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Understanding the orbits of spinning bodies in curved spacetime is important for modeling binary
black hole systems with small mass ratios. At zeroth order in mass ratio and ignoring its size, the
smaller body moves on a geodesic of the larger body’s spacetime. Post-geodesic effects, driving
motion away from geodesics, are needed to model the system accurately. One very important post-
geodesic effect is the gravitational self-force, which describes the small body’s interaction with its
own contribution to a binary’s spacetime. The self-force includes the backreaction of gravitational-
wave emission driving inspiral. Another post-geodesic effect, the spin-curvature force, is due to the
smaller body’s spin coupling to spacetime curvature. In this paper, we combine the leading orbit-
averaged backreaction of point-particle gravitational-wave emission with the spin-curvature force to
construct the worldline and associated gravitational waveform for a spinning body spiraling into a
Kerr black hole. We use an osculating geodesic integrator, which treats the worldline as evolution
through a sequence of geodesic orbits, as well as near-identity (averaging) transformations, which
eliminate dependence on orbital phases, allowing for very fast computation of generic spinning body
inspirals. The resulting inspirals and waveforms include all critical dynamical effects which govern
such systems (orbit and precession frequencies, inspiral, strong-field gravitational-wave amplitudes),
and as such form an effective first model for the inspiral of spinning bodies into Kerr black holes.
We emphasize that our present calculation is not self consistent, since we neglect effects which enter
at the same order as effects we include. However, our analysis demonstrates that the impact of
spin-curvature forces can be incorporated into EMRI waveform tools with relative ease, making it
possible to augment these models with this important aspect of source physics. The calculation
is sufficiently modular that it should not be difficult to include neglected post-geodesic effects as
efficient tools for computing them become available.

I. INTRODUCTION AND MOTIVATION

Binary systems with very small mass ratios that in-
spiral due to gravitational wave (GW) backreaction are
known as extreme mass-ratio inspirals (EMRIs). Such
systems are formally interesting and important, as they
represent a limit of the binary problem in general rel-
ativity that can be solved precisely, providing impor-
tant input for modeling the relativistic two-body prob-
lem. They are also expected to be important sources of
low-frequency GWs. Binaries consisting of stellar-mass
compact objects (mass µ ∼ 1−100M⊙) in strong-field or-
bits of massive black holes (mass M ∼ 106M⊙) produce
GWs in the sensitive band of the planned Laser Inter-
ferometer Space Antenna (LISA) [1, 2]. The detection
of GWs from EMRI sources will enable precise measure-
ments of properties of massive black holes, and robustly
probe the Kerr nature of the spacetime [3–9]. This will
be achieved by matching the phase of theoretical wave-
forms with observed GW data over thousands to millions
of orbits. Making such measurements will require precise,
long-duration waveform models.

At “zeroth” order in mass ratio ε ≡ µ/M and size
of the smaller body, the secondary’s motion is simply a
geodesic of the larger black hole, a limit that is very well
understood. Important corrections to geodesic motion
arise from the smaller body’s mass and from its finite

size. Finite mass-ratio effects are known as self forces
[10–12]. Fundamentally, self forces reflect the fact that
the spacetime in which the smaller body moves is not just
that of the larger body: the smaller body affects the bi-
nary’s spacetime, which in turn changes that body’s mo-
tion. A well-developed program to compute the self force
has been developed over the past several decades [13–
29]. For our purposes, it is important to recognize that
the self force leads to dissipative corrections (which on
average take away energy and other “conserved” quanti-
ties from the orbit, driving inspiral), and to conservative
corrections (which on average leave conserved quantities
unchanged, but modify orbit properties such as frequen-
cies versus the geodesic with the same orbital geometry).
Some contributions to the self force are oscillatory, av-
eraging to zero over a single orbit; others accumulate
secularly over many orbits. The leading dissipative self
force, for example, accumulates over many orbits.
Finite size effects reflect the fact that real bodies are

not zero-size points. Aspects of a body’s finite extent
couple to spacetime curvature, and this coupling gener-
ates forces relative to a zero-size body’s free-fall trajec-
tory. If the smaller body is itself a black hole, the leading
and most important finite size effect is from that body’s
spin angular momentum [30–33]. As it moves through
spacetime, a small body’s spin precesses, leading to a
time-varying spin-curvature force. Such forces are en-
tirely conservative, changing properties of orbits such as
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their frequencies. They have oscillatory aspects, which at
leading order average away over an orbit, and secularly
accumulating contributions.

The simplest model describing EMRI systems is known
as the adiabatic inspiral and waveform. Adiabatic mod-
els are computed by taking the smaller body to follow a
geodesic of the background spacetime, and allowing that
geodesic to evolve using the leading orbit-averaged dis-
sipative backreaction [34, 35]. As a matter of principle,
it is now possible to compute adiabatic waveforms for
essentially any astrophysical extreme-mass ratio system
[36–38]. As a matter of practice, fast and efficient adi-
abatic waveforms can only be computed for a subset of
the parameter space [39, 40], but work is in progress to
expand this space.

Post-adiabatic effects include the conservative self
force [26, 41–46] (whose leading orbit-averaged effect is to
change orbit frequencies compared to the geodesic), os-
cillating contributions to the dissipative self force (whose
integrated impact on the inspiral is expected to be com-
parable to the orbit-averaged conservative self force [47]),
resonances [48–51] (moments during inspiral when two of
the three fundamental orbital frequencies pass through a
low-order integer ratio), and the spin-curvature force [30–
33]. The impact of many of these effects can be computed
offline and included in waveform generation in a modular
way. This makes it not too difficult to augment adiabatic
waveform generators in order to make waveforms which
include important post-adiabatic effects.

The goal of the work that we present here is to show
how one can augment adiabatic waveforms to include
one particular post-adiabatic effect, the spin-curvature
force. We emphasize strongly that our analysis does not
develop a self-consistent waveform model: we explicitly
leave out effects which enter at the same order as the
spin-curvature force, but which must be included to have
a complete accounting of post-adiabatic effects at this or-
der. Our goal instead is to show how one can combine
data and methods that currently exist in order to make
inspirals of spinning bodies into Kerr black holes, and to
make the waveforms corresponding to such inspirals.

The particular model we develop in this paper treats
inspiral as a sequence of geodesic orbits, evolving from
geodesic to geodesic under the combined influence of the
spin-curvature force and the orbit-averaged self force.
This allows us to develop an EMRI model that incorpo-
rates the most important qualitative dynamics (four dis-
tinct orbit and precession frequencies, as well as strong-
field backreaction), and to make a waveform that includes
these effects. Other approaches to developing such inspi-
rals would require input that, at present, is not yet ready
to be used. For example, one might imagine treating
the inspiral worldline as a sequence of spinning-body or-
bits (following the prescription laid out in Refs. [52, 53]),
then evolving through the sequence by computing the
orbit-averaged backreaction at each orbit. Although we
have a good prescription describing such orbits, we do
not yet have large data sets which describe backreac-

tion and wave amplitudes from these orbits (although
the first calculations describing such data have been per-
formed [54]). Indeed, it is not yet fully understood how
to compute orbit-averaged backreaction on such orbits
(see concluding discussion in Ref. [54]).
The model we construct and present here is arguably

the best that can be done for making spinning body in-
spiral with tools and data that exist right now. We pro-
pose it as a first tool that can augment existing meth-
ods for making adiabatic inspirals and waveforms. When
applied to fast EMRI waveform methods (presently be-
ing extended to cover the Kerr parameter space), these
waveforms will be useful for science studies assessing the
importance of secondary spin for generic spinning-body
inspiral. These waveforms will also serve as a benchmark
against which later models can be compared as fast and
effective methods for incorporating other post-adiabatic
effects become broadly available.

II. ORGANIZATION, CONVENTIONS, AND
NOTATION OF THIS PAPER

We here provide an outline of the paper’s organization,
as well as a summary of the conventions and notation
we use througout. It is worth emphasizing that much
of our analysis is based on bringing together techniques
that have been presented at length elsewhere. As such,
several sections of this paper present just a high-level
synopsis of these methods. Several appendices provide
detail needed to flesh out the calculations, and summa-
rize material that is presented at length in the references
which develop these methods.
Because our analysis is built on bound orbits around

Kerr black holes, we briefly review the properties of these
orbits in Sec. III. We begin with the geodesic orbits of
non-spinning bodies and their parameterization in IIIA,
and summarize the properties of spinning body orbits in
III B. In Sec. III C, we discuss why we choose to anchor
our analysis to the properties of geodesic orbits, rather
than using spinning-body orbits as our main tool. We
discuss at some length the rationale behind this choice,
and why it will be useful as a complementary approach
when future data allow us to use spinning-body orbits for
broader studies than is possible right now. Additional
details regarding geodesics are given in Appendix A, and
regarding spinning-body orbits in Appendix B.
In Sec. IV, we briefly describe the osculating geodesic

(abbreviated “OG”) framework which underlies our in-
spiral analysis, describing how to map a worldline to
a set of geodesics with evolving elements. We lay out
the detailed equations we evolve to generate spinning
body inspirals in the Appendix C. In Sec. IVA, we show
how to describe spinning-body orbits as forced geodesics,
explicitly demonstrating that this approach yields or-
bits equivalent to those developed using the frequency-
domain method of Refs. [52, 53]. We describe how we in-
corporate the leading adiabatic backreaction in Sec. IVB.
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In Sec. V, we describe the mathematical scheme un-
derlying the near-identity averaging transformation (ab-
breviated “NIT”) in detail. We outline the notation used
in this section in Sec. VA, then discuss Mino-time and
Boyer-Lindquist-time formulations of NITs in Secs. VB
and VC respectively. We then present the full set of av-
eraged equations of motion for the specific forcing terms
studied in this work in Sec. VD. We discuss the details
of our NIT implementation in Sec. VE. Additional back-
ground and details on the NIT are presented in Appendix
D, and some important details for how we match the OG
and NIT calculations in Appendix E.

We present results describing spinning body inspirals
in Sec. VI, and their associated GWs in Sec. VII. We first
look at examples of generic (inclined and eccentric) inspi-
rals with aligned secondary spin in Sec. VIA, and then
generalize to arbitrarily oriented spin in Sec. VIB. We
comment that our study of generic inspiral is presently
limited by the paucity of data available describing generic
strong-field adiabatic radiation reaction. Though work
continues to generate additional such data, we have con-
fined ourselves to the a = 0.7M generic orbit data set
that was used in Ref. [38].

We begin our discussion of waveforms from spinning
body inspirals by briefly reviewing in Sec. VIIA the gen-
eral principles used to compute waveforms; greater de-
tail can be found in Ref. [38]. We then examine in Sec.
VIIB the waveforms which correspond to the inspirals
presented in Sec. VI. Of particular physical interest is
a comparison of waveforms with and without spinning
secondary effects, showing the observable imprint that
secondary spin has on the waveform. On a pragmatic
level from the standpoint of computations, we also com-
pare waveforms produced with the OG technique versus
those using the NIT to generate the trajectory. We show
that these waveforms differ very little, though the NIT
produces waveforms significantly more quickly.

Throughout this paper, we work in relativist’s units
with G = 1 = c. A useful conversion factor in these
units is 106M⊙ = 4.926 seconds ≃ 5 seconds. We use
the (fairly standard) convention that lowercase Greek in-
dices on vectors and tensors denote spacetime coordinate
indices. Latin indices are used on certain quantities to
designate elements of a set that holds parameters which
describe orbital elements: capital Latin indices are used
for seven-element sets, used for the parameters of OGs;
lowercase Latin indices are used for two-, three-, and four-
element sets, describing the properties of orbits.

III. BOUND ORBITS OF KERR BLACK HOLES

In our analysis, we approximate inspiral by a sequence
of bound orbits, evolving from orbit to orbit under the in-
fluence of orbit-averaged GW backreaction. We use GW
amplitudes computed at each orbit to describe contribu-
tions to the waveform from this inspiral. To set this up,
we briefly review the properties of the orbits we use. All

of the details in this section have been presented in depth
in other papers, such as Refs. [19, 38, 55–57], so we con-
fine this discussion to a high-level synopsis sufficient to
lay out the notation and details we need for this analysis.
Additional important technical details are summarized in
Appendices A and B.

A. Orbits of non-spinning bodies

Bound Kerr geodesics can be described using several
time parameterizations. In much of our discussion, we
will use the “Mino time” variable λ. The equations of
motion in Boyer-Lindquist coordinates can be written(

dr

dλ

)2

= R(r) ,

(
dθ

dλ

)2

= Θ(θ) ,

dϕ

dλ
= Φr(r) + Φθ(θ) ,

dt

dλ
= Tr(r) + Tθ(θ) . (3.1)

Expressions for the functions on the right-hand sides
of these equations are presented in Eqs. (A9)–(A12) of
Appendix A. Mino time λ is related to proper time τ
along an orbit by the relation dλ = dτ/Σ [34], where
Σ = r2 + a2 cos2 θ. Notice that the factor Σ couples the
radial and polar motions; when λ is the time parame-
ter, the radial motion depends only on r, and the polar
motion depends only on θ. This separation means that
coordinate-space solutions describing geodesic orbits can
be written using simple quadratures; see [55, 58] for fur-
ther discussion.
The radial and polar motions can both be described

using a quasi-Keplerian description, mapping the oscilla-
tory coordinate motion to orbit anomaly angles which
increase monotonically with time. We begin by not-
ing that bound geodesic orbits around a Kerr black
hole are contained within a torus that lies in the ra-
dius range r2 ≤ r ≤ r1 and in the polar angle range
θ1 ≤ θ ≤ (π − θ1). It is very useful to remap the radii r2
and r1 using

r1 =
pM

1− e
, r2 =

pM

1 + e
. (3.2)

We have introduced p, the orbit’s semi-latus rectum, and
e, its eccentricity. A geodesic orbit’s bounds are then
totally set by choosing the parameters p, e, and θ1. Those
parameters can be remapped to integrals of the motion Ê
(energy), L̂z (axial angular momentum), and Q̂ (Carter
constant) which are related to the spacetime’s Killing
vectors and Killing tensor, and are conserved along any
geodesic. An alternate form of the Carter constant, K̂ ≡
Q̂+(L̂z−aÊ)2 is also useful. (The “hat” accents indicate
that these conserved quantities are defined on geodesics.)
See Refs. [55, 59] for further discussion.
We build the bounds on the radial motion into our

parameterization by defining

r =
pM

1 + e cosχr
. (3.3)
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The angle χr is a relativistic analog of the true anomaly
angle commonly used to describe orbital dynamics in
Newtonian gravity. We define1 χr = χFr + χSr . The “F”
superscript signifies that χFr evolves on fast timescales,
related to the orbital motion; the “S” tells us that χSr
evolves on slow timescales, related to the backreaction.
For geodesics (i.e., in the absence of forcing terms), χSr
is a constant, corresponding to the initial radial phase.
We later allow χSr to change with time, accounting for its
slow evolution under a perturbing force; see discussion in
App. C.

The function R(r) defined in Eq. (3.1) and shown in
detail in Eq. (A9) is a quartic with four roots ordered
such that r4 ≤ r3 ≤ r2 ≤ r ≤ r1. For a bound orbit,
the roots r1 and r2 are the physical turning points of the

motion, discussed above; the roots r3 and r4 depend in
a straightforward way on the orbit parameters p, e, and
xI (see, e.g., Ref. [55] for a form that is commonly used).
From the form (A9), we can write

R(r) = (1− Ê2)(r1 − r)(r − r2)(r − r3)(r − r4) , (3.4)

where Ê is the orbit’s energy introduced above. It is
convenient to introduce parameters p3 and p4 such that

r3 =
p3M

1− e
, r4 =

p4M

1 + e
. (3.5)

Using this, we write the radial component of the geodesic
equation (3.1) as a differential equation for χr [58]:

dχr
dλ

=
M
√
1− Ê2 [(p− p3)− e(p+ p3 cosχr)]

1/2
[(p− p4) + e(p− p4 cosχr)]

1/2

1− e2

≡ XF
r (χr) . (3.6)

Remapping the oscillatory radial dynamics onto the
monotonically evolving angle χr makes the bounded na-
ture of geodesic motion explicit, allowing for straightfor-
ward numerical handling of the radial turning points.

Turn now to the polar motion. Defining z ≡ cos θ, we
can write the function Θ(θ) from Eq. (3.1) (see also Eq.
(A10)) in terms of roots 0 ≤ z1 ≤ 1 ≤ z2 [56]:

Θ(θ) =
z21 − z2

1− z2

(
z22 − a2(1− Ê2)z2

)
. (3.7)

This form, taken from Ref. [56], has the advantage that it
allows for straightforward evaluation in the a → 0 limit.
Turning points of the polar motion occur where z = z1,
corresponding to when θ = θ1 and θ = π−θ1. The second
polar root z2, given by Eq. (15) in Ref. [56], is not actually
reached by physical orbits (it generally corresponds to
cos θ > 1). We define the inclination angle I as

I = π/2− sgn(L̂z)θ1 ; (3.8)

I = 0 corresponds to prograde equatorial orbits, I =
180◦ to retrograde equatorial, and orbital properties vary
smoothly between these extremes. We put xI ≡ cos I,
from which we see that z1 =

√
1− x2I . This allows us to

parameterize our polar motion as

cos θ =
√
1− x2I cosχθ = sin I cosχθ , (3.9)

1 The angle χS
r we use in this analysis is equivalent to χr0 in Ref.

[38]. In [60], ψ0 is used to denote the initial radial phase, and is
equivalent to our χS

r , modulo a minus sign.

where χθ is another relativistic generalization of the
“true anomaly” angle used in Newtonian orbital dy-
namics. As we did for the radial motion, we define2

χθ = χFθ + χSθ , breaking this anomaly angle into “fast”
and “slow” terms. In the absence of forcing terms, χSθ
is a constant, the initial polar phase. In the osculating
element framework (see App. C), we promote χSθ to a
time-varying quantity. Combining the various reparame-
terizations with the polar geodesic equation (A10) yields
an equation governing χθ [56, 58]:

dχθ
dλ

=

√
z22 − a2(1− Ê2)(1− x2I) cos

2 χθ

≡ XF
θ (χθ) . (3.10)

Bound Kerr geodesics are triperiodic, and can be char-
acterized with frequencies describing the orbit’s radial,
polar, and axial behavior: the frequencies Υ̂r,θ,ϕ de-
scribe an orbit’s radial, polar, and axial frequencies per
unit Mino time, and Ω̂r,θ,ϕ describe these frequencies per
unit Boyer-Lindquist coordinate time. The Mino-time
and coordinate-time frequencies are related by a factor
Υ̂t that describes3 how much coordinate time accumu-
lates, on average, per unit Mino time along the orbit:

2 The angle χS
θ is equivalent to χθ0 used in Ref. [38]. In [60], χ0

is used to denote the initial polar phase, and is equivalent to χS
θ

in this analysis, modulo a minus sign.
3 This factor is labeled Γ̂ in many references [36, 38, 55, 58], to
reflect the fact that it represents a conversion between two dif-
ferent notions of time, rather than being related to a periodic
aspect of orbital motion. It is however labeled Υ̂t in much of the
NIT literature, and we follow that convention here.
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Ω̂r,θ,ϕ = Υ̂r,θ,ϕ/Υ̂t. The inverse of these frequencies,
times 2π, gives the Mino- and coordinate-time periods:

Λ̂ϕ,θ,r =
2π

Υ̂ϕ,θ,r
, (3.11)

T̂ϕ,θ,r =
2π

Ω̂ϕ,θ,r
. (3.12)

As in our discussion of the constants of motion Ê, L̂z, and
Q̂, the hat accents indicate that these quantities are eval-
uated on geodesics. See Ref. [55] for formulas describing

these frequencies, periods, and the factor Υ̂t.

