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Abstract: This study is based on the relationship between meditation, the present moment,
and psychophysiology. We employed the metronome task to operationalize the extension of
the present moment. A pre-post longitudinal study was conducted. The performance in the
metronome task was compared before and after the interventions (meditation, story). The aim
was to assess whether physiological changes (heart, breathing) during meditation influence the
temporal-integration (TI) of metronome beats. Mindfulness meditators either meditated (n = 41) or
listened to a story (n = 43). The heart and breathing activity were recorded during the intervention
and compared to a resting-state condition. By applying path analyses we found that meditation led to
an increase of the duration of integration intervals at the slowest metronome frequency (inter-stimulus
interval, ISI = 3 s). After meditation, the higher the heart-rate variability (i.e., the root mean square
of successive differences, RMSSD), the longer the duration of integration intervals at the fastest
frequency (ISI = 0.33 s). Moreover, the higher the breathing rate during meditation, the greater the
integration of intervals at ISI = 1 s. These findings add evidence to meditation-induced changes on
the TI of metronome beats and the concept of the embodiment of mental functioning.

Keywords: mindfulness meditation; heart-rate variability; breathing rate; auditory temporal
integration; present moment

1. Introduction

Recent conceptualizations emphasize the relationship between bodily processes, emotions,
and time perception [1–5]. For example, the insula model of conscious awareness developed by Craig
(2009) suggests that the perception of time is an embodied process in which the integration of signals
from the body, as well as the awareness of related emotions, function as a subjective measure of
time [1]. According to this theory, the insular cortex, along with other regions, plays a central role in
the integration of interoceptive information in the brain which underlies the perception of the passage
of time and temporal ordering [1,6].
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Interoceptive abilities and the regulation of emotions are systematically fostered in certain
meditative practices. Under attentive meditation instructions, for instance, while practicing the
so-called body-scan, which is an integral part of the mindfulness-based, stress-reduction (MBSR)
program [7], participants are told to strongly focus their attention on the sensations emanating from
different parts of the body and to gently return to the chosen object of attention whenever the mind
wanders off. Mindfulness-meditation practice can be basically understood as moment by moment
awareness of the present experience [8]. This includes bodily, emotional, and mental aspects, such as
sensations, feelings, and thoughts. The transformative effects associated with this method encompass
increased bodily awareness, attention, the regulation of emotions, and changes in the perspective on
the self [9,10]. These aspects may play an important role in the emergence and modulation of our
sense of time. The capacity of trained mindfulness meditators to maintain the focus of attention on the
bodily states and arising feelings, results, according to the insula model of consciousness awareness,
in a slowing down of the subjective passage of time and a widening of the experienced moment in
everyday experience [11].

With respect to the subjective experience of time in relation to meditation practice, one needs to
differentiate between state- and trait-related findings. State-related findings refer to changes occurring
directly during or immediately after a meditation session. In contrast, trait-related results indicate
differences found when comparing experienced meditators with either non-meditating persons or with
meditation novices regardless of any meditation practice. Experienced meditators report feelings of an
extended present moment and a slowing down of the passage of time in everyday life, which may well
result from states of mindfulness [12,13]. During meditation itself, however, experienced meditators
report that they often get into a state of present awareness where subjective time and the sense of self are
reduced after initially focusing on their bodies [14]. Only a few studies have attempted to empirically
disentangle the relationship between meditation, mindfulness, and the present moment [15,16].

It is quite difficult to operationalize and measure the phenomenal experience of the present
moment. Attempts have been made to demarcate a temporal-integration mechanism assumed to give
rise to the feeling of nowness by generating important perceptual units of around two to three seconds’
duration [17,18]. It is debatable whether the experienced present moment stems from one integration
mechanism or from several independent mechanisms with different durations. Nevertheless, they all
are estimated to have an approximate range of a few seconds [19]. A paradigm providing support
for temporal-integration processes comes from studies on the temporal dynamics of bi-stable figures.
While observing a bi-stable figure, such as the Necker cube, two perceptual interpretations can be
elicited, although the sensory stimulation remains unchanged. The stabilization in one perspective has
been interpreted as being representative of perceptual units of present experience [17,20,21].

One recent study comparing 38 participants with and without meditation experience directly
measured the effects of mindfulness proficiency on the duration of the present using the Necker cube.
Results showed longer perceptual stability in meditators compared to controls in a task where they
were asked to hold one perspective as long as possible. This result suggests an expanded present
moment [15] and complements findings of an earlier study in which Tibetan Buddhist monks with
extensive meditation practice were able to voluntarily prolong mental percepts of a different kind
of visual bi-stable image [22]. Further evidence from psychological studies corroborates the notion
that long-term effects of mindfulness meditation alter the sense of time. In a trait study, experienced
meditators expressed less time pressure, more dilatation of past intervals, and a slower passage of
time in general than non-meditators [13]. In another study looking at neurophysiological mechanisms
underlying mindfulness, a longer production of time durations was accompanied by decreased frontal
gamma activity in experienced meditators [23].

