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synchronization in finite systems
David J. Hickeya ID , Ramin Golestaniana,b,1 ID , and Andrej Vilfana,c,1 ID

Edited by Monica Olvera de la Cruz, Northwestern University, Evanston, IL; received May 1, 2023; accepted August 14, 2023

Motile cilia beat in an asymmetric fashion in order to propel the surrounding fluid.
When many cilia are located on a surface, their beating can synchronize such that
their phases form metachronal waves. Here, we computationally study a model where
each cilium is represented as a spherical particle, moving along a tilted trajectory
with a position-dependent active driving force and a position-dependent internal drag
coefficient. The model thus takes into account all the essential broken symmetries
of the ciliary beat. We show that taking into account the near-field hydrodynamic
interactions, the effective coupling between cilia even over an entire beating cycle
can become nonreciprocal: The phase of a cilium is more strongly affected by an
adjacent cilium on one side than by a cilium at the same distance in the opposite
direction. As a result, synchronization starts from a seed at the edge of a group of
cilia and propagates rapidly across the system, leading to a synchronization time that
scales proportionally to the linear dimension of the system. We show that a ciliary
carpet is characterized by three different velocities: the velocity of fluid transport, the
phase velocity of metachronal waves, and the group velocity of order propagation.
Unlike in systems with reciprocal coupling, boundary effects are not detrimental for
synchronization, but rather enable the formation of the initial seed.

cilia | low Reynolds number hydrodynamics | metachronal waves | nonreciprocal interactions

Motile cilia are hairlike organelles which can move under their own power in order to
fulfill roles such as fluid pumping or mixing (1). They are nigh-ubiquitous in biological
systems, being found on most eukaryotic cells (2) including in the nervous system (3),
the respiratory system (4), and the olfactory system (5). This makes them central to
many open questions in biology, such as the precise mechanism behind the emergence of
left–right differentiation during embryonic development (6). While the fascinating fluid
dynamical questions involved in the dynamics of cilia and their biological function have
been already highlighted by the pioneers of twentieth-century fluid dynamics, such as
Prandtl (7) and Taylor (8), the subject of the collective properties of hydrodynamically
active organelles at low Reynolds number continues to be an active field of research,
particularly as a key component of the field of active matter (9).

When many motile cilia are located on a surface at sufficient density, their beating
can synchronize with a phase lag between neighboring cilia. The resulting phase waves
are called metachronal waves. It has been shown that metachronal coordination can
lead to a high energetic efficiency of swimming or fluid transport (10, 11), and that
metachronal waves may reduce collisions between cilia, further raising pumping speed
(12). Moreover, the coordination has been shown to be beneficial for the efficiency
of the chemosensory function of motile cilia (13). Metachronal waves are found in
many different organisms and systems. For example, Paramecium uses metachronally
coordinated cilia to swim (14), as well as to feed (14). Indeed, Paramecium’s swimming
efficiency is close to the maximum possible efficiency for an organism with cilia of that
length (10). Metachronal waves are found in other systems, such as the multicellular
colony Volvox (15) or cilia in the respiratory tract (4) where their pumping efficiency
is important for moving mucus (16). Metachronal coordination also appears in animals
(e.g., krill) at larger length scales with very different coordination mechanisms (17).

Metachronal waves can be classified according to the direction of the wave propagation,
depending on how the phase velocity of the wave compares to the direction of fluid
transport. When these two directions are parallel, the metachronal wave is said to
be symplectic. If they are antiparallel, the wave is called antiplectic (18). Other wave
directions are classified as dexioplectic or leoplectic.

The fact that a pair of hydrodynamically interacting cilia or flagella can synchronize
their cycles, even when belonging to two separate organisms (19), suggests that
hydrodynamic coupling alone can be sufficient to explain the emergence of metachronal
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waves. Nevertheless, some studies also point to the additional
role of intracellular linkages (20–22). In fact, the metachronal
waves in Paramecium can preserve synchrony across the wall of a
micropipette that isolates them hydrodynamically (23).

A fundamental problem in understanding synchronization
via hydrodynamic interactions is the reversible nature of the
Stokesian hydrodynamics, i.e. the fact that the fluid flow exactly
reverses its direction upon the reversal of actuating forces, whereas
the tendency of a system to reach an ordered state is by definition
irreversible (9). Theoretical models therefore have to take into
account higher-order effects that break the respective symmetries.
These can include a second degree of freedom per cilium (24–29),
the asymmetric spatial arrangement of cilia (30), a trajectory or
driving force with sufficiently broken symmetries (28, 31–37),
or a nonlinear driving mechanism that, for instance, switches the
direction of force when a switch point is reached (11, 38–41).

When discussing the role of symmetries for ciliary synchro-
nization, one has to keep in mind that reciprocity manifests
itself differently for conservative or dissipative interactions. For
conservative forces, Newton’s third law states that opposite
forces are exerted on both interacting bodies. For hydrodynamic
interactions, which are dissipative in their nature, the Lorentz
reciprocal theorem (42) implies that the force on one body, caused
by the motion of a second one with a given velocity, is identical
to the force on the second body when the first body moves with
the same velocity. Hydrodynamic interactions therefore act on
both bodies with the same sign. The interplay of both interaction
types is one possibility to facilitate ciliary synchronization (26).
In active systems, nonreciprocal interactions can arise where the
effect of the interaction on body A differs from that on body
B, both in magnitude and direction (33, 43–49). For example,
in the Vicsek model, particles or animals can be affected by
other particles in front of them in a different way from those
behind them. The orientation of hydrodynamically coupled
rotors is a prime example of nonreciprocal coupling that leads to
a rich phenomenology, including turbulent behavior via defect
proliferation and annihilation (31).