An action-angle parametrization of geodesic motion is
useful for the construction of near-identity transforma-
tions in Sec. V. In this formulation, the Mino-time action
angles qr and qz are chosen as the orbital phases describ-
ing the motion in r and z respectively; explicit formulas
connecting these angles to motion in their associated co-
ordinate are given in Refs. [55, 56], and are coded into
the KerrGeodesics package of the Toolkit [61]. We de-
note by Pi = {p, e, xI} the set of orbital elements. In this
form, the geodesic equations of motion are given by

dPj
dλ

= 0 , (3.13)

dqr,z
dλ

= Υ̂r,z(P⃗ ) . (3.14)

(Note that Υ̂z = Υ̂θ; the period of a complete cycle in
θ is identical that of a complete cycle in z = cos θ.) In

other words, for geodesics the elements P⃗ are constants of
motion and the right-hand side of Eq. (3.14) is an orbital

frequency determined by P⃗ . As such, the orbital phases4

have solutions qz,r = Υ̂r,zλ+ qSr,z, where q
S
r,z is the value

of that phase when λ = 0. These phases will evolve on
the slow timescale when certain post-geodesic forces are
introduced.

Up to initial conditions, a geodesic orbit can be speci-
fied by “principal orbital elements.” These are either the
constants of motion (Ê, L̂z, Q̂) or the parameters (p, e,
xI) describing the geometry of the orbit. We can con-

vert between (Ê, L̂z, Q̂) and (p, e, xI) using mappings
given in Refs. [38, 55, 56]. The initial conditions of the
orbit are specified by “positional orbital elements” which
are (χSr , χ

S
θ , ϕ0, t0) in the quasi-Keplerian case and (qSr ,

qSz , ϕ0, t0) in the action-angle case. In order to find the
geodesic trajectories for a particular set of orbital ele-
ments {p, e, xI , χSr , χSθ , ϕ0, t0} or {p, e, xI , qSr , qSz , ϕ0, t0},
we need only solve differential equations for the radial
and polar phases χr and χθ, i.e., Eqs. (3.6) and (3.10);
or for qr and qθ, i.e., Eqs. (3.14).

4 Note that the orbital phases qr,z are identical to the “mean
anomaly angles” wr,θ used in Refs. [52, 53].

B. Orbits of spinning bodies

The geodesic orbits discussed above describe the mo-
tion of a pointlike body freely falling in spacetime. The
equations of motion (3.1) fundamentally derive from the
equation of parallel transport for a freely falling body’s
4-momentum:

Dpµ

dτ
= 0 . (3.15)

In this equation, D/dτ ≡ uα∇α denotes a covariant
derivative with respect to proper time along the trajec-
tory. The 4-velocity uα = dxα/dτ is the tangent vector
to the worldline of this freely falling body.
If the body is not pointlike but has some extended

structure, this structure will couple to the spacetime in
which it moves, changing its trajectory. This coupling
can be incorporated into the framework describing the
body’s motion by replacing the right-hand side of (3.15)
with a forcing term reflecting how the body’s structure
couples to spacetime.
The simplest example of such coupling structure is the

body’s spin angular momentum. The equation of motion
in this case becomes [31–33]

Dpµ

dτ
= −1

2
Rµνλσu

νSλσ . (3.16)

The right-hand side of this equation is the spin-curvature
force. In this equation, Rµνλσ is the Riemann tensor of
the spacetime through which the spinning body moves,
and Sλσ in a tensor which describes its spin angular mo-
mentum. It is useful to remap this tensor to a vector:

Sµ = − 1

2µ
ϵµναβpνS

αβ . (3.17)

As the body moves through spacetime, its angular mo-
mentum precesses according to

DSµν

dτ
= pµuν − uµpν . (3.18)

Note that pµ is not parallel to uµ in general; the right-
hand side of Eq. (3.18) is O(S2). Equations (3.16) and
(3.18) are not sufficient to completely specify the motion
of the smaller body, so we augment these equations with
a spin supplementarity condition:

pµS
µν = 0 . (3.19)

This condition, known as the Tulczejew spin supplemen-
tary condition [62], is not unique; other choices could be
made. The physical importance of the spin supplemen-
tary condition is to pick out a particular worldline from
the many which pass through an extended body.
For extreme mass ratio systems, it makes sense to lin-

earize in the spin of the smaller body: taking the smaller
body to be a Kerr black hole, terms linear in spin enter
the forcing equations at order µ2, so terms quadratic in
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spin enter at order µ4. Linearizing, the equations dis-
cussed above simplify to

Duµ

dτ
= − 1

2µ
Rµνλσu

νSλσ , (3.20)

DSµ

dτ
= 0 , (3.21)

uµS
µ = 0 . (3.22)

Witzany has proven that these linearized equations can
be cast as a Hamiltonian system [63, 64], and thus that
the spin-curvature force is conservative. A consequence
of this is that the linearized equations admit bound or-
bits. These orbits can be characterized by energy E,
axial angular momentum Lz, and an analog of either
the Carter constant Q or K ≡ Q + (Lz − aE)2, much
like geodesic orbits5, though offset from the geodesic val-
ues by an amount that is proportional to the secondary
spin S. (Note that we do not write these quantities with
hat accents, emphasizing that they are offset from their
geodesic analogs.) Likewise, these orbits have frequencies
(Ωr,Ωθ,Ωϕ) describing their coordinate motions which
differ from the geodesic values by an amount scaling with
S. They also have a “precession frequency” Ωs which de-
scribes the precession of the spin.

References [52, 53] describe in detail how to construct
orbits of spinning bodies using a frequency domain tech-
nique to solve the linearized equations (3.20)–(3.22). For
our purposes, a key point is that the resulting motion is
similar to geodesic motion, and we can adapt the quasi-
Keplerian formulation to describe these orbits. For ex-
ample, in the general case, the radial and polar motions
can be written

r =
pM

1 + e cosχr
+ δrS , (3.23)

cos θ = sin I cosχθ + δzS . (3.24)

These expressions resemble the forms used for geodesic
motion, with a few key differences. The anomaly angles
χr and χθ used for spinning-body orbits differ from the
angles used to describe geodesics:

χr = χSG
r + δχSr , χθ = χSG

θ + δχSθ . (3.25)

The quantities χSG
r,θ are identical to the anomaly angles

used for geodesics, but expanded in a Mino-time Fourier
series and with the geodesic frequencies Υ̂r,θ shifted to

5 It is worth emphasizing that the quantities E and Lz can be
defined for motion under the complete set of Papapetrou equa-
tions, but analogs of Q and K can be found only when these
equations are linearized in spin [65]. It has recently been shown
that analogs of Q and K can be found for the full equations if
one includes the next multipole order in the analysis (the sec-
ondary’s quadrupole moment), though only if that quadrupole
moment takes the values appropriate for a Kerr black hole. See
Ref. [66] for further discussion.

the frequencies Υr,θ appropriate for spinning-body orbits
(the superscript “SG” stands for “shifted geodesic”). The
terms δχSr,θ are O(S) shifts to the anomaly angles. See

Refs. [52, 53] for details and further discussion.
The libration regions for spinning-body orbits also dif-

fer from those of geodesics; this difference is encoded in
the functions δrS and δzS introduced in Eqs. (3.23) and
(3.24). These functions are both O(S), and are both pe-
riodic in harmonics of the spinning body frequencies —
either the set (Υr,Υθ,Υs) or (Ωr,Ωθ,Ωs), depending on
which time parameterization is used.
In addition to solutions describing the coordinate-

space motion of the smaller body, we need to describe
how the orientation of the smaller body’s spin evolves
over its motion. We use the closed-form solution describ-
ing a parallel-transported vector presented in [56]. This
solution uses a tetrad, originally developed in Refs. [67–
69], with legs {e0α, e1α, e2α, e3α}. Legs 1 and 2 of this
tetrad are related to auxiliary legs ẽ1α and ẽ2α via a pre-
cession phase rotation:

e1α(λ) = cosψs(λ) ẽ1α(λ) + sinψs(λ) ẽ2α(λ) , (3.26)

e2α(λ) = − sinψs(λ) ẽ1α(λ) + cosψs(λ) ẽ2α(λ) . (3.27)

Leg 0 is simply the 4-velocity uα of the orbiting body;
expressions for ẽ1α, ẽ2α, and e3α can be found in Eqs.
(48), (50) and (51) of Ref. [56]. The precession phase6

ψs(λ) is found by integrating up

dψs
dλ

=
√
K

(
(r2 + a2)Ê − aL̂z

K̂ + r2
+ a

L̂z − a(1− z2)Ê

K̂ − a2z2

)
.

(3.28)
Although an analytic solution to (3.28) exists for geodesic
orbits [56], we find it useful to explicitly integrate this
equation numerically as we evolve through a sequence of
orbits to make inspirals. In this vein, we comment that
the terms on the right-hand side of (3.28) depend on the
same orbital elements {p, e, xI , qSr qSz , ϕ0, t0} that we use
to characterize geodesics. We also note that although
these functions are written most cleanly as functions of
Mino-time λ, it is straightforward to convert to other
time parameterizations.
With the precession phase in hand, the smaller body’s

spin vector takes the form

Sα = S0e0α(λ) + S1e1α(λ) + S2e2α(λ) + S3e3α(λ) ,
(3.29)

where {S0, S1, S2, S3} are all constants we select by
choosing initial conditions. Because e0α = uα, the Tul-
czyjew SSC (3.22) requires that S0 = 0. The constants

6 Note that this phase was written ψp in Refs. [52, 53], with the
subscript p standing for “precession.” We change notation here
to avoid colliding with the use of subscript p to describe how
certain forcing terms introduced later in the paper change an
orbit’s semi-latus rectum.
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S1 and S2 denote components of the spin that lie perpen-
dicular to the orbital angular momentum vector, and S3

is the component of the small body’s spin aligned with
the direction of orbital angular momentum. This allows
us to express Sα in terms of the parallel and perpendicu-
lar spin components of the small-body’s non-dimensional
spin parameter s:

Sα = µ2
(
s⊥ cosϕs e1α + s⊥ sinϕs e2α + s∥ e3α

)
, (3.30)

where s =
√
s2⊥ + s2∥, and ϕs describes the orientation of

the spin vector components. The small body’s spin vector
will precess only when S1 or S2 are non-vanishing. Re-
fer to Appendix B for further discussion about spinning-
body orbits.

Note that two dimensionless secondary spin parame-
ters are commonly used in the literature. The first,

s =
S

µ2
, (3.31)

satisfies 0 ≤ s ≤ 1. The other, used for example in
[70, 71], is:

σ =
S

µM
, (3.32)

and satisfies 0 ≤ σ ≤ µ/M . A virtue of this form is that
σ is of order the mass ratio ε, which can facilitate com-
paring the magnitude of various terms in our analysis.

C. Which orbits to use?

As discussed at length in the Introduction, our goal
is to make a model of spinning body inspiral by sup-
plementing a description of orbits which accurately de-
scribes motion on short timescales with appropriately av-
eraged radiative backreaction which describes how orbits
evolve on long timescales. In essence, we want to treat
inspiral as a sequence of orbits, with backreaction moving
us from orbit to orbit in the sequence.

Which notion of orbits should we use? Since our goal
is to make a model for an inspiraling spinning body, it
is might seem clear that we should begin with orbits
of spinning bodies — use the orbits discussed in Refs.
[52, 53], and evolve from orbit to orbit by computing
orbit-averaged GW backreaction on those orbits. Unfor-
tunately, implementing this scheme is not tenable in the
short term. Studies of backreaction on generic spinning
body orbits have only recently been undertaken [54], and
data sets which cover enough parameter space to gener-
ate an astrophysically plausible generic inspiral do not
yet exist. In addition, issues of principle remain which
mean that, even if such data existed, we do not yet com-
pletely understand how to evolve from orbit to orbit us-
ing the orbit-averaged backreaction. In particular, we
do not fully understand how to evolve a spinning body’s

Carter constant due to gravitational radiation reaction
(see concluding discussion in Ref. [54]).
By contrast, computing backreaction on geodesic or-

bits is now rather straightforward. Large data sets exist
describing backreaction for this case, and more data is
being generated and made available in order to extend
the “Fast EMRI Waveform” (FEW) models [39? , 40].
Furthermore, as we describe in more detail in the next
section, it is possible to describe spinning body orbits
as a sequence of geodesic orbits: we treat the worldline
of a spinning body as a sequence of geodesics, with the
sequence generated using the forcing terms (3.20)–(3.22).
Because our goal is to make a model describing spin-

ning body inspiral using data and methods available now,
the approach we take is to use geodesic orbits forced by
a combination of the spin-curvature force and geodesic-
averaged GW backreaction. After confirming that spin-
ning body orbits constructed by forcing geodesics with
the spin-curvature forcing terms agree with those con-
structed using the methods described in Refs. [52, 53],
we make spinning body inspirals by combining the spin-
curvature force with orbit-averaged backreaction com-
puted along geodesics.
As we discuss in more detail in our conclusions, it will

be worthwhile to compare the results we find using this
to results found by directly computing backreaction on
spinning body orbits, once large data sets exist which
make such calculations practical. To facilitate this even-
tual comparison, we release the Mathematica code and
data which computes the expressions that we use to make
the inspirals we develop here as supplementary material
for this manuscript.

IV. FORCED GEODESICS

In this section, we construct spinning-body inspirals
as a sequence of geodesic orbits, using an osculating
geodesic (OG) framework to describe the inspiral world-
line as a sequence of geodesic orbits. The OG technique
generalizes the venerable method of osculating orbits [72–
74] to relativity [60, 75, 76]. We follow very closely the
framework laid out in Ref. [60], which we summarize in
Appendix C. The key point necessary to understand this
calculation is that, as described in Sec. III, both geodesic
orbits and the smaller body’s precession are entirely char-
acterized by 7 parameters:

EA .
= {p, e, xI , qSr , qSz , ϕ0, t0} . (4.1)

As described at length in Sec. IIIA and Appendix A, the
subset (p, e, xI) are a geodesic’s “principal orbital ele-
ments,” and fully characterize the coordinate-space torus
which a geodesic occupies. The remaining parameters
(qSr , q

S
z , ϕ0, t0) are its “positional orbital elements,” and

can be regarded as setting the geodesic’s initial coordi-
nates on this torus.
The parameters (4.1) are all constants for geodesic mo-

tion. The OG framework promotes at least some of these
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parameters to dynamical variables under the influence of
some non-geodesic acceleration aµ. One can then regard
the worldline as a “geodesic” whose parameters EA evolve
under the influence of this acceleration. See Appendix C
for a synopsis of how one develops these evolution equa-
tions, and Ref. [60] for a detailed derivation and discus-
sion of the particular frameworks that we use.

We implement two OG schemes: The contravariant
quasi-Keplerian formulation discussed in Appendix C 1,
and the action-angle formulation discussed in Appendix
C 2. Comparing the results of these two methods is useful
for validating our computations. We also compare to the
OG codes used in Refs. [19, 77] as an independent check
of our implementation. Because of the relevance of the
action-angle formulation for applying the near-identity
transformation, we focus on this formulation for the re-
mainder of this analysis.

A. Spinning body orbits as forced geodesics

We begin by demonstrating the equivalence between
spinning-body orbits computed using the frequency-
domain approach from Refs. [52, 53] and the forced
geodesic approach in this work; see also Appendix B 3
for discussion regarding different ways to parameterize
spinning-body motion. First, we compute a spinning-
body orbit using the method of Refs. [52, 53]. We se-
lect a (p, e, xI) triplet that defines a geodesic with radial
turning points r1 = p/(1 − e) and r2 = p/(1 + e) and

polar turning point z1 =
√

1− x2I . We then compute
the spinning-body trajectory that has the same turning
points (on average) as this geodesic [52, 53]. Note that
the turning points of this spinning-body trajectory differ
from the corresponding geodesic due to an O(S) correc-
tion, as discussed in Refs. [52, 53].

Next we compute the same spinning-body trajectory
with the OG approach used in this work. In order to do
this, we find the triplet (pIC , eIC , xIC) which defines a
geodesic orbit with the same initial conditions (coordi-
nate positions and four-velocities) as the spinning-body
orbit we computed using the method in [52, 53]; details
of the mapping between the two formulations are in Ap-
pendix B 3. We find that OG solutions match for many
cycles the corresponding spinning-body orbit computed
using the approach of Refs. [52, 53]. In Fig. 1, we show
two example orbits to demonstrate this. In this figure,
solid black curves show the radial motion for a spinning
body computed using the OG method. The blue dia-
mond markers show the same orbit computed using the
frequency-domain method of Refs. [52, 53]. For refer-
ence, we show the orbit of a non-spinning body (red dot-
ted curve) with matching parameters. Figure 1 shows
that the three orbits agree in orbital phase at early times
(left panels). At later times (right panels), the geodesic
is completely dephased but the two spinning-body orbits
remain matched.

Figure 1 also shows that, after many cycles, a slight dif-

ference develops between the solid black curves (spinning-
body orbits generated via OG) and the blue diamonds
(spinning-body orbits generated using the method of
Refs. [52, 53]). The two methods are entirely equivalent
up to first-order in secondary spin, but not at O(S2); the
differences we see are quadratic in secondary spin (see
Appendix B 3 for detailed discussion). In this vein, note
that we used a rather non-extreme mass ratio ε = 0.1, far
beyond the EMRI regime, in this figure. This “abuse”
of the large-mass ratio limit was done in order to make
the effects of spin-curvature coupling more apparent to
the eye. At mass ratios appropriate for EMRI sources,
bearing in mind that scaling as O(S2) means O(ε4), we
expect differences to be far less apparent.

B. Backreaction and inspiral

The leading adiabatic backreaction requires only the
orbit-averaged dissipative part of the first-order self force.
Flux balance laws allow us to compute this using only
knowledge of GW fluxes at the horizon and infinity. Such
flux balance laws have the form(

dC
dt

)orbit

= −
(
dC
dt

)∞

−
(
dC
dt

)H
. (4.2)

where C corresponds to a conserved quantity along the
geodesic such as E, Lz or Q. We can then calculate the
transition of the worldline between each OG using rates
of change dE/dt, dLz/dt, dQ/dt to construct an inspiral.
Note that in this adiabatic construction we omit the

conservative first-order self force as well as oscillatory
pieces of the dissipative self force; both of these effects
are included in Ref. [19]. In computing the GW fluxes, we
only include the contribution of the “monopole” term of
the secondary’s stress-energy tensor, which arises from
the smaller body’s mass. We thus omit the impact of
the “dipole” term to this stress-energy, which arises from
the smaller body’s spin, and is included in Refs. [70, 71].
Including effects which we neglect are natural points for
further development and future work.
The rates of change of energy dE/dt at infinity and at

the horizon are given by [78](
dE

dt

)∞

=
∑
lmkn

|Z∞
lmkn|

2

4πω2
mkn

, (4.3)

(
dE

dt

)H
=
∑
lmkn

αlmkn
∣∣ZHlmkn∣∣2

4πω2
mkn

; (4.4)

the corresponding rates of change of angular momentum
dLz/dt are [78](

dLz
dt

)∞

=
∑
lmkn

m |Z∞
lmkn|

2

4πω3
mkn

, (4.5)

(
dE

dt

)H
=
∑
lmkn

αlmknm
∣∣ZHlmkn∣∣2

4πω3
mkn

. (4.6)
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FIG. 1. Comparison between spinning-body orbits computed using the OG approach in this work (solid black), spinning-body
orbits computed using the frequency-domain approach in Refs. [52, 53] (blue diamond markers), and a geodesic, non-spinning
orbit with the same parameters (dotted red). The orbit shown in the top panels (a) has initial parameters given by a = 0.7M ,
pIC = 7.138, eIC = 0.326, and xIC = 0.966 while the orbit shown in the bottom panels has initial parameters given by a = 0.5M ,
pIC = 10.122, eIC = 0.721, and xIC = 0.966. The “IC” subscript indicates that these are “matched initial conditions” orbital
parameters: the geodesic orbit defined by the triplet (pIC , eIC , xIC) (plotted with the red dashed line) has the same initial
conditions as the spinning-body orbit (plotted with the black solid line). There is also a “matched turning point” description of
orbital parameters used in Refs. [52, 53], where the geodesic defined by (pTP , eTP , xTP ) and the corresponding spinning-body
orbit have matched turning points. For completeness, the “matched turning point” orbital elements for the two spinning-body
orbits pictured here are: (pTP = 7, eTP = 0.3, xTP = 0.966) for the top panels and (pTP = 10, eTP = 0.7, xTP = 0.966)
for the bottom panels. See Appendix B 3 for further details. The small body has mass ratio ε = 10−1 and a spin vector with
s = 1 and s∥ = s. Note that this mass ratio is rather far from the EMRI limit; we use this value here to make the effects of
spin-curvature coupling more apparent to the eye.

