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Abstract: The need for a more sustainable and accessible source of energy is increasing as human
society advances. The use of different metallic materials and their challenges in current and future
energy sectors are the primary focus of the first part of this review. Cryogenic treatment (CT), one of
the possible solutions for an environmentally friendly, sustainable, and cost-effective technology for
tailoring the properties of these materials, is the focus of second part of the review. CT was found to
have great potential for the improvement of the properties of metallic materials and the extension of
their service life. The focus of the review is on selected surface properties and corrosion resistance,
which are under-researched and have great potential for future research and application of CT in
the energy sector. Most research reports that CT improves corrosion resistance by up to 90%. This
is based on the unique oxide formation that can provide corrosion protection and extend the life of
metallic materials by up to three times. However, more research should be conducted on the surface
resistance and corrosion resistance of metallic materials in future studies to provide standards for the
application of CT in the energy sector.

Keywords: energy sector; renewable energy; fusion; metallic materials; cryogenic treatment; surface;
interface; corrosion

1. Introduction

With the growth of the human population, there is an increasing need for a more
sustainable and more easily accessible source of energy [1], bringing prosperity, economic
development, security, better health care, welfare, and the overall better social and envi-
ronmental development of mankind [2]. In recent years, many challenges, such as the
distribution of natural resources, growth of the population and its needs, economic instabil-
ity, new war zones, etc. [3,4] have emerged in energy sources based on oil, gas, and coal.
These challenges combined with geo-political challenges and environmental challenges
such as greenhouse gases, environmental impact, sustainable development, etc. [2,5], are
leading to increased efforts in research and the development of new solutions and options
for new and more sustainable energy sources. The energy sources can be classified into
natural fossil-based (oil, gas, and coal) and renewable types [6]. It is important to note that
nuclear energy can be grouped on its own or as part of one of the previously mentioned
groups. This is a highly controversial topic, mainly based on whether conventional or
advanced nuclear power is discussed [6–9]. In this review, nuclear energy will be grouped
on its own.

The current prediction of energy sources for the next 20 years (2030–2040) in the
European Union (EU), predicted in the year 2020 [10,11], is shown in Figure 1. Currently,
the production of energy is still dominated by fossil-fuel-based sources (70%). The nuclear-
based sources have consistently maintained a similar ratio, while the renewable sources
are constantly gaining an increasing share. For the next two decades, an increasing use
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of renewable sources for energy production is predicted to increase by 300% in the EU
alone by 2030 and by up to 450% by 2040 compared to the current state [10,11]. The
nuclear energy source is predicted to remain a stable energy source throughout this period,
especially if fusion is included [6–8]. Figure 1 and Table 1 also show the development of
renewable energy sources in the EU over the next 20 years and the expected changes in the
redistribution of energy sources within different sectors.
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Figure 1. The square graph presents the prediction of gross energy-generating capacities within the
EU from current state of 2020 up to the next 20 years (2030–2040) by each sector. The orange color
stands for fossil fuels (oil, gas, and coal), red for renewables, and purple for nuclear. The lower pie
charts represent the current (year 2020) and predicted (years 2030 and 2040) fractions of the different
categories of renewable energy sources.

Production of Electricity per Year for Different Energy Sector

The production of electricity varies within the different categories of the energy sector,
and also, the production costs can vary significantly depending on the energy source
(Figure 2 and Table 2). Pricing is highly dependent on a variety of external factors, such
as subsidies, various taxes, etc., which also vary depending on geopolitical locations and
natural resources.
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Table 1. Renewable source preconditions for next 20 years for the EU.

Current State 2020 2030 2040

Hydroelectric energy

• Land hydroelectric energy (rivers and lakes)
• Marine hydroelectric energy (ocean currents,

tidal stream, and waves)

13% 10% 9%

Geothermal energy 7% 8% 8%
Biomass 67% 58% 51%
Solar energy

• Solar thermal
• Photovoltaic

3% 11% 21%

Wind energy 10% 13% 11%
Combined contribution of the renewable energy and
the total energy production ~25% ~35% ~48%
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Figure 2. The highest electricity production in kWh/year is possible with solar energy [12,13] and
nuclear energy [14]. This is followed by wind energy [15] and geothermal energy [16]. The lowest
electricity production comes from the biomass sector [17,18].

In addition to the price of electricity, another important factor in energy production is
also the so-called capacity factor (also known as CF). The CF is the unitless ratio of the actual
electrical energy output over a given period to the theoretical maximum electrical energy
output over the same period. The CF can also be thought of as production efficiency. CF is
usually calculated over a year in order to average out temporal variations and to represent
the realistic values of energy/electricity produced per maximum capacity of an energy
source (Table 2). From Table 2, the cost of electricity for renewable energy sources varies
due to different economic perspectives and also the source of production and maintenance
and repair costs that need to be considered. The next capacity factors show that the
most promising renewable energy sources are geothermal [16], hydroelectric [19–21], and
wind [15,22], based on the lowest possible electricity cost and the highest capacity factor.

To cope with the increasing energy demand and consumption, new energy produc-
tion pathways are expected to evolve and develop to provide greater energy security,
reduce global carbon emissions, and lower the financial cost of energy production. The
advancement of production processes in the energy sector will require the development
and utilization of new materials. This is where metallic materials (metals and alloys) come
into play, many of which have been scarcely used or even unused in energy production
and will become the most important players in sustainable energy production (see Figure 1
and Table 1).
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Table 2. Energy sectors presented in this manuscript and their cost of production and capacity factor [23].

Type of Energy Sector Cost
(EUR/MWh)

Capacity
Factor (%)

Hydroelectric energy
• Land hydroelectric energy
• Ocean hydroelectric energy

53–326 31–66
130–280 39–45

Geothermal energy 49–353 80–90
Biomass 128 64
Solar energy 27–130 12–30
Wind energy
• Onshore wind energy
• Offshore wind energy

24–67 29–52
60–130 12–48

Advanced nuclear energy 73 94

The successful implementation of such materials will be particularly crucial in appli-
cations where high strength and dimensional flexibility combined with high temperature
resistance are required. Today, more than 60 different metallic materials are used in one way
or another in energy production (as base materials for reactors, storage and accumulation
systems, and supporting infrastructure) [24]. Future energy security (Figure 3) requires a
critical awareness of the availability, functionality, substitutability, recyclability, and pro-
duction of metals and alloys [25–27]. Metallic materials are the type of materials that can
be newly produced or reused and recycled. Additionally, their properties can be tailored
through postprocessing, increasing their flexibility and versatility for various applications.
Therefore, the adaptation and development of heat treatment and further processing steps
of metallic materials for future applications must be under constant research [25–27]. The
factors that influence the value of metallic materials are market availability, substitutability,
recyclability, and socio-cultural and environmental impacts [26]. In addition, the devel-
opment and consideration of new materials such as high-entropy alloys and materials
for catalysis, energy generation, and storage applications will bring new challenges and
benefits to the energy sector [28,29].
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This review aims to provide a comprehensive overview of the metallic materials
used in the advanced nuclear and renewable energy sectors of the future, including the
challenges (environments) to which these materials are and planned to be exposed on a
daily basis. Particularly, this review aims to present a possible novel way of processing
metallic materials in a more environmentally friendly way, opening the possibility of
improving material properties, extending the life cycle of components, and generating
lower CO2 emissions compared to conventional pathways.

The paper is structured in the following order: in Section 2, the future energy sec-
tor is presented, where the renewable energy and advanced nuclear energy sources are
introduced and discussed. In the same chapter, the challenges and requirements of the
metallic materials used in the given environments of the different energy sources are also
presented. Section 3 introduces the emerging green technology of cryogenic heat treatment,
which has a great potential to reduce the impact of the energy sector on the environment
by improving material properties and extending the life cycle of components. Section 4
discusses the outlook for future technology and the energy sector and provides individual
guidelines for future materials implementation in the energy sector.