A major open question is related to the scaling with the
system size and the role of boundaries of the ciliated region.
Recent theoretical work shows that the time needed to reach
synchronization scales quadratically with the number of cilia
(50). In principle, the metachronal wave vector of the final state
is not uniquely determined. However, the basins of attraction of
different solutions can greatly differ in size, leading to a strong
preference for one state (50). Boundaries are often detrimental
for synchronization because the cilia at the edge have a smaller
number of nearest neighbors, which can affect their characteristic
frequency, as demonstrated in a small 1D row of artificial
oscillators (51). Boundary effects in a finite system can even
lead to the emergence of a chimera state in which the oscillators
split up into a coherent and an incoherent population (52). The
vast majority of theoretical and computational studies focus on
systems with periodic boundary conditions as a representation of
generic, infinite systems (11, 26, 31, 32, 34, 38, 50, 53, 54). In
nature, periodic circular 1D chains of cilia exist, for instance, the
oral cilia of Stentor (55) or in starfish larvae (56). However,
for topological reasons, 2D arrangements of cilia need open
boundaries or topological defects, as it is impossible to have a
polar field on the topology of a sphere without discontinuities.

In this paper, we show that the near-field effects (NFEs)
between hydrodynamically coupled cilia can lead to an effective
nonreciprocal interaction, where cilium A can affect the phase
of cilium B more strongly than vice versa when averaged over

an entire ciliary beating cycle. As a result of this nonreciprocity,
the metachronal order propagates through the array of cilia with
a group velocity, which is not directly related to the velocity of
the fluid transport or the phase velocity of metachronal waves.
In a finite group of cilia, order then emerges at a boundary
and propagates across the group in a time that scales linearly
with the system dimension, an order of magnitude faster than
an equivalent system without near-field hydrodynamics. We
suggest that nonreciprocal coupling is key to understanding
the fast emergence of synchronization in large ciliary carpets.
The dynamics of the system are then characterized by three
independent velocities: the velocity of fluid transport above the
surface, the phase velocity of metachronal waves, and the group
velocity with which the order propagates.

Results

Cilia are long and thin and beat with a time-irreversible whip-
like stroke (1). Because of the complexity of the ciliary stroke, its
description quickly leads to an intractable number of parameters.
We therefore take a simplified approach common to many
theoretical models (e.g., refs. 30, 34, and 35) and replace the
cilium with a small sphere, pushed along a fixed trajectory by
a position-dependent active force. The position of the sphere
represents the tip position of a cilium and the active driving force
represents the activity of dynein motors of the cilium’s axoneme.
We thus consider a sphere of radius b moving on a fixed circular
trajectory of radius a, with its center a distance h above a surface.
The sphere is driven by an internal driving force F dr(�) and has
an internal friction coefficient Γ(�), both of which act in the
tangential direction of the trajectory. The tilt of the trajectory is
controlled by an angle � such that when � = �/2, the trajectory
lies in a plane parallel to the substrate beneath the cilium, shown
in Fig. 1A.

This choice to model the cilia as single spheres on fixed tilted
circular trajectories means that we neglect much of the fluid flow
driven by the cilium closer to the surface, while preserving the
irreversibility of the cilium beat—essential given the inherent
irreversibility of synchronization. This approximation also repli-
cates the pumping ability of the cilium: When the cilium is closer
to the no-slip surface, it produces less fluid flow, and when it is

Fig. 1. Illustration of the model, showing the parameters used. (A) A realistic
cilium motion with the trajectory shown in red. The power stroke (solid blue
color) gives way to a slower recovery stroke along the no-slip surface of the
substrate, resulting in net fluid flow in the direction of the power stroke over
a cycle. Also shown is one of our model cilia that approximates the realistic
motion, with the trajectory shown in red, and relevant quantities indicated.
The circular trajectory retains the essential features of a power stroke far from
the substrate and a recovery stroke much closer. (B) Definition of � and the
intercilium distance r. The arrows represent the direction of the power stroke
of the cilium, occurring at the highest point above the surface. Feathering on
lines indicates that they are parallel, so that � is the angle between the power
stroke and the displacement vector connecting the lattice points of two cilia.
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further away it produces more. Over a cycle, the cilium moves a
positive net amount of fluid in the direction of its “power stroke.”
At distances from the cilium that are several times greater than
h, this approximation gives almost identical fluid flow to a more
detailed treatment of the cilium (57). In the following, we orient
the pumping direction in the positive x-direction.

To study synchronization and the emergence of metachronal
waves, we now consider many cilia arranged on a two-
dimensional surface. Each point ri = (xi, yi, 0) represents the
position on the substrate directly below the center of a cilium’s
trajectory. A pair of cilia (i and j) is characterized by the angle
�ij, which is the angle between the working stroke of cilium i
(along the x-axis, Fig. 1) and the line pointing from ri to rj.
These quantities are illustrated in Fig. 1B.

