R2 dependence of the velocity field in (3.4a), which
diverges as R → 0. The world lines of two particles can never cross if the code
is to be valid. Further, the distance between any two particles (in their common
rest frame, assuming that one exists) should be large enough such that quantum
mechanics can be safely ignored; in particular, for two oppositely charged species
the distance between electrons and positrons (or ions) should be large enough such
that we can ignore the creation of bound states.

3.2.3 Test LL integrator with a constant, uniform magnetic field

Our code now includes a numerical integrator for the reduced LL equation, which
relies on the assumption that radiation reaction is perturbatively small compared to
the Lorentz force. A test is now in order to probe the validity of this assumption.
Consider then, an electron moving in a constant magnetic field. The exact analyt-
ical solutions for the velocity, and the leading order solution for the position are
shown in Eqs. (5.10) and (5.14), in a later chapter. However, our code utilises a
common coordinate time, as opposed to the proper time which is distinct for each
particle. To provide a fair comparison, we demonstrate here the relationship be-
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tween the proper and coordinate time such that the analytical equations can easily
be evaluated.

An electron with Lorentz factor γ0 in the presence of a constant magnetic field will
lose energy on the scale of the damping frequency ωd = ω

2
Bτe [see Eq. (5.3)]

dγ
dt
= −ωd

 γ2

γ2
0,∥

− 1

 . (3.20)

Where ωB = eB/m is the frequency associated with the magnetic field, while the

conserved Lorentz factor of the longitudinal velocity is γ0,∥ = 1/
√

1 − v2
0,∥. This

differential equation can be solved by separation

γ(t) = γ0,∥ coth
(
ωd

γ0,∥
t +C

)
, (3.21a)

C =
1
2

ln
(
γ0 + γ0,∥

γ0 − γ0,∥

)
. (3.21b)

Which satisfies the initial condition γ(t = 0) = γ0 and exhibits the expected asymp-
totic behaviour γ(t) → γ0,∥ in the limit t → +∞. This happens to be a generali-
sation of a result previously obtained by M. Tamburini for non-zero longitudinal
velocity [42]. Recalling the definition of the velocity uµ = dxµ/dτ, particularly the
time-like component γ = dt/dτ, we can solve the following standard integral to
find the proper time as a function of the coordinate time

∫ τ

0
dτ′ =

1
γ0,∥

∫ t

0
tanh

(
ωd

γ0,∥
t′ +C

)
dt′, (3.22a)

τ(t) =
1
ωd

ln
[
cosh

(
ωd

γ0,∥
t
)
+
γ0,∥

γ0
sinh

(
ωd

γ0,∥
t
)]
. (3.22b)

Where we have made use of the identity tanh(C) = γ0,∥/γ0. One can now move
freely from coordinate to proper time, which allows for a direct comparison be-
tween our numerical and analytical solutions, which are derived in a later chapter
[see Eqs. (5.10) and (5.14)].

Consider then, a relativistic electron with γ0 = 10 moving in the xy-plane trans-
verse to a constant magnetic field B = B ẑ. The initial velocity lies entirely along
the y-axis u0,⊥ = u0,y with no longitudinal component γ0,∥ = 1. If we ignore
radiative emission, one would expect a circular orbit with radius R0 = |u0,⊥/ωB|
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Figure 3.1: Test of the numerical integrator for the reduced LL equation against analytical
solutions in a constant and uniform magnetic field. Analytical solutions are exact for the
velocity (5.10) and approximate for the position (5.14).

and period T0 = 2πγ0/|ωB|. We wish to ‘break’ our perturbative numerical ap-
proach by considering a strong field. To that end, we choose a quantum parameter
χ = |u0,⊥|B/Bcr = 0.1, or equivalently a magnetic field B = 4.4 × 108 T, at which
the classical theory should provide the leading order behaviour and QED effects
can be accounted for perturbatively. This is approaching the regime at which the
LL equation can no longer be considered valid, and should therefore provide a suf-
ficiently strenuous test. Finally, we run our code for 20 oscillations with a relatively
large time step ∆t = T0/20.

The comparison of numerical and analytical solutions can be seen in Fig. 3.1. One
can observe the impact of radiation reaction from the decaying amplitude of the
oscillations. While the agreement is excellent initially in all cases, the accumulated
error becomes significant as we approach t = 20 T0 for step size ∆t = T0/20.
Around this time and beyond, our approach can no longer be considered accurate
(for the time step chosen here).
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3.3 Integrating the spectrum of emitted radiation

Providing the trajectories are known, one can evaluate the spectrum of energy ra-
diated via the LW fields. Consider then, an observer far away from the volume of
space occupied by the complete trajectories of our particles. In this case, the unit
vector which defines our observer n becomes approximately constant, both in time
and for each particle. We write the spectrum of energy radiated at frequency ω per
unit solid angle, as a Fourier transform of the acceleration field [23, Ch. 14.5]

dε
dωdΩ

=
1

4π2

∣∣∣∣∣∣
∫ +∞

−∞

eiωt
N∑

i=1

ei A(xi,ui, u̇i) dt

∣∣∣∣∣∣2, (3.23a)

A(x,u, u̇) =
n×

(
n× [γ2u̇ − (u · u̇)u] + γu̇ × u

)
γ(γ − n · u)2 e−iωn·x. (3.23b)

Where the position x = x(t), velocity u = u(t) and acceleration u̇ = u̇(t) of a
generic particle, are defined as a function of the coordinate time t common to all
N particles. To evaluate the Fourier transform, first define the light cone coor-
dinate xi,−(t) = t − n · xi(t) which appears in the exponent. The trajectories are
determined at uniform intervals in time tn but non-uniform intervals in the coor-
dinate xn

−,i ≡ x
−,i(t

n) = tn − n · xn
i . Yet uniformity is a condition for applying

the Cooley-Tukey algorithm for fast Fourier transforms (FFT) [57], the standard
method for numerically solving integrals of this type. Typically one would inter-
polate the (non-oscillatory part of the) integrand A/e−iωn·x onto a uniform grid in
x−,i (in each dimension), before applying the FFT.

Our approach is slightly different. We utilise the NFFT3 library to represent the
integrand with a series of ‘window’ functions, which are chosen to be Gaussian in
shape [58]. Once this approximation of the integrand is known, it can be evaluated
on a uniform grid. Note that the frequency ω is constant for all particles, such
that the argument of the oscillatory function can be restricted to a single period
ωx−,i ∈ [0, 2π] without loss of information; one can then evaluate the integrand
of each particle on a uniform grid which is common to all particles. Then, we
can superpose the integrand from each particle, before applying the FFT algorithm
once. This greatly reduces the cost compared to carrying out a separate FFT for
each particle. Following this, one can integrate the spectrum over a solid angle
interval on the unit sphere, as desired.



34 CHAPTER 3. NUMERICAL CODE

By expanding the square modulus in Eq. (3.23a) we will obtain a double sum, and
by considering only the diagonal terms which pertain to the same particle one can
define the incoherent energy radiated

dε
dωdΩ

∣∣∣∣∣∣
incoh
=

1
4π2

N∑
i=1

∣∣∣∣∣∣
∫ +∞

−∞

ei A(xi,ui, u̇i) eiωt dt

∣∣∣∣∣∣2. (3.24)

Where the diagonal, interference terms between different particles are neglected. If
the particles’ trajectories differ only by a constant phase in the observation direction
ωn · (xi − x j) = 2πl, where l is an integer, the energy radiated will be coherent at a
given frequency (that is, proportional to N2). In practice, the limits of integration
are truncated to a finite interval. This poses no physical problem providing the
acceleration is zero everywhere except during this interval.



Chapter 4

Electron-positron bunch and laser collision

"When God said ‘Let there be light’, he surely
must have meant ‘perfectly coherent light’ "

— Charles H. Townes

At the time of writing, tightly focused optical lasers are among the most intense
sources of electromagnetic radiation available in the laboratory, and are therefore
essential if we wish to observe strong field behaviour such as radiation reaction.
Petawatt lasers of this kind have been instrumental in generating relativistic plas-
mas in the laboratory [59–64], and testing the validity of the LL equation in colli-
sions of ultra relativistic particles with a counter propagating laser pulse [12, 13].
In previous chapters, we have discussed the generalisation of the reduced LL equa-
tion to many point particles in Eq. (2.34), and we developed a numerical method to
solve this equation in Ch. 3. Our goal is to find regimes in which the usual approx-
imation of solving the LL equation analytically with only an external field, or in
other words, treating each particle independently of one another, no longer applies.
To that end, we seek to observe strong collective behaviour and radiation reaction
in the presence of a laser field.

In this chapter, we describe the trajectory and spectrum of electromagnetic radi-
ation emitted from a single charged particle colliding with a counter-propagating
laser pulse, which we model as a plane wave pulse. From the single particle spec-
trum, we identify the conditions required for a bunch of particles, specifically elec-
trons and positrons (e−/e+), to emit coherently. We expect strong collective be-
haviour to be induced under these conditions. The collision of an e−/e+ bunch
with a counter-propagating laser pulse is then simulated with the code described in
Ch. 3. A brief study of the experimental feasibility of this scenario is considered.
We proceed to discuss the instabilities which develop during this interaction, such
as micro-bunching, and the coherent emission of radiation which occurs as a result.

4.1 Single particle & laser collision

Consider then, one electron of velocity uµ0 colliding with a laser pulse, which we
model as a plane wave pulse of potential Aµ(φ) = (0, A(φ)). This potential is

35
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chosen to satisfy the Lorenz gauge

(∂A(φ)) = ω0
(
n0A′(φ)

)
= 0, (4.1)

where a prime denotes differentiation with respect to the wave phase, which is
defined as

φ ≡ ω0(n0x) = ω0(t − n0 · x). (4.2)

Here ω0 is the central frequency, and the laser propagates in a direction defined
by the vector nµ0 = (1, n0) which satisfies the null condition n2

0 = 0. We will
find it convenient to introduce the Lorentz invariant, normalised amplitude of the
laser [49]

a0 ≡
|e|
m

√∣∣∣A2
0

∣∣∣ = |e|E0

mω0
. (4.3)

Where Aµ0 ≡ Aµ(φ = 0) is the peak value of the potential and E0 is the peak
electric field. A modulus is required under the square root, as the potential is a
space like four vector A2(φ) = −A2(φ) < 0. With this definition, we refer to
a0 ≳ 1 as a relativistically strong field, so called as it will accelerate one electron
to a relativistic velocity within a single cycle. Naturally, we refer to a0 ≪ 1 as a
relativistically weak laser pulse. To describe the electron with a classical trajectory,
we require the fields are sufficiently weak in the rest frame compared to the critical
field of QED. To that end, for an electron and laser pulse collision, one typically
estimates the maximum value of the quantum parameter with the initial velocity
and peak field tensor Fµν0 ≡ Fµν(φ = 0),

χ0 =

√∣∣∣(F0u0)2
∣∣∣

Fcr
. (4.4)

The velocity and field are not necessarily at their respective maxima simultane-
ously, but it is better to air on the side of caution when defining the classical regime
χ0 ≪ 1, which is needed to apply the LL model. In addition, it will be helpful to de-
fine a classical parameter for the radiation dominated regime1 in a plane wave [49,
Eq. (26)]

RC =
χ0a0re

oe
, (4.5)

1The radiation dominated regime was initially considered by Koga et al [55], though we follow
the discussion by Di Piazza [33] more closely. In addition, Bulanov et al [56] discuss this regime
specifically in the context of plasmas.
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written in terms of the classical electron radius re and reduced Compton wave-
length oe. Here RC is essentially the coefficient of the LL self-force in a plane
wave. The regime RC ≳ 1 indicates that the self-force is comparable to or in ex-
cess of the Lorentz force in the rest frame, and is therefore said to dominate the
dynamics. It is challenging to see how one can enter this regime while remaining
in the domain of classical electrodynamics χ0 ≪ 1. In practice, we will work in
the regime RC ≪ 1.

To describe the electron trajectory in a plane wave, we suggest to start from the LL
equation in Eq. (2.31), which we write again here for convenience

m
duµ

dτ
= eFµνuν +

2
3

e2
[

e
m

(∂αFµν)uαuν+

e2

m2 FµνFναuα +
e2

m2 (Fu)2uµ
]
.