2. Future Energy Sector

The future energy sector is divided into renewable energy sources and advanced
nuclear energy based on fusion. The renewable energy sector is divided into hydroelectric
energy, geothermal energy, and biomass, solar, and wind energy, with some subdivisions
(see Figure 3 and Table 1).

2.1. Energy Sector and Selection of the Right Material
2.1.1. Advanced Nuclear Energy

For future advanced nuclear reactors, three major subtypes are considered: non-water-
cooled reactors, advanced water-cooled reactors, and fusion reactors. The latter’s design
will be based on the current fission reactors; therefore, the use of similar metallic materials
is expected. However, the research into the development of new, more resistant metallic
materials and their protection is ongoing [30,31].

The non-water-cooled reactor subtype includes reactors and systems that are still
based on fission reaction, but the coolants are either molten salts and are designated as
Th-based reactors or high-temperature gases (or cooled with helium, using graphite as a
moderator) [30,31]. This category also includes small modular reactors (SMRs), which are
fast-cooled reactors based on Na, Pb, and gas cooling [32].

The next category is advanced water-cooled reactors, also based on the fission reaction
and using water as a coolant and moderator, i.e., SMRs [30,31]. These reactors are cleaner,
fundamentally safer, more fuel efficient, more reliable, and more sustainable than the
current generation of reactors [33,34].

The last category is fusion reactors. Fusion reactors are based on fusion plasmas,
which are still in the early stages of research and development. The working conditions
of these reactors are much more intense compared to those of the fission reactors, reach-
ing temperatures of several thousand degrees during the plasma generation. Therefore,
complex testing and development of metallic materials is required for the construction and
operation of such reactors. In fact, there are two types of fusion plasmas being considered
for the development of future fusion reactors. The first type is based on strong magnetic
fields and is known as magnetic confinement fusion (MFC). The second type is based
on compressing the deuterium (DT) fuel and heating it rapidly that fusion occurs before
the fuel expands; this method is also known as inertial confinement fusion (ICF). Due to
the different primary principle compared to fission, the material for fusion application
must have a specific non-equilibrium thermodynamic state, two or more main phases,
complex grain boundaries; and dislocation systems. Compared to the traditional fission
system/environment, the new challenges for metallic materials used in fusion will mainly
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focus on adaptation to the higher resistance to neutron irradiation, cladding, and higher
temperatures and stresses [30,31].

The benefits of a new, advanced generation of nuclear reactors can bring society lower
energy costs, increased production, decarbonization of industry, increased efficiency, and
significantly reduced environmental and waste hazards. The development and safety of
future nuclear power systems depends not only on the type of fuel but also on the material
design. In current and future advanced nuclear power, materials are exposed to high-
energy particles, high temperatures, pressure changes, and highly corrosive environments.
However, the degradation of metallic materials in this environment is complex due to
the different materials used for the plant, the complex and highly variable environmental
conditions, and the different loading conditions of the material in various applications [30].

The first factor to consider is the thermal ageing and fatigue of metallic materials that
occurs in metals exposed to elevated temperatures. This is a critical aspect for metallic
materials used in nuclear energy, as it can lead to a short life cycle of the metallic component.
The reason for this is the altered microstructure, resulting from the diffusion activated
process, which causes changes in mechanical properties and fatigue (including creep
fatigue) [30,31].

The next factor (second) is irradiation, which causes changes in the dimensional stabil-
ity of metallic materials and thus influences the final properties of the metallic component.
This is caused by the following five radiation processes: (i) phase (microstructural) in-
stability induced by neutron irradiation, forming increased precipitation and segregation
of alloying elements; (ii) radiation-induced hardening and embrittlement; (iii) volume
swelling due to void formation; (iv) high-temperature helium embrittlement caused by
helium movement towards grain boundaries; and (v) irradiation creep caused by changes
in the crystal lattice due to migration of interstitial atoms and dislocations [30,31].

The third factor is the water environment, where water is the primary reactor coolant.
Exposure of metallic materials to water, especially with elevated temperatures, can lead
to corrosion of metallic materials, which can cause degradation of properties and lead
to component failures. The extent of the corrosion is a product of several factors, such
as water pH, water purity, material composition, temperature, gas concentrations, etc.).
The type of corrosion mechanisms can be divided into general and localized corrosion.
General corrosion mechanisms include uniform corrosion, boric acid corrosion, erosion
corrosion, and flow-accelerated corrosion. Localized corrosion mechanisms include crevice
corrosion, galvanic corrosion, pitting, environmental assisted cracking, and biological
corrosion. In addition, stress corrosion cracking (intergranular and transgranular stress
corrosion cracking and low-temperature cracking) can also be present under high-loading
conditions. In addition to water, molten salts and liquid metals can also cause corrosion
and electrochemical reactions that affect the degradation of the metallic material (see
Table 3) [30,31].

2.1.2. Hydroelectric Renewable Energy

Hydroelectric renewable energy currently represents 13% of all renewable energy
sources in the EU [21]. Hydropower is based on the movement of water through a turbine,
which in turn drives a generator to produce electricity. Hydroelectric power plants can be
installed in oceans or on rivers and lakes, which are sources of continental hydroelectric
power. Ocean electricity sources can be divided into wave energy, tidal current energy,
tidal barrage, ocean thermal air conditioning, and ocean thermal energy conversion (also
known as OTEC), where the last two options additionally produce heat.

OTEC relies on the steam from the warm surface water to interact with the turbines.
However, OTEC is still at an early stage of development, and the application relies on the
cold, deep ocean water, which condenses the steam back into water for reuse. For this
application to be viable, there must be a temperature difference of at least 20 K between the
two layers of the ocean water (surface/deep layer), which is mostly limited to the tropical
regions. OTEC can also be combined with ocean thermal air conditioning [35].
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Ocean thermal air conditioning can be used to control the air conditioning of buildings
by using cold, deep water to cool the fresh water circulating through a building. The
cold water must be between 277 K and 284 K. The same technique can also be used in
lakes [36,37].

The next option for harvesting electricity from the ocean is tidal barrages. Tidal
barrages are based on the normal hydroelectric concept, where instead of the typical river
flow, the tide drives the turbines in the barrage and then generates electricity. However,
the tidal difference between high and low tide must be at least 3 m for this technique to be
viable [38,39].

The next option for generating electricity is tidal stream (current) energy, which
uses similar technology as tidal barrages but relies on tidal currents [40]. In this type of
installation, the turbines are anchored to the seabed or can be suspended from a buoy
to generate electricity. The challenge of this technique is the preservation of the marine
environment when deploying this type of energy solution [41–43].

The next type of the energy source is produced by wave power. This type of energy
harvesting is based on the prediction of constant wave direction. It is estimated that wave
power of solely 2100 TWh per year could be generated by harvesting the naturally occurring
waves. To harvest wave energy, cells based on the pressure and then movement of hydraulic
pumps are built, which then drive the generator into motion. However, the application of
this technology is limited to the areas with constant waves [44–47]. In development are also
hybrid wave and wind energy farms [44,48] that use a combination of the aforementioned
techniques. The last type of the ocean-based hydroelectric renewable energy is related to the
use of osmotic power, which is based on the salt concentration difference between seawater
and fresh river water [49–51]. There are two known methods: one is reverse electrodialysis
(known as RED) [50,52], and the other is pressure-retarded osmosis (PRO) [53,54].

The continental type of hydroelectric renewable energy can be divided into three parts.
The best known and that with the longest tradition is hydroelectric power generation with
dams on large rivers or lakes [55]. However, due to its environmental impact, the future
of small hydro (also known as SHP) is a promising source of renewable and clean energy
that provides significantly lower changes to the environment and disruption of the local
ecosystem [49,55–57].

The next option for generating electricity from rivers is run-of-the-river (ROR) hy-
dropower, where the natural flow of the river generates electricity, and the flow of the river
determines the amount of electricity generated [58–60]. This type of source is ideal for
streams and rivers that can sustain a minimum flow compared to other types. This type
delivers cleaner power and generates less greenhouse gas for equivalent energy production
compared to other types. Additionally, because these types do not require a reservoir, there
is a reduced influence on the environment and flooding [61].