In the above-mentioned studies, the observed group differences can only be attributed to
trait-like effects of mindfulness which, however, may not necessarily illuminate the mechanisms
through which these differences emerge [24]. Very few systematic studies investigating the transient
effects of meditation have provided evidence of state effects, i.e., changes in time perception in
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the seconds-to-minutes range right after meditation. One of the first systematic studies of a
meditation-intervention effect on time perception in participants with no prior meditation experience
was provided by Kramer and colleagues (2013) [25]. The authors compared participants’ performance
on a temporal bisection task with stimuli ranging between 400 and 1600 milliseconds before and
after meditation compared with a control intervention (listening to a recorded story). It was found
that participants in the meditation condition overestimated durations post-meditation relative to
pre-meditation, which suggests a subjective time dilation for short intervals after meditation. This
finding corresponds with a more recent study applying a similar design with durations between
four and eight seconds. A session of mindfulness meditation by experienced meditators produced a
lengthening of interval durations compared to inexperienced meditators participating in the same
session [26].

We know of no study which has investigated the length of the present moment during or right
after mindfulness meditative states. In our study we aimed to fill this gap by assessing the effects
of mindfulness meditation on the perception of the present moment operationalized by an auditory
temporal-integration task. Temporal integration refers to the collection and processing of sensory
stimulation over a certain period of time resulting in a coherent and unified percept [19]. A striking
illustration of temporal integration within a time scale of a few seconds is the phenomenon of subjective
rhythmization (SR). It refers to the phenomenon that, when listening to a sequence of identical tones at
an isochronous pace, some of the tones are perceived as accented [27]. For instance, while listening
to steady metronomic beats, perceived groups of beats automatically appear. Since the inter-beat
intervals are isochronous and have equal intensity, the tones must be mentally linked, indicating that a
temporal-integration process is taking place [28]. The extent of the temporal-integration phenomenon
is limited to the respective time intervals. When the tempo of beats becomes too fast, i.e., when intervals
are shorter than 200 milliseconds, the series of sounds cannot be perceived as separate, and no
integration takes place [29]. When the frequency of presentation is too slow, the sequences are no
longer merged into a perceptual segment, and a series of individual, unaccented beats is perceived.
Although the magnitude of SR demonstrates some inter-individual variability, the upper limit is
thought to lie at an inter-stimulus interval (ISI) of 1500–1800 milliseconds [30,31]. Szelag and colleagues
(1996) [32] presented nine different metronome frequencies (from one up to five beats per second)
and asked participants to integrate beats into larger units comprising two, three, or more beats by
mentally accentuating them (i.e., every second, third, fourth, etc. beat). The participants reported
how many beats they integrated into a unit at each metronome frequency. The integration-interval
lengths, referring to the number of integrated beats multiplied by the ISIs between them, peaked at
around 2.8 s for the lowest beat frequency and around 1.03 s for the highest. These findings and results
using a similar paradigm in patients with brain injuries demonstrated that especially individuals with
pre-frontal brain lesions show impairments in temporal integration [33,34]. This corresponds with the
assumed temporal windows underlying the concept of the present moment upon which our study is
based [35,36].

Our study presents first evidence of meditation-induced alterations of the present moment
assessed with a temporal-integration task. We hypothesized that meditation would increase the width
of the temporal-integration intervals. This study also investigated the role of mind-body interactions
on the present moment by assessing the mediating effects of vagal modulation and breathing activity.
The bidirectional connections between the brain and the autonomic nervous system are a favorable
condition to assess the potential effects of meditation on interoceptive processes [37]. A number of
neuroimaging studies have provided evidence for meditation-related changes in neural activity in
brain areas associated with attention networks and the insular cortex [10,38]. It has already been
shown that, by bringing attention to the present-moment experience, proficient meditators exhibited
an increased activity of the right lateral pre-frontal cortex and the viscerosomatic regions, including
the insula [39] (for a review, see Reference [40]). Another functional magnetic resonance imaging
(fMRI) study exploring the perception of time with durations of three, nine, and 18 s demonstrated an
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accumulation of activity in the posterior insula [41]. The results supported the idea that the observed
accumulator-type activity in the insular cortex could play a timekeeping role in the brain. Moreover,
processing a time delay between external acoustic cues relative to the heart beats is related to activation
in interoceptive regions, including the insula [6]. The encoding of temporal intervals lasting eight, 14,
and 20 s has been associated with a progressive increase in cardiac periods [42]. Indices of heart-rate
variability (HRV), indicating cardiac vagal control, were related to higher temporal accuracy with a
stimulus duration around one second [43].

Given the close relationship between time perception, interoceptive awareness, and autonomic
function, our goal is to further explore how this connection modulates our experience of the present
moment. By comparing two groups of matched pairs of mindfulness meditators who either meditated
or listened to a recorded story, we investigated: (a) Whether mindfulness meditation states are related
to the perception of the present moment (as operationalized with the length of integration intervals
of metronome beats after vs. before meditation) and (b) whether vagal tone (assessed with different
indices of HRV) and the length of respiratory intervals mediate this effect.

2. Materials and Methods

2.1. Design

We performed a pre-post longitudinal study with two assessment-time points where the
performance of meditators in a metronome task was compared before and after two different types of
intervention (inter-subject comparison). We compared two different groups of paired meditators who
were matched according to age (+/− 6 years), gender, education level (±1 of 5 levels), and meditation
experience (level 1: 7–100 h; level 2: 100–200 h; level 3: over 200 h). A given individual either matched
with an already-included participant (assigned to one of the two groups) or was randomly (by coin
toss) assigned to one of two intervention conditions, namely a 10-min meditation (meditation) and a
10-min session of listening to a recorded story (story).

