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Abstract

Historical materials are abundant. Yet, piecing together how human knowledge has evolved and spread both di-
achronically and synchronically remains a challenge that can so far only be very selectively addressed. The vast volume
of materials precludes comprehensive studies, given the restricted number of human specialists. However, as large
amounts of historical materials are now available in digital form there is a promising opportunity for AI-assisted his-
torical analysis. In this work, we take a pivotal step towards analyzing vast historical corpora by employing innovative
machine learning (ML) techniques, enabling in-depth historical insights on a grand scale. Our study centers on the evo-
lution of knowledge within the ‘Sacrobosco Collection’ – a digitized collection of 359 early modern printed editions of
textbooks on astronomy used at European universities between 1472 and 1650 – roughly 76,000 pages, many of which
contain astronomic, computational tables. An ML based analysis of these tables helps to unveil important facets of the
spatio-temporal evolution of knowledge and innovation in the field of mathematical astronomy in the period, as taught
at European universities.

1 Introduction

When investigating the early modern period, traditional history
of science mainly focused on what is commonly termed the Sci-
entific Revolution. This is frequently portrayed as a cumulative
sequence pieced together from singular events, most of which are
associated with the publication of significant works by heroic fig-
ures. A prime example of such a narrative is the lineage from
Nikolaus Copernicus via Galileo Galilei and Johannes Kepler
to Isaac Newton, which is often seen as quintessentially captur-
ing the nature of the revolution in astronomy during this period
[1, 2, 3, 4, 5, 6, 7].

An alternative to this traditional approach is a history of sci-
ence that delves into a broader range of historical sources to more
comprehensively grasp the intellectual context within which these
celebrated "heroes" of science worked and produced their intel-
lectual insights. Thomas Kuhn’s influential The Structure of Sci-
entific Revolutions of 1962 marked a pivotal redirection in this re-

spect: emphasizing the role of scientific paradigms, it shifts from
spotlighting individual contributors to viewing scientific progress
as a collective achievement of the wider scientific community [8].
Today, such a perspective has evolved even further. History of
science more broadly perceived as a "history of knowledge" in-
tends to harness every conceivable historical source that might
offer insights [9, 10, 11]. However, a significant, practical lim-
itation obstructs such endeavor: The sheer volume of available
sources surpasses our current capacity to accomplish historical
investigation. In the following, we suggest an approach based on
Machine Learning (ML) and Explainable Artificial Intelligence
(XAI) techniques, conceived to overcome this limit.

In this study we focus focus on the core knowledge of the
period, i.e., the set of widely accepted theories, methods, and re-
sults. A prime source for reconstructing this broader core knowl-
edge are university textbooks, which informed the broader stu-
dent population and intelligentia [12]. Historians have previously
shown interest in textbooks [13, 14]. However, a comprehensive
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analysis has remained elusive due to the great amount of available
material. Our research is uniquely poised in this context, as we
leverage the "Sacrobosco Collection"[15, 16, 17, 18, 19] (Supple-
mentary Note A.1 in Section Materials and Methods). This very
large and significant collection encompasses textbooks introduc-
ing geocentric astronomy to students across Europe from the final
quarter of the 15th century up to 1650.

The collection contains approximately 76,000 pages of scien-
tific content from 359 editions of different textbooks, which were
published starting in 1472, the year of the first print (and of the
first ever print of a scientific, mathematical text). The year 1650,
on the other hand, marks the end of the slow decline of geocentric
astronomy initiated almost a 100 years earlier by Nikolaus Coper-
nicus who in his De revolutionibus orbium coelestium of 1543
introduced a mathematical system based on a heliocentric world-
view. For each edition in the corpus only one exemplar has been
collected and considered as representative of the entire print-run.
Accepting the current view according to which academic text-
books on mathematical subject were printed at the time with an
average print-run of ca. 1000 copies, the Sacrobosco Collection
thus can be considered as representative for about 350.000 text-
books that were circulating and used in Europe during the period
considered [20, 21].

Our study specifically addresses the mathematical education
and culture possessed by students and the educated populace (i.e.,
the potential readers). The impact of cutting-edge innovations in
mathematical astronomy hinged significantly on their reception
and comprehension by a broader audience. As a case in point,
Copernicus’s work remained largely overlooked for an extended
period [22]. To discern if this neglect stemmed from challenges
in grasping its mathematical underpinnings, we must ascertain the
scope and depth of mathematical knowledge prevalent in society
at large. This entails understanding where this knowledge orig-
inated, the motivations behind its dissemination, and the modes
of its circulation. The present study introduces a new method to
enable the historical analysis of the mathematical education in
astronomy all over Europe and its transformation during the ca.
180 years considered, while the question as to whether Coper-
nicus’s work was neglected because of the characteristics of the
mathematical education of the time will be investigated in further
studies.

A central element of the mathematical apparatus of early
modern astronomy are computational astronomic tables. Such
tables can be understood as the sequential representation of input
and output values of mathematical relations akin to equations.
Yet, the formulaic algebraic language was only beginning to be
used towards the end of period considered. Before that, the mean-
ing of the mathematical relations represented by tables was de-
scribed in the associated texts [23, 24].

To investigate astronomical tables one needs a method to
identify the corresponding content in the historical material, to
group the tables according to a semantically meaningful similar-
ity (Supplementary note A.1.3), and finally to analyze the dynam-
ics of their development throughout space and time. As it turns
out, approximately 10,000 pages of the Sacrobosco Collection
feature computational tables rendering a standard historical anal-

ysis based on close reading practically impossible. In this work,
we introduce an approach that employs ML and XAI to assist his-
torians in analyzing early modern computational numerical tables
on an unprecedented scale. Furthermore, we argue that this ap-
proach can be adapted to other types of sources besides numerical
tables as well, such as visual or textual elements.

In recent years, ML and specifically deep learning has estab-
lished itself as a key enabler in industry and the sciences for effi-
cient and insightful exploration of large corpora of structured or
unstructured data (cf. [25, 26, 27, 28]). This has led to unprece-
dented progress in technical disciplines such as speech recogni-
tion [29, 30, 31, 32], natural language processing [33, 34, 28, 35,
36], control and planning [37, 38, 39, 40, 41], and computer vi-
sion [42, 43, 44], as well as in the sciences and medicine where
novel insights could be gained, e.g. [45, 46, 47, 48, 49, 50, 51].
All of these disciplines can harvest large collections of well-
structured digitized data that have become available in the respec-
tive fields.

In the context of the digital humanities, deep learning is be-
ing used increasingly to process data and generate insights from
historical corpora. The relevance of this approach is growing, es-
pecially in the field of historical document analysis alongside the
proliferation of well-curated image datasets and benchmarks of
historical sources [52, 53, 54, 55, 56]. In particular, the avail-
ability of such datasets encouraged the usage of neural networks,
such as U-Net [57], YOLO [43], Faster R-CNN [58], to extract
relevant visual elements (e.g., illustrations, drawings, images,
etc.) from large corpora, using them as proxy for understand-
ing their accompanying texts [59, 60, 55]. When it comes to text,
deep learning approaches based on Recurrent Neural Networks
(RNN) [61, 53], and more recently Transformer-based architec-
tures [62, 63, 64] have been developed for Optical Character
Recognition (OCR) and Handwritten Text Recognition (HTR).
Multimodal approaches have further enabled the exploration of
large document datasets using both language and image modali-
ties [65].

Beyond mere data exploration and extraction, [66] proposed a
sequence-to-sequence RNN to reconstruct ancient Greek inscrip-
tions, which was later followed by a Transformer-based archi-
tecture [67] to not only restore ancient Greek inscriptions, but
also generate local insights about their provenance and dating.
Other ‘ancient’ languages also benefited from deep learning ap-
proaches, such as Latin [68], Akkadian [69], and Hieroglyphs
[70].

To obtain trustworthy and reliable scientific insights within
the digital humanities, explainable artificial intelligence allows
to validate results of ML models [71] and to further generate in-
sights into humanities datasets [72, 73].

From an ML perspective, the analysis of historical data
presents very unique challenges. Previous works have often re-
lied on readily available pre-trained models and large amounts of
annotated material, this scenario is typically not applicable to his-
torical data collections, especially with regard to labels of interest
to historians such as detailed semantic connections; a scenario
that mostly occurs because of the unreasonable requirement for
human resources.
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In addition, historical data is typically characterized by exten-
sive heterogeneity and non-stationarity [74], and an overall lack
of annotations (Supplementary Note A.2 and A.8 in Section Ma-
terials and Method).

The historical sources analyzed in this work come from differ-
ent times and from different places and were frequently produced
following very different standards. With regard to the printed
book, the type source from which the tables analyzed in this work
are extracted, the heterogeneity is further increased by the in-
tertwined effects induced by processes of scientific knowledge
transformation, development of printing technology, and aca-
demic book market mechanisms [75, 76, 77, 78, 16], contributing
differently to the diverse sources of data variability (Supplemen-
tary Note A.2 and A.4 in Section Materials and Method).

These general challenges are further accompanied by specific
characteristics of the selected material to be analyzed. In the case
of astronomic tables, assessing their complex similarity structure
poses challenges for both trained historians and conventional ML
approaches, encompassing end-to-end training and the utilization
of pre-trained models.

In the case of individual source analysis executed by histo-
rians, the required similarity assessments are unfeasible at scale
(Supplementary Note A.1.3 in Section Materials and Method),
and conventional ML approaches are unfeasible due to the lack
of labeled material combined with high data heterogeneity (Sup-
plementary Note A.2.2 in Section Materials and Method).

With this work, we address these challenges within a novel
‘atomization-recomposition’ approach, which we intend as a gen-
eral ML framework in unsupervised settings when only limited
and sparse annotations are available as described in Supplemen-
tary Note A.3 in Section Materials and Method.

We demonstrate this approach by decomposing complex
table-page information to enable our ML model to discover se-
mantic similarities between heterogeneous tables with highly
variable mathematical content. After validation of the obtained
representations using both nominal accuracies and XAI, we ex-
tend our analysis to the corpus level. By leveraging the similar-
ity structure of the entire material, its full potential is realized,
enabling previously inaccessible historical investigations. The
examination of the geo-temporal evolution of the computational
tables provides insights into the widespread diffusion of mathe-
matical education and culture in the frame of astronomy that oth-
erwise remains hidden behind an enormous amount of hitherto
inaccessible computational tables.

Our approach allows not only for a systematic extraction of
data-driven insights in large corpora but it also provides an exam-
ple for the quantification of historical processes at scale. It thus
aids in making more informed selections of historical source ma-
terial which can then be analyzed using conventional methods of
historical inquiry. The presented historical analysis of early mod-
ern mathematization thus provides an example of how historical
disciplines can benefit from ML and XAI methodologies, which
can also assist and elevate the close-reading analysis of individual
sources.

2 Results

2.1 Representation of historical material via
atomization-recomposition.

We consider tables as collections of table pages, and these as a
collection of numbers, and the numbers themselves as sequences
of digits and these finally as a collections of digits. Concordant
with this scheme, we built the Sacrobosco Tables corpus, which
consists of pages that contain tables with at least one numeri-
cal column (Supplementary Note A.7.2 in Section Materials and
Method). Our atomization-recomposition approach utilizes this
compositional structure. The initial atomization step yields a col-
lection of individual digits (0-9) with heterogeneous fonts, print
quality, and spatial location. These digits are the most basic build-
ing blocks essential to describing the semantics of the tables as
shown in Figure 1-b. Thereby, we reduce the ML model com-
plexity to that of a single digit recognition model, which can be
learned efficiently by collecting only a few hundred labeled digit
patches. Each table page x can subsequently be passed to the
learned ML model, leading to activation maps aj(x) associated
to each digit, with j from 0 to 9.

In the subsequent recomposition step, a sequence of non-
trainable layers are applied to compute increasingly task-specific
features. First, we generate bigram activation maps ajk as,

ajk(x) = min
{
aj(x), τ(ak(x))

}
,

with bigrams jk from 00, 01, ..., 99, and τ being a spatial trans-
lation shifting activation maps by a fixed number of pixels as
shown in Figure 1-c. In addition, we also include isolated single
digit numbers into the representation via an extension of this ap-
proach (Supplementary Material A.3.3 in Section Materials and
Method). Besides the clear advantage of only having to provide
sufficient single digit labels to ensure their robust detection, this
approach allows features to be detected that do not occur in the
training data. For example, the bigram ‘25’ could be detected on
test pages even when the training pages contained only bigrams
‘12’ and ‘51’. As shown in Figure 1-a, the recomposed feature
maps additionally provide a suitable interface for a human expert
to inspect the inner workings of the ML model and to gain further
confidence in its predictions. A second stage of recomposition
via spatial pooling then converts this human-readable map repre-
sentation into a lower-dimensional bag-of-bigrams histogram that
is invariant to the exact table layout. We validate the resulting
histograms using a diverse subset of fully annotated table pages
(Supplementary Note A.4.1 in Section Materials and Method)
and achieve average Pearson correlation scores from 0.84 for ta-
bles of low digit density to 0.93 for high density tables as shown
in Figure 2-a. Furthermore, we assess the performance of dif-
ferent table page representations to identify clusters of identical
table pages. We find that our proposed bigram representation is
most effective for retrieving correct cluster members when com-
pared to a direct pooling of bigram activations (pooled), single
digit summaries (unigram), or a pre-trained deep neural network
representation from VGG-16 (see Figure 2-a). In addition, expla-
nation techniques are provided that help the user understand why
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Figure 1: Atomization-recomposition framework for model learning under sparse annotation settings. (a) Overall computa-
tional workflow starting with an unstructured collection of books (Sacrobosco Collection), atomizing them into tables and single
digits that a ML model can detect, recomposing them into user-interpretable bigrams, and generating histograms that enable dataset-
wide unsupervised ML-based analyses. (b) A few hundred sparse single-digit annotations are used to train a digit recognition model
which activates where digits are found in the input image. (c) The resulting digit activation maps are recomposed into more complex,
task-specific representations, here, numerical bigrams, and whole-page histograms. (d) The similarity scores on which ML-based
analyses operate are verified via XAI, specifically the BiLRP technique [79], which highlights how the similarity scores arise from
the pixel representation.

the ML algorithms arrive at a certain similarity assessment for a
pair of tables [79] as shown in Figure 1-d (Supplementary Note
A.5 in Section Materials and Method). While we have clearly
focused on numerical tables, we emphasize that the similarity of
other aspects of historical documents can be readily learned by
an analogous extension of our framework.

2.2 Corpus-Level Historical Insights and Case
Studies

Our approach allows a) for historical investigations on a gen-
eral, corpus level as it makes it possible to trace and analyze the
geotemporal evolution of the computational tables in the entire
corpus and, b), for the identification of particularly interesting
clusters of similar tables thus guiding an informed selection of
specific case studies, which are ultimately analyzed through stan-
dard close-reading. In the following, the results are described of
the corpus-level analysis as well as of the identification and inves-
tigations concerned with two relevant, mutually interconnected
case studies.

On a corpus level, we demonstrate that the process of math-
ematization of the astronomy codified in textbooks and taught at
the European universities, occurred alongside a process of accel-
eration of diffusion of mathematical knowledge that took place
during the last decades of the 16th century. This acceleration was
ignited and fueled mainly by the competition between two key
entities: the French Royal Chair of Mathematics and the Colle-
gio Romano, the principal mathematical division within the Je-
suit order [80] (Supplementary Notes B.1.1 and B.1.1 in Section
Supplementary Text). Spreading mathematical knowledge was
among the main goals of both institutions.

This process exhibits a non-linear dynamic that, on closer in-
spection, turns out to be caused by the necessity to adhere to early
modern marketing rules for academic prints. These rules required
the rapid introduction of scientific works in various formats to the
market, with multiple editions of each work released in close tem-
poral proximity to one another [81, 82, 83]. The most significant
episodes of such high frequency publication and republication oc-
curred within a time frame of five years around 1550 and involved
Oronce Finé, the French Royal mathematician at that time (Figure
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Figure 2: Extracting historical insights from bigram histograms. T-SNE visualization (center) of the corpus. A set of hand
labeled, semantically identical tables providing the position of the Sun against the zodiac over the course of the year is shown in red.
After performing a k-means clustering on the extracted numerical histograms, we show the k-means clusters that contain members
of this ground truth group (marked by their cluster-id). a. Validation of different table representations and Pearson correlation scores
for different digit densities (number of digits per table page). b. By providing query histograms or reference pages our approach is
able to generate a set of key candidates of tables that are identical or very similar to a given query table. c. Left and center: Temporal
evolution of knowledge displayed by computing the entropy of cluster membership vectors (number of tables in each cluster) for each
time step. Gray to black lines correspond to a random embedding baseline, colored lines correspond to the data from our corpus.
Different colors indicate a filtering threshold on the digit density per page, i.e. all pages containing at least 100 digits. The clusters
are shown as t-SNE visualization for three time intervals indicating active clusters and cluster disk diameter is proportional to cluster
size. We observe a marked drop in entropy for tables with extensive numerical content between 1540 and 1560. This drop disappears
after removal of the fine-5 group, a subset of tables that occur in Finé’s editions that we identified as the dominant factor driving the
entropy change. Right: Geographical analysis of knowledge distribution for each print location in alphabetical order using relative
entropy. Low-output cities (<=100 tables) are colored in light gray. For three selected cities t-SNE visualization of the distribution of
the printed tables is provided.

2-c) [84] (Supplementary Note B.1.2 in Section Supplementary
Text).

The accelerated circulation of mathematical knowledge rep-
resented in the corpus of textbooks ultimately led to a process of
homogenization, which means that scientific works were increas-
ingly offering the same mathematical approaches. By measuring
the entropy of cluster membership vectors that represent the num-
ber of table pages in each cluster, we show which places of print
production contributed to this phenomenon most and which did
so to a lesser extent. We demonstrate that mathematical knowl-
edge presented in treatises produced in post-Reformation Wit-
tenberg is particularly homogeneous, presumably due to political

control over scientific education [85, 86, 87]. On the other hand,
of the spectrum treatises from Venice display a variety of scien-
tific approaches, a characteristic that aligns with the central inter-
national economic position of Venice’s printing industry serving
a variety of local markets (Supplementary Note B.1.3 in Section
Supplementary Text).

The insights from the corpus-level analysis reveal instances
where the process dynamics deviate from established trends. This
puts us in position to make informed decisions about specific
case studies (Supplementary Note B.1.4 in Section Supplemen-
tary Text). To facilitate such studies we have provided a tool to
identify clusters of tables identical and similar to one selected
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by a domain expert. (For more information, see Supplementary
Note B.1.4 in Section Supplementary Text). Classifying closely
related tables can also enable the automatic identification of var-
ious mathematical approaches to the same topic, with each ap-
proach represented by a distinct cluster. In this context, a cluster
encapsulates all the necessary materials for a comprehensive his-
torical case study, encompassing the full spectrum of available
sources. As a result, clustering facilitates an in-depth exploration
of a particular phenomenon across its entire evolutionary trajec-
tory.

Two case studies were identified and conducted along the
line described above: one dedicated to the method for geomet-
rically subdividing the Earth’s surface from the equator to the
poles based on the length of the Solar day and, the second, con-
cerned with the calculation workflow necessary to retroactively
predict the position of the Sun on the Zodiac during classical an-
tiquity (Supplementary Note B.1.4 and B.1.4.1 in Section Supple-
mentary Text, with individual examples). These two case studies,
considered together, allow us to formulate a hypothesis as to how
the acceleration of diffusion of mathematical knowledge and the
resulting increase of homogenization of scientific knowledge (al-
ways referring only to astronomy as taught at the universities)
were interwoven with the process of formation of a European sci-
entific identity (Section 3).

