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Abstract.  

All ecosystems are simultaneously a source and a sink of atmospheric carbon (C). A change in their balance of net and gross 

ecosystem carbon uptake, ecosystem-scale carbon use efficiency (CUEECO), is a change in their ability to buffer climate 20 

change.   

Anthropogenic nitrogen (N) deposition is increasing N availability, potentially shifting terrestrial ecosystem stoichiometry 

towards phosphorus (P) limitation. Depending on how gross primary production (GPP, plants alone) and ecosystem 

respiration (RECO, plants and heterotrophs) are limited by N, P, or associated changes in other biogeochemical cycles, 

CUEECO may change. Seasonally, CUEECO also varies as GPP is more coupled to the growing season than respiration. 25 

We worked in a Mediterranean tree-grass ecosystem (locally called ‘dehesa’) characterized by mild, wet winters and summer 

droughts. We examined CUEECO from eddy covariance fluxes over six years under control, +N and +NP fertilized treatments 

on three timescales: annual, seasonal (determined by vegetation phenophase) and two-weekly aggregations. Finer 

aggregation allowed consideration of responses to specific vegetation and meteorological conditions. We predicted that 

CUEECO should be increased by wetter conditions, and by NP fertilization.  30 

Milder and wetter years with proportionally longer growing seasons increased CUEECO, as did N fertilization, regardless of 

whether P was added.  Using a generalized additive model, whole ecosystem vegetation status and water deficit indicators, 

which both varied with treatment, were the main determinants of biweekly differences in CUEECO.  The direction of water 

effects depended on the timescale considered and occurred alongside treatment-dependent water depletion.   

 35 
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1 Introduction 

Understanding links between ecosystem carbon (C) stocks and atmospheric carbon dioxide (CO2) is important because of 

atmospheric CO2 concentrations are a driver of climate change and climate change also changes these links (Cao & 

Woodward, 1998). Ecosystems sequester C via photosynthesis (i.e. Gross Primary Production, GPP) and release it via 

ecosystem respiration (RECO). However, ecosystems are made up of many individuals and processes responding to 40 

environmental conditions, integrating biogeochemical cycling of C, N, P, and water through life history, adaptation, 

acclimation and competition (Leibold et al., 2017). Thus biogeochemical cycles are coupled and changes in one can affect 

others (Gentine et al., 2019; Zaehle, 2013). Hence developing environmental resource imbalances, such as progressive N 

limitation due to CO2 fertilization (Coskun et al., 2016; Craine et al., 2018; Y. Luo et al., 2004) and N:P imbalance due to N 

deposition (Du et al., 2020; Peñuelas et al., 2012, 2013, 2020) affect GPP and RECO in different ways (El‐Madany et al., 45 

2021). The difference between GPP and RECO is Net Ecosystem Production (NEP). The ratio of NEP/GPP is ecosystem scale 

carbon use efficiency (CUEECO), so it incorporates both GPP and RECO (e.g. Fernández-Martínez et al., 2014; Sinsabaugh et 

al., 2017). CUEECO is neither stable in time (e.g. von Buttlar et al., 2018) nor  between ecosystem types (DeLucia et al., 

2007; Zhang et al., 2009). Other definitions of CUE (Manzoni et al., 2018) only consider vegetation (i.e. net primary 

productivity over GPP) or microbial growth (biomass change over C uptake). As CUEECO represents whole ecosystems, it is 50 

directly scalable to global concerns (Bradford & Crowther, 2013).   

 

Carbon use efficiency concepts normalize for productivity variations and can compare dissimilar communities in space 

(Chen & Yu, 2019; DeLucia et al., 2007; Liu et al., 2019) or time (Gang et al., 2019). Although CUEECO is less variable than 

its component fluxes (Manzoni et al., 2018), climate and soil nutrients affect CUEECO (DeLucia et al., 2007; Gang et al., 55 

2022; Zhang et al., 2014). Hence understanding CUEECO informs predictive capability for both maintaining C uptake 

capacity (1/3 of human emissions) and C stores (3 x atmospheric pool) in the terrestrial biosphere (Friedlingstein et al., 

2022). But predictive understanding of variation in CUEECO are still lacking, just as similar issues exist for subcomponents 

vegetation (Gang et al., 2022) and microbial CUE (Qiao et al., 2019). 

 60 

Control of ecosystem function is complex because ecosystems consist of independent individuals and their interactions. Co-

limitation between nutrients, water and carbon fixation rate is common, especially on sub-annual timescales where seasonal 

droughts or winter periods restrict growth. Generally, primary productivity is limited by water availability and nutrient 

availability, and decomposers by C supply (Soong et al., 2020).  Hence CUEECO could respond to nutrient availability, or not, 

depending on the link between productivity and turnover. Further, both ecosystem (Migliavacca et al., 2015) and soil 65 

respiration (Bahn et al., 2009) respond to short-term GPP, so GPP could directly drive CUEECO. Soils also contain large C 

stocks, and turnover is linked to productivity (Stoner et al., 2021). But microbes are the main CO2 source from these soil 

stocks (Bond-Lamberty et al., 2018), so responses could be via alterations in C supply or nutrient mining responses under 
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stoichiometric shifts (Hicks et al., 2021; Janssens et al., 2010). Microbial and plant activity also depend on water availability, 

but vegetation often senesces, or dies in droughts, so further lags may also occur as vegetation responses are slower than 70 

microbes (Pereira et al., 2007). 

 

Phenology determines sub-annual CUEECO as GPP completely depends on active green vegetation (the ‘growing season’) but 

respiration can occur from turnover of dead biomass without this constraint. Short-term endogenous (e.g. bud burst, Jeong et 

al., 2012) or exogenous (e.g. rain pulses, Xu et al., 2004) events also affect photosynthesis, respiration and resource 75 

assignment. Hence instability is expected. Indeed, patterns of resource distribution between processes (Lapointe, 2001; 

Maseyk et al., 2008), organs  (W. Luo et al., 2013), tissue stoichiometry (Meunier et al., 2017), allometry (Weiner, 2004) 

and community structure vary sub-annually, determining GPP and RECO independently (Butterfield & Malmström, 2009; 

Caldararu et al., 2014; Keenan et al., 2014; Y. Luo et al., 2020). Phenology itself also responds to climate change (Piao et al., 

2019; Richardson et al., 2013) but plant and microbe population and generation times differ by orders of magnitude, so shifts 80 

may occur in different directions, scales and timescales contributing to a net response.  