The coefficients Z∞,H
lmkn are obtained by integrating ho-

mogeneous solutions of the separated radial Teukolsky
equation against this equation’s source term. See Sec.
III, particularly Eq. (3.9) of Ref. [38] for further details
of this calculation, and see Eqs. (3.30), (3.31), and (3.32)
of that paper for the expression for αlmkn. The mode
frequency ωmkn is related to the geodesic frequencies by

ωmkn = mΩ̂ϕ + kΩ̂θ + nΩ̂r . (4.7)

Contributions to the rate of change of the Carter con-
stant Q similarly involve contributions from fields at in-
finity and fields on the horizon:(

dQ

dt

)∞

=
∑
lmkn

|Z∞
lmkn|

2 Lmkn + kΥ̂θ
2πω3

mkn

, (4.8)

(
dQ

dt

)H
=
∑
lmkn

αlmkn
∣∣ZHlmkn∣∣2 Lmkn + kΥ̂θ

2πω3
mkn

. (4.9)

where

Lmkn = m⟨cot2 θ⟩L̂z − a2ωmkn⟨cos2 θ⟩Ê . (4.10)

Here, ⟨f(θ)⟩ denotes a particular averaging with respect
to the orbital motion of functions of θ, defined in Eq.
(2.13) of Ref. [38]. It is straightforward to convert from

rates of change of the constants of motion (Ê, L̂z, Q̂) to
those of the orbital elements (p, e, xI) which is the form
we use in this article. See Appendix B of Ref. [38] for the
explicit conversion between the two rates of change.

V. NEAR IDENTITY TRANSFORMATIONS

The OG framework described in the previous section is
computationally expensive, requiring us to evaluate forc-
ing terms multiple times per orbit cycle. The computa-
tional cost associated with this approach thus grows with
the number of orbits, scaling inversely with the system’s
mass ratio. Near-identity transformations (NITs) have
proven to be powerful tools for modeling EMRI systems
[17, 19, 77, 79] by introducing an averaging that makes
it possible to include inspiral physics without needing to
track the system’s cycle-by-cycle orbital-time dynamics,
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substantially reducing the model’s computational cost.
NITs are an established mathematical procedure [80],
used in celestial mechanics and other domains, that aver-
ages a system’s short timescale behaviour while preserv-
ing the secular evolution on longer timescales. In this sec-
tion, we describe how to apply NITs to model the inspiral
of spinning bodies, substantially reducing the computa-
tional cost of making such models. In our results (Secs.
VI and VII), we show that this reduction in computa-
tional cost does not involve a loss of modeling accuracy.

A. NIT background: Notation and generalities

We begin by introducing important notation and defi-
nitions which will be used throughout this section. Cer-
tain sets of related quantities will be organized into “vec-
tors,” denoted with an overarrow. For example, the set
of principal orbital elements are organized into a vector

P⃗ = (p, e, xI), the phases into q⃗ = (qr, qz), and extrinsic

quantities X⃗ = (t, ϕ). As introduced in Sec. III B, we
denote spin-precession phase by ψs. It is also useful to
define a vector containing both orbital and spin phases:

Q⃗ = (qr, qz, ψs). Finally, it will be useful later, partic-
ularly when we begin to construct waveforms, to refer
to the complete set of phases including the azimuthal

phase. We denote this set Q⃗ = (qr, qz, ϕ, ψs). (Notice
that these “vectors” do not have a consistent number of
components.)

The NIT of a quantity A will be denoted by Ã and
defined by the form

Ã = A+ εA(1) + ε2A(2) +O(ε3) , (5.1)

where the transformation functions A(n) are required to
be smooth, periodic functions of the orbital phases q⃗.
The transformation functions introduced in this section
are: Y

(n)
j , used to effect the NIT of the vector P⃗ ; X

(n)
i ,

used for the phase q⃗; W
(n)
s , used for the spin-precession

phase ψs; and Z
(n)
k , used for the extrinsic quantities X⃗ .

The superscript (n) indicates the term appears at n-th
order in the expansion in mass ratio ε. After undergoing
the NIT, these quantities are denoted with two accents, a
tilde denoting the NIT, and the overarrow as our vector

shorthand for these sets. For example, ⃗̃P denotes the set
of transformed principal orbit elements (p̃, ẽ, x̃I).
It will sometimes be useful to decompose functions into

a Fourier series. We use the convention

A(P⃗ , Q⃗) =
∑

κ⃗∈Zjmax

Aκ⃗(P⃗ )e
iκ⃗·Q⃗ , (5.2)

where jmax is the number of phases, and κ⃗ is a vector
of integers with jmax components. Any component of κ⃗
which attaches to the spin phase runs over the set −1,
0, 1; the other components run formally from −∞ to
∞. The dot product used in the exponent is the usual

Euclidean, Cartesian one: κ⃗ · Q⃗ = κiQjδij , where δij

is the identity. Using this Fourier series, we can split

A(P⃗ , Q⃗) into an averaged piece ⟨A⟩ (P⃗ ) given by

⟨A⟩ (P⃗ ) = A0⃗(P⃗ )

=
1

(2π)jmax

∫
· · ·
∫
Q⃗

A(P⃗ , Q⃗) dq1 . . . dqjmax
,

(5.3)

and an oscillating piece given by

Ă(P⃗ , Q⃗) = A(P⃗ , q⃗)− ⟨A⟩ (P⃗ ) =
∑
κ̸⃗=0⃗

Aκ⃗(P⃗ )e
iκ⃗·Q⃗ . (5.4)

Note that the Greek subscript with a vector accent (e.g.,
Aκ⃗) indicates a Fourier index, in contrast to a Latin sub-
script with no vector accent (e.g., Aj), which denotes a
component of the vector.

B. Mino-time formulation

We begin by writing down the form of the equations
that we want to average. First observe that the rate of
change of the spin phase is given by (3.28). We define

the right-hand side of this equation as f
(0)
s :

dψs
dλ

=
√
K̂

(
(r2 + a2)Ê − aL̂z

K̂ + r2
+ a

L̂z − a(1− z2)Ê

K̂ − a2z2

)
≡ f (0)s . (5.5)

The phase ψs has an analytic solution in the form

ψs = Υ(0)
s λ+ ψsr(qr) + ψsz(qz) , (5.6)

where Υ
(0)
s is the Mino-time spin frequency. (We add

the superscript (0) to the various Mino-time geodesic fre-
quencies when they are used in the NIT context, to em-
phasize that they do not include information about the
secondary at O(ε) or higher.) Expressions for ψsr(qr)
and ψsz(qz) can be found in Eqs. (57) and (58) of Ref.
[56] where they are denoted ψr(qr) and ψz(qz).
To post-adiabatic order, the equations of motion of the

system can be written schematically as

dPj
dλ

= εF
(1)
j (P⃗ , q⃗, ψs) + ε2F

(2)
j (P⃗ , q⃗, ψs) , (5.7a)

dqi
dλ

= Υ
(0)
i (P⃗ ) + εf

(1)
i (P⃗ , q⃗, ψs) , (5.7b)

dψs
dλ

= f (0)s (P⃗ , q⃗) , (5.7c)

dXk
dλ

= f
(0)
k (P⃗ , q⃗) . (5.7d)

Here, the forcing terms are given by

F
(1)
j = F

(1)
j,GSF(P⃗ , q⃗) + sF

(1)
j,SCF(P⃗ , q⃗, ψs) , (5.8a)

f
(1)
i = f

(1)
i,GSF(P⃗ , q⃗) + sf

(1)
i,SCF(P⃗ , q⃗, ψs) , (5.8b)
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F
(2)
j = F

(2)
j,GSF(P⃗ , q⃗) , (5.8c)

where s is the spin of the secondary scaled such that
∥s∥ ≤ 1 as discussed in Sec. III B. The terms Fi,GSF and
fi,GSF are due to the gravitational self-force, while Fi,SCF

and fi,SCF are due to the spin-curvature force. It is worth
remarking that although these terms are derived from
the gravitational self force and the spin-curvature force,
they are not identical to these forces; they are essentially
projections of certain components of these forces.

The averaged variables, P̃j , q̃i, ψ̃s, and X̃k, are related
to the OG variables Pj , qi, ψs, and Xk via

P̃j = Pj + ϵY
(1)
j (P⃗ , q⃗, ψ̃s) + ϵ2Y

(2)
j (P⃗ , q⃗, ψ̃s) +O(ε3) ,

(5.9a)

q̃i = qi + ϵX
(1)
i (P⃗ , q⃗, ψ̃s) + ϵ2X

(2)
i (P⃗ , q⃗ , ψ̃s) +O(ε3),

(5.9b)

ψ̃s = ψs +W (0)
s (P⃗ , q⃗) + ϵW (1)

s (P⃗ , q⃗ , ψ̃s) +O(ε2),

(5.9c)

X̃k = Xk + Z
(0)
k (P⃗ , q⃗) + ϵZ

(1)
k (P⃗ , q⃗) +O(ε2). (5.9d)

As noted previously, the transformation functions Y
(n)
j ,

X
(n)
i , W

(n)
s , and Z

(n)
k are smooth, periodic functions of

the orbital phases Q⃗. At leading order, Eqs. (5.9) are
identity transformations for Pj and qi, but not for Xk
and ψs due to the presence of zeroth-order transforma-

tion terms Z
(0)
k and W

(0)
s respectively. Details about the

derivation of Mino-time quantities are given in Appendix
D1 and a summary of relevant Mino-time definitions can
be found in Appendix D2.
In summary, the equations of motion for the averaged

variables P̃j , q̃i, ψ̃s, and X̃k take the form

dP̃j
dλ

= εF̃
(1)
j ( ⃗̃P ) + ε2F̃

(2)
j ( ⃗̃P ) +O(ε3) , (5.10a)

dq̃i
dλ

= Υ
(0)
i ( ⃗̃P ) + εΥ

(1)
i ( ⃗̃P ) +O(ε2) , (5.10b)

dψ̃s
dλ

= Υ(0)
s ( ⃗̃P ) +O(ε) , (5.10c)

dX̃k
dλ

= Υ
(0)
k ( ⃗̃P ) + εΥ

(1)
k ( ⃗̃P ) +O(ε2) . (5.10d)

The explicit forms for F̃
(1)
j , F̃

(2)
j , Υ

(1)
i , and Υ

(1)
k can be

found in Appendix D2.
Crucially, the NIT equations of motion 5.10 are inde-

pendent of the orbital phases Q⃗, meaning these differen-
tial equations are fast to evaluate. Another crucial point
is that, in the extreme mass ratio limit ε → 0, the solu-
tions to the NIT equations 5.10 tend to the solutions for
OG equations 5.7.

C. Boyer-Lindquist-time formulation

The above equations of motion 5.10 are parameter-
ized in terms of Mino time λ. It is significantly more

convenient for waveform generation purposes to have
equations of motion parameterized in terms of Boyer-
Lindquist time. Thus, we perform a second averaging
transformation as first outlined in Ref. [12] and imple-
mented in Refs. [77, 79].

We relate the Mino-time averaged variables ⃗̃P =

(p̃, ẽ,x̃I) and ⃗̃Q = (q̃r, q̃z, ψ̃s, ϕ̃) to the Boyer-Lindquist-

time averaged variables P⃗ = (pφ, eφ, xφ) and φ⃗ =
(φr, φz, φs, φϕ) via:

Pj = P̃j + ϵΠ
(1)
j ( ⃗̃P, ⃗̃q) + ϵ2Π

(2)
j ( ⃗̃P, ⃗̃q) +O(ε3) , (5.11a)

φi = Q̃i +∆φi + ϵΨ
(1)
i ( ⃗̃P, ⃗̃q) +O(ε2) , (5.11b)

where ∆φi = Ω
(0)
i ( ⃗̃P )∆t(0) and Ω

(0)
i is the Boyer-

Lindquist fundamental frequency of the tangent geodesic.

To obtain the equations of motion for P⃗ and φ⃗, we
take the time derivative of Eq. (5.11), substitute the ex-
pression for the NIT equations of motion, and then use
the inverse transformation of Eq. (5.11) to ensure that

all functions are expressed in terms of P⃗ and ⃗̃q. We then
expand order by order in ε. We chose the oscillatory

functions ∆t, Ψ
(1)
i , Π

(1)
j , and Π

(2)
j in order to cancel out

any oscillatory terms that appear at each order in ε. This
results in averaged equations of motion that take the fol-
lowing form:

dPj
dt

= εΓ
(1)
j (P⃗) + ε2Γ

(2)
j (P⃗) +O(ε3) , (5.12a)

dφα
dt

= Ω(0)
α (P⃗) + εΩ(1)

α (P⃗) +O(ε2) . (5.12b)

These equations of motion are related to the Mino time
averaged equations of motion (5.10) with the adiabatic
terms given by

Γ
(1)
j =

F̃
(0)
j

Υ
(0)
t

, Ω(0)
α =

Υ
(0)
α

Υ
(0)
t

, (5.13a-b)

and the post-adiabatic terms given by

Γ
(2)
j =

1

Υt

(
F̃

(2)
j + F̃ (1) ∂

∂Pj

〈
Π

(1)
j

〉
−
〈
f
(0)
t Π

(1)
k

〉 ∂Γ(1)
j

∂Pk
−Υ

(1)
t Γ

(1)
j

)
,

(5.14a)

Ω(1)
α =

1

Υ
(0)
t

(
Υ(1)
α + F̃

(1)
j

〈
∂∆φα
∂Pj

〉

−
〈
f
(0)
t Π

(1)
k

〉 ∂Ω(0)
α

∂Pk
−Υ

(1)
t Ω

(1)
i

)
.

(5.14b)

This constrains the oscillating pieces of our transforma-
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tion to be

∆t =
∑
κ̸=0

f
(0)
t,κ⃗

−iκ⃗ · Υ⃗(0)
= −Z̆(0)

t , (5.15a)

Π̆
(1)
j =

∑
κ̸=0

f
(0)
t,κ⃗

−iκ⃗ · Υ⃗(0)
Γ
(1)
j = −Z̆(0)

t Γ
(1)
j , and (5.15b)

Ψ
(1)
α,κ⃗ =

i

κ⃗ · Υ⃗(0)

(
∂∆φα,κ⃗
∂Pj

F̃
(1)
j −

f
(0)
t,κ⃗

Υ
(0)
t

Υ
(1)
t Ω

(0)
t

+
∑
κ⃗′ ̸=0⃗

[(
iκ⃗′ · X⃗(1)

κ⃗−κ⃗′f
(0)
t,κ⃗′ + Y

(1)
j,κ⃗−κ⃗′

∂f
(0)
t,κ⃗′

∂Pj

)
Ω(0)
α

−Π
(1)
j,κ⃗−κ⃗′f

(0)
t,κ⃗′

∂Ω
(0)
α

∂Pj

])
.

(5.15c)

We are free to chose the averaged pieces of Π
(1)
j , and

we make the simplification that
〈
Π

(1)
j

〉
= 0. With this

and the identity
〈
f
(0)
t (
∫
f
(0)
t dq⃗)

〉
= 0, we get the sim-

plification
〈
f
(0)
t Π

(1)
j

〉
= 0. The expressions for Γ

(2)
j and

Ω
(1)
α then simplify to

Γ
(2)
j =

1

Υ
(0)
t

(
F̃

(2)
j −Υ

(1)
t Γ

(1)
j

)
, (5.16a)

Ω(1)
α =

1

Υ
(0)
t

(
Υ(1)
α −Υ

(1)
t Ω(0)

α

)
. (5.16b)

A useful aspect of these equations of motion is that

their solutions P⃗(t) and φ⃗(t) are exactly what is re-
quired to feed into waveform generating schemes, as
shown in Appendix B of [79]. Once these solutions are
constructed, it is then straightforward to augment adia-
batic waveform construction schemes [38–40] to include
the post-adiabatic effects these solutions describe. It is
also worth noting that the additional averaging associ-
ated with Boyer-Lindquist time could be circumvented
by using closed-form expressions for the geodesic orbits
in terms of action angles associated with Boyer-Lindquist
frequencies, i.e., φ⃗. This has been achieved already for
bound orbits in Schwarzschild spacetime via a small ec-
centricity expansion [81].

D. Averaged spinning-body equations of motion

In the previous sections, we derived equations of mo-
tion to post-adiabatic order by assuming that the grav-
itational self-force is known to O(ε2). As of now, it is
only feasible to mass produce data describing the leading-
order dissipative radiation reaction via flux balance laws
(and this has only been done so far for a fairly limited
range of parameters). Although tools exist to compute

more of the first-order GSF [16], doing so is computation-
ally expensive, and the second-order GSF for generic Kerr
remains far off. This means that we set the second-order
corrections to zero, F

(2)
j,GSF = 0, and we have no conser-

vative contributions from the self-force, f
(1)
i,GSF = 0.

The other force driving the evolution is the spin-
curvature force which has no dissipative effects. As such,
its orbit average is zero and so the terms which change

the principal orbit elements, F
(1)
j,SCF, vanish on average:〈

F
(1)
j,SCF

〉
= 0. The resulting averaged equations of mo-

tion parameterized in Mino-time λ are given by:

dp̃

dλ
= εF̃ (1)

p (p̃, ẽ, x̃I) , (5.17)

dẽ

dλ
= εF̃ (1)

e (p̃, ẽ, x̃I) , (5.18)

dx̃I
dλ

= εF̃ (1)
x (p̃, ẽ, x̃I) , (5.19)

dq̃r
dλ

= Υ(0)
r (p̃, ẽ, x̃I) + εsΥ(1)

r (p̃, ẽ, x̃I) , (5.20)

dq̃z
dλ

= Υ(0)
z (p̃, ẽ, x̃I) + εsΥ(1)

z (p̃, ẽ, x̃I) , (5.21)

dϕ̃

dλ
= Υ

(0)
ϕ (p̃, ẽ, x̃I) + εsΥ

(1)
ϕ (p̃, ẽ, x̃I) , (5.22)

dt̃

dλ
= Υ

(0)
t (p̃, ẽ, x̃I) + εsΥ

(1)
t (p̃, ẽ, x̃I) , (5.23)

dψ̃s
dλ

= Υ(0)
s (p̃, ẽ, x̃I) . (5.24)

Many of these terms are simply related to the trans-
formed force terms averaged over a single orbit, which
are as follows:

F̃ (1)
p =

〈
F

(1)
p,GSF

〉
, F̃ (1)

e =
〈
F

(1)
e,GSF

〉
F̃ (1)
x =

〈
F

(1)
x,GSF

〉
,

(5.25a-c)

Υ(1)
r =

〈
f
(1)
r,SCF

〉
, Υ(1)

z =
〈
f
(1)
z,SCF

〉
, (5.25d-e)

Υ(0)
s =

〈
f (0)s

〉
, Υ

(0)
ϕ =

〈
f
(0)
ϕ

〉
, Υ

(0)
t =

〈
f
(0)
t

〉
,

(5.25f-h)

where Υ
(0)
s , Υ

(0)
ϕ , and Υ

(0)
t are the Mino-time preces-

sion, azimuthal, and time fundamental frequencies re-
spectively which are known analytically [55, 56]. The
remaining terms are more complicated and are given in
terms of an operator N which we define in Appendix D3.
These remaining terms are given by:

Υ(1)
s = N (f (0)s ) , Υ

(1)
ϕ = N (f

(0)
ϕ ) , Υ

(1)
t = N (f

(0)
t ) .

