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1  Introduction

Curves in the two-dimensional plane that describe the trajectory of two perpendicular 
oscillators are commonly know as Bowditch or Lissajous curves. Jules Antoine Lissajous 
popularized these curves with his ingenious experiments in which he projected a beam of 
light to two vibrating tuning forks set at right angles, and with a mirror attached to their tip 
(Lovering, 1880; Hales, 1945; Gallozzi and Strollo, 2023). The resulting light projected 
on a screen described the motion of the two forks vibrating at different frequencies but 
at fixed ratios, producing visually appealing shapes. Similar experiments were reproduced 
by others using different types of vibrating systems, commonly pendulums (Lovering, 
1880). In 1877, Samuel C. Tisley introduced at a Royal Society Meeting the harmono-
graph, a device consisting of two pendulums moving perpendicularly, designed to repro-
duce Lissajous curves on a piece of paper. Writing in Foundations of Science, Gallozzi and 
Strollo (2023) give a comprehensive introduction to the history of Lissajous curves and the 
harmonograph.

Lissajous curves and the harmonograph are well suited to graphically represent interval 
relations in music. The length of the pendulums can be adjusted to reproduce fixed frequency 
ratios as when two musical notes are played simultaneously. Whitty (1893) published a book 
presenting visually appealing curves produced by a harmonograph adjusted at specific fre-
quency ratios emulating music intervals. One particular aspect of the harmonograph is that the 
amplitude of the oscillations decay due to friction of the different components of the system 
such as air-pendulum friction and pen-paper friction. Thus, the curves produced by the har-
monograph are not recurrent, i.e. they do not return to previous positions due to the decay of 
the amplitude of the oscillations. In their article, Gallozzi and Strollo (2023) refer to this issue 
with the following statement “...only if a harmonograph works in the absence of friction the 
curve would be always the same and the writing tip would pass indefinitely on the same line”. 
I believe this statement is a misinterpretation of the role of friction in the production of curves 
by the harmonograph. This statement is only true for a finite set of frequency ratios as I will 
show below. Most frequency ratios actually lead to curves that are not recurrent, and if a har-
monograph would work indefinitely in the absence of friction, the pen would pass through all 
points in the plane defined by the amplitude of the oscillations.
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The interval ratios used by Whitty (1893) were those from the just intonation system, in 
which the music intervals are expressed as whole number ratios (rational frequency ratios) 
(Table 1). Tuning systems have evolved over time and space (historically and geographically) 
due to a combination of cultural, aesthetic, economic and technical reasons (Polansky et al., 
2009). Although the Pythagorean and just intonation systems were predominantly used in 
Western music for centuries, they provided difficulties to instrument builders, musicians and 
composers because intervals among whole notes were not all equal in terms of their frequency 
ratio. Although some intervals such as the perfect fifth or the perfect fourth are considered 
‘pure’, ‘concord’ or ‘consonant’ in these systems, other intervals are slightly off or dissonant, 
mostly because it is not possible to split a twelve tone scale into equally consonant intervals 
(see Gann, 2019, for details).

Since the 18th century, the preferred tuning system is based on equally spaced intervals 
on a logarithmic scale that divides an octave in 12 equally spaced steps. This system is called 
the 12-tone equal temperament, and the frequency ratio among each note is equal to 21∕12 (or 
12
√

2 ≈ 1.05946 ). Although the 12-tone equal system approximates the just intonation system, 
only the unison and the octave intervals agree exactly among the two systems (Table 1).

Lissajous curves can be used to represent graphically differences between the two tuning 
systems. In the following, I will present a simple analysis of Lissajous curves to show that 
in the just intonation system Lissajous curves show recurrent periodic patterns, while in the 
12-tone equal temperament system, only the unison and the octave show such a recurrent 
pattern.

2 � Lissajous Curves for the Two Tuning Systems

Lissajous curves are expressed mathematically as the coordinates x and y in the two dimen-
sional plane described by the equations

Table 1   Frequency ratios among 
of the varios intervals for the 
just intonation system and the 
12-tone equal temperament 
system