2.2. Participants

The study included 94 participants (54 females, 40 males; mean age: 25 years (SD = 3.7 years);
age range: 18–37 years; 90 right-handed; after outlier analysis: n = 91) with mostly low-to-moderate
experience in mindfulness meditation. As a minimum requirement, an individual had to have
completed a guided meditation course (i.e., a formal meditation course instructed and guided by a
qualified coach) at least once and have practiced at least seven h within the last year (range of h of
life-time experience: 7–3262 h; median: 94 h; mean: 210 h; SD: 468 h). This minimum requirement
was to ensure that participants had some basic understanding of mindfulness meditation practice
and would be able to perform it with ease. Performance on a temporal-processing task has been
shown to be influenced by meditation in student participants without prior meditation experience [25].
Our subjects were recruited by advertisements in meditation centers, on online platforms for student
jobs at the University of Freiburg, and by word of mouth. Participants were only included if they were
familiar with a meditation form which stressed awareness of the present moment (e.g., mindfulness
meditation, Vipassana meditation, or Soto Zen). The two pair-matched groups, each consisting of
47 subjects, were created and subjected to the experimental condition (a guided meditation session
lasting 10 min) and the control condition (listening to a story for 10 min). The present metronome
task was one of three different experimental tasks conducted similarly on three consecutive days
in a randomized order. The results of the other two tasks will be reported elsewhere. Participants
were fluent in German and, as self-reported in a check list, were healthy and denied any history of
neurological or psychiatric disorders. They received a financial compensation (€50 for all sessions
combined) for taking part in the three study sessions conducted on three consecutive days and lasting
about one hour each. All participants gave written informed consent prior to data collection. The study
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was approved by the Ethics Committee of the German Society of Psychology (Deutsche Gesellschaft
für Psychologie) and the approval code is: MW 032015_Zeit.

2.3. Apparatus and Physiological Recordings

The computerized task was run on a Pentium 4 Dell optipLEx 755 PC with a Samsung SyncMaster
757 DFX monitor (17 inch, 85 Hz refresh rate). The metronome beats were created using the
Metronom-Plus software (M and M Systeme, 2009). The audio recordings (meditations and stories)
were played back on the open-source media player VLC (VideoLAN, 2001). The acoustic stimuli
were presented using the Beyerdynamic DT 990 PRO open dynamic headphones at a comfortable
hearing level.

The electrocardiogram (ECG) was recorded with the eMotion FAROS 360◦ mobile device (Mega
Electronics Ltd., Kuopio, Finland), a three-channel ECG recorder. This device also records breathing
activity with an integrated 3-D accelerometer placed on the chest. The breathing signal obtained with
an accelerometer has proven to be similar to the signal measured with an inductive band (Hung et al.,
2008). ECG data was acquired at a 500-Hz sampling rate using two disposable Ag-AgCl electrodes
which were positioned according to a modified Lead II Einthoven configuration, one placed centrally
under the right clavicle and the other on the 11th left intercostal space. The electrodes were connected
to the eMotion FAROS 360◦ mobile device. Breathing data was acquired at a 400–Hz sampling rate and
at the dynamic range +/−4 g (1 g = 9.81 m/s2). The accelerometer was positioned at the level of the 3rd
intercostal space on the right side of the sternum. Participants sat with their hands placed on their
thighs and leaned back against the backrest of a comfortable chair.

2.4. Instruments

2.4.1. Freiburg Mindfulness Inventory-14 (FMI-14)

The FMI-14 [44] assesses self-reported mindfulness with two factors: ‘Presence’ and ‘acceptance’.
The former factor considers the ability to be in the present moment (“I feel connected to my experience
in the here-and-now”), and the latter concerns a non-judgmental attitude (“I am able to smile when I
notice how I sometimes make life difficult”). The answers are scored using a four-point scale ranging
from ‘rarely’ to ‘almost always’. The FMI has been psychometrically validated on the basis of classic
test theory and Rasch analysis [45,46].

2.4.2. Metronome Task

The task consisted of unaccented isochronous metronome beats (auditory clicks). Each single beat
lasted 19 milliseconds. Sequences of beats contained the following frequencies (beats per second): 0.333,
0.5, 0.75, 1, 2, and 3 Hz, representing 20, 30, 45, 60, 120, and 180 beats/min, respectively. Participants
were asked to listen to the sequences and to try to let an accentuated rhythmic pattern subjectively
emerge spontaneously (e.g., 1-2, 1-2, or 1-2-3, 1-2-3, etc.). As soon as they perceived the accentuated
rhythmic pattern, they were asked to tell the experimenter how many beats the rhythmic pattern
contained before the next stimulus was played. The duration of the accentuated rhythmic pattern
can be calculated (temporal integration interval as a measure of the experienced moment) from the
number of automatically integrated beats into one rhythm group. The dependent variable ‘temporal
integration interval’ (TI) corresponds to the width of the integrated beats from onset to offset into one
temporal unit (Gestalt). For example, for a participant who reported hearing a grouping of two beats
at an ISI of 3 s, the TI would then be 3 s; for another participant reporting hearing 3 beats at the same
frequency, the TI would be 6 s.