(5.25i-k)

The leading order near-identity transformation for the
orbital elements needed for the initial conditions is given
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FIG. 2. Spinning-body inspiral for different mass ratios. Left-hand panels show inspirals obtained using the OG equations of
motion for mass ratios ε = 5× 10−2 (red; large oscillations), ε = 10−2 (yellow; medium oscillations) and ε = 10−3 (blue, small
oscillations). We again note that these mass ratios are larger than those expected for EMRI systems, and are used here in
order to amplify the impact of spin-curvature coupling for visual purposes. The initial parameters used are p = 12, e = 0.35,
xI = 0.5, qr = 0, and qz = 0. Right-hand panels show the absolute difference in orbital elements of a spinning-body inspiral
comparing the OG and NIT methods; NIT orbital elements are labeled with subscript φ. In these right-hand panels, we initially
set e = 0.22, xI = 0.699, qr = 0, and qz = 0. Data shown corresponds to the system evolving from p = 9.45 to p = 9. As
expected, the absolute differences track with the ε curve (solid, black). For all data in this figure, the small body orbits a black
hole with spin a = 0.7M and the magnitude and orientation of the small body’s spin is specified by s = 1, s∥ = s.

by:

Y̆
(1)
j ≡

∑
(κr,κz )̸=(0,0)

iF
(1)
j,GSF,κr,κz

κrΥ
(0)
r + κzΥ

(0)
z

ei(κrqr+κzqz)

+
∑

(κr,κz,κs )̸=(0,0,0)

isF
(1)
j,SCF,κr,κz,κs

κrΥ
(0)
r + κzΥ

(0)
z + κsΥ

(0)
s

× ei(κrqr+κzqz+κsψs) .

(5.26)

With this all in hand, we can now derive the averaged
equations of motion parameterized by Boyer-Lindquist
time t for the phases φ⃗ = {φr, φz, φϕ φs} and orbital

elements P⃗ = {pφ, eφ, xφ} in form

dpφ
dt

= εΓ(1)
p (pφ, eφ, xφ) + ε2Γ(2)

p (pφ, eφ, xφ) , (5.27a)

deφ
dt

= εΓ(1)
e (pφ, eφ, xφ) + ε2Γ(2)

e (pφ, eφ, xφ) , (5.27b)

dxφ
dt

= εΓ(1)
x (pφ, eφ, xI,φ) + ε2Γ(2)

x (pφ, eφ, xφ) , (5.27c)

dφr
dt

= Ω(0)
r (pφ, eφ, xφ) + εsΩ(1)

r (pφ, eφ, xφ) , (5.27d)

dφz
dt

= Ω(0)
z (pφ, eφ, xφ) + εsΩ(1)

z (pφ, eφ, xφ) , (5.27e)

dφϕ
dt

= Ω
(0)
ϕ (pφ, eφ, xφ) + εsΩ

(1)
ϕ (pφ, eφ, xφ) , (5.27f)

dφs
dt

= Ω(0)
s (pφ, eφ, xφ) . (5.27g)

The leading order terms in these equations are given by

Γ̃(1)
p = F̃ (1)

p /Υ
(0)
t , Γ̃(1)

e = F̃ (1)
p /Υ

(0)
t , F̃ (1)

x = F̃ (1)
x /Υ

(0)
t ,

(5.28a-c)

Ω̃(0)
r = Υ(0)

r /Υ
(0)
t , Ω̃(0)

z = Υ(0)
z /Υ

(0)
t , (5.28d-e)
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Ω̃
(0)
ϕ = Υ

(0)
ϕ /Υ

(0)
t , Ω̃(0)

s = Υ(0)
s /Υ

(0)
t . (5.28f-g)

The sub-leading terms are given by

Γ(2)
p = −Υ

(1)
t Γ(1)

p /Υ
(0)
t , (5.29a)

Γ(2)
e = −Υ

(1)
t Γ(1)

e /Υ
(0)
t , (5.29b)

Γ(2)
x = −Υ

(1)
t Γ(1)

x /Υ
(0)
t , (5.29c)

Ω(1)
r =

1

Υ
(0)
t

(
Υ(1)
r −Υ

(1)
t Ω(0)

r

)
, (5.29d)

Ω(1)
z =

1

Υ
(0)
t

(
Υ(1)
z −Υ

(1)
t Ω(0)

z

)
, (5.29e)

Ω
(1)
ϕ =

1

Υ
(0)
t

(
Υ

(1)
ϕ −Υ

(1)
t Ω

(0)
ϕ

)
. (5.29f)

The aligned spin case has equations in the same form
as in the arbitrarily oriented case. The main difference is
that we no longer have to evolve the precession phase ψs
or φs. The other consequence is that the leading order
NIT for the orbital elements reduces to

Y̆
(1)
j ≡

∑
(κr,κz) ̸=(0,0)

i
(
F

(1)
j,GSF,κr,κz

+ sF
(1)
j,SCF,κr,κz

)
κrΥ

(0)
r + κzΥ

(0)
z

× ei(κrqr+κzqz) .

(5.30)

The difference between the OG and averaged quanti-
ties scales linearly with the mass ratio as can be seen in
Fig. 2. See Appendix E for a discussion of the choice of
initial conditions in the context of OG and NIT inspirals.

E. Implementation

To implement the NIT procedure in practice, we must
perform a series of offline steps. We first generate a grid
to cover a section of the 4-dimensional Kerr parameter
space that we wish to examine. We fix a/M = 0.7, and
choose our principal elements Pj = (p, e, xI) in the range
from Pj,min to Pj,max in steps of Pj,step. For all the anal-
yses we present in this paper, we use emin = 0.05, emax =
0.22, estep = 0.005, and xI,min = 0.69, xI,max = 0.701,
xI,step = 0.001. The resolution we use in p varies de-
pending on our goal. For the convergence study in Fig.
2, we use pmin = 9, pmax = 9.5, pstep = 0.002; for cal-
culating the full trajectory, we use a coarser grid that
covers a wider range of parameter space: pmin = 3.2,
pmax = 10, pstep = 0.02. We select this region in order
to avoid low order transient resonances7 where our NIT

7 Note that transient self-forced resonances are not a concern in
this work because we do not include self-force terms that would
produce them in this analysis. Such terms are likely to be incor-
porated in the future.

procedure breaks down, though methods for dealing with
resonances have been developed elsewhere [79].
At each point in this grid, we use a fast Fourier trans-

form to numerically decompose the OG functions into
Fourier modes, and then sum them together in accor-
dance with Eqs. (5.25), (5.26), (5.28), and (5.28) to pro-
duce the averaged terms needed in our NIT equations
of motion and the modes of the leading order trans-
formation terms needed to set the initial conditions.
These data are then interpolated using Hermite polyno-
mials with Mathematica’s Interpolate function. Over-
all, these offline steps take about 3 hours running in par-
allel (10 cores) using 3-GHz-class Apple M1 processors.
By contrast, the online steps are computationally

cheap. One loads the interpolants produced by the offline
analysis, sets initial conditions using Eqs. (E1), (E2), and
(E3), and then numerically solves the equations using
Mathematica’s NDSolve. The resulting equations of mo-
tion can then be solved in less than a second, regardless
of mass ratio. This is compared with the minutes to mul-
tiple hours (depending on mass ratio) required by the OG
method. In the supplementary material, we provide the
interpolants, radiation-reaction data, and a Mathematica
notebook to rapidly compute this trajectory.

VI. RESULTS I: INSPIRALS

We present our results in two parts: the inspirals we
find combining spin-curvature coupling with radiation re-
action (this section), and the waveforms produced by
those inspirals (following section).

A. Aligned spin

We begin by examining a set of generic (inclined and
eccentric) inspirals with aligned secondary spin and mass
ratios ε = 5×10−2, 10−2, and 10−3 (left panel of Fig. 2).
As we have emphasized elsewhere, we expect astrophysi-
cal EMRI systems to have mass ratios of 10−4 or smaller;
we use a larger mass ratio here to augment and clearly
show spinning body effects. Each example we consider
begins at p = 12, e = 0.35, xI = 0.5. We look at in-
spiral into black holes with a/M = 0.7. The left-hand
panel of Fig. 2 shows these inspirals in the (p, e) plane
(top) and the (p, xI) plane (bottom). In all cases, p de-
creases due to radiation reaction until the system reaches
the LSO (shown as a dotted line); e decreases for much
of the inspiral, showing an uptick near the LSO (a well-
known strong-field characteristic of GW driven inspiral
[82]). The inspiral increases in inclination (corresponding
to a decrease in xI) all the way to the LSO, with no deep
strong-field reversal of sign unlike the p-e trajectory.
In the left panel of Fig. 2, we see that the amplitude

of the oscillations increases with increasing mass ratio ε,
while the number of oscillations increases inversely with
mass ratio. This is because the duration of inspiral scales
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FIG. 3. Dephasing in qr(t), qz(t), and ϕ(t) for a spinning body
relative to a non-spinning body with mass ratio ε = 10−2

orbiting a black hole with spin a = 0.7M . The magni-
tude and orientation of the small body’s spin is specified
by s = 1, s∥ = s. Dashed lines show the dephasing com-
puted using the NIT; solid lines show the dephasing given
by the OG equations. Top panel shows the radial dephasing
qSCF+RR
r − qRR

r (red), middle shows dephasing in the polar
angle qSCF+RR

z − qRR
z (yellow), and bottom shows dephasing

in axial angle ϕSCF+RR − ϕRR (blue). In all panels, solid
lines show the OG computation, dashed shows the NIT re-
sults. The inspiral used for all panels has the initial condi-
tions p = 10, e = 0.2, xI = 0.7, qr = 0, qz = 0, and ϕ = 0.

inversely with ε, changing the number of orbital cycles
the inspiral passes through before reaching the LSO. The
difference between OG and averaged quantities also de-
creases with decreasing ε (right panel of Fig. 2); this is
a useful validation of the NIT procedure. In the bottom
right panel of Fig. 2), there is an uptick in the value of

|(ϕ+ Z
(0)
ϕ − ΩϕZ

(0)
t )− φϕ| for mass ratio ε = 10−4; this

is due to numerical error floor in the OG solver as well
as interpolation error in the NIT solution. We expect
this error could be reduced with a more computationally
expensive online (higher precision numerical solver) or
offline (higher precision interpolation) step.

The curves in Fig. 3 show the dephasing of a generic in-
spiral due to spin-curvature force. We show the difference
between various phases computed using only adiabatic
radiation reaction (denoted by “RR”), and radiation re-
action plus the spin-curvature force (denote by “SCF +
RR”). The dashed lines in all panels show the averaged
(NIT) dephasing φSCF+RR

y − φRRy ; y = r is shown in
the top panel, y = z in the middle, and y = ϕ in the
bottom. (We remind the reader that φα represents the
averaged phases parameterized in Boyer-Lindquist time.)
The solid curves in the three panels show these dephas-
ings computed using the OG equations.
The inclusion of the spin-curvature force, which is con-

servative [63, 83], will lead to secular changes to the
evolution of the phases. In Fig. 3, we see secular cor-
rections to the phases accumulate when post-adiabatic
effects are included. The evolution of the radial dephas-
ing φSCF+RR

r − φRRr is not monotonic, increasing to a
maximum value and subsequently decreasing to less than
zero. The secular dephasing of both φSCF+RR

z −φRRz and

φSCF+RR
ϕ − φRRϕ by contrast is monotonic.
As discussed in previous sections of this paper, short

timescale oscillations in solutions to the OG equations
of motion are removed by the NIT averaging procedure,
isolating the longer timescale, secular evolution (compare
the solid and dashed curves in Fig. 3). For more extreme
mass ratios, the difference in time scales is significant,
and it greatly reduces computational cost to compute on
only the longer secular timescale. The oscillations in the
solution to the OG equations contain harmonics of mul-
tiple frequencies; this complexity in harmonic structure
is especially clear in the bottom panel of Fig. 3 which
displays ϕSCF+RR − ϕRR. In this spin-aligned case, har-
monics of Ωr and Ωz (or equivalently Ωθ) contribute to
the structure. In the spin-misaligned case we examine in
the next section, harmonics of Ωs are also present.

B. Misaligned spin

We now look at an example of generic spinning body
inspiral with misaligned small-body spin. The red curves
in Fig. 4 show a generic inspiral, both with (solid line)
and without (dashed line) the spin-curvature force. The
orange curve shows the projection of the inspiral onto the
p-e plane; the blue curve shows the projection onto the p-
xI plane. Just as in the aligned case, the projection onto
the p-e plane shows a decrease in eccentricity throughout
most of the inspiral, and then ticks up shortly before
reaching the LSO (depicted by a black line). The inspiral
increases in inclination (corresponding to a decrease in
xI) all the way to the LSO, with no deep strong-field
reversal of sign unlike the p-e trajectory.

Figure 5 shows a more detailed depiction of the projec-
tions of the inspiral onto the p-e and p-xI planes (leftmost
panels of the first two rows). Each panel includes an inset
which zooms in on the inspiral close to the LSO. The sec-
ular evolution of the principal orbital elements p, e, and
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FIG. 4. The trajectory in p-e-xI space for an example generic inspiral. This inspiral (red curve) begins at (p, e, xI) =
(10, 0.38, 0.6967) and ends at the LSO (the light blue plane). The dashed curves show a non-spinning body’s inspiral; solid
curves are for the inspiral of a spinning small body. The orange curves show the projection of the inspiral onto the p-e plane;
the solid black line in this plane is the projection of the last stable orbit at the final value of xI . (This projection is the same
as the top panel of Fig. 5.) The blue curves show the projection of the inspiral onto the p-xI plane; the solid black curve in
this plane is the projection of the LSO at the final value of e. (This projection is the same as the middle panel of Fig. 5.) We
use mass-ratio ε = 0.005 and small-body spin s = 1, with s∥ = 0.9 and ϕs = π/2. See Fig. 15 in Ref. [38] for comparison.

FIG. 5. Evolution of p versus e (top left) and evolution of p versus xI (bottom left) for the inspiral shown in Fig. 4. Solid
black curves show spinning body inspiral; blue dashed curves show non-spinning body inspiral. In both plots, the last stable
orbit (LSO) is shown by the red dotted curve. The insets show close-ups of inspiral near the LSO. Right-hand panels show
projections of the worldline onto the xBL-yBL and r-zBL planes (where xBL, yBL, zBL are Cartesian-like representations of
Boyer-Lindquist coordinates: xBL = r sin θ cosϕ, etc.), with color encoding the time evolution (early times in purple and late
times in red). Parameters are identical to those used in Fig. 4.
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FIG. 6. The averaged dephasing of φr(t), φz(t), and φϕ(t) for
a small body with a misaligned spin vector relative to a non-
spinning body for three different values of spin alignment:
s∥ = 1 (blue), s∥ = 0.8 (orange) and s∥ = 0.5 (red). The
magnitude of the small body’s spin is s = 1; ϕs is zero except
for the orange curve which has ϕs = π/4. The small body
has mass ratio ε = 10−2 and is orbiting a black hole with spin
a = 0.7M . For all panels, p = 10, e = 0.2, xI = 0.7, qSr = 0,
qSz = 0, and ϕ = 0 initially. In all three cases, the dephasing is
simply proportional to s∥: s∥ = 1 shows the largest effect; the
curves with s∥ = 0.8 and s∥ = 0.5 track that curve, but with
magnitudes smaller by factors of 0.8 and 0.5, respectively.

xI is unaffected by the presence of the spin-curvature
force, but this force drives oscillations about the secular
trajectory. Notice that the generic inspiral has harmonic
structure at multiple timescales — the oscillations have
a more complicated structure than we saw in the case

of aligned inspirals. This more intricate harmonic struc-
ture is because there are terms in the equations of motion
which are periodic with the four frequencies Ωr, Ωθ, Ωϕ,
and Ωs. Harmonics at frequency Ωs are due to the pre-
cession of the small-body’s spin vector. Oscillations in
the xI -p trajectory are particularly complex, involving
beats between all four frequencies.
The right-hand panels of Fig. 5 show the inspiral

trajectory in a Cartesian representation of the Boyer-
Lindquist coordinates: we define xBL = r sin θ cosϕ,
yBL = r sin θ sinϕ, zBL = r cos θ, with r, θ, and ϕ the
Boyer-Lindquist coordinates along the inspiral. In the r-
zBL inspiral projection, we see that the maximum |zBL|
decreases as inspiral progresses. Although the inclination
angle I increases during inspiral, the effect is quite small.
The shrinking of r due to radiative backreaction is much
more significant, so |zBL| = |r cos θ| decreases overall.
Figure 6 shows how the misalignment of the small-

body spin modifies the inspiral. From top to bottom,
the three panels show the dephasing of the spinning-body
phases (φSCF+RR

r , φSCF+RR
z , and φSCF+RR

ϕ ) relative to

those of a non-spinning body (φRRr , φRRz , and φRRϕ ). We

see that the value of φSCF+RR
y − φRRy , y ∈ {r, z, ϕ}, is

proportional to s∥, as expected from previous analyses
[53, 64]. In all three panels, the blue curve (correspond-
ing to aligned spins, s∥ = 1), shows the largest dephasing.
The maxima of the other two curves, s∥ = 0.8 (orange)
and s∥ = 0.5 (red), are exactly 0.8 and 0.5 times the max-
imum of the s∥ = 1 curve, as expected. The component
of the small body spin misaligned from the orbit does not
play any role in this dephasing. See Appendix E 3 for a
discussion about the selection of initial conditions in the
case of inspirals with spin precession.

VII. RESULTS II: WAVEFORMS

We wrap up our discussion of spinning-body inspirals
by examining the waveforms these inspirals generate.

A. Waveform generation

We write the GW strain in the “multivoice” form [38]

h(t) ≡ h+(t)− ih×(t) ≡
1

r

∑
lmkn

hlmkn(t)

=
1

r

∑
lmkn

Hlmkn(t)e
i[mφS−Φmkn(t)] . (7.1)

This form is found by promoting “snapshot” waveforms
from a geodesic orbit into a sequence of snapshots in
which the waveform’s properties evolve as inspiral pro-
ceeds. The amplitude of each waveform voice is given
by

Hlmkn(t) = Almkn(t)Slm [ϑS; aωmkn(t)] , (7.2)
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FIG. 7. Evolution of h+ and h× for a generic inspiral with mass-ratio 10−3. Top panel shows the part of the waveform
corresponding to an early part of the inspiral, the middle panel shows an intermediate stage and the bottom panel shows
the end of the inspiral. The blue (solid) and orange (dashed) curves correspond to spinning and non-spinning small bodies
respectively. The mismatch between the two waveforms is 0.2067. Initial orbital parameters are: p = 7.95, e = 0.22, x = 0.699,
qr = 0, and qz = 0. The small body orbits a black hole with spin a = 0.7M and the magnitude and orientation of the small
body’s spin is specified by: s = 1 and s∥ = s. We use the code GremlinInsp to generate these waveforms, with parameters
lmax = 2, kmax = 4, and nmax = 10.

where

Almkn(t) = −2Z∞
lmkn(t)

ωmkn(t)2
. (7.3)

For adiabatic inspirals, the phase of each voice is

Φmkn(t) =

∫ t

t0

[mΩϕ(t
′) + kΩθ(t

′) + nΩr(t
′)] dt′

≡
∫ t

t0

ωmkn(t
′) , dt′ . (7.4)

The waveform h is measured at (t, r, ϑS, φS); the “S”
on these angles denotes position on the sky, and distin-
guishes them from orbit coordinates (θ, ϕ), as well as
from the Boyer-Lindquist NIT phases φr,z,ϕ. The func-
tion Slm(ϑS; aωmkn) is a spheroidal harmonic of spin-
weight −2. The strain h is decomposed onto a basis of
spheroidal harmonics with indices lm, as well as into a
discrete frequency spectrum labeled with indices mkn.