(2.31)

For brevity, we will omit the dependence of all functions on the wave phase, e.g.
for the external field Fµν = Fµν(φ), which can be defined from the potential

Fµν = ∂µAν − ∂νAµ = ω0
[
nµ0A′ν − nν0A′µ

]
. (4.6)

Here a prime denotes a derivative with respect to the wave phase. We will find
it convenient to introduce the light cone notation u− = (n0u) = γ − n0 · u0 with
respect to the direction along which the plane wave propagates. Contracting the
LL equation above with n0, µ, one can identify a differential equation for the light
cone coordinate in terms of the wave phase

du−
dτ
= ω0u−

du−
dφ
, (4.7)

Where the initial value is given by u0,− = (n0u0). However, it is well known that
this quantity is conserved2 when solving the Lorentz equation with a plane wave.
In the language of quantum mechanics, this direction is somewhat special as it
represents a head-on collision of a particle with photons of the laser pulse, and is
therefore indicative when measuring the recoil of the particle from this collision.
In the self-force of the LL equation, the following terms can be rewritten with the
field tensor shown above (4.6)

2To show that the light cone coordinate u− is conserved, see e.g. Landau & Lifshitz Vol. 2 [8,
§ 47]. This is also stated more concisely in a review by Di Piazza et al [49, Eqs. (1-3)] with the light
cone notation used here.
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(∂αFµν)uαuν = ω2
0

[
(uA′) nµ0 − u− A′µ

]
u−, (4.8a)

FµνFναuα = −ω2
0u−(A′)2nµ0, (4.8b)

(Fu)2uµ = ω2
0 u2
− (A′)2uµ, (4.8c)

Upon contraction of the LL equation with n0, µ, the first and second terms of the
self-force vanish, in addition to the Lorentz force, by virtue of the transverse prop-
erty (n0A) = 0 and null condition n2

0 = 0. Only the friction-like term (Fu)2 < 0,
often referred to as the ‘radiation reaction’, does not vanish. The evolution of the
light cone coordinate is then governed by

du−
dφ
= ω0τe u2

−

e2

m2

(
A′

)2 . (4.9)

Where we have reintroduced the time scale associated with the classical electron
radius τe = 2re/3 = 2e2/3m. This can be integrated directly to obtain

∫
du−
u2
−

= ω0τe
e2

m2

∫ (
A′

)2 dφ, (4.10a)

u−(φ) =
u0,−

1 + ω0τeu0,−
e2

m2

∫ φ
−∞

[
A′(ϕ)

]2 dϕ
. (4.10b)

Where we have explicitly stated the dependence on the wave phase of all functions,
and note the initial condition defined by the limit u−(φ) → u0,− as φ → −∞.
The vector potential is required to vanish asymptotically under the limits φ →
±∞, for this result to be physically sensible. If one considers an electron and
plane wave which are exactly counter-propagating, and the particle is continuously
ultra-relativistic throughout the interaction, this equation effectively governs the
evolution of the Lorentz factor u−(φ) ≈ 2γ(φ). Finally, we note the approach of
Di Piazza [33], who has solved the LL equation exactly via iteration, including
solutions for the transverse velocity which we have omitted discussion of here.
These solutions are in agreement with those derived later, and independently, by
Hadad et al [37].

From Eq. (4.10b), one can identify the central impact of radiation reaction in this
scenario is to act as a friction-like force, decreasing the Lorentz factor and in partic-
ular the longitudinal velocity over time. For ultra-relativistic particles γ ≫ 1 in the
presence of extremely strong fields beyond those considered here a0 ≫ 1, one can
also show radiation reaction will have a non-negligible impact on the transverse
velocity [37].
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4.2 Radiation spectrum from one particle

With the trajectory known, this can be inserted into the Fourier transform of the LW
fields to evaluate the spectrum of energy radiated [see Eq. (3.23a)]. To solve these
integrals analytically in a plane wave, for one particle let alone many, turns out to
be a formidable task when radiation reaction is included. As such, we will develop
an analytical understanding of the spectrum obtained with the Lorentz trajectory,
and we will rely on numerical solutions for the LL trajectory. For the former to
be applicable, we are effectively assuming the impact of radiation reaction on the
spectrum is perturbatively small. To evaluate the spectrum, we should first define
the vector potential of our laser; consider then, one electron colliding with a laser
pulse, modelled as a plane wave pulse of vector potential

|e|
m

AL(φ) = aL(φ) [δ cos(φ)x̂ +
√

1 − δ2 sin(φ)ŷ]. (4.11)

Where φ = ω0(t+ z) is the wave phase for a laser propagating along the -z direction
with transverse polarisation in the xy plane, central frequency ω0 and pulse shape
aL(φ). Note that the polarisation can vary freely between δ = 1 linear (LP) and δ =
1/
√

2 circular (CP). For a long pulse, the envelope is approximately constant over
one cycle, and we recognise the cycle averaged value is polarisation independent

e2

m2 A2
L(φ) =

1
2

a2
L(φ)

[
(2δ2 − 1) cos(2φ) + 1

]
, (4.12a)

⟨e2 A2
L(φ)/m2⟩ =

1
2π

∫ φ+π

φ−π
A2

L(φ′) dφ′ ≈
1
2

a2
L(φ). (4.12b)

Where the oscillatory term provides no contribution when averaged. One can see
that by choosing the amplitude of the envelope aL,0 = aL(φ = 0), we fix the cycle
averaged ‘intensity’, defined above. However, this implies the laser amplitude a0 =

|e|E0/mω0 will now vary from a0 = aL,0 for LP to a0 = aL,0/
√

2 for CP. The electric
E0 and magnetic B0 field amplitudes, or equivalently the field tensor amplitude Fµν0 ,
will be polarisation dependent in the same way, as will the quantum parameter χ0.

The spectrum of energy radiated in a monochromatic plane wave (aL(φ) = aL,0)
was derived by Sarachik & Schappert [65]. Yet, the expressions contained within
are cumbersome, and we need not consider a general observation point. As we are
considering a counter-propagating particle and plane wave pulse, the velocity will
on average lie along +z, such that the reflected radiation is of particular interest.
This scenario is studied by Kharin et al [66] for a plane wave pulse of generic shape;
they utilise the trajectory determined by the Lorentz equation to solve the spectrum
via the stationary phase method. Strictly speaking, this method only applies in the
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asymptotic limit a0 → +∞, yet in practice their solutions are accurate3 providing
a2

0 ≫ 1. With the vector potential introduced above (4.11), the stationary point(s)
±φ∗ determined by Kharin et al [66] are equally distributed about the peak φ = 0
for a symmetric pulse

ω =
Dω0

1 + 1
2 a2

L(φ∗)
. (4.13a)

D =
1 + v0,∥

1 − v0,∥
≈ 4γ2

0. (4.13b)

Where v0,∥ = |v0,∥| is the longitudinal speed and D is the Doppler reflection. With
our vector potential, this result is polarisation independent, and the approximation
becomes accurate when the particle is initially relativistic. One can interpret this
to mean high frequency radiation tends to be emitted as φ∗ → ±∞, while low
frequency radiation is emitted near the pulse peak4. Perhaps more intuitively, the
longitudinal velocity decreases near the pulse peak due to the magnetic field (for
a0 ≳ 1), which causes the particle to radiate at lower frequencies. In the monochro-
matic approximation, one can then write the lowest frequency emitted

ωs ≈
Dω0

1 + 1
2 a2

L,0

. (4.14)

Or alternatively, we can write the longest emitted wavelength λs = 2π/ωs from the
system. The spectrum of energy radiated is usually time integrated, and because
emission at a given frequency occurs at two stationary phase points, this will give
rise to an interference pattern, even for one particle [66, 68]. Ultimately, we are
considering the single particle scenario only to justify our simulation parameters
in the next section; with many bodies this interference pattern will be completely
altered, and as such is of little interest to us [compare Fig. 4.2(a-d) with Fig. 4.1].
We are, however, interested in the broad characteristics of the spectrum. For CP,
one particle will emit a broad spectrum of frequencies on-axis starting from ωs up
to Dω0 in a series of regular harmonics, as shown in Fig. 4.1(a). This is similar
in shape to previous results in the literature, for example Fig. (3a) in Ref. [66] or
Fig. (7b) in Ref. [68], keeping in mind that we utilise a log scale.

3The condition a2
0 ≫ 1 was determined by comparing respective terms in the phase of the

radiation integral [66, Eq. (5)]. Note that this is independent of the initial velocity. At the other
extreme, for a0 ≪ 1 the radiation integral simply becomes a Fourier transform of the vector potential.

4At the pulse peak / at low frequencies, the stationary points become degenerate and diverge,
while the second derivative of the phase of the integral vanishes. In this case, one must expand the
phase to third order, to obtain an approximation using Airy functions [67].
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Figure 4.1: Spectrum of radiation reflected on-axis, by a single electron of γ0 = 5 colliding
with a counter-propagating λ0 = 400 nm laser pulse of amplitude aL,0 = 5, for circular
(a) and linear (b) polarisation. Trajectory was obtained by numerically integrating the
reduced LL equation of motion, though radiation reaction has virtually no impact for these
parameters. Both spectra begin at frequency ωs ≈ 23 eV. At Dω0 ≈ 304 eV the spectrum
for CP rapidly converges to zero, while for LP the spectrum peaks here, and converges to
zero gradually aboveDaL,0ω0 ≈ 1500 eV.

For LP, the spectrum does not admit a closed form solution, but can be written in
an infinitely long series of Bessel functions Jn(x), of the first kind [65, 66]. As
seen in Fig. 4.1(b), for LP the spectrum consists of many overlapping harmonics
starting from ωs, the spectrum peaks around Dω0, and will gradually converge to
zero above ∼ DaL,0ω0. The last property results from the asymptotic behaviour of
Bessel functions Jn(x) ∼ xn. To verify our results against the literature, one can
compare Fig. 4.1(b) with Fig. (7c) of Ref. [68].

The characterisation of the reflected radiation given above, does not account for the
impact of radiation reaction. When solving the radiation integral with a trajectory
obtained from the LL equation [69, 70], one can see the tendency of radiation
reaction is to redshift the emitted spectrum [71], and suppress emission at high
frequencies by significantly altering the interference pattern [68]. So far, we have
considered only a single particle; in the next section, we will use these results to
suggest conditions for coherent emission from a small bunch of particles.
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4.3 Electron-positron bunch & laser properties

Consider then, a relativistic bunch of charged particles colliding with a counter
propagating laser pulse of amplitude a0, modelled as a plane wave. Our interpreta-
tion is that, to see strong collective behaviour we require the emitted radiation to be
coherent, and to observe a significant impact from radiation reaction, the particles
should be relativistic. We will now see these are competing demands. For a rela-
tivistically weak laser pulse a2

L,0 ≪ 1, the spectrum of radiation reflected on-axis
by one particle is simply the Fourier transform of the pulse shape aL(φ), centred
on the Doppler shifted frequency Dω0. The usual requirement for coherence is
that our bunch should then be smaller than the characteristic wavelength emitted
FWHMe ≪ 2π/Dω0, where FWHM stands for full width at half maximum. Yet,
for relativistic particles, which are needed to observe any significant impact from
radiation reaction, this quickly leads to an extraordinarily high density. It is chal-
lenging then, to see how one could observe both radiation reaction and strong col-
lective behaviour within, say, an electron bunch as suggested previously [19, 20],
as this would be highly unstable due to Coulomb repulsion.

Following this logic, we suggest a relativistic and neutral e−/e+ bunch. At first,
positrons are simply introduced to reduce Coulomb repulsion, later we will see
their role is instrumental for inducing instabilities within our system5. If we in-
stead consider a relativistically strong laser pulse, as described in the previous sec-
tion, one particle will emit a broad spectrum of frequencies on-axis starting from
frequency ωs = Dω0/(1+ a2

L,0/2), which corresponds to the longest emitted wave-
length λs = 2π/ωs, which is optimal if we wish to observe coherence. We suggest
the laser amplitude should be chosen to concentrate emission at low frequencies
aL,0 ∼ γ0, while avoiding back-scattering of the bunch, which occurs for a2

0 ⪆ D
according to the Lorentz equations of motion in a plane wave [49, Eqs. (1-3)], as
this would likely be experimentally problematic.

