

2 Supporting Information for

3

1

## Downregulation of a transcription factor associated with resistance to Bt toxin Vip3Aa in the invasive fall armyworm

6

7 Minghui Jin<sup>1,2†</sup>, Yinxue Shan<sup>1†</sup>, Yan Peng<sup>1, 3†</sup>, Wenhui Wang<sup>2†</sup>, Huihui Zhang<sup>4</sup>, Kaiyu Liu<sup>4</sup>, David

- 8 G. Heckel<sup>5</sup>, Kongming Wu<sup>2\*</sup>, Bruce E. Tabashnik<sup>6</sup>, Yutao Xiao<sup>1\*</sup>
- 9 <sup>1</sup>Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis
- 10 Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at
- 11 Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China; <sup>2</sup>The State Key
- 12 Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese
- 13 Academy of Agricultural Sciences, West Yuanmingyuan Road, Beijing, China;<sup>3</sup>College of Plant
- 14 Science and Technology, Huazhong Agricultural University, Wuhan, China; <sup>4</sup>Institute of
- 15 Entomology, School of Life Sciences, Central China Normal University, Wuhan, China;
- <sup>5</sup>Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany;
- <sup>6</sup>Department of Entomology, University of Arizona, Tucson, AZ 85721
- <sup>18</sup> <sup>\*</sup>Corresponding authors: Kongming Wu. Email: <u>wukongming@caas.cn;</u> Yutao Xiao. Email:
- 19 <u>xiaoyutao@caas.cn</u>
- 20 <sup>†</sup>These authors contributed equally to this work.
- 21

22 This SI file includes:

| 23 | Tables S1 to S9 |
|----|-----------------|
| 24 | SI References   |
| 25 |                 |

### 26 Tables S1 to S9

### Table S1. Responses of strain DH-R (selected with Vip3Aa) and its parent susceptible strain DH-S of *S. frugiperda* to Vip3Aa, Cry1Ab, Cry1Fa, and Cry2Ab.

| Toxin   | Strain | n <sup>a</sup> | LC <sub>50</sub> <sup>b</sup> (95% FL <sup>c</sup> ) | Slope (SE) <sup>d</sup> | RR <sup>e</sup>  |
|---------|--------|----------------|------------------------------------------------------|-------------------------|------------------|
| Vin34a  | DH-S   | 336            | 0.021 (0.011 - 0.038)                                | 2.6 (0.7)               | 1.0              |
| ирола   | DH-R   | 336            | 4.32 (1.5 - 10.9)                                    | 3.9 (0.7)               | 206 <sup>f</sup> |
|         | DH-S   | 192            | 0.22 (0.067 - 0.75)                                  | 2.0 (0.6)               | 1.0              |
| CIVIAD  | DH-R   | 192            | 0.27 (0.15 - 0.48)                                   | 1.4 (0.2)               | 1.2              |
| 0-45-   | DH-S   | 192            | 0.001 (0.00040 - 0.0094)                             | 2.0 (0.5)               | 1.0              |
| Ciyii a | DH-R   | 192            | 0.002 (0.00013 - 0.018)                              | 2.1 (0.4)               | 2.2              |
| Crv/2Ab | DH-S   | 192            | 0.12 (0.065 - 0.21)                                  | 3.6 (0.6)               | 1.0              |
| GryZAD  | DH-R   | 192            | 0.19 (0.11 - 0.33)                                   | 3.5 (0.5)               | 1.6              |

<sup>a</sup> Number of larvae tested.

30 <sup>b</sup> Concentration (µg toxin per cm<sup>2</sup> diet) killing 50% of larvae.

<sup>c</sup> 95% fiducial limits.

<sup>d</sup> Slope of the concentration-mortality line and its standard error.

<sup>e</sup> Resistance ratio =  $LC_{50}$  for DH-R divided by  $LC_{50}$  for DH-S for the same toxin.