The dependence on time of the various quantities in-
troduced in the waveform above are inherited from the
dynamics of the binary’s inspiral. For example, the com-

plex amplitudes Z∞
lmkn(P⃗ ) are pre-evaluated by solving

the radial Teukolsky equation on a grid of principal orbit

elements, and are then interpolated to generate the wave-
form at arbitrary points within the grid domain. As the
orbit underlying an EMRI evolves, the orbital elements

P⃗ likewise evolve. We denote these evolving elements by

P⃗ (t), where t parameterizes evolution along the inspiral
as seen by a distant observer. The amplitude Z∞

lmkn(t)

is thus shorthand for Z∞
lmkn[P⃗ (t)], and likewise for other

quantities which enter the waveform.
In Sec. VD, we wrote down expressions for the Boyer-

Lindquist averaged equations of motion for the orbital
phases (5.12b). In integral form, the expression for these
phases is:

φα(t) =

∫ ti

t0

(
Ω(0)
α (t′) + εΩ(1)

α (t′) +O(ε2)
)
dt′

=

∫ t

t0

(
Ωα(t

′) +O(ε2)
)
dt′ . (7.5)

These phases contribute to the waveform voices via

Φmkn(t) = mφϕ(t) + kφθ(t) + nφr(t) +O(ε) . (7.6)

The Boyer-Lindquist time averaged phases φα(t) are thus
exactly equivalent to the input required for generating
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multi-voice Teukolsky waveforms [77]. Replacing the adi-
abatic phase (7.4) used in the waveform (7.1) with the
phase (7.6) is thus a simple and computationally effec-
tive way to incorporate spin-curvature physics into inspi-
ral waveforms. A generalization of this to include other
post-geodesic forcing terms should likewise enable simple
incorporation of other important post-adiabatic effects
into EMRI waveforms.

We compute relativistic waveforms using
GremlinInsp8, which accepts as input a worldline
(an HDF5 file with datasets {t, p(t), e(t), xI(t), Φr(t),
Φθ(t), Φϕ(t)}) and maximum values lmax, kmax and
nmax. The waveform is assembled by performing the
sum (7.1), where the amplitudes Z∞

lmkn have been
obtained by solving the Teukolsky equation with a
point-particle source [38].

Note that the FastEMRIWaveforms waveform module
takes the same inputs from the orbital dynamics [40]. As
such, replacing the adiabatic equations of motion cur-
rently in place with the averaged equations of motion
we have developed here, along with setting the initial
conditions outlined in Appendix E, will provide a very
convenient way to incorporate the conservative effects
of an arbitrary secondary spin into EMRI waveforms
efficient enough for LISA data analysis. At present,
FastEMRIWaveforms can only produce fully relativistic
waveforms for eccentric Schwarzschild inspirals. Work
is in progress to extend this package to cover inspirals
into Kerr black holes; once that it is done, it should not
be difficult to adapt this package further to include the
post-adiabatic effect of spin-curvature coupling.

B. Waveform analysis

We conclude our analysis of waveforms by quantita-
tively comparing the different physical effects and mod-
eling methods that we have used. To do this, we use a
noise-weighted inner product of two waveforms h1 and
h2 given by

⟨h1|h2⟩ = 2

∫ ∞

0

h̃∗1(f)h̃2(f) + h̃1(f)h̃
∗
2(f)

Sn(f)
df , (7.7)

where h̃(f) is the Fourier transform of the time-domain

waveform h(t), h̃∗(f) is the complex conjugate of h̃(f),
and Sn(f) is the one-sided power spectral density (PSD)
of detector noise. We use a white noise power spectrum
here (i.e., noise independent of frequency); an analysis
focusing on astrophysical waveform characteristics (as

8 GremlinInsp is a subset of the Gremlin package, a C++ code de-
veloped by author Hughes to solve the frequency-domain Teukol-
sky equation for generic bound Kerr orbits. It is not yet in the
public domain due to licensing issues, but an open-source ver-
sion is under development. In the meantime, interested parties
should contact Hughes regarding this code.

opposed to assessing more general aspects of waveform
modeling) would use noise from a particular detector,
such as that projected for the LISA mission [84]. The
fractional waveform overlap O is defined by

O =
⟨h1|h2⟩√

⟨h1|h1⟩⟨h2|h2⟩
. (7.8)

This measure equals equals 1 when h1 = h2; O = 0
defines “orthogonal” waveforms. Note that, for white
noise, O is independent of the noise amplitude; we thus
set Sn(f) = 1 for these comparisons. A closely related
notion is the fractional waveform mismatch, M = 1−O.
We use the WaveformMatch function from the Simula-
tionTools package [85] to calculate waveform overlaps.
Using these tools to compare waveforms, we now con-

sider how high the overlap should be for waveforms to be
distinguishable in the context of LISA data science. Fol-
lowing the criteria defined in Ref. [86], two waveforms h1
and h2 are defined to be indistinguishable if they satisfy
⟨δh|δh⟩ < 1, where δh = h1 − h2. The signal-to-noise
ratio (SNR) ρ is defined by ρ2 ≡ ⟨h|h⟩. Combining these
definitions and going to the limit ρ1 ≃ ρ2 ≡ ρ yields the
benchmark that two waveforms with mismatch M will
be indistinguishable if their SNR satisfies

ρ ≤ 1√
2M

. (7.9)

Two signals being distinguishable according to the cri-
terion (7.9) is a necessary but not sufficient condition
for detectability of a particular effect. A more concrete
measure of whether some effect related to the source
physics is detectable should be assessed using a Bayesian
maximum-likelihood estimation framework.
Figures 7 and 8 display snapshots of gravitational

waveforms. Figure 7 shows the plus and cross polar-
izations for a generic inspiral with mass-ratio 10−3; the
blue curve shows the waveform of a spinning body, while
the orange curve shows the waveform of a non-spinning
body. The top, middle and bottom panels display the
early, intermediate and late stages of the inspiral. If the
non-spinning and spinning-body inspirals are initially in
phase at the beginning of the inspiral, the dephasing ac-
cumulates as the inspiral progresses. This dephasing ac-
cumulates a rather large mismatch of M = 0.2067 be-
tween spinning and non-spinning waveforms. Using Eq.
7.9, these waveforms would be distinguishable for EMRI
signals with SNR ρ ≳ 1.5. In other words, if these were
real signals, they would be easily distinguishable.
Figure 8 compares OG and NIT models of h+ for the

spinning body generic inspiral shown in Fig. 7. The top
panel shows the waveform of the entire inspiral, left bot-
tom shows early in the inspiral, and right bottom shows
late times. The solid blue curve is the waveform com-
puted using the NIT inspiral, while dashed orange corre-
sponds to the waveform computed with the OG inspiral.
In the bottom two panels of Fig. 7, we see that the NIT
and OG curves lie almost exactly on top of each other,
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FIG. 8. Comparison of waveforms computed from OG inspiral and NIT inspiral. Top panel shows h+ for parameters identical
to those used in Fig. 7. Blue curve shows waveform from a NIT inspiral for the entire domain we computed; red shows the
difference between the OG and the NIT waveforms. Bottom left panel shows the early part of the inspiral; bottom right shows
the end of inspiral. The blue solid and orange dashed curves corresponds to NIT and OG inspirals respectively. The mismatch
between these two waveforms, computed using Eq. (7.9), is M = 3.462× 10−4.

even late in the inspiral. The difference between the OG
and NIT waveforms is shown by the red curve of the top
panel of Fig. 8; a small mismatch, M ≃ 0.00035, accumu-
lates over the inspiral. According to the criterion (7.9),
the OG and NIT waveforms would be distinguishable
as EMRI signals with SNR greater than about 38. It’s
worth bearing in mind that this result is for mass ratio
ε = 10−3. The mismatch would be lower, and the SNR
needed for signals to be distinguishable would be greater,
for EMRI mass ratios ε ≲ 10−4. Waveforms computed
using the OG and NIT techniques differ only slightly,
despite their vastly different computational costs.

VIII. CONCLUSIONS

We have presented a framework to combine orbit-
averaged point-particle GW backreaction with the orbital
dynamics of spinning bodies to make inspiral worldlines
and gravitational waveforms for spinning bodies bound
to Kerr black holes in the extreme mass ratio limit.
The inspirals and GWs produced by this framework are
demonstrably incomplete (we discuss below aspects of
this model which are ripe for improvement and additional
work), but nonetheless make it possible to augment ex-
isting models of strong-field inspiral and waveform gen-
eration using data and methods available today.

As tools for efficiently computing EMRI waveforms
[39, 40] expand to cover more of the astrophysical pa-

rameter space, it should not be difficult using the meth-
ods and techniques we have presented to further augment
these tools to include the influence of secondary spin. As
show in Sec. VII, the leading impact on the waveforms’
phase evolution can be found by “upgrading” the adi-
abatic inspiral phase, our Eq. (7.4), to a version that
includes the post-adiabatic influence of secondary spin.
This may be particularly useful in the short term for as-
sessing the importance of spin effects for EMRI science.
For example, previous work based on much simpler or-
bit geometries concluded that secondary spin is likely to
have negligible impact on EMRI measurements [87, 88];
re-examining this question for generic orbits and spin ori-
entations may change this conclusion. A further general-
ization of this problem may even be useful for examining
the impact of secondary structure beyond spin (looking
at, for example, the findings of Ref. [89] to a broader class
of orbits). It should not be too challenging to generalize
further to include the post-adiabatic influence of other
important post-geodesic effects.
As discussed in Sec. III, another way to approach this

problem is to consider orbit-averaged backreaction di-
rectly applied to spinning body orbits, following the kind
of calculations laid out in Ref. [54]. Indeed, given that
spinning body orbits describe the behavior of these in-
spirals on timescales too short for radiation reaction to
be apparent, one might regard this as a more natural
approach to this problem. Performing such a calcula-
tion will require large data sets describing backreaction
onto spinning body orbits, as well as a better understand-
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ing of how to evolve the generalized Carter constant of
a spinning body. In addition, the GWs produced by a
spinning body are more complicated than those from a
point body: an additional term, linear in the small body’s
spin tensor, enters the source term of the wave equation.
This changes the instantaneous wave amplitude, and thus
changes the rate at which GWs backreact on the system.
The calculation we present here will be a useful tool for
assessing the importance of different terms which enter
the dynamics of backreaction for spinning-body orbits.
By incorporating the linear-in-secondary-spin flux cor-
rections to our calculation, it would be equivalent (to
1PA order) to using a spinning-body orbit formulation
as the basis for the calculation from the outset. Compar-
ing the two approaches would then be a useful validation
for both formulations. We include Mathematica code and
access to the data used to describe backreaction with this
paper in order to facilitate making such comparisons.

Secondary spin is one example of an important post-
adiabatic effect. Other effects, especially those related
to the gravitational self force [16, 27] are also critically
important, and must also be included in order to de-
velop accurate EMRI waveform models. As long as these
terms can be considered independently, with each term
contributing in a “modular” fashion, a framework based
on osculating orbits may be particularly suitable to com-
bining the impact of different post-adiabatic effects in
a single unified model; by using osculating geodesics as
the basis for the calculation, all the post-adiabatic ef-
fects will be parameterized in the same way and can be
directly combined. Such a model will be needed before
too long in order to accurately assess the importance of
various contributors to inspiral and EMRI waveforms.
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Appendix A: Geodesics in Kerr spacetime

In this appendix, we list formulas and definitions used
to describe geodesic orbits of Kerr black holes, which, for
brevity, are left out of the main body of this paper. In
Boyer-Lindquist coordinates, the metric for a Kerr black
hole with mass M and spin angular momentum S = aM

is written [91, 92]

ds2 = −
(
1− 2r

Σ

)
dt2 +

Σ

∆
dr2 − 4Mar sin2 θ

Σ
dt dϕ

+Σ dθ2 +

(
r2 + a2

)2 − a2∆sin2 θ

Σ
sin2 θ dϕ2, (A1)

where

∆ = r2 − 2Mr + a2 , Σ = r2 + a2 cos2 θ . (A2)

The polar angle θ is measured from the black hole’s spin
axis (i.e., θ = 0 is the “North pole” of the spinning black
hole). This metric has no dependence on coordinates t
and ϕ, and so admits a timelike Killing vector ξαt and
an axial Killing vector ξαϕ . A body freely falling in this
spacetime therefore has two constants of motion related
to these Killing vectors, the energy per unit mass Ê and
axial angular momentum per unit mass L̂z:

Ê = −ξαt uα = −ut , (A3)

L̂z = ξαϕuα = uϕ , (A4)

where uα is the 4-velocity of the free falling body. (The
hat accent on these quantities indicates that they are
defined on geodesics; very similar constants of the mo-
tion can be found for certain non-geodesic orbits, such
as spinning-body orbits.) The Kerr metric also possesses
a Killing-Yano tensor Fµν [93], which has the defining
property

∇γFαβ +∇βFαγ = 0 . (A5)

Carter showed that the Killing tensorKµν , defined as the
“square” of the Killing-Yano tensor via

Kµν = FµαFνα , (A6)

yields another constant of motion,

K̂ = Kαβu
αuβ , (A7)

known as the “Carter constant” [94]. When a = 0, K̂
is the square of a body’s total angular momentum per
unit mass. It is convenient to define a related conserved
quantity Q̂, usually also called the Carter constant, by

Q̂ = K̂ −
(
L̂z − aÊ

)2
. (A8)

When a = 0, Q̂ is the square of a body’s total angular
momentum per unit mass projected into the θ = π/2

plane. The three constants of motion (Ê, L̂z, Q̂) are one
set of “principal orbital elements” (as discussed in Sec.
IIIA) we can use to denote a particular geodesic in the
osculating element framework.

The fact that the Kerr spacetime possesses these con-
served quantities allows the geodesic equations to be sep-
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arated as follows [94]

Σ2

(
dr

dτ

)2

= [Ê(r2 + a2)− aL̂z]
2

−∆[r2 + (L̂z − aÊ)2 + Q̂]

≡ R(r) , (A9)

Σ2

(
dθ

dτ

)2

= Q̂− cot2 θL̂2
z − a2 cos2 θ(1− Ê2)

≡ Θ(θ) , (A10)

Σ
dϕ

dτ
= aÊ

(
r2 + a2

∆
− 1

)
− a2L̂z

∆
+ csc2 θL̂z

≡ Φr(r) + Φθ(θ) , (A11)

Σ
dt

dτ
= Ê

(r2 + a2)2

∆
+ aL̂z

(
1− r2 + a2

∆

)
− Êa2 sin2 θ

≡ Tr(r) + Tθ(θ) . (A12)

When the motion is parameterized using proper time τ
as above, equations (A9) – (A12) do not entirely separate
because the quantity Σ(r, θ) couples the radial and polar
kinematics. Mino time λ, defined by dλ = dτ/Σ, allows
us to separate these equations [34, 58]. It is straightfor-
ward to convert from λ to Boyer-Lindquist time t, which
describes quantities as measured by a distant observer,
by using dt/dλ.

Any function of r and θ evaluated along a geodesic
can be expressed in a Fourier series as harmonics of the
radial and polar frequencies. A particularly useful form
for many of our purposes uses the coordinate-time fre-
quencies, since those correspond to frequencies as seen
by distant observers. As discussed in Ref. [58], a func-
tion f(r, θ) evaluated along a geodesic can be written

f [r(t), θ(t)] =
∑
k,n

fkne
−i(kΩ̂θ+nΩ̂r)t . (A13)

The sums over k and n are formally taken from −∞ to
∞; for most numerical applications, the sums converge to
an acceptable level of numerical error at maximum values
that are not too large (several tens for fractional errors of
10−7 or smaller in most cases, though going up to hun-
dreds for n when studying highly eccentric strong-field
orbits). The Fourier amplitudes are found by integrating
the functions over their Mino-time periods, with a factor
of the geodesic function dt/dλ from Eq. (3.1) [58]:

fkn =
(2π)2

Υ̂tΛ̂rΛ̂θ

∫ Λr

0

∫ Λθ

0

f [r(λr), θ(λθ)]
dt

dλ
dλr dλθ .

(A14)

This calculation takes advantage of the fact that the
Mino-time parameterization completely separates the ra-
dial and polar equations of motion, and treats the two
degrees of freedom separately in performing the integral.

We also need expressions for the coordinate time t and
axial angle ϕ as functions of λ:

t(λ) = t0 + Υ̂tλ+∆tr[r(λ)] + ∆tθ[θ(λ)] , (A15)

ϕ(λ) = ϕ0 + Υ̂ϕλ+∆ϕr[r(λ)] + ∆ϕθ[θ(λ)] . (A16)

The quantities t0 and ϕ0 introduced above denote initial
conditions.
We define

Υ̂t = ⟨Tr(r)⟩+ ⟨Tθ(θ)⟩ , (A17)

Υ̂ϕ = ⟨Φr(r)⟩+ ⟨Φθ(θ)⟩ . (A18)

The angle brackets denote an averaging of the function
with respect to either the radial or the angular motion
of an orbiting body, and are defined precisely in Eqs.
(2.12) and (2.13) of Ref. [38]. The quantity Υ̂t is, in an
orbit-averaged sense, the rate at which coordinate time t
“ticks” per unit Mino time λ; Υ̂ϕ is a similarly averaged
rate at which the axial coordinate advances per unit λ.
(As mentioned in Sec. III A, Υ̂t would be labeled Γ̂ fol-
lowing the conventions of much of the literature.) This

means that Υ̂ϕ is the axial orbit frequency conjugate to
Mino time λ. We also define

∆tr[r(λ)] =

∫ λ

0

{Tr[r(λ′)]− ⟨Tr(r)⟩} dλ′ , (A19)

∆tθ[θ(λ)] =

∫ λ

0

{Tθ[θ(λ′)]− ⟨Tθ(θ)⟩} dλ′ , (A20)

∆ϕr[r(λ)] =

∫ λ

0

{Φr[r(λ′)]− ⟨Φr(r)⟩} dλ′ , (A21)

∆ϕθ[θ(λ)] =

∫ λ

0

{Φθ[θ(λ′)]− ⟨Φθ(θ)⟩} dλ′ . (A22)

We note that Eqs. (2.10) and (2.11) of Ref. [38], which
were intended to be equivalent to the equations above,
left out the integrations, incorrectly presenting only the
integrands on the right-hand sides of those equations.

Appendix B: Motion of a spinning body

The motion of a spinning body in curved spacetime
obeys the Mathisson-Papapetrou-Dixon (MPD) equa-
tions [30–33] which we introduced in Sec. III B. In this
Appendix, we provide more detail about these equations
and illustrate with examples of spinning-body motion.