As a reference, intervals are expressed with respect to the tonic C note

Interval Just interval 12-tone interval Difference

Unison (C) 1/1 = 1 20∕12 = 1 0
Minor second (D♭) 16/15 = 1.06̄ 21∕12 = 1.0594… −0.0072...
Major second (D) 9/8 = 1.125 22∕12 = 1.1224… −0.0025...
Minor third (E♭) 6/5 = 1.2 23∕12 = 1.1892… −0.0107...
Major third (E) 5/4 = 1.25 24∕12 = 1.2599… + 0.0099...
Perfect fourth (F) 4/3 = 1.3̄ 25∕12 = 1.3348… + 0.0015...
Tritone (G♭) 64/45 = 1.42̄ 26∕12 = 1.4142… −0.0080...
Perfect fifth (G) 3/2 = 1.5 27∕12 = 1.4983… −0.0016...
Minor sixth (A♭) 8/5 = 1.6 28∕12 = 1.5874… −0.0125...
Major sixth (A) 5/3 = 1.6̄ 29∕12 = 1.6817… + 0.0151...
Minor seventh (B♭) 16/9 = 1.7̄ 210∕12 = 1.7817… + 0.0040...
Major seventh (B) 15/8= 1.875 211∕12 = 1.8877… + 0.0127...
Octave (C) 2/1 = 2 212∕12 = 2 0
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where A1 and A2 are amplitudes, �1 and �2 angular frequencies, t is time or the number of 
oscillations per frequency, and � is a phase shift. We assume here no damping of the oscil-
lations so to represent the case of a harmonograph with no friction. However, friction can 
be represented by multiplying x and y in Eq. (1) by an exponential decay term of the form 
e(−d t) , with d as a damping coefficient.

Lissajous curves produce recurrent patterns, i.e. they return to the same points in the 
plane, only if the ratio �1∕�2 is a rational number (Weisstein, 2023). Since frequency ratios 
in the just intonation system are defined only by rational frequency ratios (Table 1), we can 
conclude that Lissajous curves are recurrent for all frequency ratios defined in this system.

Equation (1) can be used to draw Lissajous curves of musical intervals, with a tonic note 
vibrating at frequency �1 and a second note that defines the size of the interval vibrating 
at a frequency �2 . Assuming that the two notes are played simultaneously and at the same 
loudness, then we can assume � = 0 and A1 = A2 in Eq. (1). These assumptions make it 
easy to use the interval ratios from Table 1 to draw Lissajous curves for each interval and 
for each tuning system. For example, to draw the curve corresponding to the Major third in 
the just intonation system, we can make �1 = � and �2 =

5�

4
 in Eq. (1) and plot the curves 

for a t number of cycles.
Figure  1 shows Lissajous curves for each of the intervals in the just intonation sys-

tem, with the exception of the unison. In all cases, the curves were drawn for 300 cycles 
(t ∈ [0, 300]) , but they always followed the same trajectory passing for certain points in the 
plane recurrently. We see that each curve is unique and defined only by the differences in 
their frequency ratio. The octave, which appears in row 4 column 3 of Fig. 1, has one of the 
simplest shapes and the curve passes through the center (x = 0, y = 0) multiple times. At 
the vertical line defined by x = 0, the curve of the octave passes only through a single point 
at the center, y = 0, and not through any other point along this vertical line. For the Major 
fifth, located at row 3 column 1 in Fig. 1, the curve passes recurrently along the vertical 
line at x = 0 at only three different values of y, − 1, 0, and 1. Similarly for other interval 
curves in Fig. 1, the trajectories pass through only a limited set of points in the plane. At 
the vertical line defined by x = 0 , all curves pass recurrently through this vertical line only 
at a finite number of points, which are defined by the rational frequency ratios presented in 
Table 1.1

An interesting characteristic of the Lissajous curves for the just intonation system in 
Fig. 1 is that the perfect fifth and fourth, together with the octave, have simple shapes and a 
small number of recurrent points on the plane. These intervals are considered harmonically 
consonant in music theory, and they played a major role in 15th and 16th century music. 
Minor and major thirds and sixths, are also harmonically consonant, and they have also 
relatively simple Lissajous curves with few recurrent points. In contrast, dissonant intervals 
such as the minor second or minor and major sevenths, have a larger number of recurrent 
points. In particular, the tritone, often referred to as the ‘devil’s interval’, has the largest 

(1)
x = A1 sin

(

�1t
)

,

y = A2 sin
(

�2t + �
)

,

1  The procedure I use here to demonstrate the recurrence of the points is based on the idea of creating a 
Poincaré map. I do not provide here a rigorous treatment of this procedure, but this would be the formal 
method to mathematically prove recurrence of the Lissajous curves.
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number of recurrent points on the plane (Fig. 1). Thus, Lissajous curves provide a visual 
aid for the description of consonance and dissonance of music intervals.