<sup>34</sup> <sup>f</sup>LC<sub>50</sub> of Vip3Aa significantly greater for DH-R than DH-S based on non-overlap of 95% FL.

| Corn type       | Strain | Survival (%)ª | SE (%) | Relative<br>survival <sup>b</sup> |
|-----------------|--------|---------------|--------|-----------------------------------|
| Non-Bt          | DH-S   | 60.7          | 1.0    | 1.00                              |
| Non-Bt          | DH-R   | 61.6          | 5.3    | 1.00                              |
| Vip3Aa          | DH-S   | 0.0           | 0.0    | 0.00                              |
| Vip3Aa          | DH-R   | 16.2          | 0.8    | 0.26                              |
| Cry1Ab          | DH-S   | 1.4           | 0.6    | 0.02                              |
| Cry1Ab          | DH-R   | 2.8           | 0.0    | 0.05                              |
| Cry1Ab + Vip3Aa | DH-S   | 0.0           | 0.0    | 0.00                              |
| Cry1Ab + Vip3Aa | DH-R   | 0.0           | 0.0    | 0.00                              |

#### Table S2. Survival from first instar to adult eclosion of *S. frugiperda* strains DH-R and DH-S on Bt and non-Bt corn.

<sup>38</sup> <sup>a</sup> Mean based on three replicates with 72 larvae per replicate (216 larvae per value for survival)

<sup>39</sup> <sup>b</sup> Survival on Bt corn divided by survival on non-Bt corn for the same strain.

40

41

42

### Table S3. Larval survival of *S. frugiperda* strains DH-R, DH-S, and their F<sub>1</sub> progeny on diet treated with 0.4 μg Vip3Aa per cm<sup>2</sup> diet.

| Strain or cross <sup>a</sup> | Survival (%) <sup>b</sup> | Dominance ( <i>h</i> ) <sup>c</sup> |
|------------------------------|---------------------------|-------------------------------------|
| DH-S                         | 0.0                       |                                     |
| DH-R                         | 96.6                      |                                     |
| DH-S♀ X DH-R♂                | 13.7 <sup>d</sup>         | 0.142                               |
| DH-S♂ X DH-R♀                | 10.8 <sup>d</sup>         | 0.111                               |

<sup>45</sup> <sup>a</sup> F<sub>1</sub> progeny were obtained from reciprocal mass crosses between DH-S and DH-R.

<sup>46</sup> <sup>b</sup> Sample sizes were 48 larvae per strain and 96 larvae from each cross.

47  $^{\circ}$  *h* = (Survival of F<sub>1</sub> progeny – survival of DH-S)/(Survival of DH-R – survival of DH-S);

h = 0 indicates completely recessive resistance, h = 1 indicates completely dominant resistance

<sup>49</sup> <sup>d</sup> Survival did not differ significantly between the progeny from the two reciprocal crosses (Fisher's 50 exact test, P = 0.66)

| Marker | Site (Mb) | rr <sup>a</sup> | rs <sup>a</sup> | SS <sup>a</sup> | <b>Х</b> <sup>2</sup> | <b>P</b> <sup>b</sup> |
|--------|-----------|-----------------|-----------------|-----------------|-----------------------|-----------------------|
| 1      | 10.01     | 65              | 22              | 9               | 89.9                  | 6.9E <sup>-20</sup>   |
| 2      | 10.29     | 77              | 13              | 6               | 150.0                 | 5.8E <sup>-34</sup>   |
| 3      | 10.33     | 89              | 7               | 0               | 225.8                 | 3.4E <sup>-49</sup>   |
| 4      | 10.48     | 75              | 17              | 4               | 139.4                 | 7.9E <sup>-32</sup>   |
| 5      | 10.63     | 60              | 29              | 7               | 70.8                  | 2.5E <sup>-15</sup>   |

52 Table S4. Fine-scale mapping: five markers on chromosome 27 tightly linked with 53 resistance to Vip3Aa in strain DH-R of *S. frugiperda.* 

<sup>a</sup> *rr*, homozygous for the marker from DH-R; *ss*, homozygous for the marker from DH-S; *rs*,

55 heterozygous. Based on analysis of 96 larvae that were  $F_2$  progeny (obtained from a single-pair 56 mating between  $F_1$  from DH-R and DH-S) and survived exposure to diet with 0.5 µg Vip3Aa per 57 am<sup>2</sup> diet

57 cm<sup>2</sup> diet.