1. Constants of motion

The spinning body’s worldline admits a constant of
motion for each spacetime Killing vector ξα, given by

C = pαξ
α − 1

2
Sαβ∇βξα . (B1)
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For spinning body orbits in Kerr, this allows us to gen-
eralize notions of energy and axial angular momentum:

ES = −pt +
1

2
∂βgtαS

αβ , (B2)

LSz = pϕ −
1

2
∂βgϕαS

αβ . (B3)

No Carter-type integral of the motion exists for spinning
bodies in general, although an analogue of this constant
exists at linear order in the small body’s spin [65]. It has
recently been shown that a Carter-like integral exists up
to second-order in the small body’s spin for a test body
possessing exactly the spin-induced quadrupole moment
expected for a Kerr black hole [66, 95].

We define a spin vector from the spin tensor by

Sµ = − 1

2µ
εµναβpνS

αβ , (B4)

where

ϵαβγδ =
√
−g[αβγδ] (B5)

and [αβγδ] is the totally antisymmetric symbol. The
magnitude of the spin vector S is defined by

S2 = SαSα =
1

2
SαβS

αβ , (B6)

and is conserved along the spinning body’s wordline.
At linear order in the small body’s spin, Eqs. (B2) and

B3) simplify, allowing us to define the energy and axial
angular momentum per unit mass introduced in Sec. III:

ES = −ut +
1

2µ
∂βgtαS

αβ , (B7)

LSz = uϕ −
1

2µ
∂βgϕαS

αβ . (B8)

At this order, a generalization of the Carter constant is
also an integral of the motion [65]:

KS = Kαβu
αuβ + δCS , (B9)

where

δCS = − 2

µ2
pµSρσ (Fν

σ∇νFµρ −Fµν∇νFρσ) . (B10)

2. Spinning-body orbits

We now briefly survey some of the key differences be-
tween spinning-body and geodesic orbits; Refs. [52, 53,
64] provide more details. Spinning-body orbits are quali-
tatively different from geodesic ones. If the body’s spin is
misaligned from the orbit, then its orientation precesses,
with a Mino-time frequency Υs characterizing this pre-
cession; the body’s orbital plane likewise precesses at this
frequency. This precession appears in the equations of

motion as a variation in the bounds of both the polar and
radial libration regions. Indeed, one finds that the radial
and polar motions for a spinning body do not separate
when parameterized in Mino time as they do for geodesics
[52, 53, 64]. Finally, a body’s spin also shifts the orbital
frequencies relative to the orbital frequencies associated
with geodesic orbits. The well-understood frequencies
Ωr,θ,ϕ which characterize geodesic orbits are each shifted
by an amount ∝ s∥, the component of the smaller body’s
spin parallel to its angular momentum.
We first consider equatorial orbits with aligned spin:

s = s∥, s⊥ = 0. Spinning-body and geodesic orbits are
quite similar in this case: motion is constrained to the
plane θ = π/2, and the radial motion is confined to an
interval r2 ≤ r ≤ r1, where r2 and r1 are constants. We
show examples of equatorial non-spinning and spinning-
body orbits with the same initial conditions in panel (a)
of Fig. 9. Differences emerge because the trajectories
have different frequencies associated with both their ra-
dial and axial motions.
Qualitative differences become noticeable when s⊥ ̸=

0. When the small body’s spin vector is misaligned, it
precesses and the spinning body’s orbit oscillates by an
amount O(S) out of the equatorial plane. For these
“nearly equatorial” orbits, the radial motion remains
constrained to the range r2 ≤ r ≤ r1, but the polar
libration range is modified, with θ = π/2 + δϑS . The
orbital plane precesses in response to the small body’s
spin precession, adjusting the turning points of the po-
lar motion depending on the spin precession phase ψs.
This can be seen in panel (b) of Fig. 9: the orange (non-
spinning) worldline is confined to the equatorial plane,
while the blue (spinning-body) worldline oscillates about
the equatorial plane.
Fully generic spinning-body orbits have eccentricity,

are inclined with respect to the equatorial plane, and
have an arbitrarily oriented small-body spin. Functions
evaluated along generic orbits have structure at harmon-
ics of three frequencies: radial Ωr, polar Ωθ, and spin-
precessional Ωs. We can use this to write functions eval-
uated along an orbit as a Fourier expansion of the form

f [r, θ, Sµ] =

1∑
j=−1

∞∑
k,n=−∞

fjkne
−ijΩste−inΩrte−ikΩθt ,

(B11)
where Sµ is the small-body’s spin vector. Note the dif-
ferent index ranges in this sum: there are only three
harmonics of the spin frequency Ωs, while in principle
an infinite set of both polar and radial harmonics are
present. (In practice, these sums converge over a finite
range, though one must study the system carefully to
determine an appropriate truncation point [53].)
The coupling of radial, polar and spin-precessional mo-

tions for generic spinning-body orbits causes the posi-
tions of the radial turning points to depend on θ and
the spin-precession phase ψs. Similarly, the polar turn-
ing points depend on radial position and ψs, as derived
in Ref. [64]. Panel (c) of Fig. 9 shows a generic geodesic
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(in orange) and spinning-body trajectory (in blue) with
the same initial conditions. The opacity of the curves
increases as time advances; this illustrates how the tra-
jectories diverge at late times, as the opacity increases.

3. Spinning-body parameterizations

We have freedom in how we parameterize the mo-
tion of a spinning body, in the sense that we can con-
struct various mappings between the triplet of constants
(p, e, xI) which defines a “reference” geodesic, to a spe-
cific spinning-body orbit. In Appendix A of [53], three
such mappings are discussed: (1) the turning points of
the reference geodesic match those of the spinning-body
orbit; (2) the initial conditions of the reference geodesic
match those of the spinning-body orbit; and (3) the

constants of motion (Ê, L̂z, K̂) of the reference geodesic
match the constants of the spinning-body orbit. In this
section, we will primarily discuss the parameterizations
(1) and (2) and how to map between them.

References [52, 53] use parameterization (1): the turn-
ing points of the spinning-body orbit match those of a
chosen reference geodesic defined by (p, e, xI). Those
references show how to compute the frequency correc-
tions ΥSr (p, e, xI), ΥSθ (p, e, xI), and ΥSϕ(p, e, xI) due to
the small body’s spin, relative to the frequencies of a
reference geodesic with the same turning points. Be-
cause of the additional harmonic complexity of spinning-
body orbits relative to geodesics, the turning points of
the non-spinning and spinning body orbits are matched
in an orbit-averaged sense: the radial turning points of
the “purely radial” piece of the spinning-body orbit are
matched with the radial turning points of the geodesic,
and likewise for the “purely polar” motion. “Purely ra-
dial” means the contributions to the orbital motion that
contains only harmonics of Υr or Υ̂r; “purely polar”
means contributions that contain only harmonics of Υθ
or Υ̂θ. The equatorial spinning-body inspirals computed
in [71] also use this parameterization.

By construction, the perturbed motion found by solv-
ing the OG equations uses parameterization (2): the ini-
tial orbit coordinates and initial components of the four-
velocity are the same for the spinning and non-spinning
orbits. We use this parameterization in this work, which
was also used in [19]. Parameterization (3), choosing the
constants of motion (E,Lz,K) of a spinning-body orbit
to match those of a reference geodesic, is used in [64, 96].

Because different parameterizations are used by dif-
ferent analyses, it is important to consider the mapping
between the different choices, and to show that they de-
scribe the same orbits. We begin by choosing a triplet
(pTP , eTP , xTP ) that defines a geodesic with radial turn-
ing points r1 = pTP /(1− eTP ) and r2 = pTP /(1 + eTP ),

and with polar turning point z1 =
√
1− x2TP . Using the

approach of [52, 53], we first compute the spinning-body
trajectory that has the same turning points (on aver-
age) as this geodesic. We next want to find the same

spinning-body orbit via the “matched initial conditions”
parameterization, using the OG method presented in this
paper.
To do this, we select initial values of (r, z) by choos-

ing one of the radial and polar turning points of the
spinning-body orbit we evaluated in the matched turn-
ing point parameterization. We label these choices rTP
and zTP . We use the subscript “IC” to denote the triplet
(pIC , eIC , xIC) associated with a geodesic which has the
same initial conditions as the spinning-body orbit under
consideration. The geodesic orbit defined by rG and zG
needs to initially have the same values of r and z, so we
equate rG(pIC , eIC , xIC , qr0) and zG(pIC , eIC , xIC , qz0)
as given in Eqs. (16)–(17) of Ref. [56]. For conve-
nience, we choose the spinning-body orbit to be at a
turning point initially. The initial geodesic velocities
must match, so we solve R[r(pIC , eIC , xIC , qr0)] = 0 and
Θ[z(pIC , eIC , xIC , qz0) = 0 where the functions R(r) and
Θ(θ) are given by equations (A9) and (A10).
We now have four equations and five unknowns,

(pIC , eIC , xIC , qr0, qz0). To close this system, we find the
initial value of (dϕ/dλ)TP of a spinning-body in the fixed
turning point parameterization and equate it to dϕ/dλ
for a geodesic using Φ[r(pIC , eIC , xIC , qr0, qz0)], given in
Eq. (A11). The final set of equations we solve is

rG(pIC , eIC , xIC , qr0) = rTP , (B12)

zG(pIC , eIC , xIC , qz0) = zTP , (B13)

R[r(pIC , eIC , xIC , qr0)] = 0 , (B14)

Θ[r(pIC , eIC , xIC , qz0)] = 0 , (B15)

Φ[r(pIC , eIC , xIC , qr0, qz0)] =

(
dϕ

dλ

)
TP

. (B16)

We solve the above equations to find the triplet
(pIC , eIC , xIC). We can then compute the spinning-
body orbit corresponding to this choice of initial geodesic
(pIC , eIC , xIC). We now have a mapping between
(pTP , eTP , xTP ) and (pIC , eIC , xIC); this is how we com-
pute the orbits in IVA.
Note that the two parameterizations are not linearized

in secondary spin in exactly the same way. Feeding into
the OG equations is the forcing term from the linearized
MPD equations, Eq. (3.20). Beyond this point, the OG
formulation does not assume the forcing term to be small
and does not further linearize in spin. However, in the
“turning point matched” prescription of Refs. [52, 53],
the expressions for the radial and polar trajectories, our
Eqs. (3.23) and (3.24), which have been explicitly divided
into geodesic and secondary-spin pieces, are substituted
into the MPD equations. After this substitution, we then
linearize the MPD equations. This leads to a slight dif-
ference in the equations of motion between the two pre-
scriptions at the O(S2) level. These two prescriptions
are equivalent up to linear-order in secondary spin, but
are not identical at O(S2). This is responsible for the
slight drift seen after long integration times when com-
paring our methods for computing spinning-body orbits,
discussed at the end of Sec. IVA.
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FIG. 9. Comparison of spinning-body (blue) and geodesic (orange) orbit trajectories. Within each column, the trajectories
shown have the same initial conditions. The top row shows xBL-yBL trajectories; the bottom shows trajectories in r-zBL.
(The coordinates xBL, yBL, zBL are Cartesian-like representations of the Boyer-Lindquist coordinates: xBL = r sin θ cosϕ,
etc.) Increasing opacity of the trajectory curves denotes increasing time. Panel (a) shows equatorial trajectories; for the blue
(spinning-body) trajectory, the spin of the small body is aligned with the spin of the larger black hole. The major difference
in the trajectories in this case is the dephasing that occurs because spin-curvature coupling changes the timescales associated
with orbital motions. Panel (b) shows the same geodesic orbit as panel (a) but the spinning-body trajectory corresponds to
a small body with its spin misaligned with its orbit. Notice that the in-plane motion is similar to what we find in panel (a),
at least over the time interval shown here, though the motion acquires an out-of-plane motion that is entirely absent from
the geodesic case. Note also the different scales used for the out-of-plane motion, versus the in-plane and radial motion: the
out-of-plane motion is smaller by a factor ∼ 30. Panel (c) shows generic orbits for both cases. In all panels, the parameters
used are a = 0.7M , p = 10, e = 0.5, ε = 0.1, and s = 1. In panels (b) and (c), we put s∥ = 0.9s and ϕs = π/2; in panel (c), we
further put xI = 0.6967. Here and in many of the other plots, we have used a much less extreme mass ratio than is appropriate
for these techniques in order to magnify the effect of spin-curvature coupling physics.

Note that we use the fact that we can evaluate
the frequencies (Ωr,Ωz,Ωϕ) associated with a spinning-
body orbit in both parameterizations in order to re-
late the reference geodesic triplets (pTP , eTP , xTP ) and
(pIC , eIC , xIC) in the two parameterizations. Explicitly,
we find the mapping (pTP , eTP , xTP ) → (pIC , eIC , xIC)
by solving the equations:

Ωr(pIC , eIC , xIC) = Ωr(pTP , eTP , xTP ) , (B17)

Ωz(pIC , eIC , xIC) = Ωz(pTP , eTP , xTP ) , (B18)

Ωϕ(pIC , eIC , xIC) = Ωϕ(pTP , eTP , xTP ) . (B19)

Appendix C: Forced motion via osculating geodesic
orbital elements

In this appendix, we briefly discuss how to compute
forced motion of a body in spacetime through a sequence
of geodesic orbits, showing how the forcing terms lead

to evolution of the orbital elements which characterize
geodesics. This synopsis is based on the discussion pre-
sented in Ref. [60].
Begin by writing the geodesic equation

d2xα

dτ2
= −Γαβγ

dxβ

dτ

dxγ

dτ
(C1)

in the form

ẍα = aαgeo , (C2)

where overdot denotes d/dτ . As observed in Sec. III A,
bound Kerr geodesics can be described by seven param-
eters:

EA .
= {p, e, xI , χSr , χSθ , ϕ0, t0} . (C3)

The capital Latin index introduced here ranges from 1 to
7; the symbol

.
= means “the components on the left-hand
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side are given by the elements of the set on the right-hand
side.” In this set, p, e, and xI are the principal orbital
elements describing the geometry of the orbit and χSr ,
χSθ , ϕ0, and t0 are the positional orbital elements that
specify initial conditions.

The parameters EA are strictly constant on a geodesic,
and can be expressed as functions of spatial position and
spatial velocity in an orbit. In other words, we can write

EA = EA(xα, ẋα) . (C4)

Using the chain rule, we write the rate of change of EA

ĖA =
∂EA

∂xα
ẋα +

∂EA

∂ẋα
ẍα . (C5)

Using Eq. (C2) and requiring EA to be constant on a
geodesic, we obtain

ĖA =
∂EA

∂xα
ẋα +

∂EA

∂ẋα
aαgeo = 0 . (C6)

Consider now forced motion. In the presence of a per-
turbing force, the geodesic equation generalizes to

d2xα

dτ2
+ Γαβγ

dxβ

dτ

dxγ

dτ
= aα . (C7)

The non-geodesic acceleration aα is subject to the con-
straint

aαuα = 0 . (C8)

Equation (C7) can be written

ẍα = aαgeo + aα . (C9)

Our aim is to convert Eq. (C9) into a set of equations
for the evolution of orbital elements EA. This requires a
mapping {xα, ẋα} → EA. We assert that, at each mo-
ment along the worldline, a geodesic can be found with
the same (xα, ẋα) as the accelerated body. This assertion
is known as the osculation condition. Stated plainly, we
assert that [76]

xα(τ) = xαgeo(EA, τ) , (C10)

ẋα(τ) = ẋαgeo(EA, τ) , (C11)

where aα(τ) represents the coordinates of the true world-
line, and xαgeo(EA, τ) represents the coordinates of a

geodesic worldline with orbital elements EA. Note that
the time derivative in Eq. (C11) holds EA fixed. Note
also that the osculation condition involves 4 components
of xα and 4 components of ẋα, one of which is constrained
either by the condition aαuα = 0 or uαuα = −1. The 8
components plus 1 constraint thus map to the 7 param-
eters EA, so the number of orbital elements matches the
number of degrees of freedom [76].

Under the influence of a perturbing force which accel-
erates the worldline by aα relative to a geodesic, the pa-
rameters EA do not remain constant. We promote them

to dynamical variables called osculating orbital elements.
The accelerated trajectory xα is then described by a se-
quence of geodesics with parameters

EA(t) .= {p(t), e(t), xI(t), χSr (t), χSθ (t), ϕ0(t), t0(t)} .
(C12)

Here t is simply Boyer-Lindquist coordinate time along
the inspiral, which we use as our parameter along the in-
spiral worldline. Other parameter choices could be used
(e.g., proper time τ along the inspiral, or Mino time λ).
Boyer-Lindquist time is particularly convenient, as it is
the time measured by distant observers. Note that we
have written both ϕ0 and t0 as though they are pro-
moted to dynamical quantities; we will soon show that
the equations governing them do not need to be evolved,
and they can be left as constants.

What remains is to prescribe how to dynamically
evolve these elements. We again use the chain rule and
Eq. (C9) to evaluate ĖA(τ), yielding

ĖA =
∂EA

∂xα
ẋα +

∂EA

∂ẋα
aαgeo +

∂EA

∂ẋα
aα . (C13)

Taking advantage of Eq. (C6), we obtain

ĖA =
∂EA

∂ẋα
aα . (C14)

Multiplying both sides of Eq. (C6) by ∂xβgeo/∂EA and

both sides of Eq. (C14) by ∂ẋβgeo/∂EA yields a particu-
larly useful form of these equations:

∂xβgeo
∂EA

ĖA = 0 , (C15)

∂ẋβgeo
∂EA

ĖA = aβ . (C16)

To derive Eq. (C16), note that Eq. (C11) implies

∂ẋβgeo
∂EA

∂EA

∂ẋα
= δβα . (C17)

These expressions can be used to derive explicit equa-
tions for osculating orbital element evolution, and can
be written in either contravariant or covariant form (see
Secs. III D 1 and 2 of Ref. [60]).

1. Quasi-Keplerian evolution equations

Following the approach used in Ref. [76], we use the
contravariant formulation (see Sec. III D 2 of [60]). Ex-
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panding Eq. (C15) yields

∂r

∂p
p′ +

∂r

∂e
e′ +

∂r

∂I
I ′ +

∂r

∂χSr
χS′r +

∂r

∂χSθ
χS′θ = 0 ,

(C18)

∂θ

∂p
p′ +

∂θ

∂e
e′ +

∂θ

∂I
I ′ +

∂θ

∂χSr
χS′r +

∂θ

∂χSθ
χS′θ = 0 ,

(C19)

∂ϕ

∂p
p′ +

∂ϕ

∂e
e′ +

∂ϕ

∂xI
x′I +

∂ϕ

∂χSr
χS′r +

∂ϕ

∂χSθ
χS′θ + ϕ′0 = 0 ,

(C20)

∂t

∂p
p′ +

∂t

∂e
e′ +

∂t

∂xI
x′I +

∂t

∂χSr
χS′r +

∂t

∂χSθ
χS′θ + t′0 = 0 .

(C21)

Prime represents differentiation with respect to the vari-
able that parameterizes the trajectory, ti.