Since antiquity the known world was considered as divided
into inhabitable and habitable zones. The inhabitable were not
considered entirely devoid of people but generally held inhab-
itable because of the hard life conditions. The habitable zone,
covering roughly the longitudinal area of Europe and extending
from North Africa northwards to include Paris, had been tradi-
tionally divided into seven ‘climate zones’ since antiquity. A cli-
mate zone (land strips parallel to the equator) was defined based
on the length of the solar day in those areas on the summer sol-
stice. This conception was fundamental in a variety of scientific
disciplines, such as medicine, and continued to be taught until at
least the mid-17th century [88]. Clearly, however, the early mod-
ern journeys of explorations had exposed that this ancient con-
ception of the habitable zone was too limited [89]. This situation
is reflected in the sources under consideration, which display two
different types of climate zone tables: one for seven zones and
another that encompasses the entire planetary surface from the
equator up to the polar circle and thus conceptualizing 24 zones.

Our approach has yielded a series of new insights regarding
the concept of the climate zones and its development attainable
only by comparing a large number of relevant tables. First of all,
we were able to track the dissemination of the pertinent knowl-
edge in detail over the 180 years under consideration. We dis-
covered that the diffusion of the modern conception of 24 zones
was surprisingly not detrimental to the ancient one, contrary to
what one might expect. (Supplementary Material B.1.4.1 in Sec-
tion Supplementary Text, Chains 1 and 3). Rather the opposite
is the case: The success of the innovation was, in fact, largely
dependent on its link to the traditional, ancient, and authoritative
concept and eventually worldview. The peak in the dissemina-
tion of the table representing the new conception can primarily
be attributed to editions that also included the old table listing

the traditional seven zones. Secondly, by accurately assessing
the similarity within the subgroup of the relevant 225 pages of
tables, our approach enabled the identification of a third variant
of climate zone tables. This variant initially expanded the old
view, but only to the extent of incorporating European regions
at higher northern latitudes, specifically including Wittenberg by
adding two zones (a video link for the spread of the climate zone
tables can be found in Supplementary Material B.1.4.1 in Section
Supplementary Text). In fact, even though the dissemination of
this conception of nine zones remained limited in both time and
space, it represented the first significant break from the traditional
view.

The second case study focuses on a scientific specialization,
no longer extant, that closely connected mathematical astronomy
and history. Starting from the 13th century, when Europeans cre-
ated the epochal subdivision between antiquity, the Middle Ages,
and the new epoch in which they were living, frantic activity
began that aimed to reconstruct an exact chronology of ancient
events [90, 91]. This was because, from the perspective of the
day, antiquity represented the epoch during which the pinnacle
of civilization and knowledge had been reached. In antiquity, the
connection between the calendar and the Sun’s position within the
signs of the Zodiac was already well-established. As a result, by
providing the positional values for the Sun, it was possible to cal-
culate the specific day, and vice versa. Consequently, in ancient
Greek and Latin works, descriptions of events are often accom-
panied by specific astronomical observations that can be linked to
the position of the Sun in the Zodiac.

After Philipp Melanchthon, one of the founding fathers of the
Protestant Reformation, had urged young students to study as-
tronomy in 1531 and 1538, warning that without it the history
of humanity would be mere chaos [92, 93], a particular scien-
tific specialization emerged. This specialization, which aimed to
provide precise dates for ancient events, endured until the 19th
century, particularly in German universities. Mathematically, the
required calculations were challenging both because of the his-
torical changes of the calendar systems and the precession of the
equinoxes, which itself was not yet fully understood in the 16th
century [94]. Also in this case our approach provided us with the
necessary selection of the material which allowed us to investi-
gate the first steps of a broad phenomenon of diffusion of mathe-
matical culture in the framework of the teaching of astronomy at
the universities.

First of all, we have been able to establish that the values of
the position of the Sun against the ecliptic were transposed into
a handy table for the students for the first time in 1543, and also
to show that this table was printed and used only in Northern
Germany and France (Supplementary Material B.1.4.2 in Section
Supplementary Text contains a video link for the spread of the so
called nostro tables). Second, and more relevantly, we were able
to identify another table, which essentially provides the same in-
formation but pertains to ancient times. To communicate this in-
formation, a new table is indeed required since the position of
the Sun relative to the zodiacal signs for a given date changes.
While the annual change is minimal, the change accumulates to a
noticeable difference if longer time periods are considered. This

6



similar but not identical table therefore serves to directly display
the position of the Sun as it was observed by the ancient writers.
This table was first conceived in Wittenberg and was created to
simplify the calculations otherwise required to convert the current
(of the 16th century) position of the Sun into the ancient position,
which was necessary to establish a connection to the calendar.
It spread, however, only in Northern Germany (Supplementary
Material B.1.4.2 in Section Supplementary Text contains a link
to a video visualizing the spread of the sun-zodiac table for the
ancient authors (so called veterum table)).

3 Discussion
The present study has shown both qualitatively and quantitatively
how mathematical knowledge as taught in the frame of the early
modern universities in Europe has evolved in a context of in-
stitutional competition in Europe. This competition seems to
have fostered a sharing process of scientific knowledge in Eu-
rope while, as it well known, the latter was being fragmented by
religious and political currents.

The pattern along which the conception of historical climate
zones changed (from 7 to 7+2 towards 24 climate zones) allows to
formulate the hypothesis that the emergence of a shared science
in continental Europe, at least as the generally educated populace
is concerned, was related to the development of a global percep-
tion beyond politics.

The computation of the position of the Sun with respect to the
Zodiac, moreover, seems to indicate the emergence and spread of
a societal desire to establish its own intellectual roots, namely
a shared chronicle with the past. Consequently, there was a
concerted effort to accurately reconstruct the chronology of the
events beginning in classical antiquity.

The development of a global cultural perspective in Europe
together with the emerging need to establish the own historical
roots might have contributed to the creation of the very intellec-
tual background against which the European scientific and cul-
tural identity was later realized (Supplementary Note B.1.4.2 in
Section Supplementary Text).

The current investigation could be extended by including, in
addition to textbooks, works that were associated with the re-
search frontiers of the time [12]. In this manner the relation be-
tween the diffusion of a broad mathematical culture and those
disruptive works usually associated with the idea of a scientific
revolution could be studied in more detail.

By extending the time interval moreover, for instance by
including more recent sources, the evolution of mathematical
knowledge could be investigated as it transits from the early mod-
ern tabular expression of mathematical functional relations to
the more modern formulaic one. By broadening the geographic
scope, the same phenomenon could be investigated within a
global perspective, potentially allowing for the quantification of
the process of European intellectual colonization. Thus spatial
and temporal extensions of the source base would first require
well-curated dataset of the relevant sources.

In the future, our ML-based atomization-recomposition
framework holds the potential to unlock intricate historical anal-

yses, such as understanding the complex interplay between vari-
ous data including visual, textual and numerical elements, infor-
mation related to the materiality of the sources, and social and
institutional embeddings of the historical actors themselves. This
approach could lead to the the possibility of generating genealo-
gies between historical sources even before engaging in a close
reading analysis (Supplementary Note A.8 in Section Materials
and Method).

In our new approach, the historian is assisted by our AI
methodology, allowing the examination of large corpora, poten-
tially giving rise to previously unexplored hypotheses in a data-
driven manner. As evidenced by our study, new perspectives can
particularly emerge from the results of unsupervised ML analy-
sis. These results subsequently need to be studied and validated
by historians. Importantly, the general limitations presented by
data-driven methods, and limited data and label availability for
the generation of research hypotheses need to be considered and
directly addressed. We have demonstrated how these challenges
can be mitigated via efficient modeling that is embedded into a
process of scrutiny, independent testing and thorough model eval-
uation that incorporates XAI to make the underlying ML infer-
ence processes transparent and verifiable as further discussed in
Supplementary Note A.8 in Section Materials and Method. Only
after these steps can the hypotheses that have emerged be further
pursued on the basis of the established methods in history writ-
ing: a hypothesis-driven research. This is precisely the path that
we have followed.

While this ambitious vision presents numerous challenges,
we emphasize that computational astronomical tables from the
early modern period are exceptionally intricate sources that de-
mand profound expertise for analysis. We have demonstrated that
such analysis can be substantially augmented by ML methods.
Therefore, we would like to express optimism that our general
approach can be adapted and applied to other historical questions
and sources.

The results achieved in this way may pave the way towards
an even more complete integration of ML and XAI into historical
disciplines while at the same time enhancing the horizon of the
digital humanities. Importantly, we believe that the integration of
humanities and ML technology needs to be problem specific and
highly interwoven between the disciplines. Only through close
interaction can a virtuous cycle of scholarly dialogue be achieved,
ultimately leading to innovation, insights, and meaningful ad-
vancements. In our study, ML particularly benefited from ad-
dressing the challenge of sparseness in historical data, which was
solved by the novel atomization-recomposition approach.

Ultimately, the aspiration is to establish an AI-based assis-
tant capable of effectively enabling an accelerated science lab for
insightful historical research, interpretation, and reconstruction.
Such lab would serve a more comprehensive understanding of
our historical roots.
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Figure 3: Historical case studies. (a) Worldmap as conceived in the Hellenistic era by Ptolemy and drawn for the first time during
the 15th century by following the list of coordinates and the metric of Ptolemy. The 7th climate zone clearly excludes all regions
north of Paris, including current Great Britain. From: Ptolemy, Cosmographia. Map maker: Nicolaus Germanus. Ms. membr.,
lat., sec. XV, cc. I–II, 124, III–IV. 1460–1466. Biblioteca Nazionale di Napoli. (b) Robert Walton’s Worldmap drawn in 1626. It
includes all recently discovered territories on the Earth but considers only nine climate zones as worth being explicitly mentioned.
The 9th climate zone includes England but was originally introduced to include Wittenberg. Further zones toward North are only
generically mentioned. From: A New and Accurat Map of the World Drawne according to ye truest Descriptions lastest Discoveries
& best observations yt have beene made by English or Strangers, 1626. London 1627. The Barry Lawrence Ruderman Map Collec-
tion. Courtesy Stanford University Libraries. http://purl.stanford.edu/cc815fz9830 (c) T-SNE visualization of the climate zone table
histograms colored according to the number of climate zones they consider. (d) Illustration displaying the orbit of the Sun (ecliptic)
on the Zodiac subdivided into the twelve signs. From [95, sign. b-IIII-4]. Augsburg, Staats- und Stadtbibliothek. urn:nbn:de:bvb:12-
bsb11218245-6. (e) Examples for two types of Sun-Zodiac tables: the ancient (veterum) and the 16th-century variation (nostro). The
prediction of the similarity model is made explainable by highlighting the most relevant feature interactions, using here one bigram
as an example. It is clearly visible that the position columns are shifted by a fixed number of days.

Materials and Methods

Data
The “Sacrobosco Collection” [96] represents the complex edi-
tion history of the astronomy textbook ‘De sphaera’ of Johannes
de Sacrobosco, and that provides a corpus of 359 early modern
printed editions, roughly 76,000 pages of material [97]. These
books were used at the European universities for the mandatory
introduction to the study of astronomy and geocentric cosmology
during the first curricular year. The dates of the editions of the
corpus range from 1472 to 1650. This corpus enables the study
of important historical questions, such as the evolution and the
process of homogenization of knowledge on cosmology.

Table pages

From all pages of the Sacrobosco Collection, we select 9793
pages bearing one or more numerical tables, which we submit
to the table similarity workflow as the Sacrobosco Tables dataset.
By numerical table we refer to any tabular arrangement of data in
our corpus which has at least one column with (predominantly)
numerical content. We specifically exclude tables of content and
book indices. The pre-selection was supported by an off-the-shelf
CNN (VGG-16 [98]) trained to classify pages as bearing such
numerical tables or not. The output of this CNN was checked
down to a low probability of the assignment of a page as bear-
ing a numerical table. Due to the human post processing the list
of of pages with numerical tables should have close to perfect
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precision and a very high recall. A list of all pages with numer-
ical tables is provided as spharea_tables_meta.csv, the
trained model instrumental in establishing this list is provided as
sphaera_tables_classifier.h5. The digital images of
the pages, that we refer to as the Sphaera Tables dataset can be
obtained at sphaera_tables_images.zip.

Preparation and acquisition of ground truth

We have prepared four different ground truth datasets to
train and test our model at different processing stages, sin-
gle digits and non digit content to train the recognition
model, fully annotated numbers to test the digit recognition
and the bigram expansion and sun zodiac pages to evalu-
ate the table similarity model. These sets are provided as
numerical_patches.csv, contrast_patches.csv,
digit_page_annotations.csv and sun_zodiac.csv
in the code and data repository.

Single-digits To capture the non-standardized print types that
occur in historical corpora, we have selected a subset of impor-
tant printers and have for each of them annotated five individual
number patches from five different pages that contain numerical
content. A dataset containing a diverse set of single digits was
then created. We further have added contrastive non-digit patches
that contain text, illustrations, or geometry from non-table pages.

Fully annotated numbers. We have selected 11 pages and an-
notated each single digit contained on the pages by a bounding
box. In addition we have marked if the individual digit is the
first and/or the last digit of a number. With this information,
all numbers and thus also all bigrams contained on these pages
can straightforwardly be reconstructed. The annotated pages have
been selected to cover a wide spectrum of different manifestation
of numerical content in terms of writing direction, fonts, fonts’
sizes, density of digit placement on the page, etc.

Sun zodiac pages. To evaluate to what extent our approach can
reproduce the salient relations between the tables in our corpus,
we have chosen the sun-zodiac tables, which give the positions of
the sun into the signs of the zodiac in degrees for each day of the
year. This table is well-suited for evaluating our approach as it
occurs in varying layouts in our corpus, where the different lay-
outs partition the full table differently. In some cases the entire
table is comprised on one page, in other books it is distributed
over as many as nine pages. Due to its content, the table only
comprises numbers from 1 to 31 (maximum number of 31 days
per month, 30 degrees per sign of the zodiac). The table thus
populates only a subspace of the feature space that we exploit for
our similarity assessments. Since this subspace is more densely
populated than would be expected with a uniform distribution of
the data over the entire feature space, this table is particularly dif-
ficult to discriminate under our approach which makes it a good
test case.

In our corpus, we find two variants of the sun-zodiac table in
this respect: tables for the times of the ‘ancient’ poets (‘veterum

poetarum temporibus accommodata’) where the sun is 16 degrees
into Capricorn on the first of January, and tables for ’contempo-
rary’ times (’nostro tempori’) where the sun on the first day of
the year has advanced 3 degrees and is located 21 degrees into
Capricorn. Essentially, this difference amounts to a shift of the
columns listing the days of the year with respect to columns giv-
ing the angular locations and thus, from the perspective of our
similarity model, these two variations represent the same (more
abstract) table.

We have identified 68 instances of the sun-zodiac table,
which cover a total of 250 pages in the corpus. A list of the
pages containing the different versions of the sun zodiac tables
is provided as sun_zodiac_pages.csv. A ground truth
histogram for the digit-features distribution of a prototypical,
i.e. noise-free and complete, sun-zodiac table is provided as
sun_zodiac_hist.csv.

Clime table pages We further collect a subset of material that is
concerned with climate zone tables, which divide the surface of
the “inhabited” world and that can be defined by the length of the
solar day. This served as an indication of the overall meteorolog-
ical conditions, which was in turn a determinant information in
the framework of Medieval and early modern medicine. We find
three different principle variants of climate zone tables that either
use 7, 9 or 24 clime zones. The 225 pages containing these tables
are provided as clime_tables.csv. In each row, the csv file
lists the occurrence of an individual clime table, specifying the
type and providing metadata for the edition containing this table.

Details on the atomization-recomposition model
Digit recognition model

As a first step, our goal is to train a single digit recognition model
for which provide optimization and architecture details in the fol-
lowing. We built a 7-layer convolutional neural network using
the Equivariant Steerable Pyramids framework [99], starting with
an initial 4-layer equivariant convolutional block with filter sizes
{3×3, 3×3, 5×5, 5×5} and 8-rotational groups invariant to trans-
lations and rotations on the R2-plane. Low-level features required
to detect digits (lines, arches, circles) thus generalize over spatial
input transformations resulting in increased data efficiency. A
subsequent pooling layer selects the maximally activating map
from the equivariant group. We use a stack of three standard con-
volution layers of kernel sizes {5×5, 1×1, 1×1} which output
10 activation maps {aj(x)}9j=0 for the digits 0–9. Finally, we
model variations in scan orientation and size on the page level by
identifying the page scaling factor and rotation for which single
digit activation maps are maximally activated.

We optimized the model using equal amounts of single-digit
and non-digit patches, which resulted in around 8,000 datapoints
for training. This data was further augmented using small ro-
tations (±10◦), translations (0.025×img_width/img_height in x-
and y-direction), scaling (0.8 − 1.2×) and shearing (±5◦) trans-
formations.

Since numbers can occur in various contexts, e.g. as part of a
table but also as a page number, we model local page context and

9



consider a border of 10 pixels around the digit bounding box. We
use the Adam optimizer to minimize the mean squared error be-
tween true activation maps and model outputs using the loss term
ℓ = ℓbbox+0.3·ℓcontext, and select the model of best performance
on the test set.

Bigram expansion

In the subsequent recomposition step, we combine these single-
digit activation maps to detect digit task-relevant bigram features
using a hard-coded sequence of processing layers. We compute
the composed feature representations by applying an element-
wise ‘min’ operation

a
(τ)
jk (x; s, θ) = min

{
aj(x; s, θ), τ(ak(x; s, θ))

}
,

which signals the presence of bigrams jk ∈ {00, . . . , 99} at im-
age scale s and rotation θ, and can be seen as a continuous ‘AND’
[100] operation. In addition, we include additional feature maps
that detect isolated single digits j ∈ {□0□, . . . ,□9□} with “□”
indicating that no digit is detected at the given location. The
function τ represents a translation operation shifting activation
maps horizontally by a specified number of pixels δ. To account
for variations in spacing between characters, we generate bigram
maps with multiple shifts δ and select at each spatial location the
best shift via the max-pooling operation:

ajk(x; s, θ) = max
τ

{
a
(τ)
jk (x; s, θ)

}
.

The ‘max’ operation can be interpreted as a continuous ‘OR’, and
determines at each location whether a bigram has been found for
at least one candidate alignment. Further, isolated single digits
can be detected by computing neighborhood maps using shifts
±δ. These neighborhood maps are computed from the single
digit maps shifted in left and right horizontal direction and fur-
ther computing a binary map that signals the absence of digits.
Now, a ‘min’ operation over digit map aj and both neighbor-
hood maps indicates the presence of isolated single digits. This
results in a total of 110 feature maps.

In our experiments, we use a reference page height/width of
1200 pixels, s ∈ {0.5, 0.65, 0.8, 0.95, 1.0}, θ ∈ {−90, 0, 90}◦
and δ ∈ {8, 10} pixels. We finally select bigram maps from the
sets of scalings, rotations and shifts for which the feature map
activity is maximized.

Pooling

As a final step, we apply a spatial pooling to implement invari-
ance with respect to the table layout and reduce dimensionality,
which gives us a ‘bag-of-bigrams’ representation for each page.
We experimented with different pooling strategies and found that
a standard peak-detection algorithm resulted in the best task per-
formance, while allowing for a directly interpretable decoding of
numerical features.

For the activity peak-detection of bigrams, we start from a
set of 100 bigram maps ajk with jk = {00, ..., 99} which are
added to 10 maps for isolated digits âi with i = {_0_, . . . , _9_}

resulting in ā = (ai,ajk). Since, the max-pooling used for the
bigrams reduces the overall activity levels in comparison to the
isolated digit maps, we introduce a scaling parameter α to the lat-
ter ai = âi/α. Next, we subtract a bias term β ·max(x,y) ā(x,y)
computed as the product of relative scaling parameter β and the
maximum pixel value in all maps. Resulting maps are rectified to
filter weak background activity. For each of the 110 feature maps,
we compute occurring peaks using the center of activity mass and
further determine the linkage matrix using the distances between
centers to perform a hierarchical clustering grouping close-by ac-
tivated pixels into groups of pixels that belong to one bigram. To
limit the size of clustered regions, we define a maximum distance
parameter d and select parameters using histogram Pearson cor-
relation scores on the training patches and set α = 3, β = 0.12
and d = 15. The resulting center of mass coordinates finally give
the digit location together with the digit label.