The last option is a special type of hydroelectric power generation using turbines
that are completely submerged and, in some cases, anchored to the river bed [62,63].
The advantages of this type are its high efficiency, low maintenance, and high reliability
compared to other hydroelectric types [64]. However, the environmental impact can be
controversial, especially on the flora and fauna of the marine/lake/river environments [65].

The metallic materials used in the hydroelectric sector must be able to withstand the
different environments (low temperature, high pressure, and highly corrosive environment
(including chemical agents)) and also have low density, high strength, high toughness and
high resistance to wear (especially abrasion), high resistance to corrosion, and high fatigue
resistance [66]. The metallic materials used for the turbines are austenitic stainless steel
(over 12% Cr content as an alloy), but the turbine blades can also be made of martensitic
stainless steel due to the higher strength of the steel [66,67]. Low-head machine parts
are made of weathering steel (Corten steel) and various types of stainless steel [68,69],
high-strength steel [56,70], ACSR steel [71], cast steel [68], carbon steel [72–74], and ferritic
steel [69] (see Section 2.2 for detailed description of metallic materials). Resistance to
erosion and cavitation are also important factors to consider for metallic materials used in
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the hydroelectric sector [66,75,76]. In addition, due to the biologically active environment
of hydroelectric plants, biofouling occurs where invasive species grow and accumulate
various bacteria [66]. As a result, the metallic materials need to either have self-cleaning
capabilities or can be treated with surface specific process to provide resistance to biofouling.
Alterative metallic materials that can also be used for turbines and components are also
different Al alloys (including Al-Si alloys) [66,71,77], Ti alloys [66,78], Cu alloys [76,79,80],
and Ni alloys [81] (see Table 3).

2.1.3. Biomass Renewable Energy

Biomass is a type of energy based on organic sources (animals and plants), the most
common sources being plants, waste, and wood. Biomass energy can be used for electricity,
heating or even biofuel [82–84].

One type of energy production is thermal conversion, where raw materials (paper or
waste) are burned (pyrolysis, gasification, anaerobic decomposition, torrefaction, and co-
firing) [83–87]. Most of the research and its emphasis has been on the pyrolysis technique,
where the combustion of organic material is carried out in the absence of oxygen under
temperatures up to 1173 K [85,88]. Different types of catalysts are used for the pyrolysis of
different types of source based biomasses (waste, plants, etc.) [89,90].

Biomass also has great potential to be used in the production of steel for reducing the
CO2 impact of the steel industry, but this is still being researched [84].

The main challenges that are facing metallic materials in the biomass sector are cor-
rosion (pitting corrosion, intergranular corrosion, etc.) [89], high-temperature corrosion,
and microbial-assisted corrosion [89,91]. The factors that strongly influence all types of
the corrosion are fluid dynamics (including different solutions), gas composition (N2, CO2,
H2O, Cl2, H2, etc. [90]), deposit composition, and temperature (573–1173 K) [89,90].

Other challenges that metallic materials face in biomass energy are abrasive wear [92],
material degradation due to small dusty particles [93], and thermomechanical fatigue
(high-temperature fatigue) [94–96].

The most common metals used in the biomass energy sector are carbon low-alloyed
steels [97,98], austenitic and martensitic stainless steels [97], Al and Ni alloys [97], and
some specialized non-ferrous alloys, such as nickel-cobalt-aluminum alloys (NCA). All
these metallic materials are used for the main structure and various components in the
biomass sector [82–84] (see Table 3).

2.1.4. Onshore and Off-Shore Renewable Energy

The highest demand and largest source of renewable energy in the global market
is currently onshore and offshore wind [99]. Wind energy is based on the conversion of
kinetic energy into rotational energy, which is then converted into electrical energy by
means of a shaft [100]. It is important to note that some turbine designs can produce more
energy compared to others (height, size, etc.). The other way to produce more energy is
the so-called yawing technique, where the wind turbine is shifted to face directly into the
wind, which can be freely manipulated on demand [101].

Wind energy can be produced both onshore and offshore. Onshore wind energy
encompasses the energy produced by the wind on land that comes from the natural
movement of air [102]. The advantages of onshore wind energy are cost-effective energy,
faster installation and easier maintenance, and a reduced environmental impact compared
to offshore energy [102]. However, there are disadvantages to onshore wind energy, such
as lower power generation, inconsistent wind, varying wind speeds, and a greater impact
on nature [102].

Offshore wind energy, i.e., offshore wind farms, are located out at sea where the
wind (sea breeze) has higher speeds and greater consistency [102]. The advantages of
this type or, more accurately, placement of wind farms include more space for placement,
reduced environmental impact (although this is debatable due to the more complicated
and invasive supporting infrastructure), and their greater efficiency compared to onshore
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turbines. The disadvantages are their higher maintenance and repair costs and higher
construction costs [101]. Offshore wind turbines can be anchored to the seabed, known
as fixed-bottom turbines, or they can be placed on floating platforms, known as floating
turbines [101,102].

Metallic materials are used in wind energy for the main foundation of the structure,
tower, gearbox, turbines, bearings, bolts, controllers, casings, and many other components
that require high corrosion and wear resistance, resistance to higher loads and dynamic
forces (including fatigue), and higher contact pressures [103–105]. The material must also
be highly resistant to solid particle erosion caused by dust particles [106].

For these reasons, the most common metallic materials used in the wind renewable
energy sector (see Section 2.2) are structural steels, stainless steels (austenitic, duplex, and
martensitic steels), electrical steels, cast iron, bearing steels, high Cr steels, low C nitrogen
steels, and high Si nodular cast iron [103–105]. The most common non-ferrous alloys used
in this sector are Cu-based alloys and Al-based alloys [103–105] (see Table 3).

2.1.5. Solar Renewable Energy

The next renewable energy sector is solar energy, which is based on the system of
harvesting solar radiation (photovoltaic) for electricity or collecting solar thermal energy
for heating [107]. The photovoltaic (PV) system for harvesting solar radiation is primarily
based on solar panels, where solar radiation is absorbed by PV cells in the solar panel. This
then creates electrical charges that move and respond to an internal electrical field in the PV
cell, causing electricity to flow [108,109]. In addition, photocatalysis can provide additional
support for solar energy production and storage by inhibiting the conversion of collected
light after exposure when there is insufficient light incoming to the solar panel (night time,
low radiance angle, or weather-related obstruction) [110,111].

Solar energy can also be harnessed using concentrating solar thermal power (also
known as CSP), which uses a system of mirrors to reflect, concentrate, and convert solar
energy into heat or even electricity [108,109].

The advantage of solar energy is that it is the most abundant natural energy source in
the world, and solar energy can provide a solid and increasing output efficiency compared
to other sources. It has minimal harmful effects on the environment, although this can also
be highly controversial [108].

The future of solar energy is also being explored in the context of hydrogen production,
which can later be used as a clean energy carrier [112]. H2 production from sustainable
solar energy is a possible environmentally friendly solution for the increasing demand
for energy and fuel as well as energy storage and transportation. The production of H2
from solar energy would be achieved by solar thermolysis and then by electrolysis from
solar–thermally produced H2 and photovoltaic-based hydrogen production [112]. Such
systems will also require new adaptations of metallic materials to adapt to new challenges
in terms of maintenance and repair in correlation to the high temperatures, hydrogen
presence that can cause hydrogen embrittlement, and corrosive environments [112].

The challenges that metallic materials face in the solar energy sector include the
corrosion effect between molten salts and thermal storage materials [113], high-temperature
corrosion [114], mechanically assisted corrosion [114], localized corrosion (stress corrosion
cracking and flow-accelerated corrosion) [114], creep fatigue [115,116], erosion [117,118],
oxidation [117], and mechanical properties [119,120].