The experiment itself consisted of a training phase and a test phase. During t1 participants
accomplished the training phase and a test phase during t2 only the test phase was presented.
The training phase consisted of three stimulus frequencies (0.5, 1, and 2 Hz, corresponding to 30, 60,
120 bpm) presented twice in random order, resulting in six trials. The test phase was composed of six
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stimulus frequencies (0.333, 0.5, 0.75 1, 2, and 3 Hz, corresponding to 20, 30, 45, 60, 120, and 180 bpm),
each of which was presented four times in random order, resulting in 24 trials. The median of responses
per inter-stimulus interval (ISI) was taken as the measure of a central tendency for a given frequency
for each of the four trials. Across all ISIs, the sum of the TIs can be calculated as the area under the
curve (AUC) to represent the overall size of integration across intervals.

2.4.3. Interventions

The meditation and control interventions were delivered by audio recordings in German
lasting 10 min each (three guided meditations and three stories). They were extracted from
professionally-guided meditation recordings and audiobooks (see Supplementary Materials for
the transcripts in German and the English translations). The meditations were mindfulness-based
meditations designated to focus attention either on breathing [47], on the whole body [47] or on
both [48]. The stories were taken from three different audiobooks: “Der Umweg” (The Detour) [49],
“Mein Venedig” (My Venice) [50] and “Das Meer am Morgen” (The Sea in the Morning) [51]. We decided
to choose stories which involved neutral third-person narratives to keep the attentional focus as far as
possible from bodily-related sensations. In contrast, the focus of attention in the meditation recordings
was internally (body) oriented. We thus ensured that both kinds of interventions demanded an
analogous amount of attention, but focused attention on different locations (body-self in meditation vs.
body-distant in audiobooks).

2.5. Procedure

The investigation took place in a laboratory room at the Institute for Frontier Areas of Psychology
and Mental Health in Freiburg, Germany. The experiment was carried out with artificial light
(fluorescent lamp); lighting conditions were kept constant. Participants sat in a comfortable
armchair. The experimenter remained in the room during the whole testing period, including
the intervention session.

Participants gave written informed consent and filled in questionnaires about socio-demographic
variables, meditation experience, and the FMI questionnaire at the beginning of the first session.
A series of questions concerning the intake of coffee, tea, alcohol, nicotine, and food during the hours
before the experiment were asked at the beginning of the session. Quality (with a scale ranging
from excellent to extremely bad) and quantity (hours) of sleep the previous night were also assessed.
Electrodes were attached, and the electrocardiogram (ECG) and breathing activity were recorded
during a 10-min baseline measure during which participants were requested not to move during the
recording phase and to breathe normally. One of the three psychophysical tasks was then presented
(t1) followed by the 10-min intervention (meditation, story), during which the heart and breathing
rates were recorded. The metronome task was repeated (t2) after the intervention.

2.6. Data Reduction, Statistical Approach

ECG signals and time intervals between successive R-peaks (RR intervals) were automatically
extracted using Kubios HRV Analysis Software 2.0 (Kuopio, Finland). They were visually examined to
control for ectopic and missing beats and automatically corrected afterwards choosing the appropriate
threshold level for artefact correction available in Kubios. The signal was subsequently detrended
using the smoothness-of-priors method [52]. Because our focus of interest was on vagal modulation,
we computed the root mean square of successive differences (RMSSD) and the high-frequency (HF)
spectrum according to the recommendations for heart-rate variability (HRV) assessment by Laborde
et al. (2017) [53]. Although time-domain (i.e., RMSSD) and frequency-domain (i.e., HF component)
measurements of HRV have been shown to correlate [54,55], there is some evidence that these
indices may not strictly have the same biological meaning [56].Therefore, we proceeded to study
vagal-mediated changes on HRV using both indices. RMSSD is a time-domain HRV reflecting
short-term variability of the heart rate (HR). It represents the most common time-domain measure
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used to estimate parasympathetic activity [57,58] and is reported to be independent of respiratory
effects [59,60]. Concerning HRV parameters in the frequency-domain, we computed the Fast Fourier
Transformation (FFT) to calculate the relative power of the HF spectrum (HF[%]: HF[m2]/total
power[m2] × 100%) of the RR intervals series. The HF band between 0.15 and 0.40 Hz is also thought
to reflect vagal activity [61] and, contrary to RMSSD, is believed to be affected by breathing when
it is below 9 or above 24 cycles per minute [61,62]. To ensure that the HF components represented
a reliable estimation of the vagal activity, we used the obtained breathing-intervals average (BR) to
control for respiratory rates below 9 or above 24 cycles per minute, which reflects the 0.15 and 0.40 Hz
band regarding HFs. Participants whose breathing rate exceeded these limits were excluded from the
frequency domain HRV analysis.

The peak-detection function available in AcqKnowledge 3.7.2 was used to extract the respiration
periods from the breathing signal. Breathing signals were visually examined, and artefacts were
manually corrected. Respiratory periods were resampled at 15.625 samples per second employing a
linear interpolation method. A band-pass filter using a Hanning window and a low- and high-frequency
cut-off of 0.08 Hz and 0.42 Hz respectively was applied. Breathing intervals were computed and
averaged over each 10-min recording session.