Explaining similarity models

To get insight into similarity predictions, we apply the purposely
designed BiLRP method [79]. The method assumes a similarity
model of the type y = ⟨ϕ(x), ϕ(x′)⟩ where ϕ is a neural network
based feature extractor, and y measures the similarity between x
and x′. The method explains the produced similarity score y in
terms of contributions of feature pairs (xi, x

′
i′). Conceptually, the

method computes these contributions by performing a backprop-
agation pass from the top layer to the input layer. Each step of the
backpropagation redistributes contribution scores from a given
layer to the layer below. The method stops once the input features
are reached. In practice, the explanation is computed more effi-
ciently by computing multiple standard LRP explanations [101]
(one for each element of the dot-product), and recombining them
at the input via a matrix product. To compute each LRP pass, we
apply the LRP-0 rule [102] and pool resulting explanations over
pixel regions of 15×15.

Evaluation
The evaluation of the different representations used in our ap-
proach using ground truth data annotations is described in the
following.

Single digit accuracy

The trained digit encoder is used to predict digit maps on the
held-out test set. For each patch the resulting activation map is
computed, multiplied with a bounding box region mask and fi-
nally sum-pooled which results in a vector of size 1×10. The
maximally activating vector index gives the predicted digit used
to compute the single digit accuracy.

Full-page bigram histograms

We use the digit model to compute 110 single-digit and bigram
activation maps from which we extract histogram summaries by
applying peak-detection or spatial sum-pooling. Ground truth
histograms are computed by identifying and counting all bigram
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and isolated single-digit occurrences. Each bigram count hjk

is optionally mapped to its square root to better handle the dif-
ference of scales between frequently occurring and rare digits
and bigrams respectively, and finally, Pearson correlation be-
tween ground truth and computed histograms is computed for
each page.

Cluster classification

To validate the resulting clusters, we use a subset of the full cor-
pus that contains one and two-page instances of the sun-zodiac
tables. The corresponding 71 table pages containing more than
45,000 single digits are split into train-test (50/50) sets and a
nearest-neighbor distance model is fitted on the training set. For
all remaining data points, we assign the class label according to
different distance models and compute the cluster purity of the
test split over ten random seeds. We have compared different
ways of extracting page representations: (i) Bigram: Bigram his-
togram counts were obtained using the bigram model with peak
detection and square root mapping. (ii) Pooled: Activity maps
were obtained as in (i), but instead of peak detection, we directly
applied spatial sum-pooling to the bigram maps. (iii) Unigram:
Instead of computing bigram maps, we built a ten-dimensional
unigram count histogram using peak detection. (iv) VGG-16: We
used the pretrained encoder of the deep image classification net-
work VGG-16 [98] and extracted spatially-pooled output feature
maps after the last of five convolutional blocks.

Historical corpus-level analyses
Temporal analysis

The editions of the Sacrobosco collection that contain at least one
page of tables were printed during a time span of 153 years (1494-
1647) over which publication rates changed considerably. Thus,
we apply a sampling based temporal analysis. For each time step
ti, we assign a sampling probability to each book page containing
a table from a truncated normal distribution N (ti, σ

2), which sets
probabilities for data points outside the interval (ti − σ, ti + σ)
to zero. At every step, we sample N = 80 data points, determine
their cluster membership label, construct the cluster count his-
togram of size 1× k with k the number of clusters, and compute
the entropy for each histogram vector. Clusters are computed us-
ing using k-means clustering [103] with k = 1500 clusters. We
have further studied the robustness of our results to the choice
of hyperparameter in Supplementary Material B.1.2. The tem-
poral evolution of entropy scores is computed for digit density
thresholds of {0, 100, 200, 250, 300}, which refer to the maxi-
mum number of digits detected on a page, and average entropy
curves over 20 runs for each threshold.

Geographical analysis

To study the varying knowledge production expressed by the
tables printed across 32 different printing centers, we compute
the difference in entropy between the k-means cluster distribu-
tions and an uninformed uniformly distributed production process

H(p)−H(pmax), where pk represents the probability of assign-
ing a table to cluster k with k = 1500. The term H(pmax) =
log(Nc) with Nc the number of tables printed in city c captures
the maximum entropy that a cluster distribution for each print lo-
cation can achieve. Consequently, the difference in entropy is
minimized for cities that output low entropy distributions, i.e. by
repeatedly printing the same material.
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Supplementary materials

A Materials and Methods

A.1 The Sacrobosco Collection from the Sphaera Corpus
The Sphaera corpus contains four collections. One of them is called “Sacrobosco”. It is composed of 359 different editions of
printed textbooks used across European universities to teach the introductory class on geocentric cosmology and astronomy during
the early modern period. These 359 editions were published between 1472, the year of the first print (and of the first print of
a scientific, mathematical text ever), and 1650, which marks the decline of geocentric astronomy, almost a 100 years after the
publication of Nikolaus Copernicus’s De revolutionibus orbium coelestium in 1543, which introduced a mathematical system based
on a heliocentric worldview to early modern academia. The Sacrobosco Collection is composed of ≈ 76, 000 pages. If we consider
a realistic print-run of about 1000 exemplars for each edition [20, 21], the collection under examination here represents ca. 350.000
textbooks that were circulating during the time period of at least 180 years and were used by students and lecturers in a geographic
area that extends from Krakow to Lisbon and from London to Rome (Figs. S1,S2).

All the collected editions are related to one specific text: the Tractatus de sphaera by Johannes de Sacrobosco (– 1256). This
text was originally compiled and published in Paris in the first half of the thirteenth century. As an elementary text on geocentric
cosmology, the tract was used in astronomy classes of almost all European universities during the first year of the curriculum. These
classes were mandatory for all students, regardless of their ultimate field of study, because astronomy as a discipline belonged to
the quadrivium. The quadrivium represented the curriculum of studies that any student had to accomplish during the first years at
the universities in order to be allowed to gain access to further curricula, such as medicine or jurisprudence or theology. Despite the
relative simplicity of the treatise’s content, its importance to understanding the evolution of knowledge stems from the fact that it
was used from the thirteenth to the seventeenth century and was subject to continuous transformations and modifications, by means
of commentaries and further texts that were placed or printed together and which deepened more specific, related subjects. This
motivates to use this particular collection to investigate the broader mechanisms of knowledge evolution during this period. We rely
solely on printed editions of textbooks that contain the Tractatus de sphaera in order to construct a structured and systematic dataset
for the computational analyses discussed here.

Focusing the research on university textbooks means that the present work examines processes of scientific transformation on a
large scale concerning the dominant knowledge of the educated society of early modern Europe. In other words, the corpus under
examination reveals the knowledge possessed by those who became the readers of seminal works such as those of Copernicus and
Galileo. It reveals their background knowledge and how this changed over time.

In general, we suggest a corpus analysis that follows three different axes, which can be re-aggregated at the end. The three axes
emerge as based on three different types of data, into which we de-compose and dissect the historical sources. We call these different
kinds of data “knowledge atoms”. These are “text-parts”, “visual elements” such as scientific diagrams and illustrations, initials, and
printers’ devices, and “computational tables” represented by numerical and alpha numerical tables, most of which resulting from
calculations following astronomic computational workflows. In the case of our collection, the Alfonsine tables were the basis for
many of these calculations [23]. The collection page statistics shown in Fig. S3 highlight how book production varies over time and,
more specifically, how table pages have increasingly been included as part of standard text books. The present work focuses on the
investigation of the last of these knowledge atoms, namely on the tables, a kind of document that, because of its complexity could
not hitherto be analyzed in great quantities either by humans or by machines. As it will be shown, focusing on the computational
astronomic tables means investigating the process of mathematization of astronomy as taught at European universities during the
early modern period.

The great variety of computational astronomic tables in the collection considered here informs our modeling approach in the
present work and enables us to analyze and reconstruct scientific knowledge as disclosed and externalized by such tables. Before
moving to this main subject, however, we briefly sketch the historical results already achieved on the basis of the other knowledge
atoms while the data infrastructure needed to execute such research is described in the section A.7.1. This overview concerning the
results of previous researches is necessary to understand the implications of the results presented in this work. The dataset is retrieved
from the research project ‘The Sphere. Knowledge System Evolution and the Shared Scientific Identity of Europe’1.

A.1.1 Studying Knowledge Systems

The dataset described in this section is the backbone of what we consider a knowledge system. Such a system results from the
re-integration of the identified knowledge atoms into diachronic and synchronic graphs. We first describe the taxonomy used to
categorize the 359 editions and then those graphs constituted by the knowledge atom ‘text-part’, which describes self-contained text
sections in a book.

1https://sphaera.mpiwg-berlin.mpg.de
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Figure S1: Geographical distribution of the Sphaera editions.

The rigorous historical analyses that form the foundation of the research resulted in the identification of five different edition
classes within the collection, clearly differentiated by the form of their content in such a way to allow the identification of the modes
of knowledge production in the period examined here (Figure S4).

The “original treatises” class represents a total of 17 editions, which exclusively contain the original text of the Tractatus de
sphaera without added contemporary commentaries. The 48 editions, classified as “annotated original treatises,” contain the original
work of Johannes de Sacrobosco, with additional commentaries by various authors. As “Compilation of texts”, we define a class of
43 editions, which include the original Tractatus de sphaera along with other original treatises by various authors, while the class
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Figure S2: Publication rate of Sphaera textbooks between 1475 and 1650.

Figure S3: Histogram showing the variation of the number of pages containing visual elements and computational tables in the
Sacrobosco Collection.

“compilation of texts and annotated originals” contains 124 editions which include a commented or annotated Tractatus de sphaera
along with other treatises. The final and largest class is constituted by editions defined as “adaptions”, which numbers 127 and
displays texts that are strongly influenced by the content and structure of the Tractatus de sphaera, but do not include the original
treatise itself.

Each of these editions is dissected into text-parts. Each text-part represents a textual component that is both larger than a single
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Figure S4: Taxonomy for the editions constituting the Sacrobosco Collection: editions that contain the original medieval tract only;
those that contain the original treatise with at least one commentary; those that contain the original treatise and other treatises
(compilations); those that contain the original treatise, at least one commentary, and other texts; adaptions.

paragraph and also conveys a coherent body of information. These text-parts are then classified into two main categories, 322
“content” and 261 “paratext” text-parts, the former referring to text-parts containing scientific treatises, while the latter refers to short
texts that are often added to original content, containing poetry, letters to the reader or prefaces, dedication letters, or other literary
compositions useful to understand the social, institutional, and political context in which the editions were conceived and produced
[104]. We built graphs (both diachronic and synchronic) among the editions on the basis of semantic relations among the text-parts
that they contain.

To build a synchronic graph on the basis of the text-parts, we performed a content-related analysis in order to assess their mutual
semantic relations: We related the text-parts to each other using the relationships “commentary of”, “translation of,” and “fragment
of”. The diachronic graph is instead represented by the re-occurrences of text-parts over time. The integration of both graphs creates
a high-dimensional matrix that, by adding the available historical metadata, allowed to establish the multiplex networks by means of
which we investigated the emergence of epistemic communities within the corpus [17, 18]2.

The first and most fundamental result of our previous network analyses concerns the process of homogenization of knowledge
and, specifically, the underlying mechanism, which we now can best describe as a mechanism of imitation [83, 16, 105]. We were
able to identify families of treatises characterized by their inherent text-parts similarity, while at the same time they executed a strong
influence – their content was imitated – on the content of other treatises produced elsewhere. By matching this analysis with the
metadata, we were finally able to find out that the dominant family of treatises that gave birth to such a process was produced in
the reformed Wittenberg during the 30s of the sixteenth century. Assessing all the reasons that brought the scientific production of
Wittenberg into the sights of European scholars of the period remains a complex task and, as it will be shown, the present work
represents a fundamental step forward in the understanding of this complex process. At this stage, however, it can be stated that while
the Protestant Reformation created a confessional, institutional, and political division in Europe, it also created the backdrop against
which scientists made their first step toward the formation of a community that begins to show some of the traits characteristic for
the modern international scientific society. Other editions that could be identified and that we defined as “Enduring innovations”
and “Great transmitters”, show the relevance of Wittenberg, especially around the middle of the sixteenth century [18]. At this point
Wittenberg changed its strategy, moving from a more radically innovative position toward integrating innovations and tradition in a
way that would have supported the primacy of Wittenberg’s scientific literary output in Europe for many decades, furnishing therefore
the fuel for a long-term process of homogenization. In conclusion, we were already able to show that, at the end of the sixteenth
century, based on a mix of imitation and a center-emanating output of innovations, students across Europe were all learning the
same astronomy and cosmology, at least for what concerns the scientific knowledge conveyed through the textual apparatus of the
textbooks under investigation.

But the textual apparatus is not the only means used to convey knowledge in the textbooks. During the early modern period,
written text was considered highly authoritative. Science was produced mostly by commenting on older texts, be these medieval as in
the case of the Sacrobosco collection or from classical Greek or Roman antiquity. The texts of reference, which were commented on,
were usually not changed or updated but they were illustrated. With regard to the visual apparatus the situation was different. Since

2To interactively explore the dynamic of re-occurrence of the text-parts also according to their mutual semantic relationships, see https://sphaera.mpiwg-
berlin.mpg.de/adoption
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the late middle ages, the use of visualization started becoming increasingly prominent in Western science, a trend that continues to
the present day. While medieval manuscripts of Sacrobosco’s De sphaera rarely display more than five illustrations, early modern
editions developed a visual apparatus that was constituted of 40 to 50 illustrations, in certain extreme cases even more than 70. While
our research focused on the visual apparatus is ongoing [106, 107, 108, 109, 110], traditional analyses seem to indicate that the
Wittenberg production of textbooks was able to take the lead in the process of homogenization of knowledge, also concerning the
scientific visual apparatus [94, 111].

Finally, the third sort of knowledge atom, the numerical table, is the one the present work is pivoted around and, therefore, will
be introduced in a separate section.

A.1.2 Numerical Tables and Their Role

The specific treatise around which the Sacrobosco Collection is centered (Sacrobosco’s De sphaera) is a qualitative introduction to
geocentric astronomy. Qualitative means that students could learn the composition and the elements of the cosmos, in certain cases
also by working with the corresponding mechanical device, the armillary sphere (Figure S5). Finally they apprehended fundamental
notions concerning the movements of the celestial bodies: for instance that the outer sphere, the sphere of the fixed stars (firmament)
moves from east to west on a daily basis and from west to east by about one degree every 100 years. What they could not learn by any
means from this text was for instance to calculate in advance the position of a celestial body, for example a planet. This fundamental
treatise, which remained in use at nearly all European universities for about 400 years, was not an introduction to mathematical
astronomy. During the thirteenth and fourteenth centuries, the period before the one considered here, only very few scholars had the
chance and the skills to enter the realm of mathematical astronomy through the study of extremely difficult and rare works such as
Ptolemy’s Almagest. Outside this expert culture astronomy was fundamentally non-mathematical; it was part of natural philosophy,
which was essentially the result of a speculative search for causes of natural phenomena. Astronomy, like the other disciplines of the
quadrivium (geometry, arithmetic, and music) was considered as mathematical discipline but, in the general cultural context of the
Middle Ages, apart from the fact that only few scholars really accessed such mathematical knowledge, the mathematical apparatus
of astronomy was considered only as an instrument for calculations and not a method to describe the real world, only its appearance.
Mathematical astronomy was not natural science.

The path toward modern science can be interpreted therefore also as a process of mathematization. Practical knowledge, for
instance, such as the knowledge accumulated by specialized artisans and engineers in the frame of mechanics and machine building,
was integrated to mathematics and gave rise to theoretical mechanics starting from the sixteenth century. It was thus for instance
from the integration of the practical knowledge of the artillerists and geometry that the new science of ballistics emerged during the
sixteenth century [113]. In the case of the so-called mathematical disciplines, the process of mathematization was realized following
two different directions simultaneously [114].

On one side, the disciplines themselves evolved. Contrary to what is commonly believed, the above mentioned studies have
demonstrated that the geocentric worldview was not a stagnant scientific theory but rather a subject of lively debate. A myriad
of observational data collected since antiquity still needed to find an appropriate theoretical framework. This dynamic led to the
identification of specific sub-areas of study – for instance nautical astronomy – , which in turn resulted in the creation of new
textbooks. These texts were designed to be more accessible and focused on teaching not an all-encompassing mathematical system
for the cosmos, but rather the individual aspects of it, such as the movements of each single planet or of only the outer sphere of the
stars. These new texts – most famously among them those entitled Theoricae planetarum by means of which students could learn a
mathematical treatment of the orbits of each planet but disjointed from the general view of the cosmos – actually were new text-parts
added to the original tract of Sacrobosco. They lowered the threshold of access to mathematical knowledge in astronomy and kept
the traditional texts as relevant introductory text valid for centuries.

The lowered threshold complemented the second direction. The latter is due to the emergence and increasing relevance of the
universities, a genuine late medieval innovation in the framework of educational institutions. The late medieval and early modern
universities linked disciplines that were not connected in such a systematic way in the previous centuries. Particularly relevant
for astronomy was, for instance, the increasing integration with medicine, which was to a good part the result of the reception of
Islamicate science. Largely due to a revival of Galen’s theory of critical days [115], astrological medicine became a fundamental
scientific and cultural component of European society. As soon as sickness occurred, physicians were required to know the positions
of the planets on the day of appearance of the sickness in order to be able to deliver a suitable prognosis. They were therefore very
accomplished in using the Theoricae and its volvelles, paper instruments to determine positions of celestial bodies, to make precise
calculations backwards in time.

Cultural trends like the one just described increased the demand for a mathematical approach to astronomy. This trends resulted
in a process of mathematization of astronomy phenomenologically characterized by the fact that an increased number of aspects of
mathematical astronomy was taught to an increased number of people. This process is inherently connected to the homogenization
of scientific knowledge, as is clearly demonstrated if, for instance, two pairs of editions of textbooks on astronomy, one from the
fourteenth and one from the seventeenth century, are compared. What however remains unclear is how exactly such process of
mathematization worked, which kind of mathematics was really involved, what came first and how was it developed, whether all
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Figure S5: Typical graphic representation of an armillary sphere in a De sphaera textbook. An armillary sphere is a mechanical
representation of the geocentric cosmos and, at the same time, a scientific instrument. From [112, sign. a-III-2]. Courtesy of the
Library of the Max Planck Institute for the History of Science.

the attempts to introduce mathematical astronomy in a standard curriculum were successful, who promoted such process, when and
where. This process has never been reconstructed in its details concerning history of astronomy –that is, leaving aside history of
arithmetic and geometry – and the reason for that is that the historical sources that can mainly disclose to us such a process could
not be analyzed systematically until now. These sources consist of thousands of numerical tables, namely computational astronomic
tables that were printed in the textbooks. In practice, we need to (1) identify recurring instances of particular tables across all printed
editions, and (2) observe diachronic and synchronic trends in the inclusion of tables in the editions, averaged over the entire collection.

Example of a Computational Astronomic Table In Figure S6, we present an example of a computational astronomic table which
is frequently encountered in the collection. This table of the ‘right ascension’ gives the degree of the celestial equator measured from
the vernal equinox eastward that rises together with each degree of the ecliptic in the ‘right sphere’, i.e. for an observer at the equator
of the earth [24, 24–28]. Positions on the ecliptic are specified by degrees into the signs, with each sign listed in separate column of
the table. Counting begins with the beginning of Aries. Thus for instance, 10 degrees into Taurus would correspond 40 degrees along
the ecliptic from the beginning of Aries.