 

Depending on this net response, CUEECO may or may not change. For example, plants respond plastically to nutrient 

availability (Oldroyd & Leyser, 2020), for example via C allocation to organs and processes. N addition may not alter local 

CUEECO (Ma et al., 2018) but N fertility does regionally (Chen & Yu, 2019) and globally (Fernández-Martínez et al., 2014). 85 

Aridity also drives CUEECO globally (Migliavacca et al., 2021), because under unfavourable conditions there are greater 

costs – respiration - for equivalent function -growth, acquisition of resources such as nutrients and water.  

 

Arid- and semi- arid systems play an important role in the C cycle, switching between net C sources and C sinks (Ahlstrom 

et al., 2015). In other words, annual GPP and RECO are not proportional. Both vegetation growth and microbial activity are 90 

also water limited for part of the year so this is driven by seasons and ‘wet’ and ‘dry’ years (El-Madany et al., 2020; Scott et 

al., 2015). Hence the timescale at which the ecosystem is observed may not only determine the strength of the net sink, but 

whether the net C flux, and CUEECO observed, is positive or negative at all.  In this study, we were interested in how CUEECO 

of a Mediterranean tree-grass ecosystem responded to ecosystem stoichiometry manipulated by long term N (NT) and N and 

P (NPT) addition compared to a control treatment (CT). We examined CUEECO and how it was regulated by interannual 95 

variability in meteorological conditions, and both nutrient treatments and their effects on vegetative phenology. 

 

A great deal of prior work has been published relating to ecosystem function at our study site. In brief: both imbalanced N 

fertilization and balanced NP fertilization at ecosystem level increased tree and herbaceous productivity (Bogdanovich et al., 

2021; Nair et al., 2019), drove faster green-up phenology (Y. Luo et al., 2020), but also extra transpiration under NT and 100 

NPT relative to CT. Extra P (NPT) helped plants regulate water losses in the pre-summer drydown via increased water use 

efficiency compared to NT (El‐Madany et al., 2021). NT shifted rooting distributions towards shallow roots (Nair et al., 
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2019) and acquired more N from biomass turnover (Nair et al., 2020). Hence aspects of the system are limited by P. These 

allometric shifts may alter C cycling and thus CUEECO through plant C investment to obtain N, P, or water. Microbial 

biomass also peaks in autumn, capitalizing on release from moisture restrictions (Morris et al., 2019). Overall C and water 105 

flux responses are discussed at length in El‐Madany et al., (2021), here we focus specifically on CUEECO, and how this 

changes based on meteorological and vegetation conditions.  

 

We examined CUEECO on three timescales: the annual scale, where coarse trends could be identified, the seasonal scale, 

where relationship to particular climate anomalies could be identified, and a biweekly scale, which allowed the fitting of 110 

interpretative models linking both to short term meteorology (e.g. rainy periods, heatwaves), incorporating vegetation change 

via overall spectral vegetation indexes from above-ground remote sensing. We hypothesised: 

• On the annual scale, CUEECO would vary between years, mostly driven by rainfall amount (El-Madany et al., 

2020). In general, additions of both N and NP together would increase ecosystem CUEECO. Known water deficits 

under NT (El‐Madany et al., 2021; Y. Luo et al., 2020) would reduce CUEECO in this treatment relative to NPT.  115 

• On the seasonal scale, CUEECO would follow phenology – growing seasons would have positive CUEECO and 

fallow seasons negative. Within seasons across years, wetter seasons would have higher C losses - due to greater 

microbial activity - but higher CUEECO due to concurrent higher C uptake if these were ‘growing’ seasons – 

autumn, winter and spring, rather than drydown and summer. Seasons with N-driven water deficits would have 

lower CUEECO in NT. 120 

• Finally, at biweekly aggregation, we predicted a strong role of water availability on short term CUEECO. Water 

stress should affect stomatal gas exchange and thus GPP, but respiration must happen anyway. We expected an 

effect of energy/light availability as radiation allows more GPP, and as phenology is driven by predictable annual 

cycles.  
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2 Methods 125 

2.1 Study Site 

We worked at Majadas de Tiétar, in Extremadura, Spain (39 56’24.68”N, 5 46’28.70” W), a typical Mediterranean tree-grass 

‘dehesa’, with 20-25 Quercus ilex (L.) trees ha-1, ~20 % canopy cover. The MAT (mean annual temperature) is 16.7 °C, and 

the MAP (mean annual precipitation) is 636 mm (El‐Madany et al., 2021). Annual precipitation is very variable (± 50 %), 

including seasonal timing and distribution.  Typically, most rain falls between October and April with a long dry summer 130 

interspersed by occasional rains. The growing season begins following major autumn rains, typically in October, lasting until 

May/June where soil moisture depletion, high radiation, and temperature/vapour pressure deficit (VPD) causes herbaceous 

layer senescence. A species diverse and seasonal herbaceous layer is used for grazing (< 0.3 cows ha). During summer 

droughts cattle are usually moved to mountain areas. The soil is an Abruptic Luvisol, with a sandy upper layer (5/20/75 

clay/silt/sand) above a thick clay layer which varies across the site beginning between 30 and 60 cm.  135 

At the site, three eddy covariance towers (FLUXNET: ES-LMa, ES-LM1, ES-LM2) and various ancillary instruments are in 

the same farmland area, with homogeneous topography, meteorology and soil. Pre-treatment, vegetation properties, and 

carbon, energy and water fluxes did not differ (El-Madany et al., 2018; Nair et al., 2019). Meteorological variables were 

measured per tower, but we used a unified dataset as cross-footprint spatial variation should be smaller than sensor error. 