Because one of the main aims of this study was to understand how a meditation intervention
influences temporal processing, i.e., to discern the mechanisms through which these influences occur,
we used a path-analytic model (PROCESS) [63] to test the significance of potential mediation effects
in our group of variables. Mediation analysis reveals how a predictor variable X affects a dependent
variable Y, either directly or via one or more mediating variables M. Such a method should only be used
when the order of variables can be longitudinally established, which was the case since the present
study had two time points. We hypothesized that the meditation induction could affect temporal
processing as captured by the psychophysical tasks, either directly or indirectly through physiological
factors (ECG and breathing parameters). Figure 1 depicts the multiple mediation model employed here.
The c’ path represents the direct effect of X→Y, whereas, ai and bi depict the path coefficients for X→M
and M→Y effects, respectively. The aibi path represents the indirect effect of X→Y through mediators
M, which are calculated as the product of ai and bi. The c path can be expressed as the difference
between the total effect of X→Y (c = c’ + aibi) and the indirect effect of X→Y through M, namely, c’ = c
− aibi. In our design, X represents the two different interventions (independent variables: meditation
vs. story), while Y and M variables are calculated as the difference (Diff) between t2 and t1 for the
psychophysical task (Y dependent variables: Diff area under the curve (DiffAUC) as combined variable
across all ISIs, Diff temporal integration (DiffTI) for each individual ISI) and the difference between the
recordings during the intervention session and the baseline measure for the physiological variables
(M mediator variables: Diff for RMSSD, HF, BR mean (BR), BR standard deviation (BRSD), respectively.

The PROCESS software enables testing for indirect effects using either a bootstrap approach or
a normal-theory approach (e.g., the Sobel test). The multiple-mediation model used here includes
N = 5000 bias-corrected (BC) bootstrap resamples and was set at a 95% confidence level. When zero
is not in the 95% confidence interval, the indirect effect is considered to be significantly different
from zero at p < 0.05 (two tailed) [64]. By applying this procedure, as recommended by MacKinnon,
Lockwood, and Williams (2004) [65], we aimed at avoiding power problems due to non-normal
or asymmetric sample distributions. The SPSS macros are available at Andrew F. Hayes’ website:
http://afhayes.com/spss-sas-and-mplus-macros-and-code.html.

According to Baron and Kenny (1986) [66], the first assumption for conducting mediation analyses
is the existence of a causal relation between X and Y, i.e., the total effect must be significant (c , 0).
However, opposing arguments allowing the use of mediation procedures without requiring significant
total effects have been proposed [67]. For mediation effects to be present, a total effect X→Y is assumed
to be initially present [68]. No such assumption of a total effect of X→Y is necessary for the assessment
of indirect effects [64,69]. Accordingly, it is possible to find a significant indirect effect even when
there is no significant total effect. The variable for individual ISI ‘DiffTI’ was non-normally distributed.

http://afhayes.com/spss-sas-and-mplus-macros-and-code.html
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To attain or approach normal distributions, this variable was log (ln) transformed before accomplishing
the statistical analysis.Behav. Sci. 2019, 9, x FOR PEER REVIEW 8 of 18 
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The rationale of using 8 beats as an upper limit of grouping comes from studies on subjective 
rhythmization [70] and on spontaneous perception in synchronization tasks [71], showing that 
groups of 2, 4, and a maximum of 8 beats are preferred. Partly based on the observations of Båath 
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grouping of two beats is allowed, since a grouping of 3 beats (TI = 6 seconds) is the first to already 
exceed the 3-second limit. For the ISI = 2 seconds, also only a maximum grouping of two beats is 
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Figure 1. Illustration of the multiple-mediation model applied here. The possible associations between
the type of intervention (X: meditation vs. story) and the psychophysical variables (Y: DiffAUC, DiffTI

3 s ISI, DiffTI 2 s ISI, DiffTI 1.33 s ISI, DiffTI 1 s ISI, DiffTI 0.5 s ISI, DiffTI 0.33 s ISI), either directly (c’ path
in red color) or through the physiological mediating variables (aibi paths; DiffRMSSD, DiffHF, DiffBR,
DiffBRSD), are pictured with arrows.

2.7. Outlier Analysis

Eight subjects were completely excluded from the data analyses because they fell asleep during
one of the interventions (5 in the meditation group, 3 in the story group). We also excluded participants
who did not hear any groups of beats when listening to the isochronous metronome sequences (one
participant in the meditation group) and who were assumed to count the beats, thereby misinterpreting
the instructions (one participant in the story group integrated more than 8 beats).

The rationale of using 8 beats as an upper limit of grouping comes from studies on subjective
rhythmization [70] and on spontaneous perception in synchronization tasks [71], showing that groups
of 2, 4, and a maximum of 8 beats are preferred. Partly based on the observations of Båath (2015) [31] and
Fraisse (1982) [30], but also taking into account conceptualizations on the present moment stemming
from perceptual units of around two to three seconds’ duration [17,18], we also computed analyses
additionally excluding integration intervals longer than 3-seconds duration (in the following ‘max.
8/3 s’ criterion). The grouped beats may integrate a maximum interval of TI = 3 s from onset to offset
of the integrated beats. For example, for the ISI = 3 s, a maximum grouping of two beats is allowed,
since a grouping of 3 beats (TI = 6 s) is the first to already exceed the 3-second limit. For the ISI = 2 s,
also only a maximum grouping of two beats is allowed, with a grouping of 3 beats already integrating
TI = 4 s. Further, maximum groupings are 3 for ISI = 1.333 s, 4 for ISI = 1 s, 7 for ISI = 0.5, and 8 for
ISI = 0.333 s, respectively (for an overview, see Appendix A, Tables A1 and A2).

3. Results

3.1. Sample Description

Descriptive statistics are summarized in Table 1. As expected after a matching procedure, there
were no differences between groups with respect to age, gender, educational level, and meditation
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experience. The levels of self-reported mindfulness as measured with the FMI sub-scales ‘acceptance’
and ‘presence’ did not differ significantly between groups.