The most commonly used ferrous alloys in the solar energy sector are austenitic and
martensitic stainless steels, carbon steels, Cr-Mo steels, duplex steels, FeCrAl steel, and
ferritic-martensitic steels (see Section 2.2). The most-used non-ferrous alloys are Ni alloys,
which represent more than 60% of all non-ferrous alloys used in this sector. The other non-
ferrous alloys are Al-based alloys, high-entropy alloys (HEA), and Mg-based alloys [121]
(see Section 2.2) (see Table 3).
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2.1.6. Geothermal Renewable Energy

Geothermal renewable energy is the last renewable energy herein presented. Geother-
mal energy is a type of thermal energy that originates from the formation of the planet
and from radioactive decay of elements [122–124]. The Earth’s internal thermal energy
flows to the surface by conduction at the rate of 44.2 TW [125] and by radioactive decay
at the rate of 30 TW [123]. The output of geothermal energy can currently meet twice the
current energy demand from all energy sources (including non-renewable sources), but
the challenge lies in the non-renewable energy flow and its extraction [123]. Harvested
geothermal energy can be used for electricity or for heating/cooling.

There are several ways to produce electricity directly from geothermal energy. The
first and the oldest type is the dry-steam power plant, which is based on the underground
steam source [124,126]. The next type is the flash-steam power plant, where the source
is underground water (>180 ◦C) and steam. This is the most common type of electricity
source based on geothermal energy [127,128]. The next type is an enhanced geothermal
system, which uses fracturing, drilling, and injection to extract fluid from the subsurface,
which is then used for heating and electricity generation [129,130]. The next type is the
binary cycle power plant, where water is heated underground (100–180 ◦C), and then,
the hot water circulates above ground and heats a liquid organic compound that has a
lower boiling point than water. This compound then produces steam, which flows into the
turbine and powers the generator to produce electricity [122,124,131].

In addition to electricity, geothermal energy can be used for heating and cooling.
Thermal energy can be extracted from low-temperature geothermal plants, co-produced
geothermal energy, or by geothermal heat pump [124]. The first type, low-temperature
geothermal energy, is based on the extracting energy from the low-temperature pockets
(around 150 ◦C) located a few meters below the surface [132]. The next type is the so-
called co-produced geothermal energy, where heat is produced by water that has been
heated [133,134]. The last type is the geothermal heat pump, which is installed at a depth
of 3 to 90 m. In this system, the temperature difference between both ends of the system is
used to transfer energy by either heating or cooling the upper part of the system [135,136].

One of the advantages of geothermal energy compared to other sources is that it
can be harvested almost anywhere in the world. Additionally, the power plants can
last for decades with proper maintenance, and because there is no seasonal variation in
workload, the system can be adapted to different conditions depending on the application
and environment [122,124].

The challenges facing metallic materials used for geothermal energy are corrosion
(uniform corrosion, pitting corrosion, crack corrosion, stress corrosion cracking, sulfur-
assisted corrosion cracking, and galvanic corrosion) [137,138], hydrogen bubbling [139,140],
corrosion fatigue [141,142], fatigue [137,138], erosion [140,142–144], wear [145], high pres-
sure [144], high temperature [144], and cavitation and decomposition of alloy structure [138].
The most common metallic materials used in the geothermal energy sector are duplex steels,
austenitic and superaustenitic stainless steels, martensitic stainless steels, low-alloyed steels,
carbon steels, superferritic steels, Cu-based alloys, Ni-based alloys, and Ti-based alloys (see
references in Section 2.2) (see Table 3).

2.2. Cost of Maintenance and Repairs in Future Energy Sector and Search of the Solutions for
Lowering the Costs
Cost of Maintenance and Repairs of Future Energy Sector

Maintenance costs vary for each of the described energy sectors due to the different
technologies used to produce electricity or heat (see Figure 4a). For advanced nuclear
power, projections are based on current nuclear power sources and can be up to 20% of the
initial investment [146,147]. For biomass energy, maintenance costs are estimated to be up
to 35% due to the unique environment. However, different technologies require different
levels of maintenance and servicing of the components, so maintenance costs can also be as
low as 15% of the investment over time [148,149].
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Figure 4. (a) Maintenance costs for each energy source type over time. Note that the figures are the
maximum value that maintenance can cost in terms of investment over time, but this can vary due to
different techniques. (b) Maintenance costs for each energy sector normalized by their corresponding
maximum and minimum CF. The range of CF was taken from Table 2.

Maintenance costs for hydropower can vary from 1.5 to 20% depending on the type
of technology used and the environment in which the plant is located [150,151]. The next
sector is geothermal sector, where the maintenance costs can reach up to 15% of investment
over the course of the life span of a typical power plant [152,153]. In the wind energy sector,
the onshore or offshore location of the wind farms plays an important role in maintenance
and repair costs, which can vary the costs somewhere between 20% and 30% of the total
investment [103,154]. The last sector is solar energy, which has the one of the lowest
maintenance costs (up to 10%) compared to all sectors. However, it is important to note
that this does not reflect how much energy is actually produced by it (see Table 2) [155].

In order to put the maintenance cost in relation to the actual output of the individual
energy source, the maintenance costs are normalized by the CF of the individual energy
source, which is presented in Figure 4b. As can be seen, the wind energy has a very wide
range due to the high maintenance costs that can be associated with specific maintenance
issues of a wind farm. The solar, hydroelectric, and biomass sources show an intermediate
influence of the maintenance costs, while geothermal and advanced nuclear energy have
the lowest influence of maintenance costs in relation to their effective production capacity.
This Figure 4 clearly shows that the improvement of materials will play an important role
in the development and improved cost reduction of renewable energy power plants.

2.3. Metallic Mateirals Used in the Energy Sector

Table 3 summarizes the various metallic materials used in the advanced nuclear and
renewable energy sectors.
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Table 3. The list of metallic materials used in advanced nuclear energy and renewable energy sectors.

Energy Sector Metallic Materials Application

Ferrous Alloys Non-Ferrous Alloys

Advanced Nuclear Energy Zr-based alloys
(Zircoaloy-4 (Zr-Sn-Fe-Cr), Zirlo, and M4 (Nb-based alloy)) [30,31] Water reactors [30,31]

Advanced Nuclear Energy

Austenitic stainless steel
(AISI 316 [31], AISI 316 SS [31], AISI 316L [156], AISI 316 LN [157], AISI
304 [31,157–160], AISI 304L [161–164], AISI 304 N [161], AISI 304 SS [31],
AISI 347 [31], AISI 308L [157], AISI 308 SS [31], AISI 310 SS [156,165],
AISI 309L [31], AISI 309 SS [31], AISI 321 SS [31], AISI 403 [31], AISI
410 [31]; AISI 347 SS [31], AISI 630 [31], AISI D9 [31], HT-UPS [31],
AISI 4340)

Water reactors, piping, pressurizer, steam generator, pump,
valve casing, plunger, control rod drive mechanism, and core
internal structure [30,31]

Advanced Nuclear Energy
Cast-austenitic stainless steel
(CF3, CF3A, CF3M, CF8, CF8A, CF8M, AISI 304 SS, AISI 304L SS, AISI
316 SS, AISI 316L SS, AISI 321 SS, AISI 347 SS) [31]

Primary cooling piping system, reactor coolant, auxiliary
system, pump casing, valve bodies, and cooling circuit [30,31]

Advanced Nuclear Energy
Ni-based alloys
(600 [161,166,167], 690 [161,168], 625 [31], 718 [31], X-750 [31], 800 [31],
800 H [165], 182 [31], 82 [31])

Piping, steam generators, tubes, and working component in
high corrosive environments [30,31]

Advanced Nuclear Energy

Low-alloyed steel
(Ferritic steels: A105 [169], A106 GrB [31], A182 [169], A216 GrWCB [31],
A302 GrB [169,170], A333 Gr6 [31], SA212 B [169]; A508 Gr3
[169,171–174], A516 Gr70 [31], A533 A [31], A555 B [31], 15Kh2NMFA
[175,176], 08Kh18N10T [177]; bainitic steels: 1Cr1Mo0.25v [31],
2Cr1MoGr 22 [31], NiCrMoV [31]; duplex steel: 2507 [159], DSS [178],
Fe20Cr9Ni [179]; carbon steel: AISI 1018 [159])

Steamless piping, gorging, casting, bolting, plate, pressure
vessels, piping, and feedwater lines; internal stainless steel
cladding; steam generator channel heads [30,31]

Advanced Nuclear Energy

*Fusion
RAFM steel (Eurofer97 [180–183], CLAM [31], Infrafm [31], FB2h [31];
Rusfer [31]; 9Cr-2WVTa [31])
Ferritic steel [31] First wall at reactor, blanket, shield, vacuum vessel, and

divertor [30,31]

Advanced Nuclear Energy
Fusion
ODS alloy [31]
ODS ferritic alloy [31]

Advanced Nuclear Energy

Fusion other alloys
SiC composites [31]
W and W-based alloys [184–186]
Cu-based alloys [186]
Pb-Al alloy [187,188]
HEA [189]
Mo-based alloys [184]
Nb-based alloy [184]
V-based alloy [184]
C-fiber components [190]

Structural and insulating application, joints, and
filaments [30,31]
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Table 3. Cont.