Fertilization treatments were in the 2014/2015 growing season on 20 ha, covering the 80% footprint climatology of 140 

respective EC towers (El-Madany et al., 2018; El‐Madany et al., 2021). These added N to ES-LM1 (100 kg N ha-1 as Ca-

ammonium nitrate fertilizer) and N and P (an additional 50 kg P, as triple superphosphate fertilizer and N as ammonium 

nitrate) to ES-LM2. This load was equivalent to 10 years atmospheric N deposition (Morris et al., 2019), with P sufficient to 

maintain average ecosystem-scale leaf N:P ratios. A supplementary N and P fertilization was made in 2016/2017 adding 

20% of the initial fertilization and a small extra P addition (6 kg ha-1) was made in the 2019 autumn to start a refertilization 145 

which was ultimately delayed by the coronavirus pandemic This design was informed by a small-scale fully factorial 

experiment showing N limitation at plot level, with a limited herbaceous response to P without N (Martini et al., 2019; 

Perez-Priego et al., 2015). For this reason, along with specific interest in N:P imbalance and limits to space, a P only 

treatment was omitted. The towers/treatments are henceforth referred to as CT (control tower, ES-LMa), NT (ES-LM1), and 

NPT (ES-LM2).  150 

Carbon, energy and water vapour fluxes were measured using the eddy covariance (EC) technique described in (El-Madany 

et al., 2018; El‐Madany et al., 2021). Each tower had an EC system at 15m consisting of a 3-dimensional sonic anemometer 

(R3-50, Gill LTD) and infra-red gas analyser LI-7200, (LI-COR Bioscience) to measure CO2 and H2O mixing ratios. Data 

were collected at 20 Hz and processed using EddyPro 6.2, quality checked, and storage fluxes added using a seven level CO2 

profile system to compute NEE. Friction velocity (u*) thresholds were detected per tower per year and filtered (Papale et al., 155 

2006). Alternate CUEECO based on fixed u* are presented in S1 with smaller effects than the factors in this analysis. Time 

series were gap-filled using marginal distribution sampling and NEE was partitioned to GPP and RECO using night-time 
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respiration temperature sensitivity (Reichstein et al., 2005).  Flux calculation and post processing were according to El-

Madany et al. (2018) using REddyProc in R (Wutzler et al., 2018). A single Star-Dot NetCam 5MP digital camera was 

mounted on each tower providing daily images used for phenology tracking using the ‘Phenocam’ method (Y. Luo et al., 160 

2018). Soil water content was measured per tower via 4 replicated sensors (ML3, Delta-T Devices Ltd) at 5 cm and a 

EnviroSCAN (Sentek) profile probe for measurements at 10, 20, 30, 50 and 100 cm below ground per tower site. Flux data 

was available from March 2014 for all sites. We used data until the end of the 2020 growing season. 

 

2.2 Definition of Carbon Use Efficiency, Scales of Analysis, Aggregation 165 

We use ecosystem scale CUEECO, NEP / GPP. CUEECO can be negative if NEP (i.e. positive NEE) is negative. At short time 

scales CUEECO becomes difficult to interpret because of short-term storage of C (e.g. plant non-structural carbon) and 

autocorrelation in half-hourly data. We analysed three scales: annual, seasonal, and 14-day. This last timescale was most 

vulnerable to autocorrelation so we did not use a fixed temporal predictor at this scale, as detailed later. 

We first took the half-hourly GPP, Reco, and NEE daily means, then we aggregate them by computing the average across 170 

the period required. We let daily averages contribute to aggregate mean if >75% of the total half hourly EC observations and 

>8 of the ‘night time’ (i.e. Potential Radiation < 10 Wm-2) observations were good quality (measured and gap filled). If daily 

data from any tower was discarded, simultaneous data from the other two towers was also discarded. We removed 50 days 

over the entire 6-year period. To aggregate at biweekly scales, we assigned a group per 14 days and did not use a rolling 

average; this was to reduce autocorrelation and preserve independence of observations. 175 

2.3. Water Availability 

All metrics relating to water availability were calculated per treatment aside from precipitation, which we handled 

universally as per other meteorological variables. As soil moisture at deeper soil layers was variable and most root biomass 

was within 20 cm (Nair et al., 2019), we used a normalized soil water content (SWCn) from 5 to 20 cm sensors. We also 

used a water availability index, Conservative Surface Wetness Index (CSWI), (Nelson et al., 2018) to account for general 180 

ecosystem ‘wetness’. CSWI is a bucket model explaining rainwater removal via evaporation, accounting for water 

evaporated and cloudy periods of low ET after rain events when surfaces stay wet. More negative values indicate drier 

conditions. CSWI was calculated half-hourly and averaged across each aggregation step.  Hence, we accounted for 

immediate rain inputs, general soil moisture and water available for plants and general wetness of the surface where many 

active microbes are located, through metrics dependent on different instruments. 185 

 

2.4. Seasons, Phenology, and Vegetation Indexes 

 

https://doi.org/10.5194/egusphere-2023-2434
Preprint. Discussion started: 23 October 2023
c© Author(s) 2023. CC BY 4.0 License.



7 

 

For assignment of seasons, we used PhenoCams. PhenoCams provide daily digital photographs and can provide detailed 

phenological transition dates (‘PTDs’) and define phenological periods (e.g., Y. Luo et al., 2018). We extracted PTDs for 190 

each treatment corresponding to five phenophases (autumn, winter, spring, drydown, summer). We defined the ‘growing 

season’ as autumn + winter + spring. Alternative calendar year definitions are insensitive to the rhythms of biological 

activity driven by changeable meteorology, or nutrient availability at this site (Y. Luo et al., 2020). Consequently, our annual 

scale is six hydrological years, with the start/end date of the year determined by the summer – autumn transition and 

identified by the later year, e.g. H2016 started in autumn 2015. The average difference and maximum difference between 195 

PTDs between years is shown in Table 1 and definition of individual season PTDs is in S2. Because we allowed the 

hydrological year and season to vary between treatments based on vegetation activity, there were minor differences in 

treatment level annual/seasonal means.  