The relation between the equatorial latitude and the celestial latitude of a point on the ecliptic was derived by means of spherical
geometry. The computational workflow in the table’s background can be expressed in modern notation as:

α = arctan(cos(ϵ) ∗ sin(λ)/ cos(λ)),

where ϵ denotes the angle of the ecliptic, λ is the angle along the ecliptic and the right ascension, i.e. the angle along the equator is
given by α.

23



It is relevant to note that the vernal equinox coincided with this first point of Aries in antiquity. Hipparchus defined this point,
also known as the Cusp of Aries, as the reference point for specifying celestial equatorial longitude (even though the vernal equinox
entered Aries only approx. 100 years after Hipparchus’ death). Due to the procession of the equinoxes the vernal equinox wanders
about 1 degree along the ecliptic in 72 years. Thus in the sixteenth century the vernal equinox point would have been about half way
into Pisces and, strictly speaking, the tables in Figure S6 give the right ascension for an ancient observer in the first century BCE and
are presented in Table S1.

� ] ^

1 0 55 28 51 58 51
2 1 50 29 49 59 54
3 2 45 30 47 60 57
4 3 40 31 44 61 60
5 4 35 32 42 63 3
6 5 30 33 40 64 6
7 6 25 34 39 65 10
8 7 21 35 37 66 13
9 8 16 36 36 67 17
10 9 11 37 35 68 21
11 10 6 38 34 69 25
12 11 2 39 33 70 29
13 11 57 40 32 71 34
14 12 53 41 32 72 38
15 13 48 42 31 73 43
16 14 44 43 31 74 47
17 15 40 44 31 75 52
18 16 36 45 32 76 57
19 17 31 46 32 78 2
20 18 27 47 33 79 7
21 19 24 48 33 80 12
22 20 20 49 34 81 17
23 21 16 50 35 82 22
24 22 13 51 37 83 28
25 23 9 52 38 84 33
26 24 6 53 40 85 38
27 25 3 54 42 86 44
28 25 60 55 44 87 49
29 26 57 56 46 88 55
30 27 54 57 48 90 -0

Table S1: Rendition of the first three columns of the table of the right ascension, calculated according to the modern formula.
The angle used for the obliquity of the ecliptic is 23.5 degrees. There is an excellent correspondence to the values in the table given
in Figure S6.

A.1.3 From Individual Tables to Corpus-Level Analysis: Assessing Similarity

Judging whether two tables are similar in the sense that they express basically the same information is a complicated and time
consuming process which can only be accomplished by experts. As an example in Figure S7, we provide two different versions of
a table of the declination of the Sun with respect to the celestial equator. The relation expressed in this table is the angular distance
of points on the ecliptic to the celestial equator. As can be read off the first row, the table, like in the case discussed in A.1.2 is
completed under the assumption that the vernal equinox coincided with this first point of Aries based on comparable mathematical
relation derived from spherical trigonometry.

While expressing the same astronomical relation, there are some substantial differences between the two tables in Figure S7
expressing this same relation. While the table on the right, taken from an edition of Oronce Finé covers merely one page, the table
from which we show one page on the left and which was taken from an edition of Christophorus Clavius stretches over altogether nine
pages. The reason for this is that Clavius lists the declination for corresponding points on the ecliptic for steps of 5 arc minutes along
the celestial equator while the step size in Fine’s table is of one full degree. Thus only every 12th value in Clavius table corresponds to
a value in Finé’s table explaining why the former used up so much more space than the latter. Somewhat anachronistically speaking
both tables list arguments and function values for the same function but the step-size in which the argument progresses is much
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Figure S6: Table of ‘right ascensions’ as an example of a computational astronomical table. This table is taken from [116, 530]
published in 1585. Many exemplars of this table are contained in the collection. Courtesy of the Library of the Max Planck Institute
for the History of Science.

smaller in one case.
This is, however, not the only difference between the tables. While Clavius specifies the declination in degrees and minutes,

Finé, in addition to this, also adds arc seconds. Clavius thus for example gives a declination of 0 degrees 24 minutes for the point
one degree into Aries, where Fine gives 0 degrees 23 minutes and 22 seconds. It is thereby somewhat surprising that Clavius, who
obviously aims for higher precision using the smaller step-size, provides the more coarsely rounded results for the declinations.
Moreover, Clavius value is obviously not attained by rounding the value to be found in Finé, and we can infer that both values and
thus in essence both tables resulted from separate, independent calculations.

This example has highlighted the analytical effort and level of expertise that can be required to asses if and in which sense two
tables are similar and made clear that such effort is indeed unattainable in a collection like ours with thousands of tables implying a
myriad of comparisons. An expert would then need to carefully inspect each of the individual digits composing the table. But even
before this step the tables would first have to be identified via a manual lookup of the ≈ 76, 000 pages of the Sacrobosco Collection.
The required analysis can now for the first time be to a large extent automated or facilitated by the use of machine learning. By
means of a page classifier described below in section A.7.2, we first were able to identify ≈ 10, 000 pages containing tables, which
we also refer to as the Sacrobosco Table corpus. This implies that a manual assessment of table similarity would require a meticulous
examination of each table content from which similarity scores can subsequently be computed, or up to 10, 000 × 10, 000 manual
pairwise table comparisons for an optimal result. This aspect ultimately clarifies why this material has remained inaccessible until
now. However, this situation has changed due to the machine learning model we propose, as described below.

Building on the collection of automatically detected tables and using our model, we can now predict the similarity between every
pair of tables, so that groups of similar tables (clusters) can be extracted, or alternatively, a list of most relevant tables can be retrieved
from queries. However, for such machine learning approach to deliver accurate results (and to understand the reasons as to how we
have developed the model), one needs to make sure that it applies reliably and systematically to the high heterogeneity of historical
data, in particular the heterogeneity present in tabular data.
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Figure S7: Table of the declination of the Sun. Left: Page taken from [117, 264] published in 1591 (table continues over the next 8
pages). Right: Page from [118, Fo. III-v] published in 1532. Left: Courtesy of the Library of the Max Planck Institute for the History
of Science. Right: Public Domain, Google-digitized.

A.2 Data Heterogeneity
The challenge of heterogeneous data emerges across many domains and is one of the key limiting factors to automate data analysis
processes. It is characterized by a lack of uniform character and composition across samples in a dataset and makes up more than 90%
of big data [119]. Typical examples are unstructured collections of texts and images, i.e. from different online sources, biological,
geographical or medical sensor data as well as climate records. The field of information fusion offers methods that combine data
from different sources in order to improve information content via integration.

In real-world applications this poses a challenge, even in scenarios in which sensors are comparable in function and measurement
quality as well as standardized data acquisition protocols are in place. For example, the heterogeneity of medical data is a key
challenge to achieve robust models across hospitals and populations. Sources of heterogeneity can be divided into the following
main categories: (i) technological heterogeneity due to different sensor manufacturer, recording protocols and data management, (ii)
expert or institutional heterogeneity caused by individual experts inferring different information from comparable material and (iii)
underlying differences in the observed population and their environmental conditions. Each of these categories adds to the complexity
of data and makes it difficult for ML models to generalize to unseen data and infer robust predictions [120, 121]. Similar sources of
heterogeneity are typical for historical corpora which have emerged throughout centuries and were only recently digitized.

A.2.1 Heterogeneity in the Sacrobosco Table corpus

We illustrate some examples of heterogeneity in the Sacrobosco Table corpus using digit and non-digit patches in Figure S8 and
Figure S9 respectively. We further analyse the various reasons that result in the high heterogeneity of historical corpora and focus on
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the Sacrobosco Table corpus specifically:

Technological heterogeneity is a result of both the historical printing process which has caused irregularities during typesetting
as well as the more recent and non-standardized digitization process across libraries and research projects. Typical cases in-
clude: (1) the uncontrolled digitization history by archives and libraries over the last decades which has resulted in electronic
copies that are extremely heterogeneous with regard to resolution, colors, size, and both production and post-production pro-
cedures, also due to different hard- and software set-ups. In addition, (2) the fragility of the historical material may not permit
a standard digitization set-up, which extends to the fact that the section of the scanned page can vary greatly, as in Fig. S11
and the page orientation is not standardized.

Institutional heterogeneity concerns the question of what similarity between pages is based upon, i.e. (3) whether layout and
decorative elements are considered when judging table similarity (stylistic overlap) or whether similarity is based purely on
semantic overlap.

Population differences reflect varying print traditions and printing quality as well as the preservation practice and status of the
material. In the case of the Sacrobosco Collection, the original material treatises are in (4) very different states of preservation
which is a result of their individual histories in the last 500 years. Moreover, (5) tables that are printed in very different layouts,
that is, the same table can “look” very different across books, as for example in Fig. S10; (6) depending on layout and format
of the book, the same table can be found on one single page or stretched out over many successive pages in different books;
(7) many of the tables are alpha-numerical, where the fractions of the ‘alpha’ and the ‘numerical’ components greatly vary;
(8) each early modern printer had his/her own type-font and (9) numerical tables with many numbers were tedious to typeset
resulting in a rather high level of noise of the actual with respect to the ‘correct’ numbers. Finally, (10) pages can in part also
be damaged, folded (Fig. S12), wrinkled, stained or de-saturated.

This high heterogeneity is here further highlighted by the electronic copies of historical sources used in the entire Supplementary
Material. We have consciously not post-processed these images but left in the exact same way they can be found in the repositories of
libraries and archives. As mentioned, such heterogeneity precludes using standard ML solutions and we will next describe different
directions to deal with heterogeneous material before introducing our atomization-recomposition approach.

A.2.2 Standard Approaches to Heterogeneous Data

Before model optimization, standardizing heterogeneous material through pre-processing is usually advantageous. This allows the
ML model to focus on the extraction of task-related features rather than identifying and filtering various types of noise. This includes
standard centering of data using corpus statistics, thresholding and binarization of inputs, or transformation of input features, e.g.
using whitening to de-correlate the data. This can be a powerful step to alleviate heterogeneity that can be attributed to factors that
are distinguishable from the relevant signal via a statistical analysis of the raw input data, e.g. variations in color distributions across
images, sensor noise or varying signal strength.

Data heterogeneity that arises as a result of more complex variations usually has to be handled as part of an end-to-end train-
ing pipeline. This assumes that sufficient amounts of training data from sufficiently variable sources are available, and that these
can be used to extract representations that are invariant towards various types of heterogeneity. Then, one can attempt to infer
structured information by transfer-learning from pre-trained models requiring that data distributions lie on the same or very similar
data-manifolds as the training set. Especially end-to-end deep-learning approaches have been a driver to bring annotations to un-
structured data. Prominent examples are segmentation models [57, 126] that are trained to extract object boundaries on images and
have shown very promising transfer to domain-similar material. These can serve as the basis for subsequent object classification and
knowledge discovery in heterogeneous material. Again, the main limiting factor is the availability of either ground truth bounding
boxes or object masks which require human or even expert annotations. While community efforts have resulted in the availability of
such data in some domains, a transfer to novel applications remains extremely challenging, i.e. microscopy data in the biomedical
sciences or historical material in the digital humanities.

Rather than collecting additional annotated data from various domains, the field of domain generalization aims to enhance the
model’s ability to handle semantically similar data from out-of-training distributions. This approach enables to bring structure to
unseen domains and improves invariance and robustness properties across data from different sources [127, 128, 129, 130]. Achieving
this goal requires good knowledge of the data domain, as well as comprehensive labels that are sufficiently similar to enable successful
generalization. In our case concerned with table similarities, however, there is no possibility to be provided with such labels in
advance, which makes our development particularly innovative.

However, when dealing with historical material, we are limited to intermediate labels, e.g. character-level labels of digits. Never-
theless, we can leverage this data to build more complex features by employing our proposed atomization-recomposition approach.

27



Figure S8: Digit patches. A hundred examples of the great heterogeneity in historical printing. The patches displayed are directly
extracted from the scanned material before any pre-processing was applied. They are randomly selected digit patch examples used
for the training of the digit recognition network.

A.3 Atomization-Recomposition Approach to Represent Historical Material
In order to deal with the different types of variability in the Sacrobosco Collection, we will next give a detailed description of our
modeling steps. Our proposed approach involves an initial atomization step, which entails breaking down the intricate composition
of numerical features into its basic components. In our setting, this refers to identifying single digits as the basic building block
to compose more complex numerical strings. This approach offers the possibility to handle heterogeneity at a much lower data
complexity, as previously suggested in the remote-sensing literature [131]. This further allows the use of simpler and in total less
annotations, while still being able to handle challenges related to robustness and invariance at a lower data complexity. In addition,
this offers the possibility to build-in expert knowledge at the subsequent recomposition step. The following sections will provide a
more comprehensive description of how we have implemented the atomization-recomposition approach and conclude with a detailed
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Figure S9: Contrast patches. Examples of non-table patches used as contrastive learning signal. Patches are extracted via randomly
sampling regions from non-table book pages in the collection.

demonstration on a pair of historical table pages.

A.3.1 Pre-processing

As a first step, we apply binarization to the full corpus. This involves normalizing each image using min-max normalization, applying
a percentile filter at 0.8 and use the 10% and 90% quantiles of the pixel value distribution as the high and low cutoff values, which
produces the binarized image. This process addresses heterogeneity in color, different page background texture, as well as variations
in contrast and brightness. We define a reference page height of 1200 pixels to which all pages are scaled in proportion to their original
dimensions using bilinear interpolation. This allows to capture the statistics of the page features in sufficiently high resolution while
still enabling a processing of full pages on standard GPU-hardware. We used Tesla P100 and V100 GPUs with 16GB/32GB storage.
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Figure S10: Heterogeneity in layout of table content. The same table of sinus values as published in two different works in 1542
and 1587. Typeface, layout, orientation and number of pages on which the table is set are different. Left: [122, 99v], Right: [123,
Libro primo della Geometria, 17v–18r]. Courtesy of the Library of the Max Planck Institute for the History of Science.

A.3.2 Atomization

The backbone of our approach lies in a robust recognition of the basic atoms. In order to achieve this, our model has to be able
to detect the correct digit with high accuracy, while avoiding to produce activity for non-digit context such as text, symbols or
illustrations. To achieve this, we first introduce the recognition architecture which consists of two main encoder modules, namely,
(i) the encoder and (ii) the convolutional_encoder that together form our 7-layer neural network. The digit recognition model was
implemented in the PyTorch 1.8.1 [132] framework and its architecture is summarized in Figure S13. The encoder consists of a
4-layer block of equivariant convolution layers as proposed in the framework of Equivariant Steerable Pyramids [99]. After all layers
but the last, we use ReLU activation functions. The subsequent convolutional encoder processes extracted features of the first block
further to build the digit detectors which output the single-digit activation maps. This block consists of three standard convolutional
layers of kernel sizes {5×5, 1×1, 1×1}, strides of 1×1 and padding of {2×2, 0×0, 0×0}.

Stylistic Invariance To capture the significant differences in historic fonts throughout the corpus, we have carefully designed the
dataset to cover a representative set of fonts by sampling patches from different printers. The distribution of annotated digit patches
over printers is shown in Figure S14. This results in a total of 2,494 annotated full number patches from which 4,687 single digit
patches are extracted.

Local Scale and Rotation Invariance We further robustify the learned representations against style and scale heterogeneity by
augmenting the training data patches using the following transformations: (i) We apply rotations of ±10◦, (ii) translations of the patch
by (0.025×img_width/height in x- and y-direction, (iii) proportional scaling of the full patch by a factor in the range (0.8 − 1.2×)
using bi-linear interpolation and (iv) shearing transformation of (±5◦) along both spatial directions. For each possible augmentation,
a random value from the specified range is sampled and added to the training dataset. In total, we sample as many augmented
datapoints as there are annotated patches.

Background Invariance Through Contrastive Learning At a semantic level, each page can consist of a combination of many
distinct elements, including illustrations, text, mathematical equations, and tables. Each of them can be further broken down into
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Figure S11: Scanned page heterogeneity. Due to the frequent impossibility to completely open rare ancient books in order to avoid
damage of the binding, electronic reproductions include the page aside captured with a different angle to the lens of the camera.
In the bottom left corner, we can additionally see an example of how devices used to fixate the page during scanning are digitally
covered during post-processing. From [124, 446–447]. München, Bayerische Staatsbibliothek, urn:nbn:de:bvb:12-bsb10173695-4.

sub-categories, e.g. illustrations can be geometric diagrams, star maps, depictions of scenes, etc. and similarly tables can contain
mostly text, mostly numerical values or – as is often the case – a combination of both. This poses an additional challenge during
processing since the recognition network has to be able to not only detect our desired features but in parallel has to learn to ignore the
entire non-digit content. Considering for example that the letter ’O’ is visually very similar to the digit ’0’, we aim to prevent page
similarity to be based on such effects. To achieve this, we use all pages that do not contain any tabular structure in the Sacrobosco
Collection and subsample pages from a diverse set of printers and books, similar to the selection of digit patches for annotation. A
subset of these contrast patches is shown in Figure S9 and illustrates the diverse elements that can occur in the collection.

Training For model optimization, we use 80-20 train/test splits of the dataset and the digit model parameters are then trained using
same amounts of single-digit and non-table patches. We find that including context improves digit recognition, and thus include a
border of 10px surrounding the digit bounding box. We minimize the mean squared error between true activation maps and model
outputs using the loss term ℓ = ℓbbox + 0.3 · ℓcontext with the Adam optimizer.

The effect of training with or without contrast patches is further investigated in Fig. S15. For a random subset of fully annotated
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Figure S12: Folded table page. The hitherto impossibility for historians to access tables on a large scale brought, as a consequence,
that numerical tables and even computational astronomic tables, have often been considered as historical sources of secondary rel-
evance. This wrong assumption is confirmed by the practice of some archives and libraries not to unfold large-size numerical
tables bound in the ancient books while scanning them. From [125, Unnumbered foldout]. München, Bayerische Staatsbibliothek,
urn:nbn:de:bvb:12-bsb10998883-7.

pages we show patches as processed by the single digit model trained on digit patches only (top row) and a model trained using same
amounts of digit and contrast patches (bottom row). We clearly observe that both approaches attribute activity successfully to the
single-digits that occur in the various tables and both achieve comparable classification accuracies of 95-96%. But, naive training
using digit patches only produces considerable activity over text, letters and geometric elements as visible in S15.a (top row). We
use the fully annotated subset of Sacrobosco pages to compute the ratio of all activity that falls inside the digit bounding boxes as
compared to all page activity (S15.c) and find that without contrastive training almost 60% of the activation occurs on non-digit
locations whereas we can reduce this number to 9% when including contrast patches.

Global Scale Invariance Global Scale differences in the collection can be caused by either (i) different sizes of the movable
types used for printing, i.e. larger or smaller typesetting, but also (ii) from the resolution differences that can result in several
orders of pixel height and width spans in the data. In order to jointly model both of these sources, we chose to implement a multi-
scale feature pyramid approach similar to the framework of steerable pyramids [133]. This has the advantage of parameter-efficacy
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DigitModel(
(encoder): Sequential(

(0): R2Conv([8-Rotations], kernel_size=3, stride=1, padding=1, bias=False)
(1): ReLU(inplace=True)
(2): R2Conv([8-Rotations], kernel_size=3, stride=1, padding=1, bias=False)
(3): ReLU(inplace=True])
(4): R2Conv([8-Rotations], kernel_size=5, stride=1, padding=2, bias=False)
(5): ReLU(inplace=True)
(6): R2Conv([8-Rotations], kernel_size=5, stride=1, padding=2, bias=False)
(7): GroupPooling([8-Rotations])

)
(convolutional_encoder): Sequential(

(0): Conv2d(64, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2), bias=False)
(1): ReLU(inplace=True)
(2): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(3): ReLU(inplace=True)
(4): Conv2d(32, 10, kernel_size=(1, 1), stride=(1, 1), bias=False)

)
)

Figure S13: Atom recognition architecture. An initial encoder block extracts invariant feature represen-
tations that are then combined into single digit representations in a second convolutional encoder block.