The position Ri of the sphere representing cilium i is
parameterized as a function of its phase �i following the notation
used by Meng et al. (34):

Ri(�i) = ri +

( a cos�i
a sin�i sin�

h− a sin�i cos�

)
. [1]

To replicate the beating cycle of a cilium, which consists of
a fast working stroke followed by a slower sweeping recovery
stroke, we introduce a position-dependent force and an internal
drag coefficient, which together determine the force-velocity
relationship of the active driving force F dr(�i) − Γ(�i)v. Both
can be expanded in a Fourier series as:

F dr(�i) = F dr
0

[
1 +

∞∑
n=1

An cos(n�i) + Bn sin(n�i)

]
, [2]

Γ(�i) = Γ0

[
1 +

∞∑
n=1

Cn cos(n�i) + Dn sin(n�i)

]
. [3]

In the following, we only account for terms where n ≤ 2.
This simplification is justified, as the first harmonic is known
to be essential for synchronization (and indeed is well-placed to
replicate the cilium’s beating pattern of a fast power stroke and a
slower recovery stroke), but the second harmonic is much more
effective at driving the onset of synchronization and ensuring a
more stable synchronized state (28, 35, 36).

Due to the linearity of the Stokes flow, the hydrodynamic force
Fh
i on a particle is a linear function of the particle’s own velocity

and the velocities of all other particles it hydrodynamically
interacts with. It can be expressed with a generalized friction
tensor in the presence of a no-slip boundary, �(�i,�j), as
Fh
i = −

∑
j �(�i,�j) · vj. Along with the driving force, which is

always tangential to the trajectory, and a perpendicular constraint
force Fcstr which keeps the particle on the trajectory, the force
balance on cilium i states:

Fdr(�i) + Fcstr
− �(�i)vi −

∑
j

�(�i,�j) · vj = 0 . [4]

By considering only its tangential component (i.e., multiplying
the above equation with the tangent vector t(�i)), we obtain the
equations of motion for each cilium:

F dr(�i) = �(�t)vi +
∑
j

t(�i) · �(�i,�j) · t(�j)vj. [5]

Here, the velocities are related to the phase derivatives as vi =
(∂Ri/∂�i)�̇i. By solving these equations numerically, we can

simulate the evolution of the cilium phases �i over time. In the
following, we nondimensionalize all time units using the time
period of an isolated cilium t0, which can be determined as
t0 =

∫ 2�
0
(
�̇i
)−1 d�i using Eq. 5 without interacting neighbors.

Near Field Effects. We classify the near- and far-field effects based
on a multipole expansion of the flow field around a beating
cilium, which determines the interaction strength between two
cilia. The relative strength of different multipole contributions is
determined by the ratio between the interciliary distance r and
the cilium height h.

The far-field hydrodynamics encompasses the effects in the
leading order in r/h. The far field flow of a Stokeslet in the vicinity
of no-slip boundary decays with the power 1/r2 radially, or 1/r3

along a direction parallel to the plane. Specifically, the far-field
mobility tensor (M = �−1) for two particles at a displacement
Δx = (Δx,Δy, 0), where Δx = xj − xi and Δy = yj − yi, takes
the generic form (30)

M(xi, xj) =
3

2��
·

zizj
|Δx|5

(Δx)2 ΔxΔy 0
ΔyΔx (Δy)2 0

0 0 0

 . [6]

Because the amplitude of a cilium’s motion (a) is of similar order
as its height h, the variation of its horizontal position (x, y) also
does not contribute to the leading term in the far-field expansion.

When the distance between cilia becomes closer, the next order
in the multipole expansion needs to be taken into account. It
consists of six independent terms that scale with 1/r4 and depends
on the series expansion of the Green’s function, as well as on
corrections due to the off-center positions of both cilia (57).
We are referring to all interaction effects that become relevant
when the intercilium distance is comparable to the height of the
cilium (and therefore the trajectory radius) as NFEs. At even
closer distances, the shape of the cilium becomes important and
the approximation with a single sphere becomes inadequate.

Symmetries. Before discussing the numerical solutions, it is
instructive to consider the symmetries of the system and their
effect on synchronization and formation of metachronal waves.
Our model contains the following symmetries:

1. Swapping. Because all cilia are intrinsically equal, the equa-
tions of motion stay the same when exchanging two cilia
(�1 ↔ �2) and rearranging them such that � ↔ � + �.

2. Mirror symmetry. The trajectories of cilia (but not their drag
and driving force) are symmetric with respect to y ↔ −y.
The equations of motion therefore contain the symmetry
� ↔ � − �, �↔ � − �, F dr

0 ↔ −F
dr
0 with the adjustment

of the coefficients defined in Eqs. 2 and 3: (An, Cn) ↔
(−1)n(An, Cn) and (Bn, Dn)↔ −(−1)n(Bn, Dn).

3. Time reversal. Due to the time-reversibility of the Stokes
equation, the equations of motion also remain invariant under
the transformation F dr

0 ↔ −F
dr
0 and t →−t. Because of the

time reversal, a solution that is stable in the original system
becomes unstable in the transformed system.