Table 1. Descriptive statistics of the two study groups (n= 84).

Variable Meditation Group
(n = 41)

Story Group
(n = 43) p-Value a

Age (mean ± SD) 25 ± 3.7 25 ± 3.4 0.937
Gender (female (%)) 25 (29.8) 25 (29.8) 0.791 b

Educational level 0.953 b

Secondary school (n (%)) 1 (1.2) 1 (1.2)
High school (n (%)) 27 (32.1) 27 (32.1)

University degree (n (%)) 13 (15.5) 15 (17.9)

Meditation experience (mean ± SD) 223 ± 511 218 ± 484 0.963
Trait-mindfulness (FMI)
Acceptance (mean ± SD) 24 ± 3.4 23 ± 2.6 0.204

Presence (mean ± SD) 19 ± 4.2 18 ± 2.1 0.203
Sum (mean ± SD) 42 ± 4.8 41 ± 3.9 0.213

a t-Test if not otherwise indicated; b Chi- Square Test.

3.2. Descriptive Analysis

The groupings most commonly reported over all trials (the two conditions, pre- and post-
intervention) were two and four, three and eight were less commonly reported (Table A3 in Appendix A
shows the percentage of responses for each ISI). This corresponds to typical groupings found in the
literature [31].

3.3. Mediation Analysis

A series of mediation analyses was conducted. The path analyses were computed between groups
(X = meditation vs. story), for each dependent variable separately (DiffAUC and DiffTI at: 0.33, 0.50,
0.75, 1, 2 and 3-second ISI), and using four potential intervening variables (DiffRMSSD, DiffHF, DiffBR

and DiffBRSD) (see Figure 1). The analyses were conducted on the total sample (n = 84). The following
reported coefficients are non-standardized.

Results from mediation analyses with the whole sample (n = 84) showed a positive relation
between meditation and DiffRMSSD (p < 0.05), DiffBR (p < 0.001) and DiffBRSD (p < 0.001) (a path)
indicating that participants who meditated, as compared to those who listened to the story, had a
higher HRV in the time domain, as well as longer breathing intervals and a higher breathing variability.
Means and standard deviations (SD) corresponding to the a path coefficients are shown in Table 2,
where the mean and SD of the physiological variables separated for the two intervention groups
(meditation, story) are listed for the baseline condition, the intervention session, and the difference
(Diff) between intervention and baseline (the Diff variables are used in the mediation analyses).

Table 2. Descriptive statistics of the two study groups within the whole sample (n = 84) for the resting
state, the interventions (Meditation vs. story) and the a path calculated as the difference in variables
between intervention and resting state (Diff.).

Variable Meditation Group
(n = 41)

Story Group
(n = 43) p-Value

Resting RMSSD (mean ± SD) 36.8 ± 22.6 35.4 ± 22.3 0.774
Resting HF (mean ± SD) 48.7 ± 19.8 48.4 ± 21 0.950
Resting BR (mean ± SD) 4.3 ± 0.86 4.2 ± 0.96 0.692

Resting BRSD (mean ± SD) 0.90 ± 0.47 0.98 ± 0.56 0.480
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Table 2. Cont.

Variable Meditation Group
(n = 41)

Story Group
(n = 43) p-Value

Intervention RMSSD (mean ± SD) 48.4 ± 33.7 38.9 ± 23.3 0.139
Intervention HF (mean ± SD) 41.1 ± 21.3 35.9 ± 17.9 0.263
Intervention BR (mean ± SD) 5.1 ± 1 4.1 ± 0.88 0.000 ***

Intervention BRSD (mean ± SD) 1.4 ± 0.65 1.1 ± 0.62 0.006 **

Diff. RMSSD (mean ± SD) 11.4 ± 18.3 3.4 ± 11.8 0.019 *
Diff. HF (mean ± SD) −7.5 ± 26.3 −9.1 ± 24.7 0.798
Diff. BR (mean ± SD) 0.73 ± 0.81 −0.17 ± 0.69 0.000 ***

Diff. BRSD (mean ± SD) 0.50 ± 0.55 0.03 ± 0.46 0.000 ***

* Significant coefficients: * p < 0.05, ** p < 0.01, *** p < 0.001 marked in bold.

There was a direct effect (c’ path) of the type of intervention on the DiffTI at 3 s (b = 0.21, t(64) = 2.30,
p < 0.05). When controlling for the physiological variables, participants who meditated showed relative
expanded TIs at 3-second ISIs as compared to those who listened to the audio story. Moreover,
the specific indirect effects (ab path) of the type of intervention through DiffBR (b = 0.13, CI: 0.04; 0.26;
p < 0.05) and DiffBRSD (b = −0.14, CI: −0.28; −0.06; p < 0.05) on DiffTI at 1-second ISI, as well as through
DiffRMSSD (b = 0.02, CI: 0.002; 0.04; p < 0.05) on DiffTI at 0.33-second ISIs, were significant. These results
suggest that longer breathing intervals during meditation lead to longer temporal-integration intervals
at 1-second ISIs, and greater breathing variance produces a shortening of temporal integration at the
same frequency. Additionally, the higher the HRV in the time domain, the longer the integration
intervals at 0.33 s ISIs. An overview of the significant results can be seen in Figure 2; no other paths
of the model produced significant results (see Table 3). For a graphical depiction of the integration
intervals over the different metronome frequencies separately shown for the two conditions pre- (t1)
and post (t2) intervention, see Appendix A, Figures A1 and A2.
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Figure 2. Illustration of the significant X→M relation (a path) and the significant direct effect (c’ path in
red color) and indirect effects (ab paths) obtained by the mediation analysis with n = 84. The direction
of the effects is pictured with + for a positive relation and − for a negative one.
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Table 3. Summary of mediation results for the metronome task with the whole sample (n = 84).