 

While we could define the seasonal transitions from PhenoCams, the independent site-mounted cameras are not 200 

intercalibrated so biases may result from instruments (Richardson et al., 2018). Therefore we used the normalized difference 

vegetation index (NDVI, Rouse et al., 1974) from the Sentinel-2 Mission (Copernicus Programme, European Space 

Agency), which provides comparable simultaneous observations of the sites and physical quantities (e.g., surface reflection 

factors), at the expenses of lower frequency sampling and 10 m spatial resolution. We used a combined dataset of Sentinel 

2A imagery beginning on 20th July 2015, shortly after the fertilization, and switched to more frequent Sentinel 2B imagery 205 

when it was available (28th Mar 2018). We used a 100 m radius around each tower. The average gap between good quality 

days (cloudy overpasses filtered out) was 11 days although it could be as high as 30 days. We interpolated between points 

using a Kalman smoothing filter before averaging on the various scales used for analyses.   

Table 1 

Mean transition dates (as 1st day of anterior season) for all 5 defined seasons as calendar day of year. Also shown are the 

mean difference between seasonal transition dates for the different treatments.  

Season Transition Average DOY Earliest DOY Latest DOY Average  

CT-NT (Days) 

Average  

CT-NPT (Days) 

SUMMER – 

AUTUMN 

275 274 278 2 2 

AUTUMN – 

WINTER 

352 341 5 -2 1 

WINTER-SPRING 66 29 88 -2 -9 

SPRING-DRYDOWN 123 99 142 1 -8 

DRYDOWN-

SUMMER 

186 175 199 2 1 

 

 

https://doi.org/10.5194/egusphere-2023-2434
Preprint. Discussion started: 23 October 2023
c© Author(s) 2023. CC BY 4.0 License.



8 

 

2.5 Modelling Approaches 

 210 

In summary, the explanatory variables we used were: nutrient fertilization treatment (treatment), season and hydrological 

year, plus the environmental variables air temperature at 2m (Ta), total precipitation (ppt), number of days with ppt > 0.5 

mm (‘rainy days’), photosynthetically active radiation (PAR), daytime vapor pressure deficit (VPD), daytime relative 

humidity (RH), normalized soil moisture content (SWCn), Conservative Surface Wetness Index (CSWI) and sentinel 2 

NDVI of the whole ecosystem (NDVI). We performed all data analyses in R 4.0.3 (R Core Team, 2022). Because the 215 

aggregation steps resulted in data sets of different sizes, we applied different analytical methods at the different scales. We 

performed linear models, mixed effects models conducted using lme4 (Bates, 2010) and generalized addictive models 

(GAMs, Hastie & Tibshirani, 1986) via the mgcv package in R (Wood, 2011). We show mixed model R2 using marginal 

(R2
m) and conditional (R2

C, Nakagawa & Schielzeth, 2013), the former an estimate of goodness of fit with only fixed effects 

and the latter including random effects. We report deviance explained (the proportion of null deviance explained by the 220 

model) for GAMs, appropriate for non-normal errors. In all analyses unless otherwise mentioned, model selection was via 

AICc. Overall analysis structure is illustrated in Fig. 1. 

For the annual analysis (six hydrological years), we performed a linear mixed effect model with treatment (fixed effect) and 

hydrological year (random effect). For environmental controls, we used a linear model, beginning with treatment effect and 

interaction terms with Ta, ppt, rainy days, SWC, CSWI. We excluded NDVI as PhenoCam data were used to determine 225 

season. We also used linear models to explore how year length, growing season length, relative growing season length and 

 

Figure 1 

Summary of our data sources and analytical structure. Phenocam imagery only informed season and year transitions, we used 

Sentinel2 NDVI for the 14-day analysis. We aggregated quality-controlled EC data by season and hydrological years for the 

annual and seasonal scale while we used a 14 day window for the 14-day scale. Blue boxes and arrows indicate data in the main 

flux and meteorology dataset, green boxes data from elsewhere and purple arrows and boxes aggregated data. The analyses 

conducted are shown to the right of each level of data aggregation.  
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annual productivity (mean GPP per day) and turnover (mean RECO per day), all interacting with treatments, controlled annual 

CUEECO.  As we had few prior expectations about which variables were most important, we employed a data dredging 

approach comparing all possible combinations, with max. 6 terms per model, retaining all predictors in >50 % of models 

within 4 AICc of the most parsimonious model for the overall best model.  230 

For seasonal analysis, across thirty season-hydrological year combinations in the three treatments, we used linear mixed 

effects models. First, hydrological year was a random effect and season and treatment were fixed effects to test the seasonal 

controls on CUEECO. Then we performed a model where treatment and interaction with both environmental variables and the 

six sequential hydrological years were fixed effects and season a random effect. Environmental variables were Ta, ppt, 

SWC, CSWI. Season was not nested within hydrological year to avoid a singular fit.  We did not include the rainy days, nor 235 

NDVI in this analysis because annual weather largely determined the season. We performed a similar model dredging 

exercise as the annual analysis to arrive at the final models.  

For the biweekly aggregation, we used mixed effects models when only considering year, season, and treatment, and GAMs 

(Wood, 2006) to investigate climate, soil water variables and vegetation spectral status effects on biweekly CUEECO. GAMs 

were suitable as we were expecting non-linear trends. We fit models for these data where all predictors were available (i.e. 240 

autumn 2015 onwards). The potential predictors we used were Ta, PAR, VPD, RH, ppt, SWCn, CSWI, and NDVI. Because 

of the high covariation of half-hourly atmospheric environmental variables (Ta, PAR, VPD, RH), we performed a principal 

component analysis to reduce dimensionality. The first PCA axis (93 % of the variance) represented all these variables 

together. High values of this axis, which we refer to as ‘Meteorology’ corresponded to high air Ta, PAR and VPD, low 

values to high RH (S3). We did not use a similar reduction for Rain, SWCn, and CSWI or the spectral indices as these 245 

represented processes on incomparable timescales. We used reduced maximum likelihood (REML) estimation and manually 

penalized out non-informative smooths one by one, refitting the model each time. We applied a smoothness penalty on the 

whole model to prevent overfitting. We selected models via per-smooth penalties which allowed smooths to penalize to zero, 

removed non-significant and non-informative effects with F-value close to or equal zero, always removing treatment*factor 

interactions before univariate smooths. We compared GCv (generalized cross validation) score at each step. We did not 250 

include interaction terms beyond a treatment*factor term because of difficulty specifying these fairly across so many 

variables and the potential for overfitting a model on the aggregated data.  