Equations (C20) and (C21), which govern the evolu-
tion of the axial offset ϕ0 and time offset t0, contain el-
liptic integrals which are introduced due to terms like
∂t/∂p. Computing such integrals at each time step in-
troduces additional computational expense. Instead of
evolving Eqs. (C20) and (C21), we find ϕ and t along
the worldline by using the geodesic expressions computed
along the instantaneous orbit, as was done in Refs. [60]
and [76]. Rewriting Eqs. (A11) and (A12)), these equa-
tions are

dϕ

dλ
= Φr(r, E, Lz, Q) + Φθ(θ,E, Lz, Q)

= Φr[p(λ), e(λ), xI(λ), χ
S
r (λ)]

+ Φθ[p(λ), e(λ), xI(λ), χ
S
θ (λ)] , (C22)

dt

dλ
= Tr(r, E, Lz, Q) + Tθ(θ, E, Lz, Q)

= Tr[p(λ), e(λ), xI(λ), χ
S
r (λ)]

+ Tθ[p(λ), e(λ), xI(λ), χ
S
θ (λ)] . (C23)

Integrating up Eqs. (C22) and (C23) for ϕ and t along
the inspiral is equivalent to solving (C20) and (C21).
Observe that Eqs. (C18) – (C21) arise from Eq. (C15),
which in turn arises from (C6). Equation (C6) sim-
ply states that the geodesic equation ẍα = aαgeo holds

when the osculating elements EA are constant. When
{p, e, xI , χSr , χSθ } are all constant, Eqs. (C22) and (C23)
yield geodesic solutions; when {p, e, xI , χSr , χSθ } are evolv-
ing, we obtain the solution for forced motion.

We therefore need only consider Eqs. (C18) and (C19).
We rearrange these equations to obtain

χS′r =
1

∂r/∂χSr

(
∂r

∂p
p′ +

∂r

∂e
e′ +

∂r

∂xI
x′I

)
≡ XS

r (EA) ,

(C24)

χS′θ =
1

∂θ/∂χSθ

(
∂θ

∂p
p′ +

∂θ

∂e
e′ +

∂θ

∂xI
x′I

)
≡ XS

θ (EA) .

(C25)

We next expand Eq. (C16) just as we expanded (C15):

∂ṙ

∂p
p′ +

∂ṙ

∂e
e′ +

∂ṙ

∂xI
x′I +

∂ṙ

∂χSr
χS′r +

∂ṙ

∂χSθ
χS′θ = arτ ′ ,

(C26)

∂θ̇

∂p
p′ +

∂θ̇

∂e
e′ +

∂θ̇

∂xI
x′I +

∂θ̇

∂χSr
χS′r +

∂θ̇

∂χSθ
χS′θ = aθτ ′ ,

(C27)

∂ϕ̇

∂p
p′ +

∂ϕ̇

∂e
e′ +

∂ϕ̇

∂xI
x′I +

∂ϕ̇

∂χSr
χS′r +

∂ϕ̇

∂χSθ
χS′θ = aϕτ ′ ,

(C28)

∂ṫ

∂p
p′ +

∂ṫ

∂e
e′ +

∂ṫ

∂xI
x′I +

∂ṫ

∂χSr
χS′r +

∂ṫ

∂χSθ
χS′θ = atτ ′ ,

(C29)

Following Refs. [60, 76], we use the condition aαuα = 0 to
eliminate Eq. (C29). Following [60], we define the useful
expression

Lb(c) ≡
∂ċ

∂b
− ∂r/∂b

∂r/∂χSr

∂ċ

∂χSr
− ∂θ/∂b

∂θ/∂χSθ

∂ċ

∂χSθ
, (C30)

where b denotes p, e or xI , and where c denotes r, θ or
ϕ. This definition allows us to write Eqs. (C26) – (C28)
in the convenient form

p′ =
τ ′

D

(
(Le(θ)LxI

(ϕ)− Le(ϕ)LxI
(θ))ar + (LxI

(r)Le(r)− LI(ϕ)Le(r))aθ + (Le(r)LI(θ)− Le(θ)LI(r))aϕ
)
, (C31)

e′ =
τ ′

D

(
(LI(θ)Lp(ϕ)− LI(ϕ)Lp(θ))ar + (Lp(r)LxI

(r)− Lp(ϕ)LxI
(r))aθ + (LxI

(r)Lp(θ)− LxI
(θ)Lp(r))aϕ

)
,

(C32)

I ′ =
τ ′

D

(
(Lp(θ)Le(ϕ)− Lp(ϕ)Le(θ))ar + (Le(r)Lp(r)− Le(ϕ)Lp(r))aθ + (Lp(r)Le(θ)− Lp(θ)Le(r))aϕ

)
, (C33)

D = Lp(r) (Le(θ)LxI
(ϕ)− LxI

(θ)Le(ϕ))− Le(r) (Lp(θ)LI(ϕ)− LxI
(θ)Lp(ϕ)) + LxI

(r) (Lp(θ)Le(ϕ)− Lp(ϕ)Le(θ)) .
(C34)
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Equations (C31)–(C33) tell us how to evolve the principal
orbital elements, given non-geodesic accelerations ar,θ,ϕ.
We further substitute these equations into Eqs. (C24)–

(C25) in order to obtain the evolution of the phase con-
stants χSr and χSθ . This gives us a closed system of
ordinary differential equations which allow us to evolve
p, e, xI , χ

S
r , and χSθ given the non-geodesic accelera-

tions ar,θ,ϕ. Augmenting with two auxiliary equations
for t and ϕ, Eqs. (C22) and (C23), yields a complete
scheme for evolving the elements of our phase space,
{p, e, xI , χSr , χSθ , ϕ, t}.

2. Action-angle evolution equations

Action-angle coordinates are very useful for formulat-
ing near-identity transformations. In the action-angle
picture, the OG equations of motion are given by [19]

dPj
dλ

= Fj(P⃗ , q⃗) , (C35)

dqi
dλ

= Υ̂i(P⃗ ) + f
(1)
i (P⃗ , q⃗) . (C36)

Here, P⃗ = {p, e, xI} and q⃗ = {qr, qz}. We write the

explicit forms for these equations below. The Fj(P⃗ , q⃗)
terms are given by

dp

dλ
=

2

(r1 + r2)2

[
r22
dr1
dλ

+ r21
dr2
dλ

]−1

≡ Fp , (C37)

de

dλ
=

2

(r1 + r2)2

[
r2
dr1
dλ

+ r1
dr2
dλ

]−1

≡ Fe , (C38)

dxI
dλ

= −z−
xI

dz−
dλ

≡ FxI
. (C39)

The f
(1)
i terms are given by

dqi,0
dλ

= − 1

∂xiG/∂qi

(
∂xiG
∂Pj

dPj
dλ

)
≡ f

(1)
i . (C40)

For detail about the derivation of these expressions, refer
to Appendix C of Ref. [19].

Appendix D: Near-identity transformation details

In this appendix, we describe in some detail the equa-
tions underlying the NIT. Further details can be found
in Refs. [17, 19, 77, 79].

1. Mino-time NIT derivation

a. Inverse NIT

The inverse transformations can be found for Pk and qi
by requiring that their composition with the transforma-
tions in Eqs. (5.9) must give the identity transformation.

Expanding order by order in ε, this gives us

Pj = P̃j − εY
(1)
j ( ⃗̃P, ⃗̃q, ψ̃s) +O(ε2) , (D1a)

qi = q̃i − εX
(1)
i ( ⃗̃P, ⃗̃q, ψ̃s) +Oε2) , (D1b)

ψs = ψ̃s −W (0)
s ( ⃗̃P, ⃗̃q)

− ε

(
W (1)
s ( ⃗̃P, ⃗̃q, ψ̃s)−

∂W
(0)
s ( ⃗̃P, ⃗̃q)

∂P̃j
Y

(1)
j ( ⃗̃P, ⃗̃q)

− ∂W
(0)
s ( ⃗̃P, ⃗̃q)

∂q̃i
X

(1)
i ( ⃗̃P, ⃗̃q)

)
+O(ε2) .

(D1c)

b. Transformed equations of motion

By taking the time derivative of the NIT (5.9), substi-
tuting the EMRI equations of motion (5.7) and inverse
NIT (D1), and expanding in powers of ε we obtain the
NIT transformed equations of motions

dP̃j
dλ

= εF̃
(1)
j ( ⃗̃P, ⃗̃q, ψ̃s) + ε2F̃

(2)
j ( ⃗̃P, ⃗̃q, ψ̃s) +O(ε3) ,

(D2a)

dq̃i
dλ

= Υ
(0)
i ( ⃗̃P ) + εΥ

(1)
i ( ⃗̃P, ⃗̃q, ψ̃s) +O(ε2) , (D2b)

dψ̃s
dλ

= Υ(0)
s ( ⃗̃P, ⃗̃q, ψ̃s) + εΥ(1)

s ( ⃗̃P, ⃗̃q, ψ̃s) +O(ε2) , (D2c)

(D2d)

where

Υ(0)
s = f (0)s +

∂W
(1)
j

∂q̃i
Υ

(0)
i , (D3a)

F̃
(1)
j = F

(1)
j +

∂Y
(1)
j

∂q̃i
Υ

(0)
i +

∂Y
(1)
j

∂ψ̃s
Υ(0)
s , (D3b)

Υ(1)
s =

∂W
(1)
s

∂q̃i
Υ

(0)
i +

∂W
(1)
s

∂ψ̃s
Υ(0)
s

− ∂f
(0)
s

∂P̃j
Y

(1)
j − ∂f

(0)
s

∂q̃i
X

(1)
i ,

(D3c)

Υ
(1)
i = f

(1)
i +

∂X
(1)
i

∂q̃k
Υ

(0)
k +

∂X
(1)
i

∂ψ̃s
Υ(0)
s − ∂Υ

(0)
i

∂P̃j
Y

(1)
j ,

(D3d)

F̃
(2)
j = F

(2)
j +

∂Y
(2)
j

∂q̃i
Υ

(0)
i +

∂Y
(1)
j

∂q̃i
f
(1)
i +

∂Y
(1)
j

∂P̃k
F

(1)
k

−
∂F̃

(1)
j

∂P̃k
Y

(1)
k −

∂F̃
(1)
j

∂q̃i
X

(1)
i −

∂F̃
(1)
j

∂ψ̃s
W (1)
s .

(D3e)

Note that all functions on the right hand side are evalu-

ated at ⃗̃P , ⃗̃q, and ψ̃s and that we have adopted the con-
vention that all repeated roman indices are summed over.
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Notice also that Υ
(1)
s will be suppressed by a factor of the

mass-ratio: every term it appears in is proportional to
secondary spin, and therefore will not contribute at 1PA
order. We include these terms here for completeness, but
only the 1PA contributions appear in Sec. VD.

c. Cancellation of oscillating terms at adiabatic order

We can recast the expression for Υ̃
(0)
s as

Υ(0)
s = f (0)s +

∂W
(1)
s

∂q̃i
Υ

(0)
i

=
〈
f (0)s

〉
+
∑
κ̸⃗=0⃗

(
f
(0)
s,κ⃗ + i(κ⃗ · Υ⃗(0))W̆

(0)
s,κ⃗

)
eiκ⃗·q⃗ .

(D4)

As such, we can cancel the oscillatory pieces of Υ̃
(0)
s by

choosing the oscillatory part of W
(0)
s to be

W̆
(0)
j,κ⃗ ≡ i

κ⃗ · Υ⃗(0)
f
(0)
s,κ⃗(P⃗ ) = −(ψsr(qr) + ψsz(qz)) . (D5)

Conveniently, this is related to the oscillating pieces of
the geodesic solution for the spin phase which is known
analytically. Due to the separability of this solution, this
transformation is always well defined, even in the pres-
ence of orbital resonances where κ⃗res = {kr, kz} where

kr, kz ∈ Z, such that κ⃗res · Υ⃗(0) = krΥ
(0)
r + kzΥ

(0)
z = 0.

We can continue with this analysis and recast the ex-

pression for F̃
(1)
j as

F̃
(1)
j = F

(1)
j +

∂Y
(1)
j

∂q̃i
Υ

(0)
i +

∂Y
(1)
j

∂ψ̃s
Υ(0)
s = F

(1)
j +

∂Y
(1)
j

∂Q̃k

Υ
(0)
k

=
〈
F

(1)
j

〉
+
∑
κ̸⃗=0⃗

(
F

(1)
j,κ⃗ + i(κ⃗ · Υ⃗(0))Y̆

(1)
j,κ⃗

)
eiκ⃗·Q⃗ .

(D6)

As such, we can cancel the oscillatory pieces of F̃
(1)
j by

choosing the oscillatory part of Y
(1)
j to be

Y̆
(1)
j,κ⃗ ≡ i

κ⃗ · Υ⃗(0)
F

(1)
j,κ⃗ (P⃗ ) . (D7)

Clearly, one can only make this choice so long as there
is no κ⃗res = {κr, κz, κs} where κr, κz, κs ∈ Z, such that

κ⃗res · Υ⃗(0) = κrΥ
(0)
r + κzΥ

(0)
z + κsΥ

(0)
s = 0. This is oc-

casionally the case in the presence of resonances, where
the radial and polar frequencies become commensurate
or when the spin, the radial and/or the polar frequen-
cies become commensurate. We have carefully chosen
our data grids so that we do not encounter such orbits in
our study.

d. Cancellation of oscillating terms at post-adiabatic order

Using the above choice for Y̆
(1)
j , the equation for Υ

(1)
i

becomes

Υ
(1)
i = f

(1)
i − ∂Υ

(0)
i

∂P̃j
Y

(1)
j +

∂X
(1)
i

∂q̃k
Υ

(0)
k +

∂X
(1)
i

∂ψ̃s
Υ(0)
s

= f
(1)
i − ∂Υ

(0)
i

∂P̃j
Y

(1)
j +

∂X
(1)
i

∂Q̃k

Υ
(0)
k

=
〈
f
(1)
i

〉
− ∂Υ

(0)
i

∂P̃j

〈
Y

(1)
j

〉
+
∑
κ̸⃗=0⃗

(
f
(1)
i,κ⃗ + i(κ⃗ · Υ⃗(0))X̆

(1)
i,κ⃗

− i

κ⃗ · Υ⃗(0)

∂Υ
(0)
i

∂P̃j
F

(1)
j,κ⃗

)
eiκ⃗·Q⃗ .

(D8)

As a result, we can remove the oscillating pieces of Υ
(1)
i

by choosing

X̆
(1)
i,κ⃗ ≡ i

κ⃗ · Υ⃗(0)
f
(1)
i,κ⃗ +

1

(κ⃗ · Υ⃗(0))2
∂Υ

(0)
i

∂Pj
F

(1)
j,κ⃗ . (D9)

Similarly, looking at the equation for Υ
(1)
s , we see that:

Υ(1)
s =

∂W
(1)
s

∂q̃i
Υ

(0)
i +

∂W
(1)
s

∂ψ̃s
Υ(0)
s − ∂f

(0)
s

∂P̃j
Y

(1)
j − ∂f

(0)
s

∂q̃i
X

(1)
i

=
∂W

(1)
s

∂q̃k
Υ

(0)
k − ∂f

(0)
s

∂P̃j
Y

(1)
j − ∂f

(0)
s

∂q̃i
X

(1)
i

=
∂W

(1)
s

∂q̃k
Υ(0)
s −

〈
∂f

(0)
s

∂P̃j
Y

(1)
j

〉
−

〈
∂f

(0)
s

∂q̃i
X

(1)
i

〉

−

{
∂f

(0)
s

∂P̃j
Y

(1)
j

}
−

{
∂f

(0)
s

∂q̃i
X

(1)
i

}

=−

〈
∂f

(0)
s

∂P̃j
Y

(1)
j

〉
−

〈
∂f

(0)
s

∂q̃i
X

(1)
i

〉

+
∑
κ̸⃗=0⃗

(
i(κ⃗ · Υ⃗(0))W̆

(1)
s,κ⃗

−
∑
κ⃗′ ̸=0⃗

[
∂f

(0)
s,κ′

∂P̃j
Y

(1)
j,κ⃗−κ⃗′ +

∂f
(0)
s,κ⃗′

∂q̃i
X

(1)
iκ⃗−κ⃗′

])
eiκ⃗·Q⃗ ,

(D10)

where we introduced the additional notation {·} to de-
note the oscillatory part of a product of functions. From
this we obtain

W̆
(1)
s,κ⃗ =

i

κ⃗ · Υ⃗(0)

(∑
κ⃗′ ̸=0⃗

[
∂f

(0)
s,κ′

∂P̃j
Y

(1)
j,κ⃗−κ⃗′ +

∂f
(0)
s,κ⃗′

∂q̃i
X

(1)
iκ⃗−κ⃗′

])
.

(D11)
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Using the above choice for Y̆
(1)
j , we can express the

oscillatory part of the expression for F̃
(2)
j as

˘̃F
(2)
j =F̆

(2)
j +

∂Y̆
(2)
j

∂Q̃k

Υ
(0)
k +

{
∂Y

(1)
j

∂q̃i
f
(1)
i

}

+

{
∂Y

(1)
j

∂P̃k
F

(1)
k

}
−
∂
〈
F

(1)
j

〉
∂P̃k

Y̆
(1)
k

=
∑
κ̸⃗=0⃗

(
F

(2)
j,κ⃗ + i(κ⃗ · Υ⃗(0))Y̆

(2)
j,κ⃗ +

∂
〈
Y

(1)
j

〉
∂P̃k

F
(1)
k,κ

− i
∂
〈
F

(1)
j

〉
∂P̃k

Fk,κ⃗

κ⃗ · Υ⃗(0)
+
∑
κ⃗′ ̸=0⃗

(
i
F

(1)
k,κ⃗−κ⃗′

κ⃗′ · Υ⃗(0)

(
∂F

(1)
j,κ⃗′

∂P̃k

−
F

(1)
j,κ⃗′

κ⃗′ · Υ⃗(0)

∂(κ⃗′ · Υ⃗(0))

∂P̃k

)
−
κ⃗′ · f⃗ (1)κ⃗−κ⃗′

κ⃗′ · Υ⃗(0)
F

(1)
j,κ⃗′

))
eiκ·Q⃗ ,

(D12)

Thus we can remove the oscillatory part of F̃
(2)
j by choos-

ing

Y̆
(2)
j,κ⃗ =

i

κ⃗ · Υ⃗(0)

(
F

(2)
j,κ⃗ +

∂
〈
Y

(1)
j

〉
∂P̃k

F
(1)
k,κ⃗

− i
∂
〈
F

(1)
j

〉
∂P̃k

F
(1)
k,κ⃗

κ⃗ · Υ⃗(0)
+
∑
κ⃗′ ̸=0⃗

(
i
F

(1)
k,κ⃗−κ⃗′

κ⃗′ · Υ⃗(0)

(
∂F

(1)
j,κ⃗′

∂P̃k

−
F

(1)
j,κ⃗′

κ⃗′ · Υ⃗(0)

∂(κ⃗′ · Υ⃗(0))

∂P̃k

)
−
κ⃗′ · f⃗ (1)κ⃗−κ⃗′

κ⃗′ · Υ⃗(0)
F

(1)
j,κ⃗′

))
.

(D13)

e. Freedom in the averaged pieces

With the oscillatory pieces of the NIT equations of mo-
tion removed, terms in the equations of motion become

F̃
(1)
j =

〈
F

(1)
j

〉
, Υ(0)

s =
〈
f (0)s

〉
, (D14a-b)

Υ
(1)
i =

〈
f
(1)
i

〉
− ∂Υ

(0)
i

∂P̃j
, (D14a)

and

Υ(1)
s =−

〈
∂f̆

(0)
s

∂P̃j
Y̆

(1)
j

〉
−

〈
∂f̆

(0)
s

∂q̃i
X̆

(1)
i

〉

−
∂
〈
f
(0)
s

〉
∂P̃j

〈
Y

(1)
j

〉
,

(D15)

F̃
(2)
j =

〈
F

(2)
j

〉
+

〈
∂Y̆

(1)
j

∂q̃i
f̆
(1)
i

〉
+

〈
∂Y̆

(1)
j

∂P̃k
F

(1)
k

〉

+
∂
〈
Y

(1)
j

〉
∂P̃k

〈
F

(1)
k

〉
−
∂
〈
F

(1)
j

〉
∂P̃k

〈
Y

(1)
k

〉
.