Figure S14: Distribution of digit patches. Histogram of number of annotated patches for each printer. For a randomly selected
subset of printers, we show examples of the digit ‘3’ that was produced by them.

since no additional trainable parameters are introduced and of model transparency since the multi-scale approach is based on the
linear decomposition of the image at different scales from which the most activating feature scale is chosen and thus, remains fully
explainable.
For this, we re-scale the image to a reference height or width of 1200px at reference scale s = 1.0 (depending on portrait or landscape
orientation) using bilinear interpolation. Resulting input images are collected for every scale s ∈ S = {s1, ..., 1.0, ..., sK} and fed
through the atom-recognition network. The scale s∗ = maxs∈S

∑
j aj(x; s), which maximizes the spatially pooled activity over all

features j is then chosen for further processing.

Global Rotation Invariance Likewise, variations in page orientation may arise due to either (i) the printing process, where a table
or illustration was considered more legible in a landscape layout, or (ii) the more recent digitization process itself. We model both
of these as in the previous section concerning scale by including page input rotations θ ∈ Θ = {−90, 0, 90}◦ and select the rotation
that maximizes activity: θ∗ = maxθ∈Θ

∑
j aj(x; θ).
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Figure S15: Effect of contrast patches. a. Pooled single-digit activation of the model either after training on single-digit patches
(top row) or after adding additional contrastive non-digit patches during training (bottom row). b. Confusion matrices for the two
different training scenarios. c. Fraction of summed activation that falls inside annotated digit bounding boxes compared to the total
page activation.

With the different sources of heterogeneity addressed, we are now able to robustly extract single-digit activation maps. These
representations will serve as the necessary building blocks to recompose more complex and task-relevant features, i.e. bigrams.

A.3.3 Recomposition

To efficiently achieve the recomposition of single-digit activation to bigram maps, we apply a hard-coded structure on top of the
learned recognition model to compute bigram maps via an element-wise ‘min’ operation:

a
(τ)
jk (x; s, θ) = min

{
aj(x; s, θ), τ(ak(x; s, θ))

}
,

which signals the presence of bigrams jk ∈ 00–99 at scale s and rotation θ, and can be seen as a continuous ‘AND’ [100] operation.
In addition, we build features that detect isolated single digits j ∈ {□0□, . . . ,□9□} with “□” indicating that no digit activity is
present in the neighborhood. For this, the single digit activation maps and two binarized neighborhood maps with shifts ±δ that
signal absence of a digit feature are computed, and another ‘min’ operation over all three maps outputs the final digit map.

The function τ represents a translation operation shifting activation maps by δ. We use multiple shifts as candidate alignments
and identify digit compositions by applying a spatial max-pooling layer:

ajk(x) = max
τ

{
a
(τ)
jk (x; s, θ)

}
.

The ‘max’ operation can be interpreted as a continuous ‘OR’, and determines at each location whether a bigram has been found
for at least one of the candidate alignments. This results in total number of 110 feature maps. In our experiments, we use s ∈
{0.5, 0.65, 0.8, 0.95, 1.0}, θ ∈ {−90, 0, 90}◦ and δ ∈ {8, 10} pixels.

Activity Peak Detection Having solved the challenge of identifying task-relevant features, we next would like to arrive at a sum-
mary representation of page content. To accomplish this, we can directly perform spatial pooling of activity over feature maps ajk.
While this is a simple and viable approach that does produce meaningful similarity as we will see in Section A.3.4, it may not be clear
how the pooled activity corresponds to feature presence on a page: a pooled activity of 100 can correspond to two very prototypical
bigrams that activate the network very strongly or four weakly activated less prototypical examples. Besides thresholding before
pooling, we propose to use peak detection to convert the raw activation maps into bigram count maps. We start from a set of 100
bigram maps ajk with jk = {00, . . . , 99} which are added to 10 maps for isolated digits âi with i = {_0_, . . . , _9_} resulting in
ā = (ai,ajk). Since, the max-pooling used for the bigrams reduces the activity levels in comparison to the isolated digit maps, we
introduce a scaling parameter α to the latter ai = âi/α. Next, we subtract a bias term β ·max(x,y) ā(x,y) computed as the product
of relative scaling parameter β and the maximum pixel value in all maps. Resulting maps are rectified, which, similarly to the pro-
cessing applied to the single digit activation maps, reduces weak background activity. Then, for each of the 110 feature maps, we
extract the feature regions that occur at all non-zero locations and compute all peaks using the center of activity mass. We determine
the linkage matrix using the distances between centers and perform a hierarchical clustering to group close-by activated pixels into
groups of pixels that belong to a single bigram. To limit the size of clustered regions, we define a maximum distance parameter d. We
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select optimal parameters using histogram Pearson correlation scores on the training patches and set α = 3, β = 0.12 and d = 15.
Using the center of mass as the digit location and its extracted feature label, we now can inspect a human-readable digit decoding as
presented in Figure S16 (lower left overlay) that can serve as a useful verification and insight step during the historical analysis.

A.3.4 Demonstration of the Recomposition Steps on a Pair of Tables

In Figure S16, we present two exemplary pages at different processing steps of the recomposition stage of our approach. The original
page is displayed in full in the background and overlaid with the single digit activity. The inserts show bigram activity (top left) and
the extracted digits (bottom left) after peak-detection was applied. Finally, we show the full histogram (bottom right).

Figure S16: Visualization of different processing steps of our approach for two pages of same content from the Sacrobosco
Tables dataset. The background image shows the single digit activation maps pooled over digits 0–9. The zoomed in overlay
contains the resulting bigram activations, below the extracted digits and the resulting histogram representation.

Comparing Activity Pooling with Peak Detection We next want to quantify if, in addition to the above described advantages,
the peak detection is also useful to provide a more accurate histogram representation. We have experimented with a non-linear map-
ping, i.e. the square root, of the histogram counts to take the scale differences between very frequent and rare number features into
consideration. This allows to balance the vanishing contribution that less frequent occurrences have in presence of very frequent bi-
grams when computing distances or correlation scores. We use the fully annotated table pages and extract all occurrences of bigrams
and isolated single-digits to compute ground-truth histograms for each page. The following approaches are used for comparison:
(i) pooled bigram activity (Pooled), (ii) square root transformed pooled bigram (Pooled_sqrt), (iii) counts from the peak detection
processing (Bigrams), (iv) square root transformed peak detection histograms (Bigrams_sqrt), (v) square root transformed pooled
unigram activity (Unigram_sqrt) and (vi) spatially-pooled VGG-16 output feature maps after the last of five convolutional blocks
(VGG-16). In Figure S17, we see that peak detection based representations (Bigrams, Bigrams_sqrt) indeed increase Pearson cor-
relation scores over the pooled activations. In addition, applying the square root transformation further improves correlation in both
the pooled and peak detection scenarios. This can be explained by the increased sensitivity towards less frequent bigram counts.

Evaluating cluster classification performance In addition to the validation of the accurate detection of digit distributions in the
previous section, we additionally argue that the ML approach has to be evaluated on the task we are finally interested in. In our
case this refers to the detection of groups of semantically similar tables. For this, we have used a subset of the Sacrobosco corpus
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Figure S17: Correlation on fully annotated pages. a. Pearson correlation scores for different table representations. b. Ground truth
and best model-based table histograms. In total there are 2261 bigram features in the source material.

that contains one and two-page instances of the sun-zodiac tables that are described in more detail in Section A.7.2 and have been
annotated by a domain expert. The resulting 71 table pages contain more than 45,000 single digits, which we split into train-test
(50/50) sets and a nearest-neighbor distance model was fitted on the training set. For all test data points, a class label according to
the closest distance is assigned by the model and, finally, test set cluster purity is computed for ten random seeds.

Figure S18: Cluster purity of sun-zodiac tables.

We have compared the following approaches to compute table page representations: (i) Bigrams_sqrt: Bigram histogram counts
were obtained using the bigram model with peak detection and square root mapping. (ii) Pooled: Activity maps were obtained as in
(i), but instead of peak detection, we directly applied spatial sum-pooling to the bigram maps. (iii) Unigram: Instead of computing
bigram maps, we built a ten-dimensional unigram count histogram using peak detection. (iv) VGG-16: We used the pretrained
encoder of the deep image classification network VGG-16 [98] and extracted spatially-pooled output feature maps after the last
of five convolutional blocks. Results in Figure S18 show that the bigram-based approach outperforms simpler unigram-based or
activity-based representations as well as VGG-16 representations with cluster purity at around 90%.

The main steps of the atomization-recomposition approach can be summarized as follows:
Atomization

1. Determine the basic building blocks (atoms) in the input data.

2. Collect or extract atom annotations.

3. Train and Validate the atom recognition model.

Recomposition

4. Recompose the atoms to build task-relevant features.

5. Verify the features using explainable AI.

6. Evaluate the model on the final task of interest for which annotations are attainable.

A.4 Limitations of classical OCR approaches for digit recognition
While traditional OCR approaches rely on simple computer vision algorithms to segment and extract characters from pages [134], the
most recent approaches use more complex networks that segment the page and extract text regions, and a combination of convolutional
and recurrent neural networks for character recognition and transcription [135, 136, 137]. However, historical corpora, including the
Sacrobosco collection, present a major challenge for many OCR approaches due to their high degree of heterogeneity, characterized
by diverse languages and fonts, complex page designs, as well as the myriad of issues that arise from bad scans, faded text, bleed-
through, smears, and damage incurred over time [138] (cf. Section A.2.1). While impressive progress has recently been achieved to
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bring standard OCR approaches to historical data, the representation of digits and specifically tables has not been addressed so far.

A.4.1 Evaluation on fully annotated pages

In order to investigate the effectiveness of our approach with respect to traditional OCR methods, we compare our results with the
output obtained from Latin OCR, a model build by ‘The Duke Collaboratory for Classics Computing’ and trained on a large collection
of Latin texts covering almost two millennia [139]. Similar to our analysis in Section A.3.4, we use the fully annotated subset of
the tables from the Sacrobosco collection and compute Pearson correlation coefficients between ground truth histograms and the
extracted model histograms. On average we observe that our Peak Detection (PD) approach results in higher correlation scores that
also vary less across different pages than the Latin OCR which shows the effectiveness of our approach to detect digits (Table S2). In
order to better understand the results, we report the pearson correlation on three different groups of pages (see Table S3), low number
density pages (≤ 150 bigrams/page), dense pages (150 - 300 bigrams/page), and very dense pages (>300 bigrams/page). The Pearson
correlation scores in Table S3 clearly show that while our approach outperforms OCR in all of these classes, the margin grows with
the numerical density on a page.

mean median std

Latin OCR 0.747 0.849 0.272
PD 0.871 0.938 0.166

Table S2: Pearson correlation between ground truth annotations and our peak detection approach as compared to a state-of-
the-art OCR system.

density ρOCR ρPD Nbigr. Nuni.

low (≤ 150) 0.76 0.84 493 916
dense (150-300) 0.86 0.88 786 1501
very dense (>300) 0.49 0.93 982 1764

Table S3: Pearson correlation at different digit density levels for a state-of-the-art OCR system and our peak detection ap-
proach.

A.5 Model Validation using Explainable AI
Making modern and typically complex machine-learning models more robust towards data distribution shifts and adversarial attacks
is crucial for their application in science, society and industry. The traditional ML evaluation pipeline aims at validating the nominal
accuracy of the model, but unfortunately, highly accurate ML models can ground their predictions in unexpected ways, i.e. via
overconfidence in certain data features, reliance on spurious correlations or classification sensitivity to noise. Thus, it is crucial to
further validate the learned representations as well as the model’s inner workings using additional techniques such as visualization
and explainable AI [140].

Visualization and projection techniques including clustering are useful to analyse full datasets by representing them in a lower-
dimensional space that can be directly interpreted by humans. In the presence of labels, they can be used to measure how well a
learned representation is able to separate datapoints from different classes, i.e. using cluster purity, normalized mutual information or
the Rand index. In the absence of any label information, formed clusters can be evaluated using distance scores as in the Silhouette
Coefficient or Dunn’s index. These unsupervised measures do not necessarily reflect user expectations since data points can be
clustered perfectly but built on unexpected or unwanted data features. Thus, a manual validation of the projection or a subset thereof
is crucial to move towards a conclusive evaluation.

In order to evaluate the ML model itself and the features that are used for a certain prediction, the field of explainable AI
[141, 142, 143, 49] has developed techniques to make models transparent and reveal their inner logic. This transparency enables
the development of more trustworthy systems which are of crucial importance when we are interested in generating novel domain
insights. Historians for example need to be able to clearly understand which features in a document or collection thereof lead to a
certain model prediction in order to arrive at well-grounded historical inferences.

A broad range of methods have been proposed for Explainable AI, and we briefly present here the ‘Layer-wise Relevance Propa-
gation’ (LRP) method [101], which applies to a broad range of complex classifiers, has advantageous computational and robustness
properties, and an extension of which, called ‘BiLRP’ has been developed to provide explanations for similarity models.
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The LRP method considers a neural network composed of multiple layers, with input x ∈ Rd and output f(x) ∈ R, e.g. the
activation for a given class in the last layer. LRP seeks to attribute the prediction score to the input layer, specifically, producing scores
Ri for each input feature xi with i = 1 . . . d. To achieve this, LRP operates layer-wise, starting in the top layer and then redistributing
the function output to the neurons one layer below. This redistribution proceeds layer after layer by means of propagation rules, until
the input layer is reached, at which point the explanation can be collected.

For illustration, let j and k be indices of neurons in two consecutive layers, aj , ak be the associated activations, and wjk the
weight connecting the two neurons. In the forward pass, activations between these two layers are typically related via the equation
ak = max(0,

∑
0,j ajwjk). For such layers, LRP redistributes using propagation rules of the type:

Rj =
∑
k

aj(wjk + γw+
jk)∑

j aj(wjk + γw+
jk)

Rk,

i.e. neurons that are active and to which the model responds strongest receive more relevance than their counterparts. The parameter
γ can be interpreted as a robustness parameter that needs to be tuned for explanation quality. When setting the parameter γ to 0, the
procedure can be shown to reduce to simple methods such as Gradient× Input. Other redistribution rules can be used for different
layers. We refer to [102] for further examples of propagation rules.

In order to bring verifiability to our approach, in particular, our similarity model of table pages is of the type y = ⟨ϕ(x), ϕ(x′)⟩
where the x,x′ ∈ Rd are two input examples, where ϕ : Rd → Rh is a feature map (typically a neural network) and where y ∈ R is
the predicted similarity score. For such models, the LRP approach is not directly applicable and one needs to consider its extension
BiLRP [79]. BiLRP recognizes that models with dot product outputs are intrinsically locally bilinear (instead of locally linear as for
LRP) and thus better explained in terms of joint feature contributions.

BiLRP proceeds in a similar way as LRP, redistributing the relevance scores from layer to layer but this time using the propagation
rule:

Rjj′ =
∑
kk′

ajaj′(wjk + γw+
jk)(wj′k′ + γw+

j′k′)∑
jj′ ajaj′(wjk + γw+

jk)(wj′k′ + γw+
j′k′)

Rkk′ , (1)

which bears resemblance to the standard LRP rule but many terms that are doubled. In this rule, j and k are neurons in two consecutive
layers of the branch processing image x, and where j′ and k′ are neurons in two consecutive layers of the branch processing image
x′. In other words, pairs of activations can only be relevant if they jointly activate and if the model responds to both of them. Like
for the standard LRP, the parameter γ controls robustness of the explanation. If γ is set to zero, the explanation reduces to that of a
simple second-order explanation called Hessian×Product [79]. In practice, due to the quadratic growth of elements of the sum, the
BiLRP procedure can be applied more efficiently by computing standard LRP passes for each of the individual elements of the dot
product, and recombining the produced explanations using a matrix product. Resulting scores are then only combined at the input
into the full relevance matrix.

The information in this matrix can be visualized by plotting the scores as connections between pixel locations i and i′. It can be
beneficial to reduce pixel-level granularity of the explanation by grouping pixels into patches (I1, I2, ...) and (I ′

1, I ′
2, ...). We com-

pare the explanations computed by our bigram network to a standard VGG-16 represenation as shown in Figure S19. Explanations
for the high similarity in the bigram network are indeed based on numerical content shared among the two images. Since we explain
the dot product of histograms computed by spatial pooling over the page, we observe that feature interactions of the same digit can
appear at different locations as visible for the bigram ‘12’. While similarity between the VGG-16 embeddings is of comparable
strength to the similarity score of the bigram representation, we find that it is predominantly based on task-irrelevant interactions like
table borders and generally geometric shapes that interact across bigrams. In comparison to the bigram network we observe overall
that relevant interactions are less pronounced which indicates the lack of a meaningful similarity structure that matches related items
and that some negatively relevant interactions contradict the similarity score. This highlights that model robustness and conformity
with user expectations are not necessarily reflected by high model prediction scores and that in order to produce reliable insights
from ML models we need to verify their inner workings. We conclude that without having to collect ground truth expert-annotations
of the table similarity we are able to verify the proposed bigram approach from a single pair of tables.

A.6 Generating Historical Insights
The increasing use of machine learning across various scientific fields has not only enabled the large-scale analysis and automatic
organization of big data but also started to be a valuable tool for the generation of novel domain insights, i.e. in quantum chemistry
[144, 145, 46, 146], the climate and earth sciences [147, 148, 149], astronomy [150, 151], biomedicine [152, 153] or neuroscience
[154, 155, 156, 157]. This has been especially fruitful in domains in which computer-aided experimentation and mathematical tools
are already integral part to the research process. The automatic storage and processing of experimental data hereby serves as valuable
training data for ML models.
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Figure S19: Explaining similarity. Left: Detailed BiLRP explanations highlighting the relevant feature interactions of predicted
similarities between the two input tables for our bigram approach in red. Right: Resulting BiLRP explanations for the pretrained
object recognition model VGG-16. Negatively relevant interactions are shown in blue.

Figure S20: Insights using machine learning. Our proposed atomization-recomposition approach is embedded into the general
machine learning and validation pipeline. The extraction of scientific insights relies on the analysis of interpretable model predictions
in form of visualizations and explanations by the user.

ML-assisted insight discovery has primarily found its application in the natural sciences [158], but other fields have also begun to
explore the potential of ML techniques to push existing boundaries of their respective domains. Examples include natural language
processing for under-represented languages such as Sub-Saharan tongues or low-resource problems in the digital humanities and
historical sciences [159, 160].

Machine learning in the humanities has been used for broad sets of tasks mirroring the diverse disciplines ranging from ar-
chaeology, history, literary studies, linguistics to philosophy. Most widely explored applications can be divided into the analysis of
networks, images and texts. Network studies construct a graph connecting items according to available metadata with the goal to
explore and visualize large data, identify relational patterns or execute an analysis of the community structure [17, 18]. The analysis
of image material takes advantage of advances in computer vision and has been widely explored, for example, for the automated
analysis of image style [161, 162], the extraction of similarity structure [163, 164], for the image-based classification of visual mate-
rial [108, 165, 166, 167, 168, 169], and for image extraction from historical documents [55, 169]. Textual material has been analysed
in the context of topic modeling [170, 171, 172], ML-assisted annotation and text completion [173, 67] as well as modeling ancient
languages [174, 175, 176]. In addition, hybrid approaches, e.g., for the task of reconstructing ancient text from images [177], have
been explored, too.