To justify the size of the bunch needed for coherent emission, first consider two
co-propagating particles moving with the same velocity, separated by distance d
in the direction along which the emitted radiation is observed. From the radiation
integral (3.23b), one would expect a destructive fringe at frequency π/d. This
suggests a condition on the size of our bunch FWHMe ≲ λs/2, for many particles
to emit coherently, depending on the longest emitted wavelength from the system
λs. Any coherence condition on the position should hold during some time interval,
which implies only a small initial energy spread can be tolerated. To that end, we
have included Appendix A which describes the ballistic expansion of a Gaussian
bunch, given an initial position and velocity spread. The key result is Eq. (A.8),
which describes the evolution of the standard deviation (in 3D) over time. One can

5See simulation results in Fig. 4.2; notice that ‘laser & intraspecies’ fields produces no micro-
bunching, or subsequent coherent amplification of the emitted spectrum, in contrast both of these
effects are often present for ‘laser & interparticle’ fields.
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e−/e+ bunch

FWHMe 16 nm
Ne− 4000
Ne+ 4000
n0 1.62 ×1021 particles/cm3

γ0 5
KE0 2.044 MeV
σKE 0.002 MeV
σϑ 1 mrad

Table 4.1: Initial properties of the neutral electron-positron bunch in the lab frame, as con-
sidered in our simulations. By row, one can see the full width at half maximum FWHMe (in
each dimension) of the Gaussian bunch, number of electrons Ne−, number of positrons Ne+,
peak density of particles within the bunch n0 including both e− and e+, average Lorentz fac-
tor γ0, average kinetic energy of one particle KE0, the RMS spread in kinetic energy σKE
and RMS angular spread around the z-axis.

insert the kinetic energy spread from Tab. 4.1 into Eq. (A.8) given the length of the
laser pulse, to verify the bunch expansion is negligible.

In our simulations, we utilise a laser, modelled as a plane wave pulse of shape
aL(φ) = aL,0 cos2(φ/L) and domain φ ∈ [−πL/2, πL/2], propagating along −z with
amplitude aL,0 = 5. In fact, we actually consider two lasers which differ only by
wavelength and intensity. Both lasers have amplitude aL,0 = 5 and pulse length
FWHML ≈ 26.7 fs (of intensity) as shown in Tab. 4.2. The central wavelengths
of the lasers are λ0 = 400 nm and λ0 = 100 nm respectively; these special wave-
lengths are chosen because we have fixed a0 to concentrate the spectrum at low
frequencies, yet we wish to consider high intensities to induce a strong effect from
radiation reaction. The laser pulse collides head-on with a neutral e−/e+ bunch,
which is Gaussian in shape and of size FWHMe = 16 nm in each dimension. This
bunch contains Ne− = 4000 electrons and Ne+ = 4000 positrons (total particles
N = 8000), and moves with an average initial Lorentz factor γ0 = 5 along +z, with
a small initial kinetic energy spread as outlined in Tab. 4.1. The bunch remains
unchanged throughout all of our simulations.

Notice that the laser in question is sufficiently intense a0 ≳ 1 to ionise virtually any
atoms or molecules present. Nevertheless, as our model is classical, it is necessary
to check the likelihood of forming bound states of e− and e+ is low (which are
known as Positronium). The peak density of a spherically symmetric, Gaussian
bunch can be written as (see Eq. (A.2))

n0 =
N

(2π)3/2 σ3
e
, σe =

FWHMe

2
√

2 ln 2
. (4.15)
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laser 1 laser 2
CP LP CP LP

λ0 400 400 100 100 nm
aL,0 5 5 5 5
a0 5/

√
2 5 5/

√
2 5

I0 2.2 2.2 34.7 34.7 ×1020 W/cm2

FWHML 26.7 26.7 26.7 26.7 fs

χ0 2.1 3.0 8.5 12.1 ×10−4

RC 5.5 11.0 22.0 44.0 ×10−6

Table 4.2: Properties of the laser(s) considered in our simulations. By row, one can see the
central wavelength λ0, amplitude of the envelope function aL,0, normalised amplitude a0,
(cycle averaged) peak intensity I0, full width at half maximum of the laser pulse (in inten-
sity) FWHML. Below, one can see the quantum parameter χ0, and the classical parameter
for the radiation dominated regime RC calculated for γ0 = 5 as shown in Tab. 4.1.

With the peak density in Eq. (4.15), we can estimate the minimum interparticle
distance in the lab frame d ∼ (1/n0)1/3 (in 3D). Due to the spherical symmetry, one
can easily identify a corresponding 1D interparticle distance d/

√
3. By considering

how each component changes under a Lorentz boost defined by γ0, we can evaluate
the interparticle distance in the rest frame

d∗ = d

2 + γ2
0

3

1/2

. (4.16)

Where an asterisk denotes a rest frame quantity, and clearly d∗ = d if the bunch is
at rest. This length d∗ ≈ 2.55 nm can be calculated from the peak density of our
bunch in Tab. 4.1. In the case of e−/e+, the relevant length scale for the formation
of bound states is the Bohr radius for Positronium a Ps = 1/e2µ ≈ 0.11nm, where
µ = m/2 is the reduced mass. Comparing these two lengths d∗/a Ps ≈ 24nm, we
argue that as the interparticle distance in the rest frame, estimated from the peak
density, exceeds the Bohr radius for Positronium by an order of magnitude, the
likelihood of bound state formation is small. Finally, we note a small time step
∆t ≈ d/10 ≈ 2.7 × 10−19 s is needed to properly resolve the interparticle (LW)
fields, and observe the emission of high frequencies via the Nyquist theorem.
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4.4 Experimental feasibility

It is worth considering the feasibility of our simulation parameters, with regards
to what is currently achievable in the laboratory. A variety of lasers operating in
the petawatt I0 ∼ 1015 W and multi-petawatt I0 ≳ 1016 W regimes have become
available in recent years [72], including those at the Extreme Light Infrastructure
(ELI) [73, 74], Apollon-10 PW [75] and Vulcan-20 PW [76]. These lasers typically
operate at optical wavelengths λ0 = 0.8 − 1 µm. For example then, a petawatt laser
of central wavelength 800 nm and waist w0 = 3 µm focused on a spot of area πw2

0/2
would have an intensity in the order of ∼ 1021 W/cm2; this is comparable to the
intensity of the 100 nm laser and exceeds that of the 400 nm laser which we have
suggested, in Tab. 4.2. Note, however, that we have chosen two wavelengths that
are sub-optical. Frequency doubling an optical laser in a suitable crystal is a com-
mon technique even at high intensities [36, 77, 78]. Indeed, parameters exceeding
ours, 30 fs pulses at intensity 6.5× 1021 W/cm2, have been obtained previously for
400 nm [79].

A 100 nm laser remains challenging to obtain. This would require repeated dou-
bling of an optical laser, for which it is difficult to maintain a efficiency, and con-
ventional optics tend to become transparent as one approaches the extreme ultra-
violet (EUV) regime. We note that significant progress has been made towards
developing a 100 nm laser by four-wave mixing [80], and both high harmonic gen-
eration from laser-plasma interactions [61] and free electron lasers (FEL) operate
at these wavelengths. However, to our knowledge none of these techniques have
yet reached the intensity discussed here. In short, the 400 nm laser suggested in
Tab. 4.2 is readily obtainable, while the 100 nm laser is more speculative.

Now we discuss the feasibility of producing an e−/e+ bunch of the kind described
in Tab. 4.1. Beams of e−/e+ pairs are typically6 generated in the laboratory as ener-
getic, charged particles propagate through a high-Z target emitting bremsstrahlung
radiation, which in turn creates e−/e+ pairs via the Bethe-Heitler process, thus gen-
erating a cascade [62, 83, 84]. To obtain a e−/e+ beam with a low energy spread, it
seems logical to first start from a high quality electron beam. Near mono-energetic
beams of electrons (σKE ∼ 0.1 %) with low angular spread (σϑ ∼ 1 mrad) can
be created via plasma based particle accelerators [85, 86]. As these electrons pass
through a high-Z target, one can create an e−/e+ beam containing ∼ 1 pC of e+ con-
centrated at the MeV-energies of interest here [60, 62–64]. This is several orders
of magnitude above our bunch, which contains 6.4 × 10−4 pC of e+. We suggest a
quasi-monogenetic e−/e+ bunch could then be fabricated by selecting the desired

6For completeness, we mention a few additional schemes for generating e−/e+ pairs in the lab-
oratory. An ultra-relativistic electron colliding with an intense laser pulse can emit a photon by
non-linear Compton scattering, which in turn can create an e−/e+ pair upon interacting with the
background laser field [49]. Tiny numbers of e+ were created via this method at SLAC [78]. Alter-
natively, with two colliding lasers operating at higher intensities ≳ 1024 W/cm2, one could accelerate
electrons directly with the laser(s), avoiding the need for a conventional accelerator [81, 82].



46 Electron-positron bunch & laser collision

energies in a magnetic chicane compressor, without loss of charge or current posing
a problem.

4.5 Results & discussion

With the simulations complete, we can review the results as shown in Fig. 4.2. Here
the laser wavelength and polarisation vary in each column, in order of increasing
energy radiated by the particles, from left to right. The first [Fig. 4.2 (a-d)] and
second rows [Fig. 4.2 (e-h)] describe the spectrum of total and incoherent energy
radiated respectively, onto a small 1 cm2 detector at 1m along the +z axis. Corre-
spondingly, Fig. 4.2 (i-l) are histograms of the final particle energies. In the last
row [Fig. 4.2 (m-p)] we have drawn a schematic of the transverse e−/e+ dynamics
at the laser pulse peak, without interparticle fields, which illustrates the charge sep-
aration. Immediately, one notices the inclusion of interparticle fields when solving
the (reduced) LL equation tends to coherently amplify the emitted spectrum, across
a broad range of frequencies in the soft X-ray domain 0.1 − 1 keV, which would
otherwise be incoherent. This amplification happens to be both polarisation and
wavelength (or intensity) dependent, which we discuss in detail below.

By comparing the total and incoherent spectra, one can identify frequencies at
which the energy radiated scales coherently with the total number of particles
N ∼ 104. When solving the LL equation with the ‘laser only’, for the 400 nm
laser we see coherence below approx. 90 eV, while for 100 nm the spectrum is
always incoherent. For the ‘laser only’, each particle observes the same field and
collisions do not occur, and so we expect the bunch to remain stable in size (except
for the small impact of the initial momentum spread); the transition from coher-
ent to incoherent then occurs approximately at the frequency 2π/FWHMe ≈ 78 eV
corresponding to the bunch size. This transition cannot be seen in the 100 nm case
as the spectrum begins above this frequency at ωs ≈ 90 eV, while for 400 nm the
spectrum begins at ωs ≈ 23 eV. This explains why, with the ‘laser only’, all spectra
exhibit similar degrees of coherence at the same absolute frequency (in eV). For
the incoherent spectra, all cases for the fields are overlapping and effectively indis-
tinguishable, and the spectrum closely resembles that of a single particle seen in
Fig. 4.1. This suggests the underlying trajectories are only altered perturbatively,
but that the particles are spatially reorganised in such a way that they tend to emit
coherently.
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The inclusion of interparticle fields when solving the LL equation coherently am-
plifies a broad range of frequencies, from approximately 70 eV to 300 eV in all
cases except for the 400 nm laser with CP, where little amplification occurs. An ap-
parent explanation is offered by the schematics. While the e−/e+ occupy the same
volume initially, for the 400 nm laser both species separate transversely due to the
electric field, inducing a charge separation. For CP, the e−/e+ orbit a common guid-
ing centre and remain separated at the pulse peak, for LP, the e−/e+ periodically
re-collide as the field is oscillating. Hence for CP we expect Coulomb repulsion to
play a large role expanding the bunch and reducing coherence, which is confirmed
by comparing ‘laser and interparticle’ with ‘laser & intraspecies’; these cases are
nearly identical, confirming that the e−/e+ interaction is negligible.

For the 100 nm laser, the e−/e+ are continuously interacting, and so the spectra
and final particle energies exhibit a weaker dependence on polarisation. For both
the 100 nm laser, and 400 nm laser with LP, ‘laser & intraspecies’ fields acts as
an intermediate case, inducing a weaker coherent amplification confined to low
frequencies, which is reflected in the final particle energies. This highlights the
importance of the e−/e+ interaction when inducing coherent emission, and par-
ticularly the role of the re-collision process seen with LP. As such, we are very
sceptical at the notion that similar results can be obtained with only electrons. It
would be interesting, however, to check if similar behaviour can be reproduced
with an electron-ion system, in future.