(D16)

Note that we still have freedom to set the averaged pieces

of the transformation functions
〈
Y

(1)
j

〉
,
〈
Y

(2)
j

〉
,
〈
W

(0)
s

〉
,〈

W
(1)
s

〉
, and

〈
X

(1)
i

〉
to be anything we choose. There are

many valid and interesting choices that one could make
that are explored in Refs. [17, 19, 79]. For this work,

we make use of the simplest choice:
〈
Y

(1)
j

〉
=
〈
Y

(2)
j

〉
=〈

W
(0)
s

〉
=
〈
W

(1)
s

〉
=
〈
X

(1)
i

〉
= 0, as this makes it easy

to compare between OG and NIT inspirals. It also has
the benefit of drastically simplifying equations of motion
to

F̃
(1)
j =

〈
F

(1)
j

〉
,Υ(0)

s =
〈
f (0)s

〉
,Υ

(1)
i =

〈
f
(1)
i

〉
,

(D17a-c)

and

Υ(1)
s = −

〈
∂f̆

(0)
s

∂P̃j
Y̆

(1)
j

〉
−

〈
∂f̆

(0)
s

∂q̃i
X̆

(1)
i

〉
, (D18)

F̃
(2)
j =

〈
F

(2)
j

〉
+

〈
∂Y̆

(1)
j

∂q̃i
f̆
(1)
i

〉
+

〈
∂Y̆

(1)
j

∂P̃k
F

(1)
k

〉
.

(D19)

f. Evolution of extrinsic quantities

Now we look to remove the oscillatory pieces of the

evolution equations for the extrinsic quantities X⃗ :

dX
dλ

= f
(0)
k (P⃗ , q⃗) . (D20)

Since these terms do not depend directly on the spin
phase ψ, this calculation goes through the same as in the
non-spinning case. Substituting the inverse transforma-
tion (D1) and re-expanding in ε we can write this as an

equation involving only the NIT variables ⃗̃P and ⃗̃q,

dX
dλ

= f
(0)
k − ε

(
∂f

(0)
k

∂P̃j
Y

(1)
j +

∂f
(0)
k

∂q̃i
X

(1)
i

)
+O(ε2) ,

(D21)
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where all of the functions on the right hand side are now

functions of ⃗̃P and ⃗̃q. In order to remove the oscilla-
tory pieces of the equations, we make use of a new set

of extrinsic quantities ⃗̃X that are related to the original
quantities by the following transformation:

X̃k = Xk + Z
(0)
k ( ⃗̃P, ⃗̃q) + εZ

(1)
k ( ⃗̃P, ⃗̃q) . (D22)

We note that since this transformation has a zeroth order
in mass ratio term Z

(0)
k , it is not an near-identity trans-

formation. Thus when we produce waveforms it will be

necessary to be able to calculate Z
(0)
k explicitly.

We then take the time derivative of (D22), substitute

the equations of motion for X⃗ and expand order by order

to obtain equations of motion for ⃗̃X :

dX̃k
dλ

= Υ
(0)
k + εΥ

(1)
k +O(ε2) , (D23)

where

Υ
(0)
k =f

(0)
k +

∂Z
(0)
k

∂q̃i
Υ

(0)
i , (D24a)

Υ
(1)
k =

∂Z
(0)
k

∂q̃i
Υ

(1)
i +

∂Z
(0)
k

∂P̃j
F̃

(1)
j +

∂Z
(1)
k

∂q̃i
Υ

(0)
i

−
∂f

(0)
k

∂P̃j
Y

(1)
j −

∂f
(0)
k

∂q̃i
X

(1)
i .

(D24b)

We can now remove the oscillating pieces of the functions

Υ
(0)
k by solving the equations

0 =f̆
(0)
k +

∂Z̆
(0)
k

∂q̃i
Υ

(0)
i , (D25a)

0 =
∂Z̆

(0)
k

∂q̃i
Υ

(1)
i +

∂Z̆
(0)
k

∂P̃j
F̃

(1)
j +

∂Z̆
(1)
k

∂q̃i
Υ

(0)
i

−

{
∂f

(0)
k

∂P̃j
Y

(1)
j

}
−

{
∂f

(0)
k

∂q̃i
X

(1)
i

}
,

(D25b)

for the oscillatory parts of the transformation Z̆
(0)
k and

Z̆
(1)
k . The first of these is satisfied by using the oscillating

pieces for the analytic solutions for the geodesic motion
of t and ϕ,

Z̆
(0)
k = −X̆k,r(qr)− X̆k,z(qz) . (D26)

It is unclear whether the equation for Z
(1)
k would yield

analytic solutions, but it can be solved numerically. Since
we only need to know the extrinsic quantities to O(ε)
to generate waveforms, we do not need to be able to
calculate this explicitly and it is sufficient to know that
a solution exists.

Now the forcing functions only depend only on ⃗̃P and

FIG. 10. Dephasing in ϕ(t) of a spinning-body orbit relative
to a non-spinning body orbit for two different choices of initial
conditions. The system has mass ratio ε = 10−2 and the small
body orbits a black hole with spin a = 0.7M . The magnitude
and orientation of the small body’s spin is specified by s =
1, s∥ = s. The blue curves correspond to matching initial
orbital elements (pφ, eφ, xφ) while the orange curves denotes
matching the initial Boyer-Lindquist frequencies (Ωr,Ωz,Ωϕ).
The solid curves show the averaged dephasing of ϕ(t), i.e.,
φRR+SCF

ϕ − φRR
ϕ while the shading shows the dephasing of

ϕ(t) given directly by the OG equations, i.e., ϕRR+SCF −ϕRR.
Initially, p = 9.5, e = 0.19, and xI = 0.699.

are given by

Υ
(0)
k =

〈
f
(0)
k

〉
, (D27a)

Υ
(1)
k =

∂
〈
Z

(0)
k

〉
∂P̃j

F̃
(1)
j −

∂
〈
f
(0)
k

〉
∂P̃j

〈
Y

(1)
j

〉
−

〈
∂f̆

(0)
k

∂P̃j
Y̆

(1)
j

〉
−

〈
∂f̆

(0)
k

∂q̃i
X̆

(1)
i

〉
.

(D27b)

Again, we have freedom in the average pieces of the trans-
formation functions which we use to simplify this prob-
lem further. As before, we chose the simplest option and

set
〈
Z

(0)
k

〉
= 0 which along with our previous choices

simplifies the expression for Υ
(1)
k to be

Υ
(1)
k = −

〈
∂f̆

(0)
k

∂P̃j
Y̆

(1)
j

〉
−

〈
∂f̆

(0)
k

∂q̃i
X̆

(1)
i

〉
. (D28)
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FIG. 11. Averaged dephasing in qr(t), qz(t), and ϕ(t) for
a spinning body relative to a non-spinning body with mass
ratio ε = 10−2 orbiting a black hole with spin a = 0.7M ;
the small body’s spin is given s = 1, s∥ = s. The top panel

shows φSCF+RR
r − φRR

r , the middle panel shows φSCF+RR
z −

φRR
z and the bottom panel shows φSCF+RR

ϕ −φRR
ϕ . Different

colors correspond to different initial p values for the inspiral;
duration of inspiral also correlates with initial p (inspiral with
p0 = 9.5 is longest, that with p0 = 7 is shortest, etc.). For all
panels, e = 0.2, xI = 0.7, qr = 0, qz = 0, and ϕ = 0 initially.

2. Summary of Mino-time quantities

We chose the average pieces of the transformation

terms to be
〈
Y

(1)
j

〉
=
〈
Y

(2)
j

〉
=
〈
X

(1)
i

〉
=
〈
W

(0)
s

〉
=〈

W
(1)
s

〉
=
〈
Z

(0)
k

〉
=
〈
Z

(1)
k

〉
= 0 and so the transformed

forcing functions are related to the original functions by

F̃
(1)
j =

〈
F

(1)
j

〉
, Υ(0)

s =
〈
f (0)s

〉
, (D29a-b)

Υ
(1)
i =

〈
f
(1)
i

〉
, Υ

(0)
k =

〈
f
(0)
k

〉
, (D29c-d)

Υ(1)
s = −

〈
∂f̆
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s

∂P̃j
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(1)
j

〉
−

〈
∂f̆

(0)
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∂q̃i
X̆

(1)
i

〉
, (D29e)
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F
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j

〉
+

〈
∂Y̆
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j

∂q̃i
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(1)
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〉
+

〈
∂Y̆
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∂P̃k
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〉
,

(D29f)

Υ
(1)
k = −

〈
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(0)
k

∂P̃j
Y̆

(1)
j

〉
−

〈
∂f̆

(0)
k

∂q̃i
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(1)
i

〉
. (D29g)

In deriving these equations of motion, we have con-
strained the oscillating pieces of the transformation func-
tions to be

Y̆
(1)
j ≡

∑
κ̸⃗=0⃗

i

κ⃗ · Υ⃗
F

(1)
j,κ⃗ e

iκ⃗·Q⃗, (D30)

X̆
(1)
i ≡

∑
κ̸⃗=0⃗

(
i

κ⃗ · Υ⃗
f
(1)
i,κ⃗ +

1

(κ⃗ · Υ⃗)2
∂Υi
∂Pj

F
(1)
j,κ⃗

)
eiκ⃗·Q⃗ ,

(D31)

W̆
(1)
s,κ⃗ ≡

∑
κ̸⃗=0⃗

i

κ⃗ · Υ⃗(0)
× (D32)

(∑
κ⃗′ ̸=0⃗

[
∂f

(0)
s,κ′

∂P̃j
Y

(1)
j,κ⃗−κ⃗′ +

∂f
(0)
s,κ⃗′

∂q̃i
X

(1)
iκ⃗−κ⃗′

])
eiκ⃗·Q⃗ .

(D33)

In order to generate waveforms, one only needs to know
the transformations in Eq. (5.9) to zeroth order in the
mass ratio so that the error is O(ε) i.e.,

Pj = P̃j +O(ε) , (D34a)

qi = q̃i +O(ε) , (D34b)

ψs = ψ̃s −W (0)
s ( ⃗̃P, ⃗̃q) +O(ε) . (D34c)

Xk = X̃k − Z
(0)
k ( ⃗̃P, ⃗̃q) +O(ε) . (D34d)

where the zeroth order transformation term for the ex-
trinsic quantities Z̆

(0)
k is known analytically

W̆
(0)
j,κ⃗ = −ψsr(qr)− ψsz(qz) . (D35)

Moreover, the zeroth order transformation term for the

extrinsic quantities Z̆
(0)
k is known analytically as it re-

lated to the analytic solutions for the geodesic equations
for t and ϕ by

Z̆
(0)
k = −X̆k,r(qr)− X̆k,z(qz) . (D36)

3. NIT Operator

For compact notation in the body of the text, we define
the NIT operator N for generic spinning orbits by the
following:
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FIG. 12. Averaged dephasing in qr(t), qz(t), and ϕ(t) for a spinning body relative to a non-spinning body with mass ratio
ε = 10−2 orbiting a black hole with spin a = 0.7M ; the small body’s spin has s = 1, s∥ = s. The top row shows φSCF+RR

r −φRR
r ,

the middle row shows φSCF+RR
z − φRR

z and the bottom row shows φSCF+RR
ϕ − φRR

ϕ . In the left column, the different colors
correspond to different initial e values for the inspiral; in the right column, the different colors correspond to different initial
values of xI . For all panels, p = 7.5 and xI = 0.7 initially. For the left column, the initial value of xI is 0.7 and for the right
column the initial value of e is 0.2.

N (A) =
∑
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where Υ
(0)
nkj = nΥ

(0)
r + kΥ

(0)
z + jΥ

(0)
s .

Note that for the problem that we are solving in this
work with only the radiation reaction driven only by the
GW fluxes and the conservative effects comping only

from the spin-curvature force, we find that N (F
(1)
p ),

N (F
(1)
e ), and N (F

(1)
xI ) are numerically consistent with

zero. This is to be expected as there is no interplay
between the modes of the dissipative and conservative
forces. We would not expect this to hold if one were to
include the first order conservative GSF needed for 1PA
inspiral calculations.
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Appendix E: Initial conditions

1. OG and NIT

To be able to directly compare between OG and NIT
inspirals in Mino-time, we will need to match their initial
conditions to sufficient accuracy. To maintain an overall
phase difference of O(ε) in the course of an inspiral, the
initial values of the phases and extrinsic quantities need
only be known to zeroth order in ε. However, we need to

know the initial values of the orbital elements P⃗ to linear
order in ε and so we use

P̃j(0) ≃ Pj(0)

+ εY
(1)
j

(
P⃗ (0), q⃗(0), ψs(0)− W̆ (0)(P⃗ (0), q⃗(0))

)
.

(E1)

When comparing between OG inspirals and NIT in-
spirals that are parameterized by Boyer-Lindquist time
t, we set the initial conditions for the phases of the OG
inspiral and match the initial conditions for the φ⃗ phases
via:

φα(0) =Q̃α(0) + ∆φα(
⃗̃P (0), ⃗̃q(0)) +O(ε) , (E2)

whereQα(0) are given by Eqs. (D34) and P̃j(0) is given
by Eq. (E1). However, we to maintain subradian accu-
racy in the phases, we need to know the initial conditions
for the orbital elements to sub-leading order via:

Pj(0) =P̃j(0) + εΠ
(1)
j

(
P⃗ (0), q⃗(0)

)
+O(ε2) . (E3)

2. Adiabatic and post-adiabatic

There are different approaches to matching initial con-
ditions when comparing adiabatic and post-adiabatic in-
spirals. As discussed in Refs. [13, 14, 19], matching
the initial values of orbital parameters (pφ, eφ, xφ) be-
tween adiabatic and post-adiabatic inspirals leads to
a linearly growing error in the orbital phases. By
instead matching the initial Boyer-Lindquist frequen-
cies Ωr, Ωϕ, and Ωz, we will instead have quadratic
growth in t. Explicitly, we can choose initial con-
ditions (pRR+SCF

φ , eRR+SCF
φ , xRR+SCF

φ ) for the inspiral
that includes spin-curvature force and then find the ini-
tial conditions for the radiation-reaction-only inspiral
(pRRφ , eRRφ , xRRφ ) by solving the simultaneous equations:

ΩRR+SCF
r (pRR+SCF

φ , eRR+SCF
φ , xRR+SCF

φ )

= ΩRRr (pRRφ , eRRφ , xRRφ ) , (E4)

ΩRR+SCF
z (pRR+SCF

φ , eRR+SCF
φ , xRR+SCF

φ )

= ΩRRz (pRRφ , eRRφ , xRRφ ) , (E5)

ΩRR+SCF
ϕ (pRR+SCF

φ , eRR+SCF
φ , xRR+SCF

φ )

= ΩRRϕ (pRRφ , eRRφ , xRRφ ) . (E6)

We explicitly demonstrate the difference in the choice of
initial conditions for the post-adiabatic terms considered
in this work in Fig. 10. In Fig. 10, the solid curves show
the averaged dephasing of ϕ(t), i.e., φRR+SCF

ϕ − φRRϕ .

The blue curve corresponds to the initial (pφ, eφ, xφ) val-
ues matching between the radiation-reaction only and
the radiation-reaction plus spin-curvature inspirals. The
orange curve corresponds to the initial (Ωr,Ωz,Ωϕ) val-
ues matching between the radiation-reaction only and the
radiation-reaction plus spin-curvature inspirals. The blue
curve grows linearly with t while the orange one grows
quadratically with t. This can be seen clearly in the inset
of Fig. 10; on a log-log scale, the slopes of the orange line
is twice that of the blue line. Note that, in the results
presented in this article, we match initial orbital param-
eters (pφ, eφ, xφ) between adiabatic and post-adiabatic
inspirals.

3. Varying initial conditions

Figure 11 depicts the dephasing of the radial, polar
and axial phases due to spin-curvature force during an
inspiral. As in Fig. 3, the top, middle and bottom panels
display φSCF+RR

α − φRRα with α ∈ {r, z, ϕ} respectively.
Different-colored curves correspond to different initial p
values: Red corresponds to a larger initial p value while
blue corresponds to a smaller initial p value that is closer
to the LSO. Because the monotonic evolution of the de-
phasing of the polar and axial phases (middle and bottom
panels), the curves that begin closer to the LSO do not
accumulate as much dephasing before the plunge. How-
ever, for the case of the radial phase the initial value of
p will affect where the maximum of the dephasing will
occur, because the evolution is not monotonic.
Figure 12 depicts the dephasing of the radial, polar and

axial phases due to spin-curvature force with different
curves on the same plot corresponding to different initial
e (left column) and xI (right column) values. The red
curves correspond to a larger initial e or xI value, yellow
is an intermediate value and blue is the smallest value.
As in Fig. 11, the top, middle and bottom panels display
φSCF+RR
α −φRRα with α ∈ {r, z, ϕ} respectively. The ini-

tial e0 values we plot are evenly spaced by ∆e = 0.05
and initial xI values are evenly spaced by ∆x = 0.002.
Consider the insets of the two plots in the middle row;
these curves show the evolution of φSCF+RR

α −φRRα . Ob-
serve that even separation in e does not correspond to
even separation in φSCF+RR

α − φRRα -space (middle left)
while even separation in xI does correspond to roughly
even separation in φSCF+RR

α −φRRα -space (middle right).
In Fig. 13, the solid lines show the the evolution of the

orbital elements (p, e, xI) under the OG equations of mo-
tion, while the dashed lines show the averaged evolution
of the orbital elements (pφ, eφ, xφ) under the NIT equa-
tions of motion. The oscillations depicted by the solid
curves exhibit harmonics of several frequencies: The spin-
aligned case (s∥ = 1, blue curve) contains harmonic of Ωr
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FIG. 13. Orbital evolution of a small body with a mis-
aligned spin vector. The top panel shows p(t) (solid) and
pφ(t) (dashed); middle shows e(t) and eφ(t); and the bottom
panel shows xI(t) and xφ(t). In all the panels, we plot orbital
element evolution for three values of spin alignment s∥ = 1
(blue), s∥ = 0.8 (orange) and s∥ = 0.5 (red) using the NIT
equations of motion (dashed) and the OG equations of motion
(solid). Especially in the middle and bottom panels, the dif-
ferent OG tracks can also be distinguished by the magnitude
of the oscillations, which scale with s⊥ and are thus small-
est for s∥ = 1 and largest for s∥ = 0.5. (The NIT tracks pass
roughly the centers of the OG oscillations.) The magnitude of
the small body’s spin is s = 1; ϕs is zero except for the orange
curve which has ϕs = π/4. The small body has mass ratio
ε = 10−2 and is orbiting a black hole with spin a = 0.7M .
For all panels, p = 10, e = 0.2, xI = 0.7, qr = 0, qz = 0, and
ϕ = 0 initially.

and Ωz while the spin-misaligned cases (s∥ ̸= 1, orange
and red curves) contain harmonics of three frequencies
Ωr, Ωzand Ωs. The additional harmonic structure intro-
duced by spin-precession is most evident in the evolution
of e shown in middle right panel.
The effect of the perpendicular spin component s⊥ is

most evident in the evolution of xI in the bottom right
panel. We can clearly see that the amplitude of the oscil-
lations in xI increase with increasing s⊥, i.e., decreasing
s∥. In addition, when there is a non-zero initial spin-
precession phase (ϕs ̸= 0, orange curve), we can see that
the oscillations in xI are out-of-phase with the ϕs ̸= 0
(red) curve. Because the initial conditions we use for
the NIT equations of motion are determined by the os-
cillations present in the OG equations (as described in
Appendix E), the NIT (dotted) curve for the misaligned
spin cases (red and orange curves) have slightly different
initial conditions and evolution compared to the aligned
spin curve (blue).
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