4. Without near-field hydrodynamics: axial reflection. If the
distance between cilia is sufficient that the near-field hydrody-
namic interactions can be neglected (r � h), the interaction
term given by Eq. 6 becomes symmetric in space. The far-
field mobility tensor is therefore symmetric with respect to
� ↔ � + �.
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The above symmetry properties have bold consequences for
the synchronization. Consider a row of cilia arranged along the
x axis, in the direction of pumping. In such a row, the angles �
can only have values 0 and �. Without any of the coefficients
that change sign under (ii), i.e., A1, C1, B2, . . ., the motion is
symmetric upon the combination of transformations (i), (ii),
and (iii). Because the combined transformation contains time
reversal which renders a stable solution unstable, no stable states
are possible under these assumptions. The notion is consistent
with the result in ref. 30 if two cilia are arranged along the
pumping direction. The existence of a stable solution requires at
least one of the terms A1, C1, B2, D2, A3, C3, etc., to be nonzero.
The same argument also holds for a row of cilia arranged along
the y axis (perpendicular to the pumping direction) when the
symmetries (ii) and (iii) are employed (see related arguments in
refs. 58 and 9).

Without NFEs in the hydrodynamic coupling, the symmetry
property (iv) immediately implies the equivalence of metachronal
waves with wave vectors k and−k, as seen in ref. 34. We therefore
expect such systems to show the emergence of multiple long-lived
domains with different metachronal wave vectors.

NFEs in combination with (for instance) the rotational motion
of cilia can break the spatial symmetry, and lead to antisymmetric
coupling terms that synchronize the cilia into a state with a
nonzero phase difference (9, 30, 58–60). Here, we point out
that the interactions are not only asymmetric with respect to
the phase difference, but also nonreciprocal with respect to their
strength. In a given configuration, the response of cilium i to
the phase of cilium j can differ from the response of cilium j
to cilium i both in the magnitude and in the phase dependence.
This nonreciprocity has profound implications for the emergence
of metachronal waves.

Synchronization in One Dimension. We first consider a one-
dimensional row of cilia with uniform spacing d and open
boundaries such that cilium i is located at position ri = (id, 0, 0)

(Fig. 2A). This means that �ij = 0 or � for every cilium pair
i 6= j. We used numerical simulations to see how order emerged
in the system when the cilia were initialized with random initial
phases.

Fig. 1B shows the phases of the cilia on a kymograph. The
initially random phases quickly coalesce into mostly ordered
waves, which slowly become more ordered over time until the
waves are completely uniform. The average time ts to reach a
synchronized state scales approximately linearly with the system
length (Fig. 1C ). We consider the state as synchronized when
the standard deviation (SD) of all cilium frequencies falls below
a fixed threshold. The linear dependence can be understood by
looking at the signal coherence between adjacent pairs of cilia
(Fig. 1D). The signal coherence is a measure of the degree of
linear dependence between two signals, given as a function of the
frequency, with values between 0 and 1. For two signals in the
time domain x(t) and x′(t), the coherence is calculated as:

Cxx′( f ) =

∣∣x̃∗(f )x̃′(f )∣∣2
x̃(f )x̃′(f )

, [7]

where x̃(f ) and x̃′(f ) indicate the Fourier transforms of x(t)
and x′(t), respectively. For every pair of cilia, we calculate
the coherence between cos(�i(t)) and cos(�j(t)) at the fre-
quency with the strongest cross-spectral density between the
two signals (i.e., the frequency f that maximizes the numerator
in Eq. 7).

Random patches of order sometimes emerge and travel against
the pumping direction (in this case the pumping direction is
rightwards), as the nonreciprocal nature of the hydrodynamic
interactions causes the order to expand on one side and be
extinguished by the disorder on its other side. However, when an
ordered patch occurs close enough to the rightmost edge, there is
no disorder to its right to extinguish it, so it spreads throughout
the system. This explains why we see that the synchronization

Fig. 2. Synchronization in a one-dimensional row of cilia. (A) A snapshot from the simulation. The colors indicate the phases. (B) A kymograph showing the
metachronal waves in the system at different times. The simulation starts with random phases, but patches of order quickly assert themselves and give rise
to waves that are initially uneven but eventually become completely uniform. The waves travel with the phase velocity vph (orange triangle) in the direction of
fluid transport, and are hence symplectic waves. (C) The mean synchronization time 〈ts〉 vs. the number of cilia N. The mean is calculated by simulating many
systems at each size with different random initial phase configurations, and measuring how long it takes to synchronize using a metric based on SD of cilium
frequencies. The figure shows that the synchronization time scales approximately linearly in the system size. Error bars are SEM, based on ≥ 92 simulations.
(D) A kymograph showing the coherence between adjacent pairs of cilia. On this graph, each value of i on the abscissa corresponds to the coherence between
cilium i and i+1. Once an ordered patch forms on the right edge, it spreads across the row with the group velocity vg (green triangle) in the negative x direction.
The fact that the synchronization time is mainly limited by the propagation across the system explains the linear size-dependence in panel (C).
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time has a roughly affine relationship with the system
length.

Synchronization in Two Dimensions. The vast majority of motile
cilia are found in two-dimensional bundles on multiciliated cells,
where the cells themselves are sparsely distributed (61). Hence,
we consider a two-dimensional square lattice with side length
L and lattice constant d (so that the total number of cilia is
N = L×L). We enforce open boundaries and run a very similar
simulation to the one described in the previous section. Fig. 3A
shows the lattice, with the cilium trajectories marked according
to their phase, rendering the structure of the metachronal wave
clearly visible. Fig. 3B shows how the order of the cilia emerges
over time: Initially, there is no correlation between phases, but
over time some order emerges, which eventually solidifies into
well-ordered metachronal waves.