Energy Sector Metallic Materials Application

Ferrous Alloys Non-Ferrous Alloys

Hydroelectrical
Renewable Energy

Austenitic stainless steel
(AISI 316/AISI 316L [71,191–193], AISI 304/AISI 304L [66,79,194,195],
AISI 325 [71], ASTM A743 [79,196], ASTM CF20 [71])

Turbines and other components [66]

Hydroelectrical
Renewable Energy

Non-ferrous alloys
Al-based alloys [66,71,77]
Ti-based alloys [66,78]
Cu-based alloys [76,79,80]
Ni-based alloys ([81,89])

Hydroelectrical
Renewable Energy

Martensitic stainless steel
(AISI 410 [197–200] ASTM F6NM [201,202], 13Cr4Ni [202–204], AISI
410T [79], AISI 410 [71], AISI 430 [69], ASTM FV520B [205], ASTM
CA6NM [196])

Turbines, shear pins, and other components [66]

Hydroelectrical
Renewable Energy

Other steels
High-strength steel [56,70,206]
ACSR [71,77]
Stainless steel [72,77,79,199,206]
Cast steel [71]
Nitronic steel [202]
Carbon steel [72]
High-speed steel [207]
Electric steel [69]
Constructional steel [69]

Supporting systems and other components [66]

Biomass
Renewable Energy

Carbon steels and low-alloyed steels
(2.25Cr-1Mo [97,98], 5Cr-1Mo [98], 9Cr-1Mo [98,208])

Construction of the plant, pumps, pipes, valves, fittings, and
digester tanks [82–84,105,209]

Biomass
Renewable Energy

Non-ferrous alloys
Al-based alloys [97,210,211]
Ni-based alloys [97,212]
NCA [213]

Specialized components [82–84]

Biomass
Renewable Energy

Stainless steels
Austenitic
(AISI 304 L [97,214], AISI 316 L [74])
Martensitic
(AISI 409 [74], AISI 410 [74], AISI 416 [74])

Construction of the plant, pumps, pipes, valves, fittings, and
digester tanks [82–84,105,209]

Biomass
Renewable Energy

Cr-steels
(12-13Cr [208], 13Cr [208], 14.5Cr [208], 16Cr [208], 12Cr-5Ni-2Mo [208],
11.5Cr-2Mo [208])



Coatings 2023, 13, 1822 14 of 40

Table 3. Cont.

Energy Sector Metallic Materials Application

Ferrous Alloys Non-Ferrous Alloys

Wind and Offshore Wind
Renewable Energy

Structural steel
(S235J2 [215,216], S355J2 [215], S500G1 [215,216], S35G10 [217],
S460 [216], S690 [216], S355 [216], S420M3Z [218], S500M3Z [219])

Foundation, tower, gear, and casing of the wind turbines [105]

Wind and Offshore Wind
Renewable Energy

Stainless steel
Duplex stainless steel (mostly AISI 2205 [220])
Austenitic stainless steel (22Cr25NiWCoCu [221], AISI 304L [222–224],
AISI 904L [225,226])
Martensitic stainless steel (mainly from 4xx series, such as AISI 440
C [227,228])

Wind and Off-shore Wind
Renewable Energy

Non-ferrous alloys
Cu-based alloys [229,230]
Al-based alloys mostly from 2xxx and 6xxx series [218,231,232]

Wind and Off-shore Wind
Renewable Energy

Other types of steel
Electric steels [233]
Cast iron [234,235]
High-Si nodular cast iron (EN GJS500-14 [235], EN GJS450-18 [235], EN
GJS600-10 [235])
Bearing steels (mainly AISI 52100 [227,228])
High-Cr steel [227,228]
Low-C nitrogen steel [227,228]

Solar Renewable Energy
Austenitic stainless steel
(AISI 304 [236,237], AISI 304L [238], AISI 316 [236,239], AISI 316L
[237,240,241], AISI 321 [242,243], AISI 347 [242], AISI 347H [236])

Are used for base in solar-thermal panels, pumps, tanks, and
heat exchangers [105]

Solar Renewable Energy
Martensitic stainless steel
(AISI 420 [244], EN 1.4903 [236], EN 1.4923 [236], AISI T91 [245],
VM12 [246])

Solar Renewable Energy

Ni-based alloy
(IN 230 [247], IN 600 [248,249], IN 617 [247,249], IN 625 [236,239,247],
IN HT700 [250], IN 800H [251], C-276 [252], XH [249], H230 [249],
HR120 [249])

Solar Renewable Energy

Other steels
Carbon steels [236,253]
Cr-Mo steels [254]
Duplex steels [255]
FeCrAl steels [241]
Ferritic-martensitic P91 [248]

Solar Renewable Energy

Other non-ferrous alloys
Al-based alloys, mostly from series 7xxx [256–259]
HEA [260,261]
Mg-based alloys, mostly Ti-Y combination [262,263]
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Table 3. Cont.

Energy Sector Metallic Materials Application

Ferrous Alloys Non-Ferrous Alloys

Geothermal
Renewable Energy

Duplex steels
(2205 [264], 2507 [264], 2707 [264])

Heat exchangers, filters, pumps, valves, piping, and
condensers [209]

Geothermal
Renewable Energy

Austenitic and superaustenitic steels
(AISI 304 [265], AISI 304L [264], AISI 310S [264], AISI 316L [264,266],
AISI 321 [264], UNS N08031 [266], N08020 [267], N08026 [267], N08825
[267], N08330 [267], S31254 [267])

Construction of the plant [267]

Geothermal
Renewable Energy

Martensitic stainless steels
(mostly from 4xx series, AISI 400 [268,269], AISI 430 [269], AISI 431 [269])

Geothermal
Renewable Energy

Non-ferrous alloys
Ti-based alloys [138]
Ni-based alloys [138,264]
Cu-based alloys [269]

Geothermal
Renewable Energy

Other steels
Low-alloyed steels [266]
Carbon steel [270]
Superferritic steels (S44627 [267], S44700 [267], S44800 [267])
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2.4. Solutions for Lowering the Costs of Maintenance and Prolonging the Component Durability

As mentioned before, the major maintenance costs are the repair and replacement of
materials used in the power plants. It is important to extend the service life of materials
and to design materials and components that can be easily and cost-effectively replaced
or repaired. A common solution to address these challenges for metallic materials used
in different energy sectors is mostly by cathodic corrosion protection in combination with
coatings [271,272]. Cathodic protection of the metallic materials is an electrochemical
technique to protect and control corrosion of the material [273,274].

Coatings, especially organic coatings, can also be applied without the combina-
tion of cathodic protection, which is mainly used for materials that are immersed in
water [275–277]; often, a combined use is chosen. Cathodic protection can be also achieved
by some metallic coatings, such as zinc alloy coatings or by a combination of metallic and
organic coatings (see, for example, [278,279]). However, coatings and linings can also be
applied alone as a passive corrosion protection or in a so-called duplex system, where both
coatings and linings are used simultaneously as a multilayer system [218,280].