As opposed to the curves for the just intonation system, the Lissajous curves of the 
12-tone equal temperament system do not pass recurrently through a small fixed number 

Fig. 1   Lissajous curves for the 12 intervals of the just intonation system. From top left to bottom right, the 
intervals are Minor second, Major second, Minor third, Major third, Perfect fourth, Tritone, Perfect fifth, 
Minor sixth, Major sixth, Minor seventh, Major seventh, and Octave
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of points on the plane (Fig. 2). In all cases, except for the unison and the octave, the curves 
pass through each point in the plane only once and the curves tend to fill all the space in 
the plane. At the vertical line defined by x = 0 , the curves pass through 301 different points 
in the y axis because we draw the curves through 301 cycles, from t = 0 to t = 300 . If we 

Fig. 2   Lissajous curves for the 12 intervals of the 12-tone equal temperament system. From top left to bot-
tom right, the intervals are Minor second, Major second, Minor third, Major third, Perfect fourth, Tritone, 
Perfect fifth, Minor sixth, Major sixth, Minor seventh, Major seventh, and Octave
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would draw these curves for a larger number of cycles N, then they would cross the x = 0 
line N number of times and eventually all the empty space in the plane would be visually 
occupied with lines. Although some of the intervals in Fig. 2 show some patterns that may 
indicate recurrence, this is only because the difference of these intervals from the whole 
number interval of the just intonation system is small (Table  1), but in every cycle the 
curve deviates slightly from the previous trajectory.

The whole number ratios that define the just intonation system are the key element that 
determines the recurrence of the Lissajous curves through the same points in the plane. 
A defined rational ratio a�

b
 , with a and b as integer numbers, guarantees that the curve 

would pass through x = sin� = 0 after every number of b cycles, establishing the recurrent 
pattern.

Although it has been said in the past that Lissajous curves have no practical use (New-
ton, 1884), I believe they can actually play an important role in music education and other 
fields. For example, the curves nicely illustrate the tradeoff between splitting a vibrating 
string in harmonic ratios, versus splitting it in fixed proportions that facilitate composition 
with fixed intervals. They can also be used to represent the concept of consonance and dis-
sonance of intervals.

I only included here examples of two tuning systems, but many other systems have been 
developed throughout the history of music such as the Pythagorean, mean tone, well tem-
perament, or other equal-temperament systems. Lissajous curves could be produced for 
any tuning system to visually analyze differences of intervals among systems. Our current 
12-tone equal temperament system is an approximate solution to the problem of uniform 
and consonant relations among intervals that can be used in harmonic compositions in all 
keys, but with a tradeoff in terms of mathematically accurate agreement among frequency 
ratios.

In addition, one can easily produce harmonograph curves such as those published by 
Whitty (1893) by adding friction to a Lissajous curve, i.e. by multiplying Eq. (1) by an 
exponential decay term. Figures  3 and 4 show how the original shape of the Lissajous 
curves for the two tuning systems are transformed by reducing their size at each cycle, 
shrinking the original pattern towards the center of each curve. In this case, each curve 
is a simple representation of an interval which loudness reduces over time as when one 
would play two notes on a piano. Again, given their rich visual patterns, these curves could 
be very useful for the teaching of basic concepts of intervals and tuning systems in music 
education.

Lissajous curves and harmonographs can also play an important role in graphic design 
as some variants of them are already part of the corporate logo of private companies (Wiki-
pedia contributors, 2023). They can also be used as teaching resource to introduce concepts 
such as sine waves, state space, harmonic oscillators, among others. In the supplementary 
material I provide code in the R computing language to reproduce the curves in Figs.  1 
to 4, which can be used by interested readers to draw any other harmonograph shape. For 
example, adding a phase shift to the y coordinate with a value of � ≠ 0.

In summary, this commentary clarifies a statement provided by Gallozzi and Strollo 
(2023) regarding the recurrence of Lissajous curves. A harmonograph working in the 
absence of friction would only produce Lissajous curves with recurrent patterns if the 
frequency ratio among oscillating pendulums is rational. In all other frequency ratios, the 
curves would pass through all points in the plane enclosed by the amplitude of the oscilla-
tions if the harmonograph works indefinitely without friction. This difference in the shapes 
of Lissajous curves can serve as an engaging method to teach differences between tuning 
systems in musical education.
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Fig. 3   Lissajous curves with decay of the oscillations (friction) for the 12 intervals of the just intonation 
system imitating the curves produced by a Harmonograph. From top left to bottom right, the intervals are 
Minor second, Major second, Minor third, Major third, Perfect fourth, Tritone, Perfect fifth, Minor sixth, 
Major sixth, Minor seventh, Major seventh, and Octave. The decay of the oscillations was obtained multi-
plying x and y from Eq. (1) by e(−d t) with d = 0.01
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Supplementary Information  The online version of this article (https://​doi.​org/​10.​1007/​s10699-​023-​09930-
z) contains supplementary material, which is available to authorized users.

Fig. 4   Lissajous curves with decay of the oscillations (friction) for the 12 intervals of the 12-tone equal 
temperament system imitating the curves produced by a Harmonograph. From top left to bottom right, the 
intervals are Minor second, Major second, Minor third, Major third, Perfect fourth, Tritone, Perfect fifth, 
Minor sixth, Major sixth, Minor seventh, Major seventh, and Octave. The decay of the oscillations was 
obtained multiplying x and y from Eq. (1) by e(−d t) with d = 0.01

https://doi.org/10.1007/s10699-023-09930-z
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