After selecting the most parsimonious GAM, we performed several additional checks. We examined variable concurvity 

once the model was selected, which never exceeded 0.8. We checked the models performance using the gam.check() 

function of mgcv. We also evaluated performance of this GAM via model residuals against treatments, seasons and 255 

hydrological years.   
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3. Results 

3.1 Annual Carbon Flux Response to Fertilization 

As observed from the eddy covariance fluxes without nutrient amendment, CT had a weak negative or neutral CUEECO over 260 

the six years. The annual effect varied (Fig. 2) and there was no significant annual trend over time. Nutrient treatments 

increased annual CUEECO. Consequently, annual CUEECO was affected by treatments, both NT and NPT’s CUEECO 

significantly different (P < 0.01) to CT but not to each other (P = 0.06). Both GPP (Fig. 2a) and RECO (Fig. 2b) were 

increased by fertilization for the entire treatment period, as previously reported (El‐Madany et al., 2021). Treating year as a 

random effect (i.e. no linear trend but intra-annual conditions affected the C cycle), most variation was explained by annual 265 

year (R2
M = 0.18, R2

C = 0.91). The marginal treatment effect was stronger for CUEECO (R2
M = 0.25, R2

C = 0.87) than GPP 

(R2
M = 0.21, R2

C = 0.91) or RECO (R2
M = 0.06, R2

C = 0.81). 

 

 

Figure 2. Mean annual a) GPP  b) RECO and c) annual CUE by hydrological year. In all cases error bars show 

uncorrelated 95 % CI. 
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Treating years as independent and using annual means of meteorological variables, we were also able to achieve good fit 

(R2adj = 0.79), although not as good as the random annual effect. The most parsimonious model retained MAT (P < 0.001), 270 

and SWC (P < 0.01) alongside treatment (P < 0.01) but no treatment*meteorology interactions. Both treatments were 

significantly different than CT (both P < 0.005) but not each other. Generally, hotter, and drier years reduced CUEECO (Fig. 

3). 

 

We also tested the effect of total length of the hydrological year, total length of the growing season, the relative length of the 275 

growing season, and average daily GPP on annual CUEECO (Fig 4.). The best predictors of CUEECO were relative length of 

growing season and treatment (Fig. 4c, R2
adj of 0.85). Shorter absolute vegetative year length or absolute longer growing 

seasons also increased annual CUEECO but were not as good predictors (Fig. 4a, 4b). Similarly, daily mean GPP was less 

correlated despite the calculation of 

  

Figure 3. Relationship between a) mean annual temperature and b) normalized mean annual SWC on annual CUEECO. 

The grey dotted line indicates the best fit of an ANCOVA with treatment as covariate for CUE against the x axis variable 

(SWCn did not have a significant effect in the ANCOVA). Hotter and drier years tended to reduce CUEECO, but it was 

clear from b) that annual SWC obscured processes happening at finer scales – consistently low CUE in the N treatment 

happened at low SWC. 
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280 
CUEECO partially from GPP (4d). We also checked for correlations between daily mean RECO and absolute GPP with 

CUEECO, neither of these had significant effects. In other words, CUEECO was controlled by how long the summer drought 

lasted (Fig. S4, although note the high leverage of nutrient treatments in 2017 and 2018 in Fig. 4b).  

3.2 Seasonal Trends 

As expected, there were major differences in CUEECO between seasons: ‘growing period’ had positive CUEECO, and dry 285 

periods, where most vegetation is dormant or dead, had strong negative CUEECO (a). CUEECO was declining in summers and 

winters but had a positive trend in the drydown (c). 

 

 

Figure 4. Relationship between a) absolute length of hydrological year b) absolute length of the growing season (autumn, 

winter, and spring, c) relative length of the growing season (length growing season / length annual year) and d) mean daily 

GPP of the year. Both RECO per day and absolute GPP of the year did not have a significant relationship and are not 

shown. Lines show significant linear regressions, coloured indicate per-treatment, grey without a treatment effect.  
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 290 

When seasonal variation was controlled as a random effect (R2
c = 0.91), and we included meteorological variables and the 

numeric year in the model, the marginal component was small compared to season (R2
M = 0.07). This effect was due to 

treatment (n.s. but remaining in the most parsimonious overall model), CSWI (P = 0.001) and the annual trend (P = 0.05). 

Higher CSWI decreased CUEECO in winter, drydown, and summer (Fig. 5b).  

3.3 Drivers of Sub-seasonal Variation 295 

Environmental variables followed annual cycles (Fig. S5) and explained around 78 % (dev. Explained) of bi-weekly 

variation. The most parsimonious model (Fig. 6) had effects of ‘Meteorology’, SWCn, CSWI and NDVI. The largest effect 

was NDVI; positive CUEECO required active vegetation. The NDVI effect started to saturate at around 0.5 (Fig. 6e). The two 

wetness parameters had different effects: CUEECO partial residuals were highest at low SWCn and at intermediate CSWI. 

Overall, variation in SWCn had a larger effect than CSWI. While concurvity assumptions were satisfied and including all 300 

three terms improved the model without reducing GCv, we note environmental variables were not independent; CUEECO 

cannot be > 1. Conditions where summed partial residuals could achieve this (i.e. low SWC, intermediate CSWI where 

 

Figure 5. Seasonal CUEECO between treatments and controls. a) Treatment effects within seasons. NPT had a slightly higher 

CUE in some seasons.  Dashed lines in b) CSWI and c) time trends indicate a significant trend (P < 0.05) within seasons. 