X
Independent

Variable

M Diff
Mediating
Variables

Y Diff
Dependent
Variables

Effect of
X→M (a)

Effect of
M→Y (b)

Specific
Indirect

Effects (a, b)

Direct
Effect

X→Y (c’)

Total
Effect (c)

Type of
Effect

RMSSD
Area under
the curve

AUC

8.59 * −0.00 −0.00
0.04 0.01 noneHF 1.56 0.00 0.00

BR mean 0.80 *** 0.07 0.06
BR SD 0.49 *** −0.19 −0.09

Meditation
vs. Story

RMSSD
Integration
interval at

3 s ISI

8.87 * −0.00 −0.05

0.21 * 0.06 Direct
effect

HF 3.02 0.00 0.00
BR mean 0.77 *** −0.12 −0.09

BR SD 0.45 *** −0.01 −0.00

RMSSD
Integration
interval at

2 s ISI

8.31 * 0.00 0.01

−0.11 −0.06 noneHF 0.57 0.00 0.00
BR mean 0.82 *** 0.03 0.02

BR SD 0.50 *** 0.01 0.01

RMSSD
Integration
interval at
1.33 s ISI

9.67 * 0.00 0.01

−0.01 0.01 noneHF −1.86 −0.00 0.00
BR mean 0.75 *** 0.03 0.01

BR SD 0.53 *** −0.00 −0.00

RMSSD
Integration
interval at

1 s ISIs

8.68 * −0.00 −0.00

0.00 −0.01 Indirect
effect

HF −1.00 −0.00 * 0.00
BR mean 0.77 *** 0.17 *** 0.13 *

BR SD 0.49 *** −0.29 ** −0.14 *

RMSSD
Integration
interval at
0.5 s ISIs

9.68 * 0.00 −0.00

0.05 0.03 noneHF 1.95 0.00 0.00
BR mean 0.77 *** 0.00 0.00

BR SD 0.48 *** −0.06 −0.02

RMSSD
Integration
interval at
0.33 s ISIs

8.73 * 0.00 * 0.01 *
0.00 −0.00 Indirect

effect
HF 1.92 0.00 0.00

BR mean 0.79 *** 0.00 0.00
BR SD 0.48 *** −0.06 −0.03

* Significant (non-standardized) coefficients: * p < 0.05, ** p < 0.01, *** p < 0.001 marked in bold.

3.4. Relationship Between Trait-mindfulness and the Metronome Task

No significant correlation between self-reported mindfulness, as measured with the subscales
‘presence’ and ‘acceptance’ from the FMI questionnaire, and the AUC at t1, as well as with the
independently calculated DiffAUC for both groups were found (p > 0.05). The relationship between
self-reported mindfulness and the individual TIs at the different metronome frequencies was also
non-significant (for all frequencies p > 0.05).

4. Discussion

The present study investigated how states of mindfulness meditation and autonomic activity
modulate the experience of the present moment. Two groups of mindfulness meditators, who either
meditated or listened to a recorded story, performed an auditory temporal-integration task before and
after the intervention. We recorded indices of vagal and respiratory activity during the intervention
sessions to determine whether meditation-induced changes at that level influence the time characteristic
of the present moment.

We revealed clear effects of meditation on physiological parameters. Participants who meditated
showed greater heart-rate variability in the time domain, as well as longer breathing intervals and
higher breathing variability as compared to those participants who listened to the recorded stories.
Regarding the psychophysical task, meditation induction led to longer integration intervals at the
slowest metronome frequency (3-second ISIs). With respect to autonomic activity indices, higher vagal
activity in participants under meditation induction was related to widened integration intervals at
0.33-second ISIs, the fastest frequency. Participants who meditated and had longer respiratory periods
also displayed longer integration intervals at 1-second ISIs. Higher breathing-rate variability, on the
contrary, was associated with a shortening of the integration intervals for the same frequency.
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First studies investigating the effects of meditative states on time perception in the seconds
range have shown a subjective dilation of interval durations after meditation [25,26]. In our study,
participants who meditated integrated more metronome beats into a perceptual unit as compared to
those meditators who listened to recorded stories, but only as a direct effect at the assumed upper limit
of the present (3-second ISIs). A tentative interpretation is that the upper limit of the present moment
was expanded after meditation. Our study is probably the first to investigate the effects of meditative
states on temporal integration in the seconds range by using the metronome paradigm and controlling
for physiological effects. According to phenomenological arguments, the events of experience occurring
now are surrounded by memories of what just happened and anticipation of subsequent actions [72].
The experience of a moment is extended and contains memory (past component) and expectation
of what is about to happen (future component).The heightened awareness of the present moment
attained by highly experienced meditators leading to the loss of bodily sensations (selflessness) has
been described as diminishing the past and future components surrounding the present and provoking
the feeling of timelessness [73]. This is a state that only very experienced meditators can attain. In our
study, states of mindfulness led to a lengthening of the temporal integration intervals for the slowest
metronome frequency. The participants in the present study on average had only low-to-moderate
meditation experience and meditated for only 10 min. The state of meditation our participants achieved
was one with an increased bodily awareness as mindfulness experience.