In Figure S20, we summarize how ML can be integrated in the process of extracting scientific insights from data. If sufficient
training data and appropriate, i.e. task-relevant, labels are available or can be easily collected, a model can be trained end-to-end.
If only few labels are available, an and end-to-end approach can still be feasible, exploiting for instance methods of transfer or
few-shot learning. Alternatively, we propose an atomization-recompostion approach in which a complex task is broken into easier
steps, namely, the annotation of atoms for which a less complex model can be trained. These atoms then serve as a way to compose
task-relevant features. As a fundamental next step, either model has to be verified and validated in order to ensure that the results
are grounded in an accurate and consistent model behavior. Model transparency can be achieved either on a global scale for which
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the learned data representations can be visualized and clustered in order to be inspected by an expert, or on a local scale for which
explainable AI can be used to attain fine-grained explanations that give detailed insight on which features were most relevant for the
model prediction. In addition, the performance of the model should be validated on the original task of interest. While annotations
can be costly to collect for this step, which in our setting requires the identification and labelling of same-class table pages, it is
important to ensure that the original task of interest can be solved by the selected modeling approach.

A.7 Data Availability
A.7.1 Data Infrastructure

Each of the 359 editions that form the Sacrobosco Collection, is represented by a single digital copy that is considered to be a
representative sample of the entire edition print-run, resulting in a corpus that contains almost 76,000 pages. The result of this
analysis is stored in a knowledge graph [96]. The knowledge graph is modeled according to the Conceptual Reference Model of the
International Committee for Documentation (CIDOC-CRM) [178], as well as its extension for bibliographic records, FRBRoo [179].
The CIDOC-CRM ontology and its extensions provide a useful and standardized framework for modelling and storing humanities and
cultural heritage data; the framework also strives to create coherent and shareable datasets across research institutions. This ontology
relies on a predefined set of classes and properties, as well as constraints, to ensure the consistent recording and storing of cultural
heritage and humanities data [180]. Following the CIDOC-CRM standards, knowledge atoms were inserted into a knowledge graph,
where entities (e.g., “books”) are connected to each other through semantic relations validated by historians, effectively creating the
Sphaera Knowledge Graph [181].

This knowledge graph forms the basis for all further investigation of the Sacrobosco Collection, and has expanded to be a number
of times larger than its original size due to multiple consecutive historical and computational research cycles [182, 181].

The initial instance of the Sacrobosco knowledge graph stored metadata related to the physical version of the book, which included
information that can be acquired by simply looking at each edition’s digital copy. Such information included the individuals involved
in the edition’s production (e.g. author, publisher, printer, and/or translator) as well as the relevant information on the physical copy,
such as number of pages, physical format and material, as well as the location of its printing and publishing. Further historical
research gathered information on each person involved, such as their dates of birth and death, or alternatively their years of activity
in cases when the former information is unknown, as well as mutual kinship relations.

A.7.2 Data

In the following, we describe how we have obtained the Sacrobosco Tables corpus, provide details of the annotation process regarding
ground truth for training the digit recognition model as well as the evaluation of model and historical analyses.

Table pages From the approximately 76,0000 pages of the Sacrobosco Collection, we have selected 9793 pages bearing one or
more numerical tables, which we submit to the table similarity workflow as the Sacrobosco Tables dataset. By numerical table we
refer to any tabular arrangement of data in our corpus which has at least one column with (predominantly) numerical content and
specifically exclude tables of content and book indices. This selection was supported by an of-the-shelf CNN (VGG-16 [98]) trained
to classify numerical table pages. The output of this CNN was checked down to a low probability of the assignment of a page as
bearing a numerical table. Due to the human post-processing, the list of pages with numerical tables has virtually perfect precision
and very high recall. A list of all pages with numerical tables is provided as spharea_tables_meta.csv, the trained model
instrumental in establishing this list is provided as sphaera_tables_classifier.h5. The digital images of the pages, that
we refer to as the Tables dataset of the Sacrobosco Collection can be obtained at sphaera_tables_images.zip.

Preparation and acquisition of ground truth Four different ground-truth datasets have been prepared to train and test our model,
single digits and non-digit content to train the digit model, fully annotated numbers to test the digit recognition and the bigram
expansion and sun zodiac pages to evaluate the table similarity model. These sets are provided as numerical_patches.csv,
contrast_patches.csv, digit_page_annotations.csv and sun_zodiac.csv in the code and data repository.

Single-digits In the period covered by our corpus print types where far less standardized than they are today. To capture the wide
range of typological variations present in our corpus, we have selected each printer that contributed at least one book to the collection.
From the printed output for each of these printers we have selected (where possible) five pages bearing numbers and annotated on
each of these pages five individual numbers by bounding boxes, annotating in addition the writing normal (upright, turned left, turned
right). Single digit patches were obtained by dividing the annotation boxes into equal segments corresponding to the number of
individual digits in the annotated number. As the types for the individual digits from zero to nine vary in width, this introduces some
error in the single digit patches that can be the larger, the greater the number of digits in the annotated number. After annotating
about a third of the selected pages we thus decided to restrict the annotation on the remaining pages to digit bigrams (adjacent digits,
regardless whether they form a two digit number or a part of a longer number) but retained the annotations produced before.
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Non-digit content In order to correctly model non-digit page content such as text, illustrations or layout geometry, we extracted
patches from non-table pages as contrastive examples.

Fully annotated numbers We have selected 11 pages and annotated each single digit contained on the pages by a bounding box.
In addition, we have marked if the individual digit is the first and/or the last digit of a number. With this information, all numbers
and thus also all bigrams contained on these pages can be reconstructed. The annotated pages have been selected to cover a wide
spectrum of different manifestation of numerical content in terms of writing direction, fonts, fonts’ sizes, density of digit placement
on the page, etc.

Sun zodiac pages To evaluate to what extent our approach can reproduce the salient relations between the tables in our corpus,
we have chosen the sun-zodiac tables, which give the positions of the sun into the signs of the zodiac in degrees for each day of the
year. This table was printed in varying layouts, where the different layouts partition the full table differently and in some cases the
entire table is comprised on one page, in other books it is distributed over as many as nine pages. The sun-zodiac tables are thus a
well-suited example for evaluating our approach in dealing with heterogeneous source material. Moreover, due to its content the table
only comprises numbers from 1 to 31 (max. 31 days per month, 30 degrees per sign of the zodiac). The table thus only populates
a subspace of the feature space that we exploit for our similarity assessments. Since this subspace is more densely populated than
would be expected with a uniform distribution of the data over the similarity space, this table is particularly difficult to discriminate
under our approach which makes it a good test case.

Two variants of the sun-zodiac table were identified: tables for the times of the ‘ancient’ poets (‘veterum poetarum temporibus
accommodata’) where the sun is 16 degrees into Capricorn on the first of January, and tables for ’contemporary’ times (’nostro
tempori’) where the sun on the first day of the year has advanced 3 degrees and is located 21 degrees into Capricorn. This difference
amounts to a shift of the columns listing the days of the year with respect to columns giving the angular locations. From the
perspective of our similarity model that pools the identified numerical features spatially, these two variations represent the same
(more abstract) table.

Altogether, we have identified 68 instances of the sun-zodiac table that cover 250 pages in the corpus. A list of the pages con-
taining the different versions of the sun zodiac tables is provided as sun_zodiac_pages.csv. A ground truth histogram for the
digit-features distribution of a prototypical, i.e. noise-free and complete, sun-zodiac table is provided as sun_zodiac_hist.csv.

Clime table Pages We further collect a subset of material focused on climate zone tables. These tables divide the surface of the
“inhabited” world and that can be defined by the length of the solar day. This served as an indication of the overall meteorological
conditions, which was in turn a determinant information in the framework of Medieval and early modern medicine. We find three
different principle variants of climate zone tables that either use 7, 9 or 24 clime zones. The 225 pages containing these tables are
provided as clime_tables.csv. Each row of the csv file corresponds to one individual clime table, specifying its variant and
providing metadata for the edition containing this table.

A.8 Limits and advantages of the application of machine learning and XAI to historical analysis
The number of sources analyzed in historical studies is contingent upon the research question and the epistemological approach
chosen by historians. Recent trends in historical research have shifted attention to sources that were largely overlooked in the past,
such as university textbooks in our study. The sheer volume of these sources surpasses the human capacity for analysis using
traditional methods, especially close reading. Consequently, we propose complementing traditional historical analysis methods with
the application of ML techniques. While the need to employ ML thus arises from research questions within the historical disciplines,
the application of ML methods might ultimately allow for and prompt new forms of research questions in the future and thus enrich
historical research.

The approach adopted in this study encounters general challenges associated with the application of modern ML methods. In
particular, the inherent data-dependent nature of models brings to question out-of-domain generalization abilities, while the high non-
linearity of these models further poses challenges regarding model interpretability. However, as demonstrated in our research, these
limitations can be effectively addressed so that, by utilizing ML to assist historical interpretation, we can also surmount constraints
inherent in traditional approaches based on close reading and, specifically, the constraints related to human resources. In the same
vein, there are appeals for combining computational approaches with traditional in-depth analysis in a productive manner [183].

In terms of data dependence, a significant limitation when applying ML methods to historical research lies in the availability
of well-curated data. Although we have outlined methods to address the inherent heterogeneity and varied quality of digitized
historical source material in this study, our research still depended on a corpus of sources furnished with high-quality metadata. The
meticulous preparation of the Sacrobosco Collection took several years and involved two senior historians, two post-doc fellows, and
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three student assistants. International collaborations further enriched our dataset by bringing additional scholars into contact with it.
To apply our methods to other historical inquiries, there is a presumption that historical source data must be similarly enriched and
contextualized with metadata.

With respect to the generalization of our ML methods, we have evaluated them according to well-established standards in ML.
For each phase of our process, we have presented the relevant evaluation metrics using appropriately selected test sets. For instance,
we have quantified the performance of our digit recognition model (A.4.1), the bigram recomposition (A.3.4), and the clustering
performance based on our representation (A.3.4). This demonstrates that, within our corpus, the applied methods offer satisfactory
performance for the intended task. Since ML models can take undesired strategies for making correct predictions [140], we have
further used XAI methods to ensure that our learned representations do indeed use task-relevant features.

If our approach were to be applied to a different corpus of numerical tables, its ability to generalize to this new dataset would
need to be assessed in a similar manner. For example, digit recognition might decrease due to the presence of different printers using
unique type fonts. Additionally, the discriminative capability of our representation with respect to tables might be compromised if
the distribution of numbers in the tables of the new corpus varies significantly. Should our methodology be transferred not directly,
but in a structural manner, to analyze other elements in the sources, such as illustrations, tests akin to the ones used here would be
required to gauge the model’s ability to generalize to the material at hand.

To deal with the limited availability of labels and overall data samples, our atomization-recomposition approach is designed to
reconstruct the information content of the tables up to a sufficient level of representation, i.e., the level of bigrams instead of full
numbers. As we have pointed out, achieving complete reconstruction would be nearly impossible due to the absence of annotated
data for a fully supervised model. Moreover, the effort to generate such data would be disproportionate to its benefits. Consequently,
we only retain the necessary information for our specific objective of identifying similar tables. It is, in part, due to this limitation
that our method does not replace but rather complements traditional historical analysis. Based on its representation, our model will
never discern the mathematical astronomical ‘meaning’ of a table, such as for instance providing the right ascensions for a particular
celestial object. However, it can aid a historian who, examining such a table, wishes to locate similar instances amidst vast datasets,
thereby facilitating studies on their spatial distribution or temporal evolution.

Fundamentally, for the reasons mentioned, ML models will never and are not intended to capture the complete richness of
historical sources; they can only represent specific aspects. The choice of these aspects is ultimately driven by the research interests
of the historians. With these models, however, historians can tackle questions that are otherwise unapproachable, primarily due to
scale constraints. Consequently, these two methodologies must complement each other. In doing so, they can invigorate the historical
disciplines with novel approaches, methods, and insights.

If the path outlined in this paper is consistently pursued, it holds the potential to unlock intricate historical analyses, such as
understanding the long-term interplay between texts and images. More pressingly, there is the possibility of automatically generating
genealogies between texts even before engaging in a thorough reading. The next ambitious goal, following the current research, is
to achieve this using our atomization-recomposition method. This task holds significant relevance within the historical disciplines.
A major hindrance so far has been that historical sources often come in languages or language variants for which no well-curated
datasets exist. Our method might help bridge this gap, enabling the identification of pertinent phenomena at the corpus level. Once
this is achieved, it paves the way for pinpointing the right clusters of texts that can then undergo a close reading—essentially a case
study informed by a selection made possible through the corpus-level analysis with the assistance of the ML model.

B Supplementary Text

B.1 Insights about the Sacrobosco Collection - Analysis of Numerical Content
The potential of our approach is best displayed by the fact that it enables, for the first time, an automated investigation of the
astronomic tables across the entire corpus of textbooks. It puts us in the position to analyze trends over the entire corpus or large
parts thereof and to reveal geographical singularities or semantic shifts over time. In this way, we also gained the possibility to
develop case studies and, as will be shown, to reveal unexpected historical findings. We will first present results concerning the
general process of mathematization of astronomy as it was taught at the European universities between 1472 and 1650, then move to
a corpus-level analysis and investigate its temporal and spatial dynamics, and finally move to two important case studies that could
only be conducted based on our approach. Some meta-methodological considerations will complete this section on the historical
investigations.

B.1.1 Mathematization of Astronomy in the Framework of Teaching as a Result of Institutional Competition alias Insights
from Numerical Histograms Using t-SNE

We start by inspecting the histogram embedding space of the Sacrobosco table pages with regard to additional information about the
collection. First, in Figure S21 (top row), we use the meta-information regarding the publication year and the unique book identifier
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available for each book to color the t-SNE projected data points accordingly. As visible in Figure S21.a, the visualization using
the publication year provides information about what pages were printed in close-by time periods and are semantically similar, for
instance the group of pages on the bottom right. We can further analyze this group by investigating from which editions these pages
are extracted as indicated in Figure S21.b and find that these pages stem from multiple books. This allows domain experts to combine
different layers of information and to gain corpus-level insights in order to develop hypotheses that can then be investigated further
in a targeted analysis.

Second, we can add information from the automated analysis to the visualization. In Figure S21.c, we color code the bigram
density on the pages and find that in the t-SNE projection the less dense tables are to be found in the top left corner and center
whereas the very dense tables are predominant in the lower right corner. Finally, we show in Figure S21.d the size (number of cluster
members) of the cluster that a page was assigned to in a k-means (k = 1500) clustering. This tells us that most pages are contained
in clusters of less than 30 members and only a small subset of pages is assigned to larger clusters of around 70 similar tables situated
in the low bigram frequency domain.

Figure S21: t-SNE visualizations of the Sacrobosco Tables corpus. Each data points corresponds to one page and color reflects
additional meta-information (top rows) or model-based output (lower rows). We use the available data regarding (a.) the publication
date and (b.) the book title to color each point. The extracted bigram histograms are used to visualize (c.) digit density of a page and
(d.) the size of the assigned cluster for every page.

Historical Interpretation Based on the t-SNE Projection The region on the bottom-right of the embedding space shows a high
number of semantically closely related table pages. From Figure S21.b, we see that these are from many different editions, and
Figure S21.c tells us that they contain tables with a moderate density around 400 bigrams, and that are not assigned to great-size
clusters as evident from Figure S21.d. Finally, against the background of the year-based projection (Figure S21.a), it is clear that this
region hosts editions that were published starting from the mid of the sixteenth century and until the end of the historical time interval
considered here, namely 1650. We exclude from this consideration those five early editions (the orange points on the left-bottom side
of the region in Figure S21.a) as they are marginal in the projection.
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Mutual Awareness of Powerful Institutions By combining these different layers of information, we could identify a subgroup of
editions that share a great number of semantically similar tables. Examining the group closer, we discover that the region is constituted
by exactly forty editions (data/corpus/Metadata_year_tsne_bottom_right.csv). The printing dates range from
1551 to 1622. At first sight, a heterogeneity of these editions seems to be implied by the fact that they were produced not only during
a time interval of over 70 years but also in twelve different cities of Europe. However, upon examining the authors of these textbooks,
we observe a peculiarity: thirty-six out of forty editions involve only four scholars. The first five editions, published between 1551
and 1556, are for instance five different texts all compiled by the French Royal Mathematician Oronce Finé and always published
by the same printer and publisher Michel Vascosan in Paris [184]. Further twenty editions are commentaries on the original tract of
Sacrobosco compiled by the then leader of the scientific section of the Collegio Romano (Christophorus Clavius), the center of the
Jesuit Order where scientific knowledge was produced to sustain the innumerable Jesuit colleges all over Europe [80]. Starting in
1582 we find eight treatises compiled by Thomas Blebel in Wittenberg. The dominant role of Protestant Wittenberg in producing and
disseminating scientific knowledge between 1530s and 1560s has already been demonstrated [17]. The scholar Thomas Blebel has
not been hitherto investigated by historians of astronomy but the findings based on our new method strongly suggest that Blebel’s
works represented an attempt of the Wittenberg community to cope with the works and the success of influential and institutionally
powerful scholars such as Finé and Clavius. Finally, we find further three editions written by the influential late Italian astronomer
Francesco Giuntini, who distinguished himself thanks to the introduction of a series of scientific very long-lasting innovations [18]
under strong clerical patronage. In conclusion, this region of the embedding space represents clusters of editions generated in the
frame of powerful institutions and communities and the fact that they contain similar tables means that they were observing and
imitating each other, possibly due to the influence of cultural and institutional competitions among them.

As numerical tables in scientific textbooks are the external indication of the process of mathematization (Section A.1.2), we can
hypothesize that one of the driving forces of the mathematization of astronomy during the second half of the sixteenth century was an
institutional competition that involved the Paris scientific institution expressed by the Royal power, the Protestant leading university
of Wittenberg, the Jesuit order, and single scientists working in an institutional well-protected context.

From a methodological point of view and even without looking at the individual tables contained in these editions (which we do in
the next sections) our method allows us to draw historical inferences and reach historical relevant conclusions based on a collocation
of material and metadata that otherwise would be non-accessible even to domain experts. Moreover, it can also be stated that our
method helps generating specific historical micro research questions by identifying singularities in great corpora of sources.

Figure S22: Corpus-level analysis. Left Temporal evolution of knowledge displayed by computing the entropy of cluster membership
vectors (number of tables in each cluster) for each time step. Gray to black lines correspond to a random embedding baseline, colored
lines correspond to the data from our collection. Different colors indicate a filtering threshold on the digit density per page, e.g. all
pages containing at least 100 digits. The clusters are shown as t-SNE visualization for three time intervals with the disk diameter of the
active clusters set to be proportional to cluster size. We observe a marked drop in entropy for tables with extensive numerical content
between 1540 and 1560. This drop disappears after removal of the Fine-5 group, a subset of tables that occur in the editions authored
by Oronce Finé that we identified as the dominant factor driving the entropy change. Right Geographical analysis of knowledge
distribution for each print location in alphabetical order using relative entropy. Low-output cities (<=100 tables) are colored in light
gray. For three selected cities a t-SNE visualization of the distribution of the printed tables is provided.