Overall CUEECO is strongly driven by the phenological cycle but there were: b) time trends within seasons - CUEECO was 

declining in winter and summer; c) the only meteorological variable in the most parsimonious seasonal meteorology model 

was CSWI; - wetter conditions tended reduced CUEECO.  
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partial residuals together result in CUEECO > 1) would not occur together; but both indicate more water. There was also a 

‘Meteorology’ effect, higher values (i.e. warmer, dryer) and lower values (cooler, wetter) raised CUEECO compared to 

intermediate values but overall contribution was small. Treatment effects were evident in NDVI (a slight increase in CUEECO 305 

partial residual) of fertilized treatments at high NDVI. There was also a treatment interaction with conditions: NT was 

slightly drier and CT treatment had an overall lower NDVI. Consequently, effects of the environmental conditions on the 

partial residual of CUEECO must be interpreted with reference to actual trends in these conditions between treatments.  
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 310 

 

Figure 6. Visual summary of the most parsimonious GAM model. In panel a, CUEECO (colour) is compared against model 

predictions (black) with an overall R2 of 80 % across the five years with all available data. Univariate smooths are shown for b) 

‘Met. Variables’ (higher values are hotter and dryer), c) SWCn and d) CSWI. Panel e) shows the smooth with significant 

treatment-dependent smooth for NDVI. Error bars are 2 x standard errors. Box plots below each curve show the distribution of 

data between (upper panel) treatments and (lower panel) season; note that as well as a treatment dependent effect of the conditions, 

particularly NDVI, and SWCn, the N treatment was slightly drier, and the control treatment had a lower NDVI. The model had no 

parametric treatment effect and the relative effect of treatments on the residual is shown in panel f). In panel e), the partial 

residuals for N and NP treatments overlap substantially.  

 
15
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4 Discussion  

 We expected nutrient addition of N and NP to increase annual CUEECO in series because of stronger water limitations with 

N alone (El‐Madany et al., 2021; Y. Luo et al., 2020). We expected these effects to propagate to seasonal scale and in 

particular increase CUEECO in wetter ‘growing’ seasons. We expected, and found, these effects to be relatively small 

compared to variation in environmental conditions but they nonetheless remained determinants of CUEECO at all scales.  315 

Once we accounted for variation between hydrological years, nutrient treatments increased CUEECO but NT and NPT did not 

differ (Fig. 2, Fig. 3, Fig. 6). Annual CUEECO was more strongly driven by GPP than RECO (Fig. 3), although both were 

components of CUEECO.  Cool and wet years increased CUEECO (Fig. 3) as did both absolute and proportionally long growing 

seasons, the latter usually corresponding to short hydrological years (Fig. 4). Short hydrological years could also be caused 

by short summers if the next autumn’s rain arrived early. However, at phenophase defined seasonal scale, the treatment 320 

effect was not significant, and the wetness effect reversed –the more favourable conditions for a positive effect on CUEECO 

were drier drydowns and summers (Fig. 5b). Between years, we also observed decreasing winter and summer CUEECO and 

increasing drydown CUEECO over time (Fig. 5c). These trends illustrate the importance of timescale and context in 

examining CUEECO. 

At shorter timescales, positive CUEECO effects were under lower soil moisture but not necessarily when ecosystem wetness 325 

was lowest (compare SWCn, CSWI, Fig. 6c and 6d). NT and NPT had higher CUEECO partial residuals in periods with high 

NDVI and overall higher NDVI – i.e more active vegetation, independent of ‘N:P imbalance’. This was offset by increased 

dryness - evident through CSWI (Fig. 6d). This modulation by water was previously shown in growing season length (Y. 

Luo et al., 2020) and water fluxes (El‐Madany et al., 2021) alongside allocation shifts from above-to-belowground (Nair et 

al., 2019). Here, we discuss these effects, potential model fits, and potential biases, in the context of nutrient treatments 330 

increasing the CUEECO of the ecosystem.  

4.1 Effect of Nutrient Treatments on CUE 

The biggest increases in annual CUEECO in both treatments was in the wet (Fig. 3) H2016, which had a long growing season 

(Fig. 4). Hence in gross annual carbon cycling terms, there was no effect of N:P imbalance, rather an effect of N fertilization. 

Moderate increases in N supply increase grassland topsoil C stocks by ~ 20 g C m-2 y-1 in long term surveys (Soussana et al., 335 

2004). Our N addition was 10x mean annual N deposition, applied irregularly and with a lower N load than most N 

fertilizations. Thus, chronic N deposition may increase C sinks in N-limited dehesas and N fertilization, i.e. pasture 

improvement, may be beneficial for overall C balance. This agrees with positives effect on soil organic carbon of over-

seeding with legume rich mixtures in dehesas (Moreno et al., 2021).  

At the biweekly scale, NT and NPT behaved very similarly. There were treatment differences in the smooth for NDVI - 340 

treatments enhanced CUEECO at higher NDVI (Fig. 6e). Otherwise, the major differences between treatments were not on the 

effects of environmental variables but rather variable distribution. Depletion in water was visible in CSWI from N but less so 
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in SWCn while NDVI was also slightly higher. Thus compensatory effects via depletion of finite water resources appeared 

to be counterbalancing vegetative increases between NT and NPT and leading to no overall CUEECO differences when P is 

added alongside N.  345 

While Leaf N increased in NT, P also increased in NPT (El‐Madany et al., 2021) so it may be surprising that P did not affect 

CUEECO. Indeed, leaf N and P relate to photosynthesis in complement (Evans, 1989; Kergoat et al., 2008; Musavi et al., 

2016) and P limitation limits responses to ongoing global C fertilization (Jiang et al., 2020) as it co-limits photosynthesis 

with N (Domingues et al., 2010). At our site, P availability also affects herbaceous photosynthetic parameters (Martini et al., 

2019) and fertilization effects on GPP were higher under NPT than NT (El‐Madany et al., 2021). The lack of a CUEECO 350 

response may be because CUEECO
 is a result of both GPP and RECO, explained by considering differences between leaf level 

C exchange and whole system functioning. Although less well studied than photosynthesis, concurrent N and P biochemical 

limitation of respiration (Crous et al., 2017; Rowland et al., 2017), leading to potential subsequent interactive effects on 

ecosystem level CUEECO. 