<sup>b</sup> Probability based on the null hypothesis of random assortment rr: rs : ss = 1:2:1.

### Table S5. Relative abundance of mRNA in larval midguts of *S. frugiperda* strains DH-R and DH-S for nine genes from

10.29 to 10.63 Mb on chromosome 27.

|                                                        | CanalD    | Mb            | Count <sup>a</sup> |      | FPKM <sup>b</sup> |      | FPKM                         |      |
|--------------------------------------------------------|-----------|---------------|--------------------|------|-------------------|------|------------------------------|------|
| Complete gene name                                     | Gene ID   | DIVID         | DH-S               | DH-R | DH-S              | DH-R | log <sub>2</sub> (DH-R/DH-S) | P°   |
| membrane associated ring-CH-type finger 2 <sup>d</sup> | 118279256 | 10.41 -10.42  | 0                  | 0    | 0                 | 0    | NA                           | NA   |
| nuclear pore glycoprotein p62-like (nup62)             | 118279300 | 10.39 -10.40  | 47                 | 39   | 1.47              | 1.13 | -0.39                        | 0.50 |
| checkpoint protein HUS1-like <sup>e</sup>              | 118279287 | 10.38 -10.39  | 4                  | 3    | 0.30              | 0.23 | -0.37                        | 0.80 |
| myeloblastosis (myb)                                   | 118279242 | 10.33 - 10.38 | 100                | 42   | 2.05              | 0.74 | -1.46                        | 0.01 |
| pif1 5'-to-3' DNA helicase <sup>d</sup>                | 118279132 | 10.30 - 10.31 | 0                  | 0    | 0                 | 0    | NA                           | NA   |
| pif1 5'-to-3' DNA helicase <sup>d</sup>                | 118279131 | 10.30 - 10.30 | 0                  | 0    | 0                 | 0    | NA                           | NA   |
| Mariner <sup>d</sup>                                   | 118279130 | 10.29 - 10.29 | 0                  | 0    | 0                 | 0    | NA                           | NA   |
| attacin-like <sup>e</sup>                              | 118279240 | 10.29 - 10.29 | 3                  | 4    | 0.25              | 0.37 | 0.57                         | 0.24 |
| attacin-like <sup>d</sup>                              | 118279268 | 10.29 - 10.29 | 0                  | 0    | 0                 | 0    | NA                           | NA   |

<sup>a</sup> Mean of normalized counts from three replicates of 24 fourth instar larvae for each strain

<sup>b</sup> Fragment per kilobase of transcript per million mapped reads

<sup>c</sup> based on Wald test

<sup>d</sup> No counts, NA: not applicable, no mRNA was detected

<sup>e</sup> Mean count less than 5, categorized as not expressed

| Source      | df | Sum of squares | Mean Square | F     | Р        |
|-------------|----|----------------|-------------|-------|----------|
| Strain      | 1  | 884.73         | 884.73      | 54.88 | 8.18E-06 |
| Trial       | 2  | 42.10          | 21.05       | 1.31  | 0.31     |
| Interaction | 2  | 72.66          | 36.33       | 2.25  | 0.15     |
| Error       | 12 | 193.45         | 16.12       |       |          |
| Total       | 17 | 1192.94        | 70.17       |       |          |
|             |    |                |             |       |          |

### Table S6. Two-way ANOVA for effects of strain (DH-R vs. DH-S), trial, and their interaction on Sfmyb promoter activity<sup>a</sup>

<sup>a</sup>Three replicates were done for each of the three trials for each strain.