B.1.2 Corpus-level Analysis 1: Temporal Dynamics of Mathematization of Astronomy

Moving to the corpus-level analysis, we first investigate the temporal dynamics of the process of mathematization of astronomy
during the early modern period by investigating the temporal dynamics of the entropy of the distribution of high-density numerical
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tables over clusters of similar tables. The editions of the Sacrobosco Collection that contain at least one numerical table were
printed during a time span of 153 years (1494-1647). Over this time span publication rates changed considerably. Thus, we apply a
sampling based temporal analysis. For each time step ti we assign a sampling probability to each book page from a truncated normal
distribution N (ti, σ

2) which sets probabilities for data points outside the interval (ti − σ, ti + σ) to zero. At every step we sample
N = 80 data points, determine their cluster membership label, construct the cluster count histogram of size 1 × k and compute the
entropy H(pcl) = −

∑
k pcl,k log(pcl,k) of the cluster probability vector pcl ∈ R1×k. We compute this for digit density thresholds

of {0, 100, 200, 250, 300} and average entropy curves over 20 runs for each threshold. Results are shown in S22 (left).
In Figure S24 we present additional cluster visualizations throughout the corpus evolution. Disk color codes for cluster member-

ship and its size is proportional to number of cluster members at this time step.
As shown in Figure S24, it remains challenging to visually discern whether significant changes occurred during the evolution of

the corpus. However, we found that focusing on high-density tables reveals significant changes in entropy over time over the full
corpus. These changes are far less pronounced if all tables are taken into account. This can be explained by the fact that low-density
tables carry less specific mathematical information and these do not vary greatly over time but, instead, often contain more basic
information such as enumerated lists. We show exemplary pages grouped by different density levels in Figure S23.

We additionally validate our results against a baseline in which we randomly sample histogram representations hrand ∼ N (0, 1).
This serves as a model of a knowledge process that does not consider any evolution of information or knowledge transfer across
printer locations and publication dates and thus is expected not to show any significant entropy changes. We confirm this as presented
in Figure S22 (left).

Since the entropy evolution analysis is based on the clustering assignment of pages, we want to control that our results
are robust and consistent for a range of reasonable number of clusters k. In Figure S25, we repeat the analysis for k =
{100, 500, 1000, 1500, 2000, 3000} and observe that if the clusters are sufficiently large for small k, we are not able to observe
strong temporal changes as visible for k = 100 since the clusters are semantically too diverse. For, k = 500 we start to observe the
emergence of the entropy drop for high-density pages between 1550 and 1560 which becomes more and more visible for increasing
number of clusters. Thus, we conclude that our observation of the entropy singularity is not an artefact of a specific clustering solution
but can be observed for a reasonable k-means clustering solutions.

Next, we investigate the effect of the standard deviation σ used to sample pages at each time step t. A smaller σ indicates a more
narrow time window used to sample pages from the corpus for a given time step. For σ = {2, 3, 4, 5, 7, 10} we present the entropy
evolution analysis in Figure S26 and observe that for reasonably small σ values the entropy drop is maintained. This is in line with
the explanation for the drop which will be advanced below. Only for larger values of σ ≥ 7 we can see that the effect of sampling
temporally more distant pages results in a smoothing of the entropy curve and vanishes for σ = 10.

To consolidate the entropy drop observation we extract the Sacrobosco Table pages that are the main drivers of the entropy
change. For this we look at the time between t = {1540, ..., 1560} and compute for each time step the clustering distribution pcl,t
and entropy H(pcl,t). We rank time steps according to the strongest absolute change |H(pcl,t)−H(pcl,t+1)| and find that this occurs
for t∗ = 1553. Next, we look at the change in clustering distribution pcl,t∗ − pcl,t∗+1, rank which cluster has gained or lost the most
relative members and historically investigate these relevant clusters and table pages respectively. The analysis reveals that during this
period the same work, Oronce Finé’s Sphaera, has been repeatedly reprinted in five books to which we refer as the Fine-5 group3.

Historical Interpretation and Confirmation of the Temporal Corpus-Level Analysis Lower entropy can suggests that scientific
knowledge encoded in numerical tables stayed closer in its distribution to previously published material and/or the addition of
semantically new tables while higher entropy can signal a more homogeneous distribution. The first aspect shown by the temporal
analysis is the drop of entropy starting in 1551 in a rather short time window of 3 to 5 years. Historically to assume a rather drastic
development in such a short time window becomes plausible if we take into account the practice of the printers and publishers
involved in the emerging academic book market during the sixteenth century. When a novelty was introduced, printers and publishers
could obtain a so-called privilegium upon request. A privilegium is the forerunner of what is now called copyright and applied only
to the book as a product and was therefore originally conceived to protect the work of print-shops’s owners. Usually, however, a
privilegium was valid for only a few years, mostly only 2. This implies that once a new treatise was granted a privilegium, the printer
and/or publisher had every incentive to saturate the market with the same treatise. A normal practice, which also had the advantage
to limit the financial damages caused by the second-hand market, was to produce a large print-run (which in itself was a way to lower
the production costs per copy) and then to place portions of the same print-run on the market every year . Only a new title page, with
a new date of publication, had to be printed anew in order to be allowed to claim that a new edition had been published. The new
edition was therefore not really a re-print but more properly speaking a re-issue. Moreover, because of the fact that books were not
sold bound, like nowadays, but as piles of printed sheets that were then folded and bound at the book shop, printers and publishers
always had the possibility to replace or add just a few sheets in order to claim that the new edition was indeed “really” new. Because
of these reasons, it was very frequent that a new treatise, with high potential for international success, was pushed into the market by

3The group Fine-5 is constituted by three Latin editions ([185], [186], [187]) and two French ones ([188], and [189].
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Figure S23: Sacrobosco Table Pages grouped by digit feature density. Top to lower rows correspond to increasing digit feature
density levels, i.e. the first rows shows pages that contain less than 150 digit features as extracted by the bigram network.

means of a series of editions published during a relatively short time interval 4.
By looking closer at the group Fine-5 that our corpus-level temporal analysis has identified as responsible for the entropy drop,

it indeed turns out that the five editions are in fact, one Latin edition of 1551, a related re-issue in 1552, a slightly changed re-
print of the same in 1552, a French edition of the same book also published in 1551 and a related re-issue in 1552 following the
market mechanisms of printing outlined above. Moreover, these works also belong to the bigger cluster that involves forty editions

4For a comprehensive study of the economic rules of the academic book market during the early modern period and specifically related to the sources of which the
Sacrobosco Collection is constituted, see [16] and, in particular [81] and [82].
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Figure S24: Temporal dynamics of printing astronomical tables. Each panel corresponds to one time point of the full corpus
evolution. Clusters that contain published pages from this period are represented by a colored disk whose diameter is proportional to
its cluster size.

identified by means of the t-SNE projection discussed in section B.1.1. Bringing together these two findings enables us to conclude
that the institutional competition mentioned earlier, which was a harbinger of the process of mathematization of astronomy, made
use of commercial mechanisms developed within the context of early modern book marketing [83]. This has not adequately been
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Figure S25: Control study for different numbers of clusters. Entropy evolution for different number of clusters k =
{100, ..., 3000}. The different line colors correspond to a digit density filter of the pages, e.g. using all pages that contain at
least 100 bigram features.

Figure S26: Control study for varying time windows. Pages are sampled from a Gaussian distribution centered at current time step
t with a standard deviation of σ = {2, 3, 4, 5, 7, 10}.

comprehended before.
Moreover, the clear trend can be discerned for the entropy to rise until roughly 1570 when saturation sets in. We know that

all the editions of the collection focus on the same core knowledge and these are printed in an increasing number of places and
reach an ever widening audience in this period (knowledge homogenization). At the same time, however, the entropy trend means
that novel content attaches to this common core in different ways (innovation) during the first 100 years of the period considered.
Finally this implies that the process of mathematization and of diffusion of scientific innovations was going hand in hand with
the process of homogenization of scientific knowledge. This important historical and epistemological result is be deepened by the
successive corpus-level analysis presented in the next section that concerns the variance in the spatial distribution of the process of
mathematization of knowledge as represented by computational tables.

B.1.3 Corpus-level Analysis 2: Spatial Variance of Mathematization of Astronomy

In order to study the varying knowledge production expressed by the tables printed across 32 different printing centers, we com-
pute for each its relative entropy score as presented in Figure S22 (right). This score captures the difference of entropy between
the observed cluster distributions and an uninformed uniformly distributed production process H(p)−H(pmax) with pk being the
probability of assigning a table to cluster k and H(pmax) = log(Nc) with Nc denoting the number of tables printed in city c.

The latter quantifies for each city the entropy of a hypothetical print process that is unrestrained, i.e. without memory of its print
history and without outside influences, a scenario in which none of the printed tables is expected to be similar to any other. The relative
entropy can be understood as a measure of the redundancy created by the actual process of content production and distribution in
print as compared to this hypothetical process for each location. While a certain degree of redundancy can be considered a necessary
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precondition of stable and successful knowledge transmission, a too high redundancy would mean stagnation as is does not leave
room for novelty. Our analysis in Figure S22 (right) shows that relative entropy varies strongly between print locations and that the
minimum is reached for the cities of Frankfurt am Main and Wittenberg. This indicates that many tables are formed around the same
clusters in comparison to an unconstrained print output. This result means that astronomic tables printed in the treatises produced in
Wittenberg and Frankfurt are more homogeneous and therefore that textbooks in general were more similar to each other than those
produced in other regions.

In Figure S27, moreover, we provide a t-SNE visualization for each of the different print locations in the corpus, which allow
further insights into the content variety and output quantity of the different cities. While ‘Alcalá de Henares’, ‘Strasbourg’, ‘Lemgo’,
‘Vienna’, ‘Mexico City’ and ‘Avignon’ have each printed less than five table pages, the most productive print centers have been
‘Lyon’, ‘Venice’, ‘Wittenberg’, ‘Rome’, ‘Frankfurt (Main)’, ‘Paris’ and ‘Saint Gervais’ with at least 500 printed table pages. From
the distributions of these pages once can moreover extract locations that exhibit a similar print program. For example ‘Rome’, ‘Saint
Gervais’ and ‘Geneva’ have printed content that covers comparable regions as visible in Figure S27. In parallel, ‘Lyon’ and ‘Venice’
show the widest coverage across the embedding space.

Historical Interpretation and Confirmation of the Spatial Corpus-Level Analysis The corpus-level analysis matched with
further geographical data has provided two results. The first concerns the homogeneity of the output of tables in the treatises
produced in Wittenberg and Frankfurt am Main. The second the similar t-SNE projections for some places of publication such as
Geneva, Mainz, and Saint Gervais, as well as the dissimilar features for instance of the projection for Venice. As for the first case,
historical analysis can confirm that the drop of relative entropy in Frankfurt is due to the fact that a great part of its book production
was constituted by many reprints of the same edition, the prime instance of a redundant production, which eventually contained a
high number of tables.

In Wittenberg, however, the case is different. It is known that the main Protestant Reformers Martin Luther and especially Philipp
Melanchthon meticulously designed and supervised the curriculum of study of the Wittenberg university [87, 86]. We also know
that they worked in close contact with the numerous printers and publishers that had moved their businesses to this town after the
Reformation [190]. Finally there is a text written by Melanchthon, the famous “praeceptor Germaniae” (Germany’s instructor) to
motivate students toward the study of mathematical disciplines and especially cosmology and astronomy. It was first printed in
1531 and reprinted at least another 63 times until 1619 [191]. Based on all these facts we can surmise that the homogeneity of
the mathematical apparatus of the treatises produced in Wittenberg, as discovered by the application of our model and our analysis,
was possibly due to a political control of scientific knowledge executed by the Reformers, who were most certainly aware of the
great influence that Wittenberg scientific treatises had all over Europe as mentioned above in Section A.1.1. This interpretation is
consistent with and backed by the fact that the scientific visual apparatus for astronomic studies developed in the same period mostly
in Wittenberg remained constant for many decades and was also highly influential all over Europe [94, 111]. This suggests that
the scientific output of the recently reformed Wittenberg had a significant influence on the linked processes of mathematization and
homogenization of knowledge throughout Europe.

This cases of Frankfurt and Wittenberg, moreover, show how easily our model and suggested analysis can identify singularities
within a large volume of historical sources.

Coming to the second analysis, we focus on the projections for Mainz, Saint Gervais, and Geneve, as they clearly show a similar
distribution. Also in this case, by means of a simple query of the data for those places of publications, we can easily have a closer
look at those treatises that are mostly responsible for the pattern observed in the t-SNE projection. We immediately discover that the
great majority of treatises produced in these locations actually are many different editions of the same commentary, possibly slightly
changed over time and these are the treatises authored by Christophorus Clavius, namely those treatises that were also identified by
means of a closer look at a specific cluster determined by the general t-SNE projection and discussed in section B.1.1. This finally
is a further confirmation of the overall picture of a series of centers and scientists in competition against each other to conquer the
European academic book market by pushing the discipline toward a more sophisticated level of mathematization.

From the opposite historical perspective, we can briefly observe the projection of table pages produced in Venice, as its distribution
is different from all the others. In this case, it is immediately evident that Venice’s production of scientific treatises is not reducible
to specific editions and their re-issues or re-prints. Rather, Venice’s production of scientific treatises is clearly characterized by a
great heterogeneity of scientific traditions which in turns fits very well with the widely accepted historical view that Venice became
the most relevant international center of printing in Europe already at the end of the fifteenth century and maintained an extremely
relevant position on the market for at least one century [78].

B.1.4 Table similarity and Historical Case Studies

While the primary goal of our approach is to obtain an overview of all the available materials, our model also allows for a different
approach that focuses on specific and detailed interests. Thus, if for instance a historian wants to analyze the diffusion of a specific
table - identified either through close reading of the text or because of its position within a particular cluster in the embedding space -
we have developed a tool to input the image of that table in order to identify all similar tables. This creates a group of tables that, once
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Figure S27: Geographical distribution of printed table pages. Each point corresponds to one page from the Sacrobosco Tables
Collection and locations are sorted alphabetically.

matched with metadata, provides all necessary information to the historian in order to conduct specific case studies. The tool enables
users to query the corpus and to find all tables in the corpus similar to a query table they provide, either in original format (page
scan) or as a ground truth histogram. From a historical-methodological perspective, this approach implies that machine learning first
enables us to conduct a corpus analysis, which serves as the backdrop against which case studies are then selected. In other words,
the relationship between micro and macro history is further enriched by the possibility to move from one to the other level in both
directions.

In the following, we present two case studies as examples of such an approach, one concerned with the Climate-Zones tables
and the other with the Sun-Zodiac tables. At the end it will be shown how these two very different case studies together allow for a
general historical contribution.
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Historical Case 1: Tables of Climate Zones In his Tractatus de sphaera Sacrobosco’s picks up on a topic that has its origins
in ancient Greek astronomy and geography, namely the subject of the different climes or climate zones as they will be referred to
in the following. The climate zones quite generally divide the surface of the “inhabited” world into regions or bands bordered by
circles of the same latitude. Climate zones are formally defined by the length of the solar day used as an indication of the overall
meteorological conditions which was in turn a determinant information in the framework of Medieval and early modern medicine.
Sacrobosco’s discussion of the climate zones is found at the end of chapter 3 of his treatise where he introduces the concept and
provides the essential data defining seven climate zones. The original treatment by Sacrobosco is picked up in the majority of the
books in our corpus. Thereby more often than not the data for the climate zones, which Sacrobosco himself renders as a text, is
presented in form of a table. Our approach has allowed us to identify all climate-zone tables in the corpus 5.

Due to the inherent characteristics of our model, we are able to identify not only tables that contain data on the seven climate
zones, but also tables that are similar, for instance in that they contain additional information. These tables reveal the introduction of
a novelty with respect to Sacrobosco’s original treatise, which represented ancient and medieval knowledge. Besides tables listing the
seven climate zones, the corpus contains instances of tables expressing a division into nine climate zones as well as tables representing
a division into twenty-four climate zones. In the following we will analyze this finding and the spread pattern of the occurrences of
these three variants as evidenced by our collection and attribute historical reasons for those patterns.

The Tradition of the Climate Zones Clima in the ancient Greek tradition initially simply meant inclination and, if applied in
geography, it specifically expresses latitude of a location on earth. In Ptolemy’s time (1st cent. BCE), clima was indeed predominantly
related to terrestrial latitude. Latitude circles were usually referred to as parallels (i.e. circles parallel to the equator).

For places with the same latitude, numerous observable astronomical phenomena are the same. Thus for instance the length of
the day is the same everywhere at the same latitude and thus in particular also the length of the longest day of the year at the summer
solstice. Indeed before the introduction of a latitude grid, a common way to express the latitude of a place quantitatively was exactly
to specify the length of the longest solar day at that place [192, 23].

In the second century BCE, Hipparchus had already furnished the mathematical relation between the length of the longest day
specified in hours and the latitude specified in degrees. Initially, the expression clima seems to have been used for any latitude
expressed by length of longest day.6

In the Almagest, Ptolemy included a list of parallels for increasing day-lengths of the longest day from 12 to 24 hours, starting at
the equator first in steps of 15 minutes and later in steps of half hours. Of these parallels he marked seven explicitly as climata and
then he specified, in addition to their latitudes in degrees, the city or some notable geographical feature the respective parallel runs
through. This system, which Ptolemy later also included in his Geography, was soon accepted as canonical and it “radically changed
the meaning of the term κλιµα”.

Clima, indeed, besides the association with the parallel, also came to acquire the meaning of “region”, i.e a belt or zone of
certain width around a particular latitude circle in which certain celestial phenomena “do not change appreciably.” This explains
why the words ‘clime’ could be used either for the parallel more specifically or, more generally, for the band around it, as under
most perspectives this did not make a practical difference. It was moreover alleged that the climate and related phenomena such as
vegetation were similar within these zones[193]. The seven zones subdivided that portion of the Earth surface that was considered
habitable in antiquity, though it was already known that people were leaving also outside that zone. As life outside of the defined
habitable surface portion was considered uncomfortable because of excessive heat or cold, the other zones were then just ignored.
No climate zones were in particular specified for the southern hemisphere7.

Sacrobosco himself harks on a tradition of transmission of knowledge concerned with the climate zones as defined by Ptolemy:
seven clime parallels as marking their centers and being boarded by parallels defined by the longest day being 15 minutes shorter or
longer respectively.8 Thus, the first clime was understood as defined by the parallel for the maximum day-length of 13 hours as its
center, the parallel for the day-length of 12 hours and 45 minutes as its southern and that of 13 hours 15 minutes as its northern confine.
At the same time this was the southern confine of the second climate zone, i.e. the seven zones where perceived as as being directly
adjacent. Primarily via their number, the seven climate zones were related to the seven planets and thus also assumed astrological
and therefore medical significance. The climate zones understood in this way “became one of the basic, canonical elements of late
antique medieval European and Arabic geography” and as such were also picked up by Sacrobosco [192].

The Climate-Zone Tables in the Sacrobosco Collection

5For the complete list of such tables, computationally extracted from the corpus and amended by a human expert, see Subsection A.7.2.
6Otto Neugebauer has rightly remarked that measuring the day-length instead of simply the pole height is much more complicated and less precise. He speculates

that specification of latitude by day-length was practiced nevertheless because of the greater practical relevance of the latter. Cf. [192, p. 23].
7The literature shows a dispute regarding the origin of the understanding of clime as climate zones. According to Ernst Honigman and Fuat Sezgin [194], this idea

traces to Eratosthenes or earlier. David R. Dick argues for it to have originated with Hipparchus in Posidionius [195]
8In the Phases of Fixed Stars and Collection of Weather Changes, Ptolemy himself only uses five climata (cf. [196]).
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Seven climate zones: With the help of our approach we could identify 117 tables containing data concerned with only the seven
climate zones. These tables show different attributes in various columns, though the sorts of attributes and the number of columns in
a table can considerably vary, as the examples in figures S28 and S29 clearly show. Usually, a column is displayed for the latitude
given in degrees and minutes. Almost always a column is present that shows data of the length of the longest solar day given in hours
and minutes at a specific latitude. In the majority of cases there is also a column naming a place where the central parallel of the
zone runs through. Moreover, there can be a column for the width of the zone given as an angle and/or arc length of the zone sector.
If present, the arc length is specified with respect to different units in different tables (e.g. stadia, German miles etc.) and hence the
numbers in this column, if present, can greatly vary.

Figure S28: Seven climes table. [197, Q4-8]. Augsburg, Staats-
und Stadtbibliothek, urn:nbn:de:bvb:12-bsb11267743-1.