Correspondingly, one can observe a broad and inhomogeneous loss of energy by
particles within the bunch in Fig. 4.2 (i-l). This appears to confirm that our re-
sults are consistent. However, a fair comparison of the radiation spectra and final
particle energies is difficult for several reasons, for example: (i) we only consider
radiation emitted close to the axis in the spectra, (ii) the role of the potential energy
is recorded here, and is not necessarily negligible as a charge separation (effectively
a dipole) is induced, and (iii) for LP we have truncated the spectra around 2 keV
as all cases become incoherent at very high frequencies, such that it is difficult to
identify the total energy radiated. Recall from the introduction, that we discussed a
model suggested by several authors [19, 20], that one can treat a ‘small’ bunch of N
particles as a single point particle, which would experience a coherently enhanced
self-force, which is proportional to the effective classical electron radius Nre. Yet,
if we used this approach to determine the final Lorentz factor(s) via Eq. (4.10b),
we can clearly see this would not account for the inhomogeneous loss of energy in
our simulations. This highlights the fact that each particle will observe a different
electromagnetic field, and subsequently will lose a distinct amount of energy and
momentum depending on its position within the bunch.
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Figure 4.2: Inclusion of interparticle fields when solving the LL equation. Legend in (a)
applies to plots (a-l). Spectrum of total energy radiated (a-d) and incoherent energy (e-h)
reflected onto a small detector, and final particle energies (i-l). Laser varies between cir-
cular (CP) and linear (LP) polarisation, wavelengths 400 nm and 100 nm, in each column.
Schematics (m-p) show the transverse e−/e+ dynamics at the laser pulse peak, without
interparticle fields. In (a-d), different cases for the fields are overlapping except at frequen-
cies where interparticle fields cause additional radiation to be emitted. For the incoherent
spectra (e-h), ‘laser & interparticle fields’ and ‘laser & intraspecies fields’ (no e−/e+ in-
teraction) are indistinguishable and overlapping with ‘laser only’. For the 400 nm laser,
the incoherent spectra are virtually identical in shape to the one electron spectrum shown
earlier in Fig. 4.1; one cannot easily compare the energy radiated on the y-axis, as here
we have integrated over the solid angle. Figure was created by the author and can also be
found in a corresponding paper [1].
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4.6 Coherent emission via micro-bunching

To explain this coherent amplification, consider the longitudinal profile of the
e−/e+ bunch at the laser pulse peak, as shown in Fig. 4.3. Why have we cho-
sen this specific time, and what is so important about the longitudinal direction?
To the first point, we expect emission to be strongest at the maximum value of the
fields, near the pulse peak. To the second question, we expect coherent emission
at low frequencies to drive any collective behaviour, and from the stationary phase
approximation described earlier [see Eq. (4.13a)], low frequencies tend to be emit-
ted on-axis close to the pulse peak (all be it, over a large radiation cone subtended
by angle a0/γ0 ∼ 1, from the ratio of the transverse to longitudinal momentum).
With the ‘laser only’, the initial shape of the bunch appears to be preserved in all
cases. With interparticle fields, for the 400 nm laser with CP the bunch appears to
be skewed along z in the opposite direction to the velocity, which corresponds to a
small amount of energy emitted as seen in Fig.4.2 (a,i). For LP, a single, sharp peak
of FWHM ≈ 4.4 nm can be seen, which is about one-quarter the size of the initial
bunch. This accounts for coherent emission up to approx. 2π/FWHM ≈ 280 eV,
as seen in Fig. 4.2 (b).

For the 100 nm laser a triple peak structure emerges for both polarisations, which
occurs on the scale of the longest emitted wavelength λs = 2π/ωs (or lowest emit-
ted frequency), at which much of the energy radiated is concentrated in Fig. 4.3 (a-
d). For CP, no single peak is dominant and a measurement of the peak width is
difficult to perform accurately. However, any estimate would likely be smaller
than the initial bunch. For LP, the left-most peak is somewhat dominant and has a
FWHM ≈ 4.7 nm which accounts for coherent amplification up to approximately
260 eV. It should be clear that these frequencies are estimates, particularly for LP
as the bunch has expanded to the scale of one wavelength at the pulse peak, and
consequently these structures begin to oscillate with the fields, making an accurate
measurement challenging. Finally, we note that as no micro-bunching effect or
broad coherent amplification of the spectra can be seen for ‘laser & intraspecies’
fields7, their longitudinal profile has not been plotted in Fig. 4.3.

The full, time dependent dynamics in position space can be seen with videos in
the supplementary material [87–90]. These compare the two most important cases,
‘laser only’ and ‘laser & interparticle’ fields, side by side over time. A snapshot
from these videos is provided at the laser pulse peak in Fig. 4.4. For the 100 nm
laser, one can see a transverse focusing of the bunch at the laser pulse peak, in
addition to the longitudinal modulations described before. For the 400 nm laser,
with CP we simply observe a rapid expansion due to Coulomb repulsion, while
with LP the respective species form a pair of coherently emitting ‘discs’, which
experience no transverse compression.

7The longitudinal profile for ‘laser & intraspecies’ fields’ loosely resembles Fig. 4.3 (a), and
contains no interesting structures.
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Figure 4.3: Longitudinal profile of the e−/e+ bunch at the laser pulse peak. Legend in (a)
applies to all panels. Here λs refers to the longest emitted wavelength from the system,
while the distance between the twin arrows in (b) and (d) is the full width at half maximum
of the dominant peak. Figure was created by the author and can also be found in a corre-
sponding paper [1].

Figure 4.4: Distribution of e− (blue dot) and e+ (red dot) in 3D at the laser pulse peak,
congruent with Fig. 4.3. For the 100 nm laser, we can transverse focusing in addition to
the longitudinal modulation.
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In short, the emitted radiation drives a micro-bunching effect in the longitudinal
direction, on the scale of the longest emitted wavelength, which tends to scale co-
herently. These compressions induce coherent emission in the spectrum at frequen-
cies where none would typically be expected (with ‘laser only’); note that for the
100 nm laser coherent emission only occurs when interparticle fields are included.
The collective behaviour which takes place at the laser pulse peak is complex and
time dependent, and in particular we do not have a satisfactory explanation for
any transverse focusing which has occurred with the 100 nm laser. However, as
can be seen in the videos [87–90], or alternatively with the final particle energies
in Fig. 4.2 (i-l), the e−/e+ bunch expands in phase space when interparticle fields
are included by the end of the simulation, for all wavelengths and polarisations.
The explanation appears to be that if each particle experiences a different elec-
tromagnetic field, energy losses within the bunch will be inhomogeneous, which
leads to a phase space expansion that impedes coherent emission, and subsequently
the collective behaviour studied here must be transient. This contrasts with a pre-
vious theorem for the Vlasov equation, which shows a phase space contraction
and decrease in entropy, demonstrated for an external and self-consistent mean
field [42, 91]. The discrepancy is likely due to collisions, which we have taken into
account exactly here.

4.7 Role of radiation reaction

Note that when we justified the size and initial energy-momentum spread of the
e−/e+ bunch which was necessary for coherent emission, we utilised the single par-
ticle spectrum, which was derived from the Lorentz equation, or trajectory. Given
that the spectra in Fig. 4.2 have been interpreted using the frequency ωs and wave-
length λs which do not dependent on the length scale associated with radiation
reaction, specifically the classical electron radius; it is natural then, to ask exactly
what is the role of radiation reaction in these simulations? This is most clearly seen
by referring to Fig. 4.5, where we have repeated the simulations in Fig. 4.2 using
the Lorentz equation instead of the LL equation.

By comparing the top (Lorentz) and bottom (LL) rows, one can see that the self-
force is negligible in practice for the 400 nm laser. The formation of a coherently
radiating disc, as observed with LP in Fig. 4.4, must arise due to the inclusion of
interparticle fields within the Lorentz force alone. However, for the 100 nm, some
contribution from radiation reaction is clear; one can see the entire distribution is
somewhat shifted, or skewed to lower particle energies. In practice, the micro-
bunching phenomena and broad coherent emission appear to arise regardless of the
equation of motion utilised. As such, we have decided not to replot the information
already contained in Fig. 4.2 again here.
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Figure 4.5: Histograms of final particle Lorentz factors when solving the Lorentz equation
(a-d) and LL equation (e-h) for the collision of an e−/e+ bunch and laser pulse. The central
laser wavelength varies from 400 nm to 100 nm, from CP to LP, in each column.



Chapter 5

Electron-positron beam in a constant & uniform
magnetic field

"With the advent of big new telescopes, I hope we will be able to clarify
what is producing things like fast radio bursts and tidal disruption
events, and study the mergers now being detected by gravitational
wave detectors such as LIGO"

— J. Bell Burnell, discussing pulsars as an
opportunity to test fundamental physics [92]

In the previous chapter, we considered the interplay of radiation reaction and col-
lective behaviour within an e−/e+ bunch and laser pulse collision, with an interest
towards laboratory experiments. We seek to extend our discussion to scenarios
which are analogous to an astrophysical environment. Relativistic pair plasmas are
thought to be created in the presence of extremely strong electromagnetic fields,
near black holes [93] and pulsars [94]. It is the strong magnetic field found in the
latter which is of interest here.

We take a moment to summarise the usual model for e−/e+ pair creation in the pul-
sar magnetosphere. One often models the electromagnetic field emanating from a
pulsar as a rotating magnetic dipole [95, 96]. Charged particles propagating along
the open magnetic field lines near the poles are unable to return; this creates a
charge depleted region with a strong electric field known as a gap, from the neu-
tron star surface to the magnetosphere [97]. In close proximity to the surface these
fields can be in the order of, and even exceed, the critical field of QED. High en-
ergy photons are absorbed by such a field to create an e−/e+ pair. These charged
particles are rapidly accelerated by the electric field (in opposite directions), prop-
agating along the magnetic field; the electromagnetic radiation emitted is thought
to generate secondary e−/e+ pairs, of lower energy and moving at greater angles
relative to the magnetic field, which will result in a distinctly different trajectory.
This will have a significant impact on the frequency and polarisation of the emit-
ted radiation. The production of e−/e+ pairs is expected to eventually screen the
electric field, preventing further acceleration.

Consider that we approximate a curved magnetic field line as a circular arc of ra-
dius ρ. A charged particle propagates along this line, with pitch angle α between
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the field and velocity at some instant. One then argues as ρ → ∞, the trajectory
becomes helical and the spectrum is that of synchrotron radiation, with a charac-
teristic frequency [18]

ωsc =
3
2
γ2|ωB| sin(α). (5.1)

Here the particle is assumed to be relativistic and ωB = eB/m is the frequency
associated with the magnetic field, including the sign on the charge. The initial
frequency of rotation is then |ωB|/γ0. Alternatively, as α → 0 the characteristic
frequency is that of curvature radiation [23, Ch. 14.6]

ωcv =
3
2
γ3

ρ
. (5.2)

One expects the primary charged particles ejected from the gap are ultra-relativistic
and emit curvature radiation. Given that we observe GeV gamma rays from pul-
sars [98], likely from the inner magnetosphere where the fields are strongest, one
infers by Eq. (5.2) that some particles are accelerated to extreme Lorentz factors
γ ≲ 109 [17]. For rest frame fields beyond the classical regime, a particle would
rapidly cascade down through the Landau levels (quantised orbits in a strong mag-
netic field). At the opposite end of the electromagnetic spectrum, coherent cur-
vature radiation from charge bunches is one of many mechanisms proposed to
explain pulsar radio emission [97, 99]. For secondary e−/e+ pairs at lower en-
ergies and larger pitch angles, one expects synchrotron emission to play a more
important role. The transition between curvature and synchrotron remains unclear;
both Cheng & Zhang [100] and Kelner et al [101] have attempted to define these
regimes as asymptotic limits of a unified synchro-curvature theory, the latter in par-
ticular includes classical radiation reaction. It is well known the emission spectrum
of the Crab nebulae is accurately characterised by synchrotron, from radio to UV
wavelengths. It is also thought that secondary e−/e+ pairs are responsible for the
emission of crossed fan beams1 of X rays and gamma rays [103], differing from
those emitted in curvature radiation.