Taken together, the observed associations between HRV and breathing activity and the length of
the temporal-integration intervals in the current study complement prior observations of a relationship
between vagally-mediated changes in cardiac activity and time perception [42,43,74]. These results
also corroborate Craig’s theory that integration and modulation of bodily signals (i.e., cardiorespiratory
activity) may affect temporal processing [1].

An early study investigating temporal-integration mechanisms in patients with acquired brain
injuries revealed that patients with prefrontal-lobe damage in the left hemisphere had difficulties
integrating metronome beats [33]. They found that these patients relied on a counting strategy and not
on automatic temporal integration like the control patients did. These findings fit well with Thayer
and Lane’s (2000) neurovisceral-integration model [75]. A continuous brain-periphery communication
is assumed that links the heart, cortical (i.e., prefrontal areas) and sub-cortical regions. Indices of
HRV have been identified as reflecting the inhibitory effect of prefrontal-subcortical networks on
sympathoexcitatory subcortical circuits [76]. More strikingly, higher resting-HRV levels have been
associated with the efficient functioning of the inhibitory prefrontal-subcortical circuits [77] as revealed
by better executive functioning in a sustained-attention test [78]. Higher HRV, through an improvement
in executive functioning, may have enabled participants to maintain their focus of attention (i.e.,
sustained attention) longer, leading to the lengthening of the integration intervals at the fastest
metronome frequency.

There are several limitations of our study which should be addressed in future studies. Our design
comprised matching pairs of meditators according to the criteria age, gender, education level, and
meditation experience. We could have used a randomization procedure to more strongly control for
possible confounders between experimental groups and applied a stratification method for controlling
the above variables. Moreover, our effects are modest. Only one direct effect of meditation states
was found, and this effect was only significant for the longest metronome frequency assumed to
represent the upper limit of the present moment. The indirect effects were rather unsystematic. One
could argue that the three frequencies represented special intervals: The upper (3 s) and lower (0.33 s)
boundaries at which integration is possible at all, and was therefore especially sensitive to effects and
the socially-learned interval of clock time (1 s). We consider our approach to be a first step in assessing
temporal-processing mechanisms in an experimental operationalization of present-moment experience.
Only meditators with extensive experience should be included in future studies. In our study, only
44 % of the participants had 100 or more hours of meditation experience. More participants could be
tested if the focus were placed on more experienced individuals. We used prerecorded meditation
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sessions in our study to achieve a standardized protocol. These are helpful for individuals who are less
experienced. Experienced meditators in future studies should be allowed to use their own meditation
techniques; meditation should not be induced by a recording. This would allow meditators to perform
a longer meditation session. Another issue of exploring mindfulness-meditation-related techniques
remains the difficulty in differentiating the features of the experience targeted (i.e., through instructions)
from the actual phenomenological state being attained [24]. Controlling for the targeted state and for
the degree to which this state has been reached could shed some light on how meditation influences
time perception.

A growing number of studies of altered states of consciousness in general and during meditation
in particular have been conducted in the fields of psychology and neuroscience [79,80]. The scientific
study of meditative states, describable as a change in present experience, is in its infancy. These
attempts should reveal what constitutes everyday consciousness and what happens during altered
states of awareness, essentially probing the mind-body problem. Our study constituted a first attempt
to measure meditative states in meditation-experienced individuals and disclosed one direct effect of
meditation and several indirect effects through changes in physiology. Our study is in line with an
increasingly popular field of research.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-328X/9/5/51/s1,
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Appendix A

Table A1. Temporal integration intervals (TI) depending on ISI and integrated beats Individual
responses were not used in the analysis when they exceeded an upper temporal integration limit of 3 s.

Integrated Beats 1 2 3 4 5 6 7 8

ISI = 3 s 0 s 3 s 6 s (excluded) excluded excluded excluded excluded excluded

ISI = 2 s 0 s 2 s 4 s (excluded) excluded excluded excluded excluded excluded

ISI = 1.333 s 0 s 1.33 s 2.66 s 3.99 s (excluded) excluded excluded excluded excluded

ISI = 1 s 0 s 1 s 2 s 3 s 4 s (excluded) excluded excluded excluded

ISI = 0.5 s 0 s 0.5 s 1s 1.5 s 2 s 2.5 s 3 s 3.5 s (excluded)

ISI = 0.333 s 0 s 0.33 s 0.66 s 0.99 s 1.33 s 1.665 s 1.99 s 2.33 s

Table A2. Excluded trials per grouping.

ISI > 3 s Criterion > 8 Criterion SUM (Both Criteria) % of Trials

0.333 0 4 4 0.53
0.5 93 2 95 12.63
1 29 1 30 3.98

1.333 201 0 201 26.72
2 164 0 164 21.80
3 93 0 93 12.36

580 7 587 13.01
% of trials 12.86 0.15 13.01

http://www.mdpi.com/2076-328X/9/5/51/s1
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Table A3. Summary of reported groupings in the metronome task; grouping of 1 corresponds to no
integration of beats.

Grouping % of Trials Peak ISI

1 18.54 3
2 35.44 1.333
3 8.58 0.5
4 27.70 0.5
5 0.95 0.333
6 1.62 0.333
7 0.53 0.333
8 6.48 0.333

>8 0.16 0.33
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