Figure S29: Seven climes table. [198, XXIIIIv]. Biblioteca Na-
cional de España, bdh0000254979.

For each climate zone, the parallel marking its southern confine, its center parallel and the parallel marking its northern confine
are given. Sometimes the latter is omitted as it coincides with the beginning of the next climate zone. Usually, the parallels are given
as rows, but there are other layout options working for instance with additional columns (Figure S29). As mentioned above, the seven
climate-zone table represents the main scientific tradition since antiquity and throughout the Western Middle Ages and the Islamicate
culture.
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Figure S30: Nine climes table. [199, 283]. Augsburg, Staats- und Stadtbibliothek, urn:nbn:de:bvb:12-bsb11267368-7.

Nine climate zones: These tables extend the type ‘seven’ tables by two additional climate zones toward the north. They re-
occur at a much lower rate, twenty-six instances in total in the Sacrobosco Collection, and the layout of these examples is much more
homogeneous than in the case of the seven climate-zone tables. Figure S30 shows the typical layout: Initial medium and end parallel
are defined by day-length and longitude and these pieces of information are listed in columns. Angle and arc length of the sectors for
each climate zone are specified, no locations are usually listed. The addition of two climate zones toward north represents a rupture
with the tradition. The reason for such change, however, was the evident fact that those zones were now inhabited at least as much as
the seven defined by the tradition.

Twenty-four climate zones: These tables extend the schema of the seven and nine climate zones respectively even further north
usually up to the polar circle where the length of the longest day is exactly 24 hours, resulting in either 24 or 23 (and sometimes even
less) climate zones depending on how the extension is carried out concretely. Even though the actual number of climate zones listed
in these tables can vary, they are here subsumed under the rubric twenty-four climate zones. The Sacrobosco collection contains
eighty-one such tables. They usually (but not always) stretch over more than one page. Their contents and layouts are even more
variable than in the two previous cases. There is in particular a variability with respect to where the tables start in the south and how
they count the parallels from there. In the traditional scheme the first climate zone has its southern confine where the longest day
has 12 hours and 45, corresponding to a parallel at 12 degrees 45 latitude and this was counted as the first parallel. Of course this
schema of defining parallels by day-length in hours of the longest day in increments of 15 minutes can be extended further south to
the equator adding three more (including the the equator itself) parallels. This extension to south is indeed made in most of the tables
in this group. It is however done in different manners resulting in different counts of the parallels (Figure S31a and S31b, S32a,
and S32b). Sometimes the first zone is supposed to start at the earth’s equator with the longest day (like every day there) measuring
12 hours, but sometimes also where the longest day measures 12 hours and 15 minutes. In both cases 24 climate zones result. As
retained from the tradition, however, the first zone often starts at day-length 12 hours and 45 minutes, in which case there are only
23 zones. Figure S32c provides an example of an extreme variation. First it only gives the southern confines of the zones listed.
Moreover, it starts the first climate zone at the equator and thus the zones listed do not correspond to the traditional ones (neither in
their numbering nor in latitude of their confines). Among others, this results in an actual number of twenty-five climate zones, though
we still maintain that it generally belongs to the group of tables showing twenty-four zones.

From a historical point of view, the appearance and diffusion of the twenty-four zones table can be considered as the consequence
of the recognition that the entire globe, as it was becoming known through the journeys of exploration, was actually inhabited. This
interpretation is supported by the fact that we indeed find one instance where the schema of the climate zones is applied to the
southern hemisphere as testified by a table listing climate zones south of the equator (see Figure S33).

B.1.4.1 The Spread of Climate Zone Tables By means of our model, we were able to identify a group of 224 tables (out of
about 10,000) that display data related to the climate zones and that can be distinguished into three sub-groups of tables as described
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Figure S31: Twenty-four climes table. [200, 171r–171v]. München, Bayerische Staatsbibliothek, urn:nbn:de:bvb:12-bsb00021009-
2.

above. The closer analysis of this hitherto unexplored historical material, furthermore, allowed us to formulate the hypothesis that
the departure from the tradition, represented by the tables displaying nine and twenty-four climate zones respectively, is due to the
increasing recognition that the concept of inhabitable portion of the Earth surface faced by the discoveries resulting from the journeys
of exploration was loosing its scientific meaning. To try to determine the validity or at least the plausibility of this hypothesis, we
analyze the spatio-temporal distribution of these tables, by matching the identified tables with the bibliographic metadata of the
editions in which they were printed.

First of all, we look at the temporal distribution of the three types of tables. To do so, we smooth the temporal distribution of
the publication events as already provided in Figure S2 by a Kernel Density Estimation (KDE)9, which provides an estimate of the
probability of a book being interpreted as an averaged rate of appearance at any given time in the period considered (Figure S34-a.).
We then single out the editions in which at least one table belonging for one of the three principal types of climate tables we have
identified was published. We do this for all tree types and likewise calculate the KDEs for the three temporal distribution of the
publication events of the editions thus singled out. In addition we normalize the rate of appearance of the tables in the editions with
regard to the KDE representing the rate of appearance of all the editions constituting the corpus and shown above (Fig. S34-b, c, d.)
and directly compare the appearance rate of the three different types of tables (Fig. S34 e.). All KDEs have been calculated using a
bandwidth of 0.2.

Contrary to what one could expect at this point, the tradition, represented by the data concerned with the seven climate zones,
remains rather robust for the entire period considered, which ends 158 years after the discovery of the New World. As expected,

9https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.html#scipy.stats.gaussian_kde
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(a) Twenty-four climes table. [187, 48r].
München, Bayerische Staatsbibliothek,
urn:nbn:de:bvb:12-bsb10198974-9.

(b) Twenty-four climes table. [201, 296].
Universitäts- und Landesbibliothek Sachsen-
Anhalt, http://dx.doi.org/10.25673/opendata2-
7144.

(c) Twenty-four climes table. [202, Hi-1].
Herzog August Bibliothek Wolfenbüttel,
http://diglib.hab.de/inkunabeln/171-7-quod-
14/start.htm.

however, the rupture with the tradition represented by the nine climate-zones table spread about 40 years before the option of the
twenty-four zones received same degree of of attention in print (Fig. S34-e.). This chronology of events supports the historical
hypothesis that the emergence of new types of climate zone tables was associated with the increasing knowledge of the Earth’s
surface.

Moreover, if we directly compare the metadata for the editions containing more than one of the three types of tables, we discover
a further interesting aspect. Firstly, many editions that contain the tables displaying the twenty-four climate zones also contain the
traditional seven-zone table and secondly the peak in the production of the twenty-four zones table is due to exactly those editions
that contain both types of tables (Fig. S34 f.).

Considering the more abstract subject of the mode of production of scientific knowledge during the early modern period, finally,
the present case study allows us to assert that scientific innovations as represented by some of the computational tables in our corpus
were introduced and could become successful mainly by building upon traditional and well-accepted knowledge. This same pattern
is also observed in the case of the textual apparatus of the treatises where new knowledge is often presented in form of a commentary
on a old and authoritative text.

To look at the temporal and spatial dynamic of the geographic spread of the tables, we created and visualized chains of re-
occurrences. Each occurrence of a climate table of a particular type is linked to the first occurrence of a table of the same type that
came before it. This simulation enables us to visualize the process of diffusion of this specific type knowledge and calculate both the
instant and average speed of diffusion.

The interactive visualization showing the evolution of the different table variants covering the different climate zones is available
at http://141.5.103.115/climes10. The dynamic of the spread of the three different tables can be visualized individually or together.

– Chain 1: Geo-temporal spread of the table displaying seven climate zones.

– Chain 2: Geo-temporal spread of the table displaying nine climate zones.

– Chain 3: Geo-temporal spread of the table displaying twenty-four climate zones.

To display the metadata of the editions, each single edition can be selected on the visualization. This selection also displays the
figures concerned with the speed of spread of that specific table selected.

10username: network | password: VIZ_network$_61t50
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Figure S33: Twenty-four climate table for the southern hemisphere. [203, 223–224]. ETH-Bibliothek Zürich,
https://doi.org/10.3931/e-rara-17609.

Figure S34: Temporal spread of print production. Analysis of the publication patterns of the different types of climate zone tables
contained in the corpus.
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(a) Seven climate zones (b) Nine climate zones (c) Twenty-four climate zones

Figure S35: Major centers of production for climate zone tables.

Figure S36: Spread of the table displaying the seven climate zones

Examining the first appearance of the tables, all three sorts of tables appear quite early in the collection for the first time, namely
either before or just after the turn of the fifteenth century. Both the seven and the nine-zones tables disappear around 1620 while the
twenty-four zones table re-occur until the very end of the period considered. Observing the spatial distribution of occurrences, further
relevant aspects can be recognized, too (Figs. S36, S37, S38, S35a, S35b, and S35c)11. The table displaying seven zones is printed in
nineteen different cities. In this case the major centers of production and spread clearly are Paris, Venice, Lyon, and Wittenberg. In
the case of the table containing data for nine climate zones, this spread only covers seven different cities, and the major centers are
Frankfurt am Main, London, and Paris. In the case of the twenty-four climate zones, finally, they were printed in twenty-two different
cities, in spite of a lower number of occurrences. Their major centers of production were Leipzig, Venice, and Wittenberg.

In particular, we observe first that the geographic diffusion of the tables for both, the seven and the twenty-four climate zones
is very similar, though not identical. Both chains of re-occurrences move from northern Europe toward the Iberian Peninsula and
embrace northern Italy and South France. Toward East, they do not go beyond Wittenberg. In the case of the nine-zones table,
however, the dynamic is very different as it fundamentally remains a northern European phenomenon, which, however, reaches as far
east as the city of Krakow.

11To improve visibility, centers of production in which only one occurrence of the respective table took place have been suppressed from the plots.
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Figure S37: Spread of the table displaying the nine climate zones

Historical Case 2: Tables of Zodiac Signs As second historical case, we selected all printed instances of a particular table which
gives the positions of the Sun into the signs of the zodiac in degrees for each day of the year. This table occurs in varying layouts in
our corpus, where the different layouts partition the full table differently. In some cases the entire table is comprised on one page, in
other books it is distributed over as many as nine pages.

Due to the precession of the earth’s axis, the positions of the Sun for a given point of time in the solar year (for instance the vernal
equinox) gradually changes over time against the ecliptic. More importantly, before the calendar reform of 1582, the solar year was
not in tune with the calendar year, such that the calendar date, for instance of the equinoxes, changed over time. In effect the position
of the Sun against the ecliptic for a given calendar day depends on the year for which it is calculated.

Thanks to our model, we were able to investigate the diffusion of such table in the about 180 years considered here. First, we
immediately recognized that, in our corpus, two variants of the sun-zodiac table are present: first, tables designated as valid for the
times of the ‘ancient’ poets (veterum poetarum temporibus accommodata) where the Sun is 16 degrees into Capricorn on the first of
January and, second, tables valid for ‘contemporary’ times (nostro tempori) were the Sun, on the first day of the year, has advanced
5 degrees and is located 21 degrees into Capricorn. Historically, the contemporary table was inserted in the treatises to teach the
students the correspondence between the calendar and the celestial phenomena. Such correspondence, then, could be used to date
past events, should the observation concerning the position of the Sun have been made explicit in the sources. The table for the
ancients is in fact called “the table for the ancient poets” because it refers to texts of classical literature of authors, such as Hesiod,
Ovid, or Pliny.

In antiquity the correspondence between this celestial phenomenon and the calendar was common knowledge and, when they
described particular events, those ancient authors rarely missed the chance to signalize the position of the Sun in the Zodiac, so that
other and later readers could reconstruct the date of the event. This subject — the reconstruction of the temporal order of historical
events described in ancient sources—became very important during the sixteenth century, especially in the cultural circles of the
Protestant reformation. Initially, students could use the contemporary table and, through further calendric computations as well as
astronomic calculations concerned with the precession of the equinoxes, they could date events described by the ancient authors. This
method eventually revealed too complex and therefore lecturers of Wittenberg introduced a new table already adjusted for the ancient
time. In fact this table is almost always directly accompanied by a another table specifically referring to and valid for Alexandria and
Rome, the two places to which the ancient authors also commonly referred in their observations and descriptions. This table lists
for the most prominent stars the degree of the zodiac rising and setting respectively together with the corresponding star as observed
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Figure S38: Spread of the table displaying the twenty-four climate zones

from either of the two locations. Together with the sun-zodiac table one can thus effortlessly determine the cosmical risings and
settings of the stars for these two locations (and thus eventually also the helical and acronical risings and settings), another type of
data often given in the ancient literature. 12

Essentially, the difference between the sixteenth-century and the ancient table amounts to a shift of the columns listing the days
of the year with respect to columns giving the angular locations and thus, from the perspective of our similarity model, these two
variations represent the same (more abstract) table. Examples of the two sorts of tables, taken from the same treatise published in
Wittenberg in 1582 are given in Figs. S39a and S39b for the contemporary times and in Figs. S40a and S40b for the ancient classical
time. Since the equinoxes drift westward along the ecliptic one degree in about 71 years, a five degree shift would correspond to a
time difference of 350 years. Yet in the Julian calendar, valid before the calendar reform of 1582, dates of a fixed solar event like the
equinoxes increases by three quarter of a day every century. Thus the time difference between the tables amounts to about 750 years,
if modern parameters are used. This value of course depends on the value for the precision which was debated in the time in question.
Indeed in the Medieval period the prevalent opinion was that the precession was not constant but changed over time, a theory known
as trepidation. Ptolemy gives a value of 1/100 degrees per annum for the precession [206]. Using this value a time difference for the
two tables of approximately 2000 years results, which fits quite well with the distinction between the ‘old poets’ and ‘our times.’

B.1.4.2 The Spread of Zodiac Signs Tables The identification of Sun-zodiac tables has been greatly facilitated by our approach.
Indeed, without it, the task would be very laborious and almost impossible. Also in this case we can visualize the spread of the tables
in Europe during the early modern period.

A visualization is available at http://141.5.103.115/zodiac 13 and shows the spatio-temporal evolution of sun-zodiac tables. The
spread is determined according to time and locations of appearance of editions containing the table. We have analyzed two variants
of this table that we identified using our analysis:

– Chain 1: Geo-temporal spread of the 16th century table displaying the contemporary (nostro) Sun-Zodiac table.

12For the historical reasons of the introduction of a new computational table concerned only with the ancient classical time, see [93]. For examples on how past
events were dated, see [204].

13username: network | password: VIZ_network$_61t50
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Figure S39: Sun-Zodiac table computed in relation of the temporal position of the equinoxes in the contemporary time (Edition
published in 1582). From [205, 164–165]. Courtesy of the Library of the Max Planck Institute for the History of Science.

– Chain 2: Geo-temporal spread of the table displaying the Sun-Zodiac table valid for ancient writers (veterum).

The dynamic of the spread of the different tables can be visualized individually or together. To display the metadata of the
editions, each single edition can be selected on the visualization. This selection also displays the figures concerned with the speed of
spread of that specific table selected. The following simulations concerns solely those editions that contain the tables discussed. This
implies, however, that the visualizations do not show the spread of this historical phenomenon completely for two specific reasons.
The first concerns the fact that a certain amount of treatises discuss the subject at length but furnish data in the flow of the text
and could not therefore be identified by our model. The second relates instead to the preservation history of our historical sources.
Especially the table for the ancient poets was often printed as a foldout bound at the end of the book. We have several cases in which
we recognize that the foldout once existed but was then later torn away. For the result of the manual analysis of the treatises affected
by one or both such limitations, see the data available through [93].

In the case of the contemporary table, its diffusion begins in 1545 in Wittenberg and forty-six different editions could be identified
as containing this table. The overall geographic spread remains limited to the German and French speaking regions. In total, only
printers and publishers of six different cities printed this table. The two major centers of production were Wittenberg and Paris (Fig.
S41). The table concerning the position of the Sun in the Zodiac as observable in ancient classical time has a more limited diffusion
pattern. Only twenty editions in the corpus contain it. The table appears for the first time in 1549 and was produced in only four
different locations, where Wittenberg clearly maintains the primary role. The diffusion of such table is clearly a restricted northern
German phenomenon (Fig. S42).

Mathematization and Identity The dataset underlying this research is obtained from the collections provided by the historical
research project "The Sphere. Knowledge System Evolution and the Shared Scientific Identity of Europe." As the project’s title
suggests, its primary goal is to investigate whether and how the development and dissemination of scientific knowledge have served
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Figure S40: Sun-Zodiac table computed in relation of the temporal position of the equinoxes in ancient classical time (Edition
published in 1582). From [205, 72–73]. Courtesy of the Library of the Max Planck Institute for the History of Science.

as an element in shaping European identity during pre-modernity.
The two case studies provide an initial affirmative response to this question. The first one, concerned with the tables displaying

climate zones, has shown how the journeys of exploration and therefore the discovery of an inhabited world beyond Europe and the
Ecumene led to an enrichment of an existing knowledge structure, namely the division of the inhabitable zone into climate zones.
This implies that the new geographic discoveries were not perceived as contradicting established scientific knowledge. Instead, they
were seen as a reason for expanding the knowledge base, and from this viewpoint, they served as confirmation. This interpretation is
supported by the observation that the success of the new table displaying 24 climate zones was largely dependent on the production
of circulation of editions and treatises that contained not only this new table but also the old, classic one displaying the seven climate
zones.

Especially the discovery of the "New World" (the American continent), with its diverse populations, cultures, and traditions, was
particularly significant. Despite the brutality that ensued, the ability to incorporate the new discoveries in an established knowledge
system must have been perceived as a confirmation tout court of the science that, at that time, was already seen as the result of
collaborative efforts that were taking place at a continental level in Europe. Although this incorporation came at the expense of other
cultures, it likely played a role in shaping science as a factor in identity formation. This idea appears all the more plausible if it is
considered that the most relevant identity-shaping factor of Europe had previously been religion, particularly through the external
representation of authority embodied by the Pope and the Holy See of Rome. In the period considered in this research, the unity
of Europe could however no longer be guaranteed by religion due to the fragmentation of the church and the consequent political
and military conflicts. On the basis of our results, we therefore propose the working hypothesis that while encountering "otherness,"
science began to emerge as a new identity-shaping cultural aspect.

The second case study further supports this hypothesis. If science plays a role in shaping identity, its roots need to be investigated
as well. During that era, these roots were clearly identified with the philosophical and scientific cultures of classic antiquity, particu-
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Figure S41: Spread of the contemporary (16th cent.) Sun-Zodiac table.

Figure S42: Spread of the ancient Sun-Zodiac table.

larly those of the Greeks and Romans. It was one of the most important fathers of the Protestant Reformation, Philipp Melanchthon,
who in 1531 and 1538 urged the youth to study astronomy, stating that without it, history would merely be a chaotic collection of
unordered pieces of information [93, 92]. Melanchthon published this call in form of an open letter used as preface to an astronomy
textbook. This text soon became the most republished text-part of the entire collection examined in this research, circulating widely
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across Europe independently from the religion of the countries where the editions containing this text were printed and distributed.
The significance of this call was twofold. On one hand it underscored the importance of understanding the history of Western

civilization, a crucial step in any process of identity formation. On the other hand, it further contributed to the process of diffusion
of mathematical culture as it was mathematical astronomy that was called upon to support history writing. Dating past events by
means of astronomic calculations and investigations became a specialized field, creating a self-reinforcing loop. This process not
only promoted scientific development but also positioned science as an identity-shaping factor.

Finally, it is worth considering that the processes unveiled by this research both on corpus level and at the level of case studies
was taking place in what was becoming the most relevant educational institutional setting – the universities. In conclusion, we would
like to highlight that this path has paved the way to the formulation of an important new working hypothesis within the realm of
political epistemology of science: the relationship between identity and domination as pivoted around scientific knowledge.
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