We seek to proceed as in the previous chapter, by identifying a regime in which co-
herent emission and collective behaviour occurs, where radiation reaction ideally
also plays a role. Yet, the range of parameters that can be resolved with our nu-
merical approach is extremely limited. Our code must operate for a length of time
which is long enough for an instability to develop, with a time step small enough
to properly resolve the LW fields between particles. Similar difficulties are often
remarked upon when attempting to identify sites for gamma ray emission [17] or

1The term ‘crossed fan beam’ as opposed to ‘pencil’ or ‘conal’ beam of radiation, is unfamiliar
to us but appears occasionally in the literature. The distinction appears to be the angle at which the
radiation propagates relative to the magnetic field; see Fig. 1 of Ref. [102].
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acceleration regions [104] within the magnetosphere; this requires reconciling vast
differences in scales, from the neutron star radius2 ∼ 10km over which the pulsar
fields will vary significantly, to the Larmor radius over which the trajectory varies,
which is often many orders of magnitude smaller. To that end, we consider the sim-
plified case of weakly relativistic particles propagating in a constant and uniform
magnetic field (i.e. the synchrotron regime). The parameters utilised will be com-
parable to those in the previous chapter concerning lasers; it is unclear if our results
can relate directly to the astrophysical scenarios described above, or if rescaling is
needed (or possible). The above conversation about astrophysics is then provided
as a motivation to study this problem in detail. As before, it will be instructive to
start from the single particle case.

5.1 Trajectory in a constant & uniform magnetic field

In the presence of a constant and uniform magnetic field, the LL equation (2.31)
can be separated into transverse and longitudinal components

dγ
dτ
= −ωdγ

3v2
⊥, (5.3)

dv⊥
dτ
=

e
m

(v⊥ × B) − ωdv⊥, (5.4)

dv∥
dτ
= 0. (5.5)

Where τe = 2re/3 ∼ 10−23 s is the small time interval associated with the classical
electron radius. One can already identify the friction-like behaviour of radiation
reaction from the decay of the Lorentz factor, over some interval of proper time.
This occurs on a time scale associated with the damping frequency ωd = ω

2
Bτe > 0.

As with the Lorentz equation, no force is exerted parallel to the magnetic field, such
that the longitudinal velocity is conserved v∥ = v0,∥. This is why we have chosen
to work with the velocity v = u/γ instead of u, as oddly enough the longitudinal
component v∥ is conserved, yet u∥ is not. It will prove convenient to define a
Lorentz factor associated with this velocity

γ0,∥ =
1√

1 − v2
0,∥

. (5.6)

This indicates that we could perform a Lorentz boost along v0,∥ before solving.
However, this extra step is unnecessary as the problem is sufficiently simple in

2A typical estimate for the neutron star radius, for a young pulsar of rotational period ∼ 0.1 sec.
To define ‘young’, see e.g. Fig. (1) of the second Fermi-LAT catalogue [98].
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the current frame of reference. Taking the scalar product of Eq. (5.4) with v⊥ and
integrating, we can observe the exponential decay of the transverse velocity due to
radiation reaction

∫
d(v 2
⊥)

v 2
⊥

= −2ωd

∫
dτ, (5.7a)

v2
⊥(τ) = v2

0,⊥ e−2ωdτ. (5.7b)

Where we have applied the initial condition v⊥(τ = 0) = v0,⊥. With the speed
known, we can perform another integration for the particle’s Lorentz factor

∫
dγ
γ3 = −ω

2
d

∫
v2
⊥(τ) dτ, (5.8a)

γ(τ) =
γ0,∥√

1 − γ2
0,∥v

2
0,⊥ e−2ωdτ

. (5.8b)

Here the Lorentz factor satisfies the initial condition γ(τ = 0) = γ0 and asymptotic
limit γ(τ → ∞) = γ0,∥, where the latter reflects conservation of the longitudinal
velocity. Notice that for τ > 0 the solutions are always real and therefore physical,
as the coefficient of the exponential term is always between zero and one by the
on-shell condition

γ2
0,∥v

2
0,⊥ = γ

2
0,∥(v

2
0 − v2

0,∥) = 1 −
γ2

0,∥

γ2
0

< 1. (5.9)

As with the Lorentz equation, we expect the transverse velocity to be oscillatory.
Yet without conservation of angular momentum the period of oscillation will not
be constant. For simplicity, if we define the magnetic field along B = B ẑ and the
initial transverse velocity as v0,⊥ = v0,⊥ ŷ, one can identify the following solution

v⊥(τ) = v0,⊥ e−ωdτ
[
sin(ωBτ) x̂ + cos(ωBτ) ŷ

]
, (5.10)

which can be verified by substitution into Eq. (5.4). This constitutes an exact so-
lution to the LL equation for the velocity. Recall, however, that the LL equation
is typically derived as a perturbative expansion of the LAD equation. The exact
solutions derived above agree with the solutions of the LAD equation to first order,
when solved with a perturbative series in terms of the small quantityωdτe [44, 105].
Even at the critical magnetic field Bcr ∼ 109 T of QED, well beyond the regime
of validity for the LL and LAD equations, this quantity is still remarkably small
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ωdτe ∼ 10−5 which suggests the LAD and LL equations will be in excellent agree-
ment.

With the equations for the three vector velocity and Lorentz factor above, one can
construct the four vector velocity uµ = γ(τ)(1, v(τ)). Then, from the definition of
uµ as the derivative of position with respect to proper time, we can write

xµ(τ) − xµ0 =
∫ τ

0
uµ(τ′) dτ′. (5.11)

As before, the position satisfies the initial condition xµ0 = xµ(τ = 0). It will prove
convenient, once again, to resolve into components with respect to the magnetic
field. As the longitudinal velocity is conserved, determining the position parallel
to the magnetic field is trivial x∥(t) = x0,∥ + v0,∥ t, as a function of the coordinate
time t. One can then relate the coordinate and proper time by integrating the µ = 0
component of the integral above. Earlier in Eq. (3.22b), we performed the inverse
procedure by finding the proper time as a function of the coordinate time, which al-
lowed the analytical results found here to be used as a benchmark of our numerical
integrator for the (reduced) LL equation. The integral for the transverse position is
more complex

x⊥(τ) − x0,⊥ = v0,⊥

∫ τ

0
γ(τ′) e−ωdτ

′ [
sin

(
ωBτ

′) x̂ + cos
(
ωBτ

′) ŷ
]

dτ′. (5.12)

As the timescale associated with radiative damping tends to be far larger than that
of the magnetic field ωd ≪ ωB, we suggest to account for radiation reaction per-
turbatively, first by integrating over the oscillating terms with parts

⇒
v0,⊥

ωB

[
γ(τ′)e−ωdτ

′ (
− cos

(
ωBτ

′) x̂ + sin
(
ωBτ

′) ŷ
) ]τ

0

−
v0,⊥

ωB

∫ τ

0

d
dτ′

{
γ(τ′)e−ωdτ

′
} [
− cos

(
ωBτ

′) x̂ + sin
(
ωBτ

′) ŷ
]

dτ′. (5.13)

One can see the first term will provide the leading order behaviour, while the sec-
ond term will be suppressed by the damping frequency, incurred when differenti-
ating both the Lorentz factor and exponential term. The approximate solution is
then

x⊥(τ) − x0,⊥ ≈
u0,⊥

ωB

[ (
1 −
γ(τ)
γ0

e−ωdτ cos(ωBτ)
)

x̂

+
γ(τ)
γ0

e−ωdτ sin(ωBτ)ŷ
]
.

(5.14)
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Where one can identify the initial Larmor radius R0 = |u0,⊥/ωB| = |u0,⊥/ωB|. The
oscillations in the transverse position are then exponentially damped over time, as
with the transverse velocity.

5.2 Spectrum of radiation from one particle

Traditionally in astrophysics, the main source of information about distant objects
is the electromagnetic radiation they emit. Having considered the impact of radi-
ation reaction on the trajectory, according to the LL equation, it seems natural to
determine the subsequent impact on the radiation spectrum, which can be written
as [23, Ch. 14.5, Eq. (14.67)]

dε
dωdΩ

=
e2

4π2 |I |
2 , (5.15a)

I = ω

∫ +∞

−∞

n× (n× u) eiω(nx) dτ, (5.15b)

ω(nx) = ω[t − n · x]. (5.15c)

Where ω is the frequency seen by a distant observer, in the direction of the four
vector nµ = (1, n) which satisfies n2 = 0, and is approximately constant. Note that
the integration is performed over the proper time, which can easily be exchanged
with the coordinate time via dt/dτ = γ. For brevity, any dependence on the proper
time will be implicit in this section, for example γ = γ(τ). If we are considering
charged particles propagating almost parallel with the magnetic field, we suggest
to observe directly along the field line n = B/B, in which case the integrand will
simplify significantly

n× (n× u) = −γv⊥, (5.16a)

ω(nx) = −ωx0,∥ + ω(1 − v0,∥) t. (5.16b)

Here we have used the ballistic motion of the particle parallel to the field line as
shown in the previous section. In practice, the initial position will vanish under the
square modulus, and can therefore be thrown away (this is only true for a single
particle). At this point, we would prepare to insert the transverse velocity shown
earlier in Eq. (5.10). Decomposing each sinusoid with Euler’s formula, one can
see there are two contributions, from e+i|ωB| and e−i|ωB|, regardless of the sign on
the charge which appears in ωB. Following this logic, we separate our integral into
positive and negative contributions
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|I |2 =
1
2
|I−|

2 +
1
2
|I+|

2 . (5.17)

Where the negative contribution to the integral can be written as

I− = ωv0,⊥

∫ +∞

0
γ e−ωdτ eiΦ dτ (5.18a)

Φ = −|ωB|τ + ω(1 − v0,∥) t. (5.18b)

The positive contribution I+ is identical to I−, except that the sign on the fre-
quency associated with the magnetic field is +|ωB| in the phase of the integral Φ,
instead of −|ωB| as shown above. The leading order behaviour of I+ is discussed
in Appendix B, to justify why it can be neglected compared to the negative con-
tribution |I+|2 ≪ |I−|2. Notice that we have truncated the limits of integration
to finite interval. Strictly speaking3, this is only valid if the acceleration is zero
outside the range of integration, for τ < 0, which is problematic when considering
constant fields. Often one avoids this problem in special cases where the boundary
terms vanish, such as circular motion as described by the Lorentz equation in a
constant and uniform magnetic field [106], or motion in a plane wave [65], where
the initial and final velocity are identical. The latter is a consequence of the Law-
son–Woodward theorem. We will assume the boundary terms can be neglected,
and this will be proven later by comparison with numerical solutions [via the inte-
gral in Eq. (3.23b)].

To solve the integral I−, we should carefully inspect its oscillatory behaviour. If
the observed frequency tends to zero ω→ 0, the integral simply becomes a Fourier
transform of the Lorentz factor and decaying amplitude of the transverse velocity.
At the other extreme ω → +∞, one can solve by the stationary phase approxima-
tion. This technique is found in any standard textbook on asymptotic analysis. The
general idea is, that under the high frequency limit the integral oscillates rapidly,
such that one only needs to make a small expansion around the stationary point
of Φ for good approximation. To see when this is appropriate, we can rewrite the
exponent

Φ = |ωB|

∫ τ

0

[
−1 +ϖ

γ(τ′)
γ0,∥

]
dτ′. (5.19)

One can see an asymptotic approachω→ +∞will tend to be valid when the second

3The radiation integral in Eq. (5.15b) is usually obtained via an integration by parts, of the
Fourier transform, of the LW fields [23, Ch. 14.5]. The boundary terms which arise do not vanish
identically for zero acceleration; Jackson argues one should insert a ‘convergence factor’, which
forces the integral to vanish at the end points of integration.
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term under the integral dominates. Here ϖ = Dω/|ωB| is the observed frequency
in units of the longitudinal Doppler shift

D =

√
1 − v0,∥

1 + v0,∥
≈

1
2γ0,∥

. (5.20)

Asymptotic methods usually proceed by identifying one or more stationary point(s)
τ∗ in the exponent. One argues that higher order oscillatory terms tend to oscillate
rapidly and therefore cancel, such that only the leading order term is required. The
first derivative can be written

Φ′∗ ≡ Φ
′(τ∗) = 0, (5.21a)

ϖγ∗ ≡ ϖγ(τ∗) = γ0,∥. (5.21b)

Where derivatives with respect to proper time are denoted by a prime. The frequen-
cies for which a stationary point exists can already be identified ϖ ∈ [γ0,∥/γ0, 1],
and in practice, the integral will be exponentially suppressed outside of this domain
(see Appendix B). Note the information conveyed above; high frequencies ϖ = 1
are emitted in the limit τ∗ → +∞, while low frequenciesϖ = γ0,∥/γ are emitted in
the limit τ∗ → 0. We can interpret this for a relativistic particle, moving at angle
α relative to the magnetic field. Initially, the cone (of instantaneous angle ∼ 1/γ)
into which radiation is emitted by the particle is not aligned with the magnetic
field. Usually with synchrotron radiation, we expect high frequency radiation will
be confined to the plane in which the circular motion takes place. Therefore, we
expect low frequency radiation to be observed along the magnetic field, around the
initial time. However, at advanced times the transverse velocity decays exponen-
tially due to radiation reaction, such that the velocity aligns with the magnetic field.
Then, we tend to see the Doppler shifted peak at ω∥ ≈ 2γ0,∥|ωB|, which occurs due
to conservation of the longitudinal velocity.