# Table S7. Number of promoters in *S. frugiperda* with each of 12 DNA motifsthat bound SfMyb and occur in promoters of *D. melanogaster* <sup>a</sup>

| Motif no. | Sequence <sup>b</sup> | Potential    |
|-----------|-----------------------|--------------|
|           | 4                     | target genes |
| 1         | GACGCGT               | 670          |
| 2         | CCGGCCC               | 621          |
| 3         | ACCACCC               | 1279         |
| 4         | TTCTTGT               | 388          |
| 5         | CCCGTGC               | 867          |
| 6         | GTCCTTC               | 513          |
| 7         | TGAATCC               | 847          |
| 8         | CGTGGTC               | 448          |
| 9         | CGTGGCC               | 538          |
| 10        | CACGTGT               | 1046         |
| 11        | CCGGAAA               | 571          |
| 12        | TGACCTA               | 956          |
|           |                       |              |

<sup>a</sup> For *D. melanogaster* from the CIS-BP Database: http://cisbp.ccbr.utoronto.ca/TFTools.php
<sup>b</sup> 18 motifs bound SfMyb in the yeast one-hybrid assay but are not identified in *D. melanogaster* promoters by the CIS-BP Database: GATGGGC, TACGTTT,
AAGGAGA, GTACTCG, TCGGCGA, CGGCGA, CCCCGCT, GCGCTCG,
CGGAGGA, GATGCAG, TCTCCGT, AACGTCC, CTAGTG, ATGATCA,
ATCCGCG, GCGCATG, GCCGGAC, GGCGGAG