Fig. 3C shows that the synchronization time scales approxi-
mately linearly with the linear dimension of the system L (i.e.
〈ts〉 ∼ L ∼

√
N ), just as in the one-dimensional case. This is

explained by Fig. 3D, which illustrates the coherence of each
cilium with its neighbors. For each cilium i, the value is given by
the geometric mean of coherence values with all directly adjacent
(not including diagonally adjacent) cilia:

Cgm
i =

 ∏
j∈{n.n.}

C
({
�i
}
,
{
�j
})(1/Nn.n.)

, [8]

where C({�}, {�′}) is the coherence, defined over two time series
of phases. The resulting graph explains the linearity: The order
emerges along one edge and gradually spreads across the entire
lattice. Since the limiting factor to synchronization is the time
taken for the order to spread through the length of the system,
this time depends on the linear dimension as L/vg.

The flow field induced by a carpet of cilia that has reached
the synchronized state with steady metachronal waves is shown
in Fig. 4. The time-averaged flows show a region of largely
homogeneous flow above the carpet where the fluid is pumped

A B

C D

Fig. 3. Synchronization in a two-dimensional square lattice. (A) A schematic of the simulation of the square L× L lattice at a synchronized state for the specific
case L = 10. The color of each model cilium indicates its phase, making the order clearly visible. See also Movie S1 for an animated representation. (B) A series
of snapshots showing the phases of the cilia in the square lattice, for the specific case of L = 10 (see Movie S2 for a complete time series). (C) The mean
synchronization time 〈ts〉 vs. the linear dimension of the system L. The mean is calculated by simulating many systems at each size with different random
initial phase configurations, and measuring how long it takes for the SD of the cilium frequencies in each system to drop below a certain threshold value. The
synchronization time scales approximately linearly in L. Error bars are SEM, based on ≥ 31 samples. (D) The geometric mean of the coherence between each
cilium and all of its neighbors for a specific simulation with L = 10. The order emerges on the right side and spreads across the system in negative x direction,
leading to the observed linear dependence between the synchronization time and the length L.
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Fig. 4. Time-averaged and instantaneous flow in a system of 8×8 cilia after
reaching a synchronized metachronal state. The background color indicates
the flow speed in units of h/t0, and the yellow dots represent the center of
cilium orbits. The side view corresponds to a vertical cross-section through
the middle of the array of cilia (x/h = 10) and the top view to a slice at z = h.
The structure of the metachronal wave is clearly visible in the instantaneous
flow fields.

in the positive x-direction, the direction of the cilium power
stroke. The instantaneous flows, on the other hand, show a
periodic structure that follows the movement of metachronal
wavefronts.

Although we used a square lattice as an example, the ability of
cilia to synchronize is robust against the lattice type and the shape
of the arrangement. Similar dynamics is obtained on a hexagonal
lattice, as well as on an array with boundaries in the shape of an
octagon (SI Appendix, Fig. S1).

Role of Nonreciprocity and NFEs. Our model shows strong
nonreciprocity in the hydrodynamic interactions between cilia.
This can be seen by calculating the effective coupling, which we
define as the shift of beating frequencies caused by hydrodynamic
interactions, relative to the unperturbed cilium (!−!unp). The
frequency shifts, averaged over one cycle, are shown in Fig. 5A as
a function of the phase difference Δ�′ and the relative position
of the two cilia, represented by the angle �. Nonreciprocity
manifests itself as shifts in the beating frequency of the two
interacting cilia. The two cilia can experience dramatically
different frequency shifts, with very different magnitudes and
functional forms. The degree of this nonreciprocity is highly
anisotropic, being much greater in the pumping direction than
perpendicular to it (Fig. 5A). In a 1D row, the group velocity
is approximately determined by the amplitude of the effective
coupling in the direction in which it is stronger, as a function of
phase (half the difference between its minimum and maximum).
In the example shown, the amplitude is 10 × 0.025/t0 (when
rescaled to the coupling strength used elsewhere), suggesting
vg ≈ 0.25 d/t0. This agrees with the group velocity seen in
Figs. 3 C and D and 5E.

As shown in Symmetries, nonreciprocal interactions are not
possible when the hydrodynamic interactions are treated in the

far-field approximation. In the far-field, the interaction with a
cilium at position � has to be identical to the interaction with
a cilium at the opposite position � + �. We demonstrate this
by disabling the NFEs and replacing the off-diagonal elements
of the mobility matrix with the approximation given by Eq. 6.
The resulting frequency shifts (dashed lines in Fig. 5A) become
reciprocal, as they fulfill !1(Δ�′) = !2(−Δ�′).

To investigate the role of NFEs in the formation of
metachronal waves, we simulated the dynamics of a row of
cilia (analogous to the results in Fig. 2) with only far-field
interactions. The resulting synchronization times are significantly
longer (orange line in Fig. 5B) than with NFEs (gray line). In
small systems, the scaling with size becomes quadratic (inset in
Fig. 5B), whereas we showed them to be linear in the presence
of nonreciprocal coupling. However, in larger systems, the
synchronization times saturate, as the final state no longer consists
of a uniform metachronal wave. Rather, the system evolves into a
long-lived state consisting of multiple domains with distinct wave
vectors. An example with two domains, separated by one defect,
is shown in Fig. 5D. The mean domain size and the likelihood
that the system evolves into a monodomain metachronal wave
are shown in Fig. 5C.