Recalling the expression derived earlier for the Lorentz factor, in (5.8b), we can
proceed to find the single stationary point

e−ωdτ∗ =
1

γ0,∥v0,⊥

√
1 −ϖ2 , (5.22a)

τ∗ =
1

2ωd
ln


1 −

γ2
0
γ2

0,∥

1 −ϖ2

 . (5.22b)
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To simplify, we have also utilised the on-shell condition Eq. (5.9) to remove any
dependence on v0,⊥. Differentiating the exponent again, one can identify the second
derivative, evaluated at the stationary point

Φ′′∗ ≡ Φ
′′(τ∗) = −|ωB|ωd

(
1
ϖ2 − 1

)
. (5.23)

To derive this expression, one is required to differentiate the Lorentz factor from
Eq. (5.8b), and evaluate using the steps shown above Eqs. (5.22a) and (5.21b).
Higher order derivates are suppressed by increasing powers of the small quantity
|ωB|τe which appears in the damping frequency ωd. We can then write the phase
of the integral as a small expansion around the stationary point

Φ ≈ Φ∗ +
Φ′′∗

2
(τ − τ∗)2. (5.24)

In practice, we will not need to calculate Φ∗ as it vanishes under the square modu-
lus. With this expansion in hand, we can attempt to solve the radiation integral

I− ≈ ωv0,⊥

∫ +∞

0
γ e−ωdτ e

i
2Φ
′′
∗ (τ−τ∗)2

dτ. (5.25)

One then argues that the Lorentz factor and exponentially decaying term can be
treated as approximately constant, compared with the oscillating part of the inte-
gral. A similar, perturbative approach was used earlier in Eq. (5.14), to define the
transverse trajectory position while including corrections from radiation reaction.
After taking the slowly varying terms outside the integral, they can be evaluated at
the stationary point according to the results derived above

I− ≈
ω

ϖ
(1 −ϖ2)

1
2 J , (5.26a)

J =

∫ +∞

−τ∗

e
i
2Φ
′′
∗ (τ−τ∗)2

dτ. (5.26b)

The key problem remaining involves the purely oscillatory integral J , and specif-
ically the finite, lower limit. We suggest to separate this into two parts, one which
can be solved exactly, and another which can be evaluated numerically

∫ +∞

−τ∗

≡

∫ +∞

0
+

∫ 0

−τ∗

=

∫ +∞

0
+

∫ τ∗

0
. (5.27)

Where we have employed a schematic notation, omitting the integrand for conve-
nience. The last equation requires changing the sign on the subject of integration.
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As the second derivative is always negative Φ′′∗ < 0, we will write the minus sign
explicitly from now on Φ′′∗ = −|Φ

′′
∗ |. The first integral is a standard Gaussian. We

can therefore write

J =
1
2

(
2π
|Φ′′∗ |

) 1
2 [

e−i π4 +
√

2 C +
√

2 e−i π2 S
]
, (5.28a)

C ≡ C

( |Φ′′∗ |π
) 1

2

|ωB|τ∗

 , (5.28b)

S ≡ S

( |Φ′′∗ |π
) 1

2

|ωB|τ∗

 . (5.28c)

Here C and S are the cosine and sine like Fresnel integrals, respectively, which can
be written as

C(x) =
∫ x

0
cos

(
π

2
τ2

)
dτ, (5.29a)

S (x) =
∫ x

0
sin

(
π

2
τ2

)
dτ, . (5.29b)

To obtain the spectrum of energy radiated, we require only the square modulus,
which can be easily carried out as the Fresnel integrals are always real

| J |2 =
πϖ2

2|ωB|ωd(1 −ϖ2)

[
1 + 2(C + S ) + 2(C2 + S 2)

]
. (5.30)

With the oscillatory part of our integral known, this can be inserted into our equa-
tion for the radiation integral I− (5.26a). One can then simplify using the second
derivative Φ′′∗ at the stationary point defined previously, to obtain

| I− |
2 =

πω2

2|ωB|ωd

[
1 + 2(C + S ) + 2(C2 + S 2)

]
. (5.31)

In practice, only the negative contribution to the exponent I− is significant. For
the positive contribution I+, no stationary points exist and the integral is exponen-
tially suppressed, as is demonstrated in Appendix B. As a result, we can write the
spectrum of energy radiated along the magnetic field line, in terms of the Fresnel
integrals



5.2. SPECTRUM OF RADIATION FROM ONE PARTICLE 63

Figure 5.1: Spectrum of energy radiated by one electron, observed along the magnetic field,
and integrated over all time. Plot shows solutions obtained by numerically integrating the
reduced LL equation and emitted spectrum of radiation (as described in Chapter 3), and
approximate analytical solutions (1) in Eq. (5.32) and (2) in Eq. (5.33) to the spectrum,
obtained via the stationary phase method.

dε
dωdΩ

∣∣∣∣∣∣
∥

≈
e2

4π
πω2

4|ωB|ωd

[
1 + 2(C + S ) + 2(C2 + S 2)

]
. (5.32)

This result is plotted in Fig. 5.1 (1), where the Fresnel integrals are evaluated nu-
merically. To perform this simulation, we have chosen a strong magnetic field
B = 107 T, relativistic particle γ0 = 10, with an initial pitch angle α = 0.1. This
scenario remains inside the classical regime χ0 ≈ 2.3 × 10−3 [see (5.35)].

One notices a convenient approximation which applies as τ∗ → +∞. This occurs
as the frequency tends to its maximum value ϖ → 1. At this point the Fresnel
integrals tend to their asymptotic values, S → 1/2 and C → 1/2, and we can write

lim
τ∗→+∞

dε
dωdΩ

∣∣∣∣∣∣
∥

≈
e2

4π
πω2

|ωB|ωd
. (5.33)

In practice, this approximation is excellent as shown in Fig. 5.1 (2), because a very
large number of oscillations are required for the transverse velocity to vanish, and



64 Constant & uniform magnetic field

so the spectrum tends to oscillate rapidly; it is well approximated by an average.
Notice, however, the stationary phase approximation breaks down atϖ = 1, which
is a result of the second derivative (5.23) vanishing at this point. To gain a more
accurate approximation in this region, one would need to include the third order
derivative in Eq. (5.24), and represent the spectrum with Airy functions [67].

The spectra derived in this section are of little use unless the velocity is at least
partially along the magnetic field. We see no reason why this method could not
be generalised to include additional observation directions. In this case, the expo-
nent of Eq. (5.15c) would depend on the transverse coordinates (5.14), which are
oscillatory. We expect these could be taken out of the integral using the generating
function for Bessel functions J(x) of the first kind [107, Ch. 9]

eix sin ϕ =

+∞∑
n=−∞

Jn(x) einϕ. (5.34)

As the Bessel functions depend only on the slowly varying terms like the Lorentz
factor, these could similarly be taken outside of the integral. This scenario would
likely not admit a simple closed form, as we have obtained here.

5.3 Properties of the beam and B-field

In the previous chapter, we considered a Gaussian bunch of e−/e+ colliding with a
laser pulse. The key difficulty was to explain how such a bunch might be created in
the laboratory; we suggested one could pass an e−/e+ beam through magnetic spec-
trometer, select a desired range of energies and compressing in space before the e−

and e+ were recombined. To create the e−/e+ beam, we suggested to pass a quasi-
monoenergetic electron beam obtained from a plasma-based accelerator through a
high-Z target [60, 62]. Here the problem is inverted; it is universally accepted that
e−/e+ plasmas populate the pulsar magnetosphere, yet to our knowledge, little is
known about their distribution.

We suggest to consider a uniformly dense cylinder of e−/e+, with a length L ex-
ceeding its radius R, along the magnetic field line. Clearly this is a crude approxi-
mation to what might exist in nature. The cylindrical shape itself is not unreason-
able, and reflects the topology; if charged particles propagate close to (and radiate
along) the magnetic field, we expect recoil from photon emission to create a vari-
ation in energy and momentum, which induces a spatial spread over time along
the field line. To justify the choice of uniform density, consider the alternative of
a localised e−/e+ bunch. Often e−/e+ solitons4 are proposed, at far lower densi-
ties than what will be considered here, to account for pulsar radio emission via the

4Soliton, here meaning a self-reinforcing wavepacket of e−/e+ which remains stable.
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coherent curvature mechanism [97, 108]. Yet this model is criticised because of
short lived nature of these bunches [109]. Similarly with the laser pulse, we saw
such a bunch exhibit collective behaviour, emit coherently and self-destruct in the
process (in vacuum). A uniform density then avoids these difficulties. Note that
the tiny bunch employed with the laser actually expanded globally as the micro-
bunches responsible for coherent emission were formed [see Fig. 4.3, note the
initial FWHMe = 16 nm]. The choice of uniform density would then compliment
our previous results, allowing any instability to form naturally, instead of being
dramatically influenced by the initial parameters of the bunch.

How could we design an instability comparable to that seen with the laser field?
At first glance, we notice that the transverse motion of e−/e+ in a monochro-
matic, circularly polarised wave is comparable to a constant magnetic field [see
Figs. 4.2 (m,o)]. For a constant magnetic field, no longitudinal force exists which
allows us to control the spectrum of energy radiated. Instead, we expect emission
at the characteristic frequency of synchrotron radiation ωsc =

3
2γ

2|ωB| sinα from
Eq. (5.1). As described in chapter 4 with the laser pulse in the weak field regime
a0 ≪ 1, the dependence on γ2

0 quickly leads to an extreme density of particles
necessary for coherent emission. However, from the previous section, we saw that
radiation emitted along the magnetic field lines tends to be concentrated at a lower
frequency ω∥ ≈ 2γ0,∥|ωB| for relativistic particles.