Deeper roots in NPT contrasts increase in root:shoot ratio without P (Nair et al., 2019) and P addition slows N-driven water 355 

losses (El‐Madany et al., 2021; Y. Luo et al., 2020) but water regulation may also cost carbon due to stomatal control. Hence 

productivity gains in other periods may be offset by RECO or reduced GPP in dry periods and NPT benefits may cancel out, at 

least for the C cycle alone. Indeed, investment belowground can have a positive or negative effect on ecosystem C status 

(Dijkstra et al., 2021) and other C use (e.g. changes in C to exudates or stability in SOC) could compensate and equalise 

overall CUEECO. In other systems, chronic N fertilization increases soil C concentrations (Cenini et al., 2015) but P addition 360 

effects are less understood (Ding et al., 2021; Jiang et al., 2019). Due to the integrative nature of EC data these distinctions 

may be invisible in our study. However, a lab experiment using soil collected in February 2018, showed fertilization legacy 

effects marginally increased microbial CUE and soil microbial communities in NPT had shifted metabolism to older 

substrates (Morris et al., 2022). Such microbial shifts may contribute to CUEECO (Tahovská et al., 2020; Tao et al., 2023) and 

heterotrophic respiration partially compensate for increased GPP. Microbial CUE increases with temperature (Manzoni et 365 

al., 2012) and is seasonal (Simon et al., 2020; Ullah et al., 2021). Aspects of the smooths in Fig. 6 may be explained by 

microbial shifts not represented by the data for model fitting. In the absence of data to fully parameterise this, an alternate 

approach would be to fit a model with processes based belowground assignment to such sites which can then be tested from 

frequency limited but targeted measurements of such difficult to observe properties (Caldararu et al., 2023). 

4.2 Potential Effects of The Herbaceous Layer Structure on Carbon Exchange  370 

EC data integrates whole ecosystem responses, but changes result from activity of individual organisms and their 

communities (e.g. Craine et al., 2001) which respond on their own. Even discounting microbial responses, herbaceous 

vegetation turns over faster than trees. Dehesa herbaceous communities are diverse and dynamic (Moreno et al., 2016) and 

ecosystem structure  i.e. diversity (Fernández-Moya et al., 2011; Zeng et al., 2015), allometry (Nair et al., 2019; Sainju et al., 

2017), and trophic partitioning (Lemanski & Scheu, 2014), all respond to fertilization and N:P imbalance. While a nutrient 375 

https://doi.org/10.5194/egusphere-2023-2434
Preprint. Discussion started: 23 October 2023
c© Author(s) 2023. CC BY 4.0 License.



18 

 

content effect was limited to herbaceous biomass (El‐Madany et al., 2021), whole system NDVI was higher in fertilized 

treatments in summer (Fig. S4). This could be explained by structural differences in tree cover in NPT (El-Madany et al., 

2018) than CT or NT but not differences between CT and NT.  Changes in individual species happened during the 

experiment, including a higher abundance of the C4 species Cyanodon dactylon (L.) in NT which persisted into summers 

due to its drought adaptions (unpublished plant inventories). Hence a combination of both water cycling and community 380 

structure effects may explain why neither treatment reached as absolute low NDVI as CT (Fig. 6), through different paths. In 

the rest of the year most GPP occurs and the herbaceous layer controls ecosystem spectral dynamics (Pacheco-Labrador et 

al., 2017). A previous smaller scale experiment showed a shift towards grasses and a decline in legumes under fertilization, 

affecting whole canopy properties relating to light use efficiency (Migliavacca et al., 2017). Plant types also vary in water 

use efficiency (Tsialtas et al., 2001), root architecture (Tron et al., 2015) and leaf-level traits (Rumman et al., 2018) and can 385 

modify CUEECO both directly and indirectly via microbes  (Van Der Heijden et al., 2008; Schnitzer et al., 2011). Indeed, in 

longer term experiments, plant species diversity can have higher benefit to soil C than N addition (Pastore et al., 2021) and 

plant diversity responses to nutrients drive microbial responses (Leff et al., 2015). Hence residual differences between years 

which we cannot explain may be due to unexpected feedbacks on whole system community structure. An important facet of 

holistic system understanding in natural ecosystems is quantifying these changes and if, when and how they relate to overall 390 

ecosystem function. 
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4.3 Interannual Variation and Model Performance Between Years and Seasons 

Different years had different overall and seasonal CUEECO between treatments (Fig. 2, Fig. 3, Fig. 4). While our model on 

biweekly data performed well (overall dev. explained of 78%), there were times when it did not. The largest residuals (Fig. 

7) were in summer and autumn where rain pulses control respiration (Casals et al., 2011) at even shorter timescales. This 395 

effect is particularly strong in the 2017/2018 transition. 2017 had the shortest growing year (Fig. 3), lowest CUEECO and 

followed the year with highest GPP (Fig. 2a). Respiration fluxes are more difficult to partition and in these negative CUEECO 

conditions were the dominant flux. The model was notably bad at predicting the 2017 drydown and summer CUEECO. We 

did, however, offset the influence of difficult to predict events via a PhenoCam-derived hydrological year; the onset autumn 

rains drive a pulse of CO2 efflux after the water-limited summer consuming C fixed in the previous growing seasons but was 400 

broadly always captured by starting the new hydrological year based on rain-dependent vegetation green up rather than date. 

As we used PTDs rather than fixed calendar dates to start autumn, we were able to assign this RECO response to the closing 

hydrological year/summer (Fig. S6). However, rain in semi-arid systems is only a part of overall water inputs (Uclés et al., 

2014) and dry season non-rainfall water inputs occur (Paulus et al., 2021). Intermittent summer rainfall may also mean dry 

season C dynamics differ from coupled day-night shifts between photochemical-thermal and microbial degradation in dryer 405 

 

Figure 7. Residuals from the GAM model grouped by season and year. In some combinations the model fit better 

than others. Note in particular the overall worse fit in autumn and summer, and high errors in drydown and summer 

2017. 
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arid lands (Gliksman et al., 2017) and also not resemble temperate winter-fallow systems. Likewise intermittent summer 

storms during periods of high evaporation may not always surpass a threshold for long term responses.  Longer datasets 

lasting multiple years with well quantified rainfall and non-rainfall inputs may be the route to understanding such anomalies 

and/or fitting models which perform better in these conditions.   