To understand the role of open boundaries in our system,
we compared the results to the same system with periodic
boundary conditions. Periodic boundary conditions are typical
in other hydrodynamic models of ciliary or flagellar synchroniza-
tion (11, 12, 26, 31, 32, 34, 38, 50, 53, 54, 62) when there
are many cilia present [though with rare exceptions (e.g., ref.
41)], as they ensure that no cilia exist at an open boundary
which could cause order to break down—indeed, when such
models are subjected to open boundary conditions, they often
find only intermittent synchronization (38). Our results show
that introducing periodic boundaries, while preserving the
nonreciprocal coupling, strongly increases the synchronization
timescale, which again scales quadratically with the system size
(Fig. 5B). The reason why periodic boundary conditions become
deleterious to synchronization can be seen in the coherence
kymograph in Fig. 5E. It shows a number of defects, each
propagating with the group velocity vg, that travel periodically
across the system, so the system only slowly reaches a coherent
state with a single metachronal wave.

Discussion

In our study, we used a strongly simplified model of a cilium.
We replaced the cilium with a single particle moving along a
tilted circular trajectory. The tilted trajectory breaks the most
important symmetry of the cilium, namely that between the
power stroke, when the distance to the surface is larger, and the
recovery stroke, when the distance is smaller. This asymmetry is
at the core of fluid transport, which does not rely on metachronal
coordination, although the metachronal waves can improve the
energetic efficiency of cilia (10, 11). At the same time, the driving
force and the internal friction are modulated such that they
reproduce a power stroke that is faster than the recovery stroke
and also reproduce the fore–aft asymmetry that is present in
cilia. The modulation of both parameters represents both the
cyclic activity of dynein motors and the variations in the shape
of the cilium, which is stretched during the power stroke and
bent during the recovery stroke. Unlike theoretical models with
fewer broken symmetries (35), our model allows the emergence
of metachronal waves propagating with a group velocity that is
not directly linked to the direction of fluid transport.
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A B C

D E

Fig. 5. The role of nonreciprocal hydrodynamic interactions and NFEs in synchronization. (A) The effective angular frequencies!1 and!2 of two interacting cilia
(in dimensionless units) as a function of the adjusted difference Δ�′. The cilia are positioned at a fixed distance (r = 2.5h) in different directions �. When the cilia
are arranged in the x-direction (� = 0,�) there is a stark difference between !1 and !2, showing that the interaction is highly nonreciprocal. The nonreciprocity
is much weaker when the cilia are arranged in the y-direction (� = �/2), and the nonreciprocity vanishes entirely when near-field hydrodynamic effects are
disabled (dashed lines). The interaction strength is reduced by a factor of 10 in order to stay in the linear regime. (B) The mean time to reach the synchronized
state 〈ts〉 in a 1D row of N cilia with NFEs disabled (orange) and with periodic boundary conditions (magenta). The synchronization time is dramatically longer in
both of these cases than in the one-dimensional open boundary case (gray line, data from Fig. 2C). The inset indicates that the scaling of these synchronization
times is close to 〈ts〉 ∼ N2. With open boundaries and no NFEs, however, the synchronization time reaches a plateau when the final state consists of multiple
domains with different wave vectors. Error bars are SEM based on nine samples for the periodic boundary case and ≥ 44 for the case without NFEs. (C) With
NFEs disabled, the final state typically contains multiple domains with different wave vectors. The red line (left scale) shows the percentage of simulation
runs that end in a monodomain state and the cyan line (right scale) the average domain size as a function of the system size N. (D) Kymograph showing the
coherence between adjacent cilia with NFEs disabled, with the phase kymograph as an Inset. Unlike in the case of nonreciprocal coupling (Fig. 2D), defects
between domains with different wave vectors remain after synchronization (the example shows one defect). (E) Coherence kymograph of the system with
NFEs and periodic boundary conditions. Defects between coherent regions move with the group velocity but do not get extinguished at the boundaries, again
resulting in a long synchronization time.

The numerical solution of the model equations takes into
account not only the far-field hydrodynamics, as in ref. 34,
but also the NFEs that become relevant when the size of a
cilium becomes comparable to the distance between adjacent
cilia. NFEs are definitely important in most ciliary systems that
show metachronal coordination. For example, in Paramecium the
intercilium distance is in the micrometer range, which is several
times less than the cilium length (63). In respiratory epithelia,
the distances are even shorter at fractions of a micrometer (64).
On the other hand, in Volvox colonies, pairs of flagella (one on
each cell) are spaced at a distance comparable to their length and
still form metachronal waves (15). The intermediate densities
we chose here allow us to take a generic approach that does
not depend on fine details of the trajectory, while qualitatively
capturing the near-field interactions. We therefore expect that
the magnitude of NFEs, as well as interactions in general in our
study, is underestimated and that the underlying principles can
account for significantly faster synchronization in natural cilia.