Consider then a magnetic field of strength B = 106 T along the z axis with asso-
ciated frequency |ωB| ≈ 0.12 keV. We initialise the electrons and positrons with
average Lorentz factor γ0 = 5, and a small, RMS spread in the kinetic energy
σKE = 0.1% as seen with the laser-bunch collision in Tab. 4.1. The average pitch
angle between the initial velocity and magnetic field is α = 0.5 rad, and we include
a RMS spread in angle around the initial velocity σϑ = 1 mrad. As the field is con-
stant, to initialise the simulation, one must numerically integrate the trajectories of
all particles backwards in time with only the external magnetic field. This step is
necessary to calculate the LW fields at the initial time. At this point, we must check
the rest frame fields are not so strong as to render a classical description inappro-
priate χ0 ≈ 5.4 × 10−4, where the quantum parameter in a constant magnetic field
is defined as

χ0 =
γ0B
Bcr

sin(α). (5.35)

With the velocity distribution and magnetic field defined above, we create a neutral
cylinder containing 5000 electrons and 5000 positrons (N = 104 total particles)
parallel to the magnetic field, as opposed to being parallel to the initial veloc-
ity, with length L = 10λ∥ and radius R = 2R0, where λ∥ = 2π/ω∥. The cylin-
der radius is chosen to be comparable to the Larmor value such that the e−/e+

are continuously interacting in a re-collision process, which previously produced
strong collective behaviour in a laser pulse. It is less clear how the cylinder length
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should be chosen, yet we expect any instability to occur on the scale of the emitted
wavelengths λ∥ within this cylinder. For the parameters listed here, R0 ≈ 4.0 nm
is the initial Larmor radius and λ∥ = 2π/ω∥ ≈ 29.4 nm the typical wavelength
emitted parallel to the magnetic field. The cylindrical beam is of uniform density
n0 ≈ 1.7 × 1021 particles/cm3, such that the average interparticle distance in this
frame of reference is d ∼ (1/n0)1/3 ≈ 0.84 nm. As the density and Lorentz factor
are nearly identical to those used previously [see Tab. 4.1], the same argument ap-
plies that our simulations can be considered reliable if the interparticle distance in
the rest frame exceeds the Bohr radius for Positronium by an order of magnitude
or more [see Eq. (4.16)]. To resolve the LW fields between neighbouring particles,
we choose a small time step ∆t = d/15 ≈ 1.9 × 10−19 sec, and the simulation runs
for 150 T0 cycles, where T0 = 2πγ0/|ωB| is the initial period of oscillation.

When solving the reduced LL equation of motion numerically (2.32), we consider
either the external magnetic field only (‘B-field only’), or the external and interpar-
ticle fields (‘B-field & interparticle’ fields). Having demonstrated the unfavourable
results obtained with only one species of particles in the previous chapter, we see
little reason to include the ‘intraspecies fields’ case here.

Finally, we briefly mention the applicability of our simulation parameters to as-
trophysical regimes. It is clear that one could easily find a magnetic field of this
strength, perhaps in the inner magnetosphere of a pulsar. It is somewhat more chal-
lenging to find regions where the e−/e+ are co-propagating. Primary e−/e+ pairs
are ejected from the gaps (e.g. at the poles) and tend to be accelerated rapidly
by the electric field in opposite directions. Therefore, we suggest to consider the
secondary e−/e+ pairs, which are more likely to be co-propagating and radiating
in the synchrotron regime, which Cheng & Zhang [100] define as sinα ≫ R0/ρ0.
For our parameters, one can see this condition will be satisfied for any reasonable
estimate of the radius of curvature, which will be many kilometres long. As before
with the laser pulse, the most severe condition is the low energy and momentum
spread; there is no clear reason why this should be respected in nature.

5.4 Simulation results

The simulation results are presented in Fig. 5.2, and we will attempt to interpret
them here. First, consider how the total kinetic energy of the cylindrical beam
varies over time, in Fig. 5.2 (d). With only the external ‘B-field’, the beam loses
energy incoherently. The time scale is not long enough to see the exponential decay
described earlier (5.8b), here we observe only a tangent. With the Lorentz factor
written as a function of the coordinate time, derived earlier in Eq. (3.21), we can
show the kinetic energy of one particle will be 0.993% of its initial value at 150 T0,
which provides excellent agreement with Fig. 5.2 (d), validating our numerical in-
tegrator for the (reduced) LL equation. When interparticle fields are included, we
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initially see a rapid, coherently amplified loss of energy until t = 50T0. After this
initial stage, the gradient of both curves tends to converge. With the results of
the previous chapter in mind, we interpret this to mean a rapid coherent emission
occurs, followed by an expansion in phase space which kills the coherence, and
subsequently the particles radiate only incoherently (as determined by the external
field).

This behaviour is reflected by the final particle energies shown in Fig. 5.2 (b). With
interparticle fields, one observes an additional energy loss up to approximately
2% greater than what would be predicted with only the external magnetic field.
As seen with the laser in Fig. 4.2 (i-l), this energy loss is inhomogeneous as the
electromagnetic field observed differs from one particle to another, leading to the
phase space expansion alluded to above.

To check our interpretation is consistent, we can consult the spectrum of energy
radiated along the magnetic field (per unit frequency, per unit solid angle). Here
Fig. 5.2 (a) shows the total energy radiated while Fig. 5.2 (c) shows only the inco-
herent emission, a comparison then allows us to identify the degree of coherent am-
plification at a given frequency. Indeed, we observe partial coherent amplification
of about one order of magnitude around frequency 10−1ω∥ ≈ 42 eV, when compar-
ing the total energy radiated (with interparticle fields) to the incoherent case. With
only the external magnetic field, significant destructive interference occurs at low
frequencies around 10−2ω∥ in the total energy radiated; compared with this, the
introduction of interparticle fields dramatically increases emission by around two
orders of magnitude, at low frequencies from 10−1 − 10−2ω∥.

As expected, we observe a strong peak in spectrum of emitted radiation, yet this
does not occur at the Doppler shift from the longitudinal velocity ω∥. Instead, the
peak is red-shifted and appears at frequency ωpk ≈ 0.43ω∥. The explanation for
this is not entirely clear, so we shall list a few possibilities. Our estimate for ω∥
depends only on the initial, longitudinal velocity which is conserved in the single
particle picture (even when radiation reaction is accounted for). It could be that
the inclusion of interparticle fields breaks this assumption, and provides a force
parallel to the external magnetic field. If true, this would be difficult to account for,
as one would expect the longitudinal velocity and frequency of this peak to vary
over time, yet the results presented here are time integrated (which is necessary
as the LW fields are not simultaneously defined). Alternatively, perhaps we have
neglected some important role of the geometry, such as the pitch angle α, in the
re-collision process.

We can calculate a wavelength λpk = 2π/ωpk ≈ 6.8 nm corresponding to the fre-
quency of the peak in Fig. 5.2 (a). Now, consider the spatial distribution of the
e−/e+ at time t = 37.5T0 shown in Fig. 5.3, which is optimal for observing any
instability as it occurs during the period of coherent emission [see t < 50T0 in
Fig. 5.2 (d)]. One can see the development of micro-bunches within the cylindri-
cal beam in Fig. 5.3 (a). This appears to generalise the behaviour previously seen
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Figure 5.2: Simulation results for a neutral, relativistic and cylindrical e−/e+ beam prop-
agating in a constant and uniform magnetic field, with various cases for the fields utilised
when solving the (reduced) LL equation. Legend in (c) applies to all plots (a-d). The total
(a) and incoherent (c) spectrum of energy radiated along the magnetic field is shown, to-
gether with a histogram of the final Lorentz factors of all particles in (b), while (d) shows
how the total kinetic energy varies over time.

with the laser pulse in Fig. 4.3. By demonstrating that micro-bunching of this type
can self-generate within a uniform beam of e−/e+, one could perhaps relax the
stringent requirements on the position and momentum needed for coherence. One
could imagine such strict conditions are necessary to maintain a localised, coher-
ently emitting bunch, but may not as strict in the case of a uniformly dense beam.
The longitudinal profile of the cylindrical beam is shown in Fig. 5.3 (b). With only
the external magnetic field, the beam remains uniformly dense, as expected. Yet, if
interparticle fields are included when solving the LL equation, one can see a weak
micro-bunching effect. The two left-most peaks are separated by a distance similar
to the peak wavelength λpk, suggesting these results are at least consistent with the
spectrum of radiation emitted. The puzzle of why λpk, which was measured from
the spectrum and not predicted from theory, is favoured over λ∥ ≈ 2.9 nm remains
unanswered. However, we do note the two right-most peaks are closer together
than λ∥, and have almost merged. With the laser, we could identify the FWHM of
the peaks and relate this to the coherent amplification of the spectrum. It challeng-
ing to perform any such measurement here, as no single peak is dominant or easily
distinguishable from the rest and so any attempt would likely be inaccurate.

This system becomes yet more complex when we recall the time dependence. The
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Figure 5.3: Illustration of the weak, longitudinal micro-bunching which occurs along the
magnetic field axis (z), in 3D (a) and 2D (b), at time t = 37.5 T0.

full time evolution of the beam can be seen with a video in the supplementary
material [110]. As with the laser pulse, we can compare side-by-side solutions
of the LL equation with the external magnetic field only, and solutions including
interparticle fields in addition to the external field. Each frame is centred on the
average z coordinate of the beam, at that instant of time. Here, one notices the
development of the instability described above at around 30-35 s, which seems to
have collapsed by around 1 min, and is followed by a gradual expansion in phase
space, particularly in the longitudinal direction. In short, it appears the beam self-
modulates, emits coherently, expands and begins to emit incoherently; and so the
effect is transient as we saw with the laser pulse. We point out that this is consistent
with the inhomogeneous loss of energy, and phase space expansion observed in
Fig. 5.2 (b).
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Conclusion and outlook

The central, motivating idea behind this thesis was the extension of the classical
radiation reaction formalism, specifically the Landau-Lifshitz equation of motion,
to systems of many point particles. The original derivations of the self-force in the
early 20th were imposed by consistency with the principle of energy-momentum
conservation. At this time, radiation reaction was merely a theoretical curiosity; an
apparently irrelevant problem of little importance given the available experimental
equipment of the day, or the limited knowledge of exotic, compact astrophysical
objects. Over half a century passed before the status quo began to change. We
have proceeded in much the same way, arguing by consistency, that one cannot in
principle treat charged particles independently in an external field without violating
energy-momentum conservation.

Following this logic, we set out to find regimes in which the inclusion of fields
from neighbouring point particles (interparticle fields) would play a significant role
in the dynamics, and therefore spectra of radiation emitted from the system in
question. To that end, in chpater 3 we developed a code optimised for the GPU,
capable of numerically integrating the equations of motion and radiation spectra in
a self-consistent manner. This was tested against exact solutions in the case of a
constant and uniform magnetic field.

The first scenario we considered was the collision of a counter-propagating laser
pulse, and e−/e+ bunch, in chapter 4. To begin, we characterised the trajectory
and spectrum of radiation reflected along the wave propagation axis, by a single
particle. From the properties of the emitted radiation, we suggested how to tune
the laser amplitude and bunch size to observe coherent emission. In running nu-
merical simulations with these parameters, we observed a plethora of interesting
behaviour. The coherent emission at low frequencies, along the propagation axis,
induced a micro-bunching effect on the sub-nanometre scale. This in turn lead to
coherent amplification of the radiation spectrum, across a broad range of frequen-
cies in the soft X-ray domain. The e−/e+ re-collision process in the presence of a
linearly polarised laser, was particularly conducive to coherent emission, and high-
lighted the importance of considering both species of particles. One might expect
this mechanism was self-reinforcing, however, in the process of coherent emis-
sion each particle experienced a distinct electromagnetic field, which lead to an
inhomogeneous energy loss and therefore expansion in phase space, which eventu-
ally suppressed coherent emission. At least in vacuum, the behaviour studied here
was therefore transient. In the process, we demonstrated the previously suggested
model of treating a bunch of N particles as one particle with effective classical
electron radius Nre, was unable to describe the inhomogeneous energy loss.

71
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While the instabilities and coherent emission outlined above are particularly in-
teresting, the key difficulty remains the experimental feasibility of the parame-
ters suggested. The peak density of electrons and positrons utilised in our sim-
ulations is high ∼ 1021 particles/cm3. This is still well below solid density, and
previous suggestions for collective radiation reaction have considered even higher
densities [19, 20], yet this is clearly challenging to obtain with current experi-
mental methods. For reference, Sarri et al achieved a density in the order of
1017 particles/cm3. While the angular spread was a reasonable 1 mrad, the tiny
energy spread imposes an even more restrictive condition than the density. We
attempted to resolve this problem by suggesting the use of a magnetic chicane
compressor, arguing that a loss of charge and current imposed by selecting a tiny
range of energies was not a problem, as we required only a miniscule number of
particles ∼ 104.

Ultimately, the difficulty here lies in disentangling the physical requirements for
observing this collective behaviour from the limitations of our numerical approach.
As the reduced Landau-Lifshitz equation has, to our knowledge, never been solved
for many point particles, we chose to proceed from first principles using the Lié-
nard–Wiechert fields. In doing so, we hoped to instil a certain amount of con-
fidence that our results would be physically correct. All behaviour mediated by
classical electromagnetism, including instabilities as seen in plasma physics and
collisions, would be automatically included. However, this severely constrained
the number of bodies we could consider, and the time scales we could simulate (as
the computational cost per time step scales with O(N2)). It is difficult then, to state
whether the microscopic instability studied here could occur on a larger scale, in
a macroscopic plasma. It is tempting to suggest that we should utilise a Particle-
in-Cell code to simulate a macroscopic system, but it is far from self-evident that
these codes can (even if the resources are unlimited) include the full interplay of
coherent emission, radiation reaction and crucially, phase space expansion on a mi-
croscopic level, likely due to collisions. If the latter is neglected, the results could
be misleadingly optimistic.