Other options for surface treatment to improve resistance to environmental factors and
prolong component life include surface treatments such as laser treatment, electron beam,
induction heating, plasma nitriding, and selection of the appropriate heat treatment to
achieve the desired microstructure [281–284]. While coatings and surface treatments can be
a good technique to overcome many challenges, certain applications that require specialized
metallic materials can make this technique very limited. This is particularly an issue when
the application is under harsh conditions such as simultaneous high temperatures and
high loads, which require either metallic materials that are difficult to coat or specialized
coatings and surface treatments that can be very expensive and have limited-service life
due to combined wear, erosion, and corrosion effects [285,286].

This requires a holistic approach to material treatment that is not limited to the surface
of the material. A common approach for metallic materials is to use conventional heat
treatments to tailor individual properties. However, conventional heat treatments typically
involve a trade-off where certain properties are improved at the expense of others, typically
resulting in metallic materials with high strength but low fatigue and corrosion properties
and vice versa [287,288].

As a result, more sophisticated and complex processing and treatment of metallic
materials are being explored to overcome such trade-offs. One of the new options, which
has also been tested in the steel industry, is the use of cryogenic treatment, which can
improve various properties of metallic materials, including corrosion performance, without
adding a coating to the surface [289–292]. A more detailed presentation and explanation of
cryogenic treatment and its application to surface and corrosion properties is described
in Section 3.

3. Cryogenic Treatments in Energy Sector

The technology of cryogenic treatment (CT) has made tremendous progress in the last
10 years in its application on metallic materials in various sectors ranging from medicine,
aerospace, robotics, materials science (including the steel industry), nanotechnology, and
mining to even more specialized disciplines [289,293]. The technique has evolved from
the first attempts to treat materials at cryogenic temperatures in the 19th century by James
Dewar and Karol Olszewski using liquefied gases (nitrogen and hydrogen). Later, the
first real scientific observation and documentation of CT was made by NASA (National
Aeronautics and Space Administration) in the mid-20th century, when they observed
changes in the properties of materials used in space shuttles returning from space [289,293].
The selected aluminum components were harder and more wear-resistant after returning
to Earth than they were before the space mission [289,293]. Since then, CT has been slowly
adapted with different techniques and applications to metallic materials in order to improve
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macroscopic and microscopic properties. In the literature, CT can also be called sub-zero
treatment, ultra-low temperature processing, or cryo-processing [289,293–296].

The application of CT in the energy sector can be of particular interest due to the
variety of metallic materials that are used in extreme conditions (high-temperature and
high-pressure environments, highly corrosive environments, highly abrasive environments,
etc.), as discussed in Section 2. However, the application of CT in the energy sector is still in
its infancy, mainly due to the slow introduction and development of this treatment scheme
and the limited research focus on applications in the energy sector.

3.1. Mechanisms of Cryogenic Treatments

The mechanisms of CTs are based on the type, which is defined by the selected
temperature regime for the CT (Figure 5). CT is usually applied after the material has been
hardened and quenched and before being tempered, usually for 24 h at a predetermined
temperature [289–293,297,298]. The most common and the one with the longest tradition
is the conventional cryogenic treatment (CCT), where temperatures as low as 193 K are
used [299].
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The reason for CCT being the most-used type in the past was the easy availability of
media to which the material is exposed, namely dry ice (solid CO2) [293,299]. In the past,
it was also believed that temperatures as low as 193 K were sufficient to transform all the
retained austenite (RA) in ferrous alloys to martensite, thereby increasing wear resistance
and fatigue strength [293,299]. The transformation of RA to martensite, particularly in
steels, was one of the key properties for which CTs were commonly applied, which also
propagated the initial research on CT [293,299]. Unfortunately, the negative results of the
first experiments with CCT led many companies to abandon the application and develop-
ment of this treatment (1940s–1950s) [293,299]. This was mainly due to a misunderstanding
of the martensitic transformation and its temperatures as well as simplistic and inconsistent
treatment procedures [293,299]. It was not until years later, after NASA observations and
detailed documentation of the changes at lower temperatures, that the next two types of
CT were developed and tested for materials science applications: shallow (SCT) and deep
cryogenic treatment (DCT) [293,299].

Shallow cryogenic treatment is defined between 193 K and 113 K. During SCT, more
than 50% of the RA is converted to martensite for generally any ferrous alloy that has
instable austenite formation during quenching, causing a change in mechanical prop-
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erties (increased hardness), size reduction of carbides, and increased precipitation of
carbides [300,301]. With the positive results of SCT, the research on CT blossomed and
led to further research at even lower temperatures, resulting in the development of deep
cryogenic treatment.

Temperatures for deep cryogenic treatment are below 113 K and typically go as low
as 4 K, which is the temperature of liquid helium. However, the most-used temperature
is 77 K, the temperature of liquid nitrogen, which is the most-used medium in DCT due
to abundancy of the media and economic reasons. With DCT, for ferrous alloys, most of
the RA is converted to martensite (>90%), the precipitation of carbides is increased, grain
refinement and precipitation of nanocarbides occurs, and changes to residual stresses are
formed [302]. Special mention should be made to a specific type of DCT, the multi-stage
deep cryogenic treatment (MCT), where the DCT treatment of the material consists of
rapid changes between SCT and DCT temperatures for a predefined time and number
of cycles to manipulate predefined properties [303]. DCT performance is influenced by
the selected cooling temperature, cooling–warming rate, time the material is exposed
to DCT, type of metallic material (ferrous/non-ferrous alloy or type of steel), chemical
composition of the metallic material, hardening process, tempering temperature, and also
the microstructural phenomena present within the microstructure (such as transformation-
induced plasticity (TRIP), austenite reversion transformation (ART), and twinning-induced
plasticity (TWIP)) [304–310].

All types of CT alter the bulk and surface properties of metallic materials. The bulk
properties affected by CT are mechanical properties ((micro)hardness [311–314], tough-
ness [311,315–317], strength [318–320], and fatigue [307,321,322]) and magnetism [304,323].
The surface properties affected by CT are corrosion resistance [324–332], wear
resistance [321,333–335], roughness [336], and oxide formation [324–326,336].

Bulk properties and, to some extent, selected surface properties have been studied
in more detail than others. There are still many unknowns and great potential in surface
properties and corrosion resistance, which is also the focus of the following section of
this review.

3.2. Energy Sector and Position of Cryogenic Treatments

Cryogenic processing has a great potential in the energy sector due to the use of
different materials, from metallic to non-metallic. The application of CT, especially for
metallic materials, has a great potential because it improves the properties of metallic
materials needed in different energy sectors, from corrosion and wear resistance to mechan-
ical properties and surface modifications [337,338]. At the same time, it does not require
the additional application of any other coating treatment to improve the properties (see
Section 3.3.1).

However, the application of CT in this sector has not been widespread due to the
lack of known test methods and quantification and qualification methods. Only a few
attempts have been made to provide systematic guidelines for standards and application
of CT for metallic materials [293,306,309,339–341]. An additional obstacle was that in
the past, there were no large capacity tanks, and no providers of these services or sys-
tems were available on an industrial scale, but this is now changing and, in some cases,
improving with the establishment of CT-specialized companies, communities, and even
patents [294–296,332,342–347]. CT was also not well transferred to other disciplines, as CT
was mainly reserved and developed for improving tools. The research was (and still is)
mainly focused on tool steels, such as high-speed steels, hot work tool steels, and cold work
tool steels, where the emphasis is on mechanical and wear properties [334,348–351].

As a result, the majority of other types of steels and alloys have been left out of the fo-
cus. There is some limited research on non-ferrous alloys, but even these are mostly related
to aluminum alloys used or related to the tooling industry. The study of non-ferrous alloys
(Al-, Ni-, and Ti-based alloys) showed the improvement of mechanical properties [352–358]
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such as microhardness [352,354,359–361], fatigue [352], fracture toughness [362,363], impact
toughness [352], and tensile strength [352,354].