4.4 Potential Long Term Effects  410 

Finally, ongoing global change effects may alter CUEECO. Long term aridification trends (Cos et al., 2022; Paniagua et al., 

2019) would provide progressively worse summers and warmer winters (Fig. 4) and hence cause a long term decrease in 

CUEECO . Drier summers are usually long and so reduce the fraction of year suitable for growth (Fig. 4c) and consequently 

annual GPP. Concurrently we observe decreasing CUEECO in winter and summer (Fig. 5c). CUEECO normalizes for GPP and 

is not offset by increasing drydown CUEECO because this season is shorter (Table 1). At annual scales, GPP is also a stronger 415 

predictor of CUEECO than RECO (Fig. 3). Thus, CUEECO is in addition to productivity changes induced by the fertilization. 

From our GAM results, dry summers have low NDVI, and would move CSWI towards a less positive effect. While SWCn 

increases its partial residual at low values, this is both more dynamic and affected by rain pulses. As already mentioned, 

summer and autumn soil C effluxes in our system are inevitable but occur when sufficient precipitation enables 

mineralization of dead C stocks (Fig. 5b) – if not in summer, then at the autumn rains. However, because we used PTD-420 

derived seasonal dates, these losses are mostly assigned to summer rather than autumn (Fig. S6) so the trend in declining 

CUEECO is not because of lag in this efflux but an actual decrease in summer.  We were able to correctly assign this RECO 

pulse to the annual year scale, allowing the annual CUEECO to be shown to be more dependent on the GPP (Fig. 3). This 

distinction is possible because microbes respond faster than vegetation to breaking drought. This response is not possible in 

the drydown-summer transition so increasing CUEECO here may be because microbial respiration is delayed as the season 425 

becomes dryer (Fig. 5b). In a similar Spanish tree-grass ecosystem, Matías et al., (2021) observed experimental warming 

consistently increased total soil respiration, while drought reduced it, through point measurements in May and October. But 

over summer, warmer and harsher conditions may reduce CUEECO (Fig. 3) because these conditions cause decomposition of 

more non-labile SOC (Knorr et al., 2005) through more extreme shifts between warm dry and warm wet conditions. Indeed 

in the aforementioned experiment, summer warming and drought together accelerate SOM decomposition (San-Emeterio et 430 

al., 2023). This fraction is likely older carbon from previous years compared to the predominantly labile current year inputs 

(Knorr et al., 2005). On the other hand, winter is not typically water limited in relatively ‘continental’ site in central Iberia, 

midway through the phenological year. Interpreting the water effect must be done with care because as well as removing 

water limitations, wetter periods increase respiration. Even though we tried to control for concurvity via model checks, this 

could also be due to suppression of GPP through clouds associated with rain. Cloudiness should have affected radiation and 435 

air temperature in ‘Meteorology’ in the GAM, although this had minimal effects, perhaps because a finer timescale was 

necessary to see short term effects. All together these trends suggest future semi-arid Mediterranean systems may shift to 
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being stronger ecosystem C sources through aridity or rain-pulse-driven losses of C from organic matter in longer summers 

and a concurrent reduction in pasture productivity.  

Aside from direct carbon cycle effects, a drying and lengthening summer may also interact with nutrient availability, 440 

particularly N. Nutrient availability can shift during growing seasons –turnover of dead biomass is not necessarily linked to 

immediate productivity (Klaus et al., 2016) and microbes are better competitors for immediate N availability than plants 

(Templer et al., 2012). More turnover delayed until autumn and mobility in wet conditions mean N limits on productivity in 

Mediterranean systems may be stronger in the early season, in addition to potential progressive limitation (Y. Luo et al., 

2004) from CO2 fertilization effects. With simultaneous increases in demand and reductions in supply of N, such systems 445 

may move to stronger N limitation. From our fertilization results, this also suggests CUEECO would decrease. On the other 

hand, delayed turnover may decrease leaching because as the wet autumn begins plant N demand is low  (Llorens et al., 

2011) and so actually have long tern positive effects on N availability. N fertilization both increases GPP and water 

transpired, shortening growing seasons by intensifying drydowns (Y. Luo et al., 2020), this N limitation may increase late 

season productivity and shorten phenological summers. However, because of climate-driven summer intensification, and 450 

inevitable water losses at season’s end, hypothetical longer growing seasons are unlikely to fully compensate if this is driven 

by N-limited lower productivity. Thus long term N feedbacks are complex and still unclear, interacting with growing season 

phenology and could be in either direction. Understanding nutrient cycling and whole system phenology responses under 

dynamic shifts in function in these dry summer systems is thus of great importance. Insight from winter-fallow systems 

without strong seasonal shifts may not be sufficient to understand such responses. 455 

4.5 Conclusion  

N fertilization increased ecosystem CUE in our Mediterranean tree-grass site, and additional P fertilization had no distinct 

effects on whole system CUEECO despite several previously observed plant effects which could have been interpreted to lead 

to a more productive ecosystem. Hence N:P imbalance effects on allometry, stoichiometry, water-use and stress responses 

appeared to have been completely obscured on ecosystem level by compensatory responses, intrinsic variability, and noise at 460 

three different levels of temporal aggregation. We also observed trends over the study period of decreasing CUEECO in winter 

and summers, and higher CUEECO in years with longer growing seasons and shorter summers, suggesting a potential long-

term trend towards more C losses as the climate warms and duration of summer dry period increases. Seasonal trends were 

governed by water availability and water effects both became more important and became more complex the finer the 

timescale we considered. Consideration of phenology, weather, and timescale on CUEECO is critically important for 465 

understanding this ecosystem parameter.  
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