As a final note about the parameters considered in chapter 4, we refer to the proper-
ties of the laser pulse in Tab. 4.2. We considered two lasers, of central wavelength
400 nm and 100 nm. The former is readily available in the laboratory, and even in
this case we saw strong collective behaviour and coherent emission, from a disc-
like structure [see Fig. 4.3 (b)]. Yet, in this case there was only a tiny impact from
the self-force. With the 100 nm laser, we saw stronger energy losses and coherent
emission including a significant role from the self-force, however this wavelength
and intensity are more speculative given current technology. In short, we seem to
be in a better position than the theorists who studied radiation reaction near a cen-
tury ago, which we alluded to at the beginning of this conclusion; we have studied
a variety of interesting collective behaviours, some of these regimes are readily
accessible (400 nm laser) and some are a remote prospect (100 nm laser).
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In the interests of demonstrating that this ‘collective radiation reaction’ can apply
to a general, external electromagnetic field, we sought to reproduce similar results
in a constant and uniform magnetic field. The field strength B ∼ 106 T discussed in
chapter 5 is far beyond what can be achieved in the laboratory, yet this is thought
to be easily accessible in the presence of compact, astrophysical objects such as a
pulsar. We argued that primary e−/e+ pairs ejected from polar gaps tend to be too
relativistic to be of relevance, and in any case, these particles would be accelerated
in opposite directions by the electric field, yet we require almost co-propagating
particles. Instead, we argued weakly relativistic, secondary e−/e+ pairs offer a
better candidate as an application for our results.

For the magnetic field, we began as with the laser pulse, by evaluating the trajectory
and spectrum of radiation emitted by a single particle. In particular, we identified
the relatively low frequency radiation emitted along the magnetic field lines as be-
ing of particular interest, in the synchrotron regime. From our simulations, we
observed a magnetic field induced instability with subsequent signs of coherent
emission along the magnetic field. This effect was weaker than that observed in a
laser pulse. In this regime, both collective behaviour and a strong impact from the
self-force were evident [see Fig. 5.2]. As it stands, our argument that these results
would have relevance towards the dynamics of the pulsar magnetosphere is incom-
plete. We see a couple of methods to proceed: (i) one could argue that a plasma
similar to that which we have modelled might exist in the inner magnetosphere.
It seems unlikely that plasmas with a density in the order of ∼ 1021 particles/cm3

might exist there; this is about ten orders of magnitude larger than the Goldreich-
Julian density typical of a young pulsar. The more important problem remains the
initial energy spread; there is no reason to believe why such a restrictive condition
would be satisfied in nature. Yet, this requirement was imposed to maintain a lo-
calised bunch of e−/e+ in chapter 4, and so we are optimistic that this condition can
be relaxed in a uniformly dense plasma (assuming this resembles what one might
see in nature). Alternatively (ii), we could rescale our simulation results to lower
densities and weaker magnetic fields, which would become more applicable to na-
ture. The instability may well survive this procedure, however the impact from
radiation reaction is intrinsically scale dependent (on the classical electron radius),
and so would likely be negligible at weaker fields.



74 Conclusion and outlook



Appendix A

Ballistic expansion of a Gaussian bunch

"...vether it’s worth while goin’ through so much, to learn so little,
as the charity boy said ven he got to the end of the alphabet,
is a matter o’ taste"

— Charles Dickens, The Pickwick Papers (Ch. 27)

This appendix has been included to demonstrate how the standard deviation of a
Gaussian bunch of particles will evolve over time, providing the trajectory of each
particle is ballistic.

Consider a bunch of N particles at time t = 0 described by a distribution function
f (x,u), which represents the density of particles per unit of phase space, and is
normalisable

N =
" +∞

−∞

f (x,u) d3xd3u. (A.1)

We would like to consider how the distribution in space varies over time given
some initial position and velocity spread, specifically for a bunch of particles as one
might produce in the laboratory. Consider then, a cold bunch of particles centred
at the origin. We will find it convenient to separate the distribution function into
parts f (x,u) = fx(x) fu(u). If the bunch is a spherically symmetric Gaussian in
position space, with standard deviation σe in each dimension at t = 0, we can write
the number density of particles as

fx(x) =
N

(2π)3/2σ3
e

e
− 1

2σ2
e

x2

. (A.2)

We can also adopt a Gaussian distribution for the velocity with no particular sym-
metry

fv(v) =
1

(2π)3/2σvxσvyσvz

e
− 1

2σ2
vx

(vx−v0,x)2− 1
2σ2

vy
(vy−v0,y)2− 1

2σ2
vz

(vz−v0,z)2

. (A.3)

When multiplied and integrated over all phase space, these functions satisfy the
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Figure A.1: Velocity distribution for small angles around z-axis

normalisation defined in Eq. (A.1). However, in the laboratory, one usually consid-
ers a small momentum spread around a given axis (in our case, the z-axis, as can
be seen in Fig. A.1), and so it is customary to use polar coordinates:

vx = v0 tan θx ≈ v0θx, (A.4a)

vy = v0 tan θy ≈ v0θy, (A.4b)

vz =
v0√

1 + tan2 θx + tan2 θy

≈ v0. (A.4c)

Where v0 =
√

v2
0,x + v2

0,y + v2
0,z is the mean speed at t = 0, separated into Cartesian

coordinates. The approximation indicates only terms up to first order in the angular
spread are considered. This corresponds to the following, approximate probability
density in velocity space

fv(v) ≈
1

(2π)3/2 v2
0σ

2
ϑ
σv

e
− 1

2σ2
v

(v−v0)2− 1
2σ2
ϑ

ϑ2

. (A.5)

Here we have imposed cylindrical symmetry σθx = σθy ≡ σϑ, and defined ϑ =√
θ2x + θ

2
y providing the angular spread is small in both dimensions, x and y. With

Cartesian coordinates, the Gaussian vanishes at the limits of integration and is ex-
actly normalisable. For polar coordinates this is no longer the case. Therefore,
function fv(v) can only be interpreted as an approximate probability density, pro-
viding the angular spread is far smaller than the sphere’s surface σϑ ≪ 4π, and
the velocity never approaches zero, v0 > 0 and σv ≪ v0, at which the distribution
function would diverge and not be normalisable. This problem would not emerge if
one was considering a thermal energy spread, described by a Maxwell-Boltzmann
distribution, as this function would correctly converge to zero as v0 → 0. Yet, it
would have other undesirable properties, such as restricting our ability to vary the
mean velocity and velocity spread independently. From the equations above, we
can generate a bunch of particles propagating along the z-axis. Now we consider
how the bunch expands over time. At first approximation, we neglect interparticle
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fields and assume particles within the bunch move ballistically x(t) = x0+vt. Then
we can find the expected values of the position and its square, to determine the
variance of the position (in 3D)

⟨x(t)⟩ = ⟨x0⟩ + ⟨v⟩t, (A.6a)

⟨x2(t)⟩ = ⟨x2
0⟩ + 2⟨x0⟩ · ⟨v⟩ + ⟨v2⟩t2, (A.6b)

σ2
x(t) = ⟨x2(t)⟩ − ⟨x(t)⟩2 ⇒ σ2

x0
+ σ2

v t2. (A.6c)

Where the expectation values are defined by integrating over phase space, e.g.

⟨x⟩ =
∫ +∞

−∞

x f (x)
{∫ +∞

−∞

f (v) d3v
}

d3x =
∫ +∞

−∞

x f (x) d3x, (A.7a)

⟨v⟩ =
∫ +∞

−∞

f (x)
{∫ +∞

−∞

v f (v) d3v
}

d3x = N
∫ +∞

−∞

v f (v) d3v, (A.7b)

and similar integrals apply for ⟨x2⟩ and ⟨v2⟩. The variance of the initial position
σ2

x0
= 3σ2

e and velocity σ2
v ≈ 2v2

0σ
2
ϑ + σ

2
v can be separated into their respective

Cartesian components, which add by quadrature. Separating the variance of the
position at time t into its components σ2

x(t) = σ2
x(t)+σ2

y(t)+σ2
z (t), we recognise the

bunch will not have spherical symmetry at t > 0 if the initial velocity distribution
is anisotropic, as is the case here. Following this logic, we can rewrite the standard
deviation at time t from Eq. (A.6c)

σx(t) ≈
√

3σ2
e + (σ2

v + 2v2
0σ

2
ϑ
) t2. (A.8)

Instead of referring to a spread in the initial speed σv, it is customary to refer to a

variation in the initial kinetic energy KE0 = me(γ0−1) where γ0 = 1/
√

1 − v2
0. Yet

we can easily exchange between speed and kinetic energy with a first-order Taylor
expansion, providing the variance is small

σv ≈
γ0 − 1
γ3

0v0

σKE

KE0
. (A.9)

In summary, providing one knows the initial spread in position and momentum
space of a Gaussian bunch, we can determine the spread in position at a later time,
providing the particles within the bunch propagate ballistically.
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Appendix B

Stationary phase approximation: exponentially
suppressed terms

The purpose of this appendix is to demonstrate why the statement |I+|2 ≪ |I−|2 is
justified, when using the stationary phase method. The integral I+ can be written
in the following way, from Eq. (5.17)

I+ = ωv0,⊥

∫ +∞

0
γ e−ωdτ eiΦ dτ (B.1a)

Φ = +|ωB|τ + ω(1 − v0,∥) t. (B.1b)

The first derivative of the integral phase is given by

Φ′ = |ωB|

(
1 +ϖ

γ

γ0,∥

)
. (B.2)

For positive frequencies ω > 0, there are no, real stationary points φ∗ which satisfy
Φ′∗ = Φ

′(φ∗) = 0. In this case, the leading order behaviour can be identified with
an integration by parts

I+ = ωv0,⊥

∫ +∞

0

γ

iΦ′
e−ωdτ d

(
eiΦ

)
(B.3a)

⇒ ωv0,⊥

[
γ

iΦ′
e−ωdτ eiΦ

]+∞
0
− ωv0,⊥

∫ +∞

0

d
dτ

(
γ

iΦ′
e−ωdτ

)
eiΦ dτ. (B.3b)

Differentiation will incur additional powers of the damping frequency, and there-
fore the small quantity |ωB|τe. When applying the stationary phase approximation,
one considers the limit ω → +∞, for which the oscillatory terms begin to oscil-
late rapidly. Intuitively, we expect the integral of a rapidly oscillating function
will tend to zero more quickly than the function itself (more formally, one can ap-
ply the Riemann-Lebesgue lemma). The boundary terms then provide the leading
order behaviour. The term at the upper limit vanishes, leaving only the lower limit
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I+ ≈
iω

|ωB|
(
ϖ +

γ0,∥
γ0

)
√√

1 −
γ2

0,∥

γ2
0

. (B.4)

Where we have used the on-shell condition to simplify [see Eq. (5.9)]. The approx-
imation indicates that higher order terms we have neglected, from the integration
by parts above. In practice, it is the square modulus that we must evaluate

|I+|
2
≈

ω2
(
1 −

γ2
0,∥

γ2
0

)
ω2

B

(
ϖ +

γ0,∥
γ0

)2 ∼
ω2

ω2
B

. (B.5)

The last order of magnitude estimate essentially recognises the terms inside the
brackets are typically in the order of unity, or less. Comparing this with our equa-
tion for |I−|2 [utilised in deriving (5.33)], where we can also neglect terms in the
order of unity, one can see

|I−|
2
∼
ω2

|ωB|ωd
, (B.6)

one can take the ratio of these integrals to find

|I+|
2

|I−|
2 ∼

ωd

|ωB|
≡ |ωB|τe. (B.7)

As discussed earlier in chapter 5, this quantity is always small in the classical
regime, and so the approximation |I+|2 ≪ |I−|2 is justified. Even at the critical
field of QED this quantity is tiny

|ωB|τe ∼ 10−5.
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