The following sections present metallic materials that have been tested by cryogenic
treatment, the results of which have the potential to be used in the energy sector.

3.3. Effect of Cryogenic Treatments on Surface, Interface, and Corrosion Properties of Metallic
Mateirals Used in the Energy Sector
3.3.1. Metallic Materials Being Tested for the Use in the Energy Sector

There are many metallic materials (ferrous and non-ferrous alloys) that are suitable for
use in the energy sector that have already been tested through various cryogenic treatments,
and studies have resulted in changes in the microstructure of metallic materials, resulting
in changes in the properties of the material. The following ferrous and non-ferrous alloys
are used in the following sectors (Table 4).

Table 4. The list of ferrous alloys that were cryogenically treated and have the potential for use in the
energy sector.

Ferrous Alloys Grades of Steel Tested Properties Possibilities of Application
in Selected Energy Sector

Austenitic
stainless steel

AISI 304 [364–370], AISI 304L [308,319,371–374],
AISI 304LN [374], AISI 316 [374–380], AISI 316L
[192,341,348,381–384], AISI 316LN [374,385],
AISI 321 [386,387], AISI 347 [388,389]

Hardness, microhardness, wear (abrasive
wear), fracture toughness, impact
toughness, compressive strength, tensile
strength, yield strength, elongation,
friction, erosion, strain-hardening
exponent, surface roughness, machining
of steel, fatigue, residual stress, surface
chemistry, and oxidation

In all energy sectors

Martensitic
stainless steel

AISI 410 [390], AISI 420 [349,390–392], AISI 420
MOD [392], AISI 430 [393,394], AISI 431
[304,309,395], AISI 440C [366], AISI P91 [396],
10Cr13Co13Mo5NiW1VE [397],
13Cr4NiMo [315], 10Cr [398].

Yield strength, elongation, tensile strength,
wear, hardness, impact toughness, fracture
toughness, magnetism tribocorrosion,
electrochemistry, and corrosion resistance
(also stress corrosion cracking)

In all energy sectors.

Duplex steels AISI 2205 [399,400], AISI 2507 [401–404] Hardness, wear, machinability, residual
stress, and corrosion resistance

Mostly in wind and solar
energy

Carbon steels IS 2062 [405], AISI 1045 [406–412], AISI
1018 [413]

Hardness, wear, surface roughness, tensile
strength, yield strength, ultimate tensile
strength, elongation, and residual stress

Steels can be used in
hydroelectrical, biomass,

solar, and geothermal energy

Other steels

Nitronic steels 40 [414], 50 [415]
High-strength steels ASTM A36 [416]
Cast steels ASTM A743 [417], SAE J431 G10 [418]
ACSR [419]
Bearing steel AISI 52100 [326,328,420–422]
Low-alloyed steels SAE 1008 [423], AISI
4340 [424], AISI 4140 [424]
Structural steel S235 [425], S355 [426,427],
S460 [428]

Residual tress, hardness, friction, wear,
fatigue, impact toughness, corrosion
resistance, and machinability

In all energy sectors

Table 5 presents the non-ferrous alloys that have been CT-treated and have potential
in the current and future energy sectors.

3.4. Effect of Cryogenic Treatments on Metallic Materials Potenitally Used in the Energy Sector

The surface properties that are the focus of this review and that also need more
attention in order to carry out more research on them are corrosion resistance and oxide
formation, while wear resistance and roughness have been observed and researched by
many studies in the cryogenic community (see Section 3).
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Table 5. The list of non-ferrous alloys that were cryogenically treated and have potential for use in
the energy sector.

Non-Ferrous
Alloys Grades of Alloys Tested Properties Possibilities of Application

in Selected Energy Sector

Al-based alloy

2xxx series: 2024 [354,429]
3xxx series: A356 [430,431], A390 [432]
6xxx series: 6026 [352,433–435],
6061 [353,436,437], 6063 [362]
7xxx series: 7075 [330,331,361,438–442]

Hardness, wear (abrasion), corrosion
resistance, tensile strength, machinability,
fatigue, strain-hardening coefficient,
residual stress, fracture toughness, and
corrosion resistance

Mostly in hydroelectrical,
biomass, wind, and solar
energy

Ni-based alloy

Inconel: 200 [443], 600 [444,445], 617 [446],
625 [447–449], 690 [450], 800 [451],
800H [452–454]
Hastelloy C276 [455], C22 [456,457], X [458]

Fatigue, surface roughness, machinability,
durability, impact toughness,
microhardness, and tensile strength

In all energy sectors

Other alloys

HEA [459]
W-based alloys [460]
Cu-based alloys [461]
Ti-based alloys Ti6Al4V [451,462]

Microhardness, compressive strength,
and plasticity

Mostly in advanced nuclear
power (fusion), geothermal,
and solar energy

3.4.1. Oxide Formation

Oxide formation is one of the properties that is seldomly researched and not fully
understood in CT. The fact is that most of the studies focus on the corrosion resistance
and its improvement by CT, and not many studies strive for deeper understanding of
the origin of altered corrosion resistance by CT. A major contribution is provided by
passive layers and oxide formation (corrosion products) that can be manipulated by CT
and CT-induced changes to the bulk properties of the treated material. The influence of
CT on oxide formation has been demonstrated for bearing, high-speed, and cold work
tool steels [324–326,336]. The oxidation dynamics after the application of CT was mainly
studied by Jovičević-Klug et al., where the observations showed a different development of
oxides compared to conventional heat treatment (CHT).

Jovičević-Klug et al. 2021 [336] suggested that the chemical composition of the oxide
formation directly corresponds to the higher number of precipitates and the higher surface-
to-volume ratio of the carbides. Furthermore, the study indicates that the reduced amount
of carbide clusters after CT could be directly correlated with the passivation layer and the
oxidation state of the surface and the corresponding corrosion products.

In the next study, Jovičević-Klug et al. 2021 [325] suggested that the Cr oxide layer
is thicker on the cryogenically treated samples compared to the CHT samples. These
observations also suggest that due to the formation of the Cr-oxide-passivation layer on the
CT sample, there is no microscopic-related stress corrosion cracking of the matrix, which in
turn, combined with the thicker passivation layer, reduces corrosion propagation.

The next factor observed in relation to CT was the formation of Fe oxides. The study
by Jovičević-Klug et al. [326] suggested that Fe-oxides form different layers compared to the
CT sample, which is attributed to the local excessive corrosion damage in the CHT sample.

The same researchers, Jovičević-Klug et al. 2022 [324], also observed the different
layering of the oxides in the samples. The results of ToF-SIMS provided the novel insight
that nitrogen from CT is present in greater amounts in the CT samples, which then influ-
ences the complex oxide formations (corrosion products), which ultimately influence the
corrosion resistance. Nitrogen acts as an exalter for the formation of green rust, which then
acts as a precursor for the formation of the next layer (magnetite). As a result, corrosion
propagation is greatly retarded due to the higher density and stability of magnetite. The
same study also confirmed that the CT-induced passive film is more stable than its CHT
counterpart. As a result, the CT-treated sample showed lower corrosion and wear loss,
which was also confirmed in extreme environments (elevated temperatures and vibrations).

The above examples show that there is a need for research on oxide formation as
the basis for successful tailoring of corrosion resistance and prolonged component life
of treated materials. The studies only focused on tool and bearing steels, which means
that other steels such as high-Cr steels, stainless steels, duplex steels, and non-ferrous
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alloys are still potential research areas with great opportunities for the application of CT to
manipulate oxide formation and modify corrosion resistance. To date, no similar studies
or research have been conducted or found for non-ferrous alloys. Section 3.4.2 discusses
corrosion resistance.

3.4.2. Corrosion Resistance

The influence of CT on corrosion resistance has not only been investigated in relation
to tool steels, but many studies have also tested other ferrous (bearing steels and stainless
steels) and non-ferrous (mostly Al-based alloys) alloys. The first part focuses on the
corrosion testing of ferrous alloys, while the second part focuses on the non-ferrous alloys
in relation to CT.