Our main finding is that the NFEs can make the coupling
nonreciprocal. The nonreciprocity goes beyond the asymmetry
discussed in ref. 50, which implies that two cilia tend to
synchronize with a phase difference that depends on their relative
orientation. The nonreciprocal magnitude of the interaction
means that a cilium tends to follow a neighbor on one side
and to entrain the neighbor in the opposite direction. An easy-
to-understand mechanism that contributes to nonreciprocity is
that the periodically modulated driving force and internal drag
make the cilium more susceptible to hydrodynamic interactions
in certain parts of the trajectory, which are in turn closer to some

neighbors than others. The nonreciprocal coupling introduces a
third direction in the plane, after the direction of fluid transport
and the direction of the preferred metachronal wave, which
dictates the propagation of order. We therefore refer to it as
a group velocity. However, we note that unlike in classical waves
in linear media with energy conservation, the group velocity
is not related to the phase velocity in a straightforward way
(e.g., through a dispersion relation). Although the near-field
interactions and their effect on the coupling, even when restricted
to the leading order, are more complex than far field, the
nonreciprocity and the resulting order propagation are generic
phenomena, which we expect to find across a wide range of model
assumptions and parameter values.

Nonreciprocal coupling has two major effects on the formation
of metachronal waves. First, it produces robust waves in finite
systems with open boundaries. While open boundaries are the
standard in real systems, they are detrimental in many models of
synchronization, and also in experimental model systems (51).
The majority of theoretical works on cilia synchronization there-
fore only investigate systems with periodic boundary conditions.
In the presence of nonreciprocal coupling, the situation reverses
and boundaries help seed the order which then rapidly spreads
across the system. With nonreciprocal interactions, it is actually
the periodic boundary conditions that significantly slow down
the convergence to an ordered metachronal wave. The second
major effect of nonreciprocal coupling is that the timescale of
metachronal wave formation scales linearly with linear dimension
of the system. This holds in both one and two dimensions,
due to the linear spreading of order through the system from
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a boundary. At each system size tested, as long as NFEs are not
suppressed, the system always converges to the same metachronal
wavevector regardless of the random initial conditions, meaning
that the basin of attraction is effectively as large as the phase
space of the system. We have demonstrated that suppressing
the near-field hydrodynamic interactions (and therefore the
nonreciprocal coupling) gives rise to unfavorable synchronization
time scaling and unpredictable final states with long-living defects
remaining.

Our model does not account for nonhydrodynamic inter-
actions which have been shown to be relevant for cilium
synchronization, such as steric effects (65) and basal coupling
(22). Because it has been shown that hydrodynamic interactions
alone are sufficient to achieve synchronization (66), one can
consider these other effects as intercilium coupling to fine-
tune the interactions rather than being an absolute requirement.
In particular, basal coupling could provide a means to align
metachronal waves in order to optimize efficiency (67). Finally,
we neglected any inertial effects which are known to be small
compared to viscous forces in systems of cilia. Nevertheless,
it is still possible that a small inertial effect can be decisive
for synchronization in situations where other effects cancel out
(68, 69).

Our results leave some open questions that could be addressed
in future work. For example, in real biological systems, there
are a great many sources of noise (70), and at the scale of cilia,
noise may be very relevant for synchronization (60) so future
extensions to our model could examine the role of noise in the
motion of the cilia. Additionally, we have assumed that all cilia
are of identical lengths, but in reality, there can be variation in the
lengths of cilia, and some studies have found that this can affect
synchronization (71). Similarly, even in healthy humans, there
are some cilia with structural abnormalities (72), which means
that the influence on synchronization of nonidentical cilia may
be significant. Our circular trajectory retains many key features of
the stroke of real cilia, but it is possible that some crucial feature is
lost in this simplification, so future work could integrate realistic
cilium strokes with elongated cilia. This would also enable a more
realistic driving engine for the cilia: In our model, the cilia have
a time-varying driving force that always points along the tangent
of the trajectory, but real cilia are driven by creating shear forces
between pairs of dynein tubes that make up the internal structure
of the cilium (73). It is possible that in the future, artificial or
lab-grown cilia may have applications in microfluidic pumping,
given the advancing state of the fields of growing artificial lab-on-
a-chip cilia (74) and nanoscale artificial cilium production (75),
which could offer real-world applications for our work and the
future work proposed here.

Materials and Methods
Fluid Flow. At the scale of cilia, the behavior of the fluid flow field u is well-
approximated by the incompressible Stokes equations:

�∇2u−∇p = 0,
∇ · u = 0,

where � is the fluid dynamic viscosity and p is the pressure.
The hydrodynamic interactions between two particles are calculated using a

modified Rotne–Prager approximation with corrections to account for the no-
slip fluid boundary on the surface below the cilium. The Rotne–Prager tensor
takes into account terms up to the order∼ r−3 and is equivalent to averaging
Green’s function (Oseen tensor) over the surfaces of both spheres. To take into

account the presence of the no-slip boundary at z = 0, we use the method of
images and replace the free-space Green’s function by the Blake tensor (76),
defined as:

MBlake
ij =

1
8��

[
GS(xi − xj)− GS(xi − x̄j)

+ 2z2
j G

D(xi − x̄j)− 2zjG
SD(xi − x̄j)

]
, [9]

where xk is the position of particle k, and x̄k is the position of the image of
particle k reflected in the no-slip boundary at z = 0, and where:

GS
��(r) =

���
r

+
r� r�
r3

, [10]

GD
��(r) = (1− 2��z)

∂

∂ r�

(
r�
r3

)
, [11]

GSD
��(r) = (1− 2��z)

∂

∂ r�
GS
�z(r). [12]

The Rotne–Prager tensor corrected for the no-slip boundary follows by including
the leading corrections that result from surface-averaging over each sphere. The
nondiagonal terms, describing the interaction between two particles i 6= j, can
be calculated as:

Mij =

(
1 +

a2

6
∇

2
xi

)(
1 +

a2

6
∇

2
xj

)
MBlake
ij . [13]

Explicit expressions for the elements of the mobility matrix can be found in
ref. 77.