Corrosion Resistance of Ferrous Alloys

The studies on tool steels showed that corrosion resistance is influenced by
CT [329,392,463–466]. The corrosion resistance of bearing and tool steels can be improved
by up to 65% in an alkaline environment, with the improvement depending on the steel type
and heat treatment strategy [326]. This was also observed by Senthilkumar 2014 [327], who
found that in alkali conditions, CT improves corrosion resistance, which was postulated
to be a result of formation of more stable passive film. Furthermore, in extreme alkaline
environments, such as elevated temperatures and vibrations, the CT-treated samples (tool
steels) suggested improvement of corrosion resistance by 90% in the study of Jovičević-
Klug et al. 2022 [324]. Also, the study by Jovičević-Klug et al. 2021 [326] showed that in an
alkaline environment, the formation of pits is modified by CT (for tool and bearing steels).
The study showed that pits in CT specimens expand only in the exposed upper part and
decrease continuously deeper into the material. It was suggested that this is due to the
confinement of the corrosion attack to the grain boundaries and the exposure of the pit
opening to the oxidative media, which is limited by the change in orientation of the crack
with respect to the sample surface. In addition, the 2021 study by Jovičević-Klug et al. [325]
also showed that in the alkaline environment, the CT samples did not show any stress
corrosion cracking of the passivation layer, and the presence of Mo in the steel allowed
the continuous growth of the protective Cr oxide layer, which reduced the formation and
growth of pits. The results show that CT samples have a 3× slower corrosion rate of
pitting corrosion, which can be directly correlated to the slower material degradation and
prolonged functionality of the metallic material.

Only a few studies have been conducted on stainless steels and a few other types of
steels that are more commonly used in energy sector applications. The studies showed
different results of CT on the corrosion resistance of steels used in the energy sector. A
study by Wang et al. 2020 [467] showed that there is an increase in corrosion resistance for
high-strength stainless steel. On contrary, a study by Baldissera and Delprete 2010 [468]
postulated that CT has no effect on austenitic stainless steel. Another study by Cai et al.
2016 [469] indicated that for austenitic stainless steel, CT could improve corrosion resis-
tance, which is suggested through Cr-carbide precipitation at the austenite grain boundary,
which then reduces the intergranular corrosion. For martensitic stainless steels, CT has
been shown to improve corrosion resistance in correlation with both the general and pitting
corrosion, as was shown by Ramos et al. 2017 [366]. Another explanation for the higher
pitting corrosion potential was proposed by He et al. 2021 [470], in which pitting corro-
sion was reduced by increased carbide precipitation and Si segregation at the interface
boundaries between M23C6 and martensite in the matrix. For structural steels, a 95%
improvement in corrosion resistance was determined by Ramesh et al. 2019 [392], which
is suggested to be a consequence of uniform and homogenous carbide precipitation and
microstructure modification.

The above literature review shows that there has been some research on corrosion
enhancement with CT but only on a limited selection of ferrous alloys. Furthermore, the
review shows that there is a great need for research on the corrosion resistance of ferrous
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alloys used in the energy sector in combination with CT. Such research could open up new
avenues and applications for CT to improve corrosion resistance alone or in combination
with coatings, which could further expand the energy sector from both an economic and
sustainable point of view.

Corrosion Resistance of Non-Ferrous Alloys

The corrosion resistance of CT-treated non-ferrous alloys has been mainly focused
on the Al-based alloys of the 2xxx [471], 5xxx [355], and 7xxx [330,331,440] series. The
study by Cabeza et al. 2015 [471] on Al-based alloys from the 2xxx series suggested that CT
improves the resistance to stress corrosion cracking due to changes in compressive residual
stresses. Another study by Aamir et al. 2016 [355] showed that for the 5xxx Al-alloy,
the corrosion resistance is increased due to the minimization of dislocation densities and
noncontinuous distribution of the β-phase. From the 7xxx series, the tested representative
was the 7075 Al-alloy. A study by Ma et al. 2021 [440] showed an improvement in corrosion
resistance after the application of CT, which was attributed to the increased precipitation
of the η′ phase. They postulated that the grain boundary from the η′ resulted in short
chains of carbides, which then blocked corrosion channeling, thus enhancing the corrosion
resistance of the alloy. Similar observations were also made by Su et al. 2021 [331]. Ma
et al., from their study in 2022 [330], additionally showed that the optimized combination
of aging and CT can influence the rate of the corrosion improvement when CT is applied.

Compared to ferrous alloys, research on non-ferrous alloys is also considered to be
lacking and is mostly focused on specific alloys, mainly aluminum alloys. The review
clearly confirms the lack of research on non-ferrous alloys, which have a great potential
for use in the future energy sector. The lack of research can be particularly evident in the
case of Ni alloys and corrosion resistance in combination with CT, which are one of the
main non-ferrous alloys used in different energy sectors due to their versatility. Other
non-ferrous alloys such as Cu-based, Mg-based, V-based, W-based, etc., are also completely
excluded from the studies, and therefore, this could be another potentially interesting niche
to study in more depth the influence of CT on these alloys, which could be applied to the
future energy sector. Furthermore, in most cases, the reasons for improved or sometimes
reduced corrosion performance are based on speculation. Fundamental research is needed
to elucidate the reasons for the effects of CT on corrosion performance.

4. Economic and Ecological Aspects and Future Role of Cryogenic Treatment in Future
Energy Sector

While it is clear that the application of CT to ferrous and non-ferrous alloys has great
potential due to its versatile effect on bulk and surface properties, the next question that
comes to mind is the economic and environmental aspects of its application. CT uses
mostly liquid N2 as a coolant media, which is highly considered as a viable option for the
conventional heat treatment of metallic materials. After CT treatment, LN2 evaporates
to become nitrogen gas (N2) and becomes part of the air (78% of air consists of N2). It
leaves no harmful residue to the industry and the environment and no health hazards
compared to other processing/machining techniques [369]. Therefore, it is considered as a
recycling and environmentally friendly approach to improve the materials. Furthermore, it
is suggested in some works, see, e.g., Hong and Broomer [369] and Dosset [472], showing
a cost reduction of about 50%; however, more insight into the economic advantages is
expected in the near future, which is expected to cause an increasing interest in the energy
sector. In conclusion, CT shows great potential to improve the corrosion performance of
materials, and the process is environmentally unharmful.

Based on all these facts, CT has a bright future in the future energy sector, where
advanced knowledge of more economical and ecological impacts on the environment is
being considered. Not only that, but with the trend of diminishing natural resources and
more recycling options, CT also has an answer, as no additional treatment is required. CT
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is also expected to play an important role in emerging materials for energy applications
and storage (HEA and catalytic materials), which have not yet been explored and applied.

5. Conclusions

This review first provides an overview of the metallic materials used in the energy
sector and then of the application of CT on metallic materials used in different energy
sectors. In addition, this review also presents a synopsis of the current work and results
on surface properties and corrosion, with critical comments to provide a future possibility
for metallic materials in relation to CT and oxide formation and corrosion resistance. The
review also highlights which materials should be prioritized for CT testing due to lack
of research but are of high importance for applications (or are already in use) in different
energy sectors.

The main conclusions of the study can be summarized as follows:

• The energy sector has a great demand for the improvement of metallic materials;
• Available green and cost-effective CT technology has been proven to effectively im-

prove the bulk and surface properties of metallic materials;
• CT improves corrosion resistance by up to 90% depending on metallic materials and

environmental conditions;
• CT also produces a unique sequence of oxide formation that effectively influences the

improved corrosion resistance of cryogenically treated metallic materials;
• The result of CT is a reduction in material degradation and a possible 3-fold increase

in the service life of the treated metallic material;
• Further detailed and systematic investigation of the effectiveness of CT is required,

using both experiments and modeling of both ferrous and non-ferrous alloys. Com-
bined with detailed microstructural investigations, the mechanisms responsible for
changes in metallic material properties can be clearly identified, and standards for the
application of CT in the energy sector can be established.
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