Solving Equations of Motion. The equations of motion as stated in Eq. 5 give
a complete description of the system. However, they require the knowledge
of the many-particle drag matrix �, whereas the Rotne–Prager approximation
gives us the mobility matrix M = �−1. Simulating Eq. 5 directly for N cilia
would therefore require the inversion of a 3N × 3N matrix at each simulation
step, in addition to solving a linear equation system with N unknowns.

To accelerate the numerical solution, we therefore rewrite the equations
of motion based on the mobility matrix M(�i,�j) which gives the velocity
response at the position of cilium i to a force at cilium j. We can express the
force balance and the hydrodynamic equations with the hydrodynamic force Fh

i
acting on the cilium:

0 = ti · F
h
i (
{
j
}
) + Fdr

i (�i)− Γ(�i)vi, [14]

vi = −M(�i,�i) · F
h
i −

∑
j 6=i

M(�i,�j) · F
h
j . [15]

By multiplying the first equation with ti and inserting it into the second, we can
derive a coupled set of 3N equations which allow us to solve for all hydrodynamic
force vectors simultaneously (assuming that Γ(�) is never zero):(

M(�i,�i) +
tit
T
i

Γ(�i)

)
· Fh

i +
∑
j 6=i

M(�i,�j) · F
h
j = −

Fdr(�i)
Γ(�i)

ti.

In the above equation system, the first term describing the self-interaction
of cilium i is always dominant, whereas the second term describing the
hydrodynamic interactions between cilia is weaker and can be treated in
a perturbative way. In matrix form, the equation is always block-diagonally
dominant, which means that it can be solved efficiently using an adapted
Successive Over-Relaxation (SOR) algorithm (78) that works on 3×3 blocks
rather than individual elements. In the initial time step of the simulation, we
use the solution to the purely diagonal matrix equation as the first iteration, but
in subsequent steps, it is more efficient to start iterating with the solution of the
previous step. In this way, only a very small number of iterations (Nit = 3)
is required to converge to remarkably good accuracy with a relative error
" < 10−6. Once the hydrodynamic forces have been obtained, they can
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be substituted back into Eq. 14 to find the cilium speeds vi, and this can be
trivially transformed into the time derivatives of the phases �̇i.

Numerical Integration. The phase of each cilium is updated using the standard
Runge–Kutta method (RK4). Unlike implicit methods, Runge–Kutta algorithms
require a single calculation of the hydrodynamic forces at each timestep, which
is by far the most computationally demanding simulation step. The timestep
used was approximately 0.001 t0.

Quantifying Synchronization. To determine whether the entire system has
reached a synchronized state, we find the average frequencies of each cilium in
a moving window of 50 time periods. We take the SD of these frequencies to be
the order parameter of the system.

When considering pairs of cilia, as in Figs. 2C, 3D, and 5 D and E, SDs were
less useful. Instead, the signal coherence was computed using the phases of
adjacent pairs of cilia using Welch’s method (79), with a moving window in
the time domain representing approximately 50 unperturbed cilium cycles. In
the 2D case, we instead used the geometric mean of the coherence with all
neighboring cilia.

Uniform Phase Angle. In Fig. 5, we used a transformed phase difference
Δ�′ = �′2 − �

′

1. These angles have the property that for a single isolated
cilium, �̇′ is constant. The transformed phase can be derived from the original
phase angle using:

�′(�) =
2�
t0

∫ �

0

1
�̇(�′′)

d�′′, [16]

where all quantities on the right-hand side are for an isolated cilium.

Periodic Boundary Conditions. When considering the effect of cilium j on
cilium i, only the closest instance of j was considered. In simple terms, if j
were right next to i, then we would proceed in the same way as if we had no
periodic boundaries. However, if j were more than half of the system length
away from i, then we would instead consider a copy of j translated by the system
length, putting it closer to i. Since the mobility tensor decays quickly along the
surface as 1/r3, neglecting the distant cilia does not have any effect on the
results.

Numerical Parameters. In all simulations, we took the lattice constant to
be d = 2.5h = 2.5a, and b = a/10. � was always �/6 and we used
A1 = −0.55, A2 = −0.2, B1 = −0.2, B2 = 0.35, C1 = 0.3, C2 = −0.4,
D1 = −0.1, and D2 = −0.55. These parameters give a fast working stroke
and a slower recovery stroke which break the fore–aft symmetry, consistent with
the behavior of real cilia. The slowest part of the stroke is just before the lowest
part of the recovery stroke, where the cilium would be curling up and the tip
would therefore be traveling at its minimum speed. In Fig. 5A, the bead radius
was reduced by a factor of 10 to b = a/100 in order to determine the linear
order perturbation.

Data, Materials, and Software Availability. All study data are included in
the article and/or supporting information.
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