61

|           | Binding       | log2(DH-R/         |                       | log2 (dsMyb/        |                       | Protein in        | Protein               |                                 |
|-----------|---------------|--------------------|-----------------------|---------------------|-----------------------|-------------------|-----------------------|---------------------------------|
| Gene ID   | motifs        | DH-S) <sup>a</sup> | <b>Р</b> <sup>ь</sup> | dsGFP) <sup>c</sup> | <b>Р</b> <sup>ь</sup> | DH-S <sup>d</sup> | location <sup>e</sup> | Annotation <sup>f</sup>         |
| 118279751 | 1,5           | NA <sup>g</sup>    | 6.2E-14               | -1.5                | 2.3E-03               | yes               | membrane              | serine protease stubble-like    |
| 118274591 | 8             | -5.9               | 1.3E-32               | -1.1                | 2.0E-03               | yes               | membrane              | uncharacterized                 |
| 118265051 | 2             | -5.0               | 1.2E-21               | -1.3                | 2.1E-03               | yes               | membrane              | peste                           |
| 118272752 | 3,9,10        | -1.9               | 3.9E-15               | -1.0                | 4.1E-03               | yes               | membrane              | NPC1                            |
| 118277657 | 7             | -1.1               | 4.1E-02               | -1.1                | 2.4E-03               | yes               | membrane              | Tret1                           |
| 118268968 | 5,7,9,10      | 1.0                | 3.2E-02               | 1.5                 | 4.0E-06               | yes               | membrane              | SLC4A2                          |
| 118272562 | 5             | 2.5                | 6.4E-19               | 1.4                 | 3.4E-02               | yes               | membrane              | LPCAT                           |
| 118280306 | 3,5           | -3.0               | 1.0E-02               | -1.7                | 2.1E-02               | yes               | cytoplasm             | GMFB                            |
| 118273900 | 9             | -2.0               | 1.4E-03               | -1.5                | 7.7E-04               | yes               | cytoplasm             | N-like                          |
| 118270409 | 1             | -1.8               | 5.4E-04               | -1.4                | 1.5E-03               | yes               | cytoplasm             | atlastin-like                   |
| 118271576 | 5,7           | -1.1               | 1.1E-02               | -1.7                | 4.3E-03               | yes               | cytoplasm             | WASF3                           |
| 118274833 | 3             | 1.3                | 1.4E-05               | 1.1                 | 1.8E-02               | yes               | cytoplasm             | uncharacterized                 |
| 118271777 | 3             | 2.2                | 2.1E-08               | 1.1                 | 1.3E-02               | yes               | cytoplasm             | GST2                            |
| 118272063 | 5,7           | 2.3                | 6.2E-11               | 1.5                 | 4.3E-03               | yes               | cytoplasm             | SET domain-containing           |
| 118277508 | 12            | -7.3               | 7.9E-23               | -1.4                | 3.9E-03               | yes               | extracellular         | AGRN                            |
| 118273225 | 12            | -5.5               | 2.3E-30               | -1.4                | 4.7E-03               | yes               | extracellular         | pnliprp2                        |
| 118263806 | 1             | -4.2               | 7.5E-11               | -1.4                | 2.2E-02               | yes               | extracellular         | arylsulfatase B-like            |
| 118261877 | 2,6,9,10      | -1.2               | 6.9E-03               | -1.0                | 2.1E-03               | yes               | nucleus               | Afdn                            |
| 118280234 | 2,3,10        | -1.1               | 3.2E-02               | -1.6                | 1.2E-02               | yes               | nucleus               | Usp2                            |
| 118270463 | 1,8,11        | 3.0                | 1.6E-14               | 2.4                 | 7.7E-05               | yes               | nucleus               | uncharacterized                 |
| 118270199 | 12            | -3.3               | 4.8E-07               | 1.9 <sup>h</sup>    | 1.6E-03               | yes               | cytoplasm             | uncharacterized                 |
| 118276924 | 2,5           | -3.2               | 5.1E-04               | 1.4 <sup>h</sup>    | 1.9E-02               | yes               | cytoplasm             | ommochrome-binding              |
| 118263030 | 9             | -3.1               | 1.7E-10               | 1.1 <sup>h</sup>    | 1.0E-02               | yes               | cytoplasm             | uncharacterized                 |
| 118263167 | 10            | -5.0               | 5.9E-26               | 1.2 <sup>h</sup>    | 6.9E-03               | yes               | extracellular         | uncharacterized                 |
| 118266038 | 1,3,5,7,10,11 | -2.3               | 4.0E-06               | -1.3                | 2.7E-03               | no                | mitochondria          | farnesyl pyrophosphate synthase |
| 118263545 | 6,11          | -4.1               | 1.0E-12               | -1.8                | 4.1E-03               | no                | membrane              | robo1                           |
| 118278607 | 2,3,9,10      | -1.4               | 2.3E-02               | 1.6 <sup>h</sup>    | 4.1E-02               | no                | nucleus               | lava lamp                       |

Table S8. 27 target genes of the Sfmyb transcription factor that are candidates for contributing to resistance to Vip3Aa.

6<del>3</del>

64 a Based on FPKM (fragments per kilobase of transcript per million mapped reads) from RNA-Seq; negative values 65 indicate downregulated in DH-R, positive values indicate upregulated in DH-R

66 b Probability from comparison between strains or treatments after adjustment for false discovery rate (1)

67 c Based on FPKM from RNA-Seq, negative values indicate downregulated in the dsMyb treatment, positive values 68 indicate upregulated in the dsMyb treatment

69 d Based on previously reported data from DH-S midguts (18) with the parameter Unique peptides ≥1 (2)

70 e Predicted from WoLF PSORT (https://wolfpsort.hgc.jp/) and Phobius (https://phobius.sbc.su.se/)

71 72 f From *S. frugiperda* genome version ZJU\_Sfru\_1.1

(https://www.ncbi.nlm.nih.gov/datasets/genome/GCF\_011064685.2/)

73 g No mRNA was detected in DH-R. DH-R/DH-S = 0 and the logarithm of 0 is undefined.

74 h DH-R upregulated relative to DH-S and dsSfmyb downregulated relative to dsGFP (control)

Table S9. Chromosomal location and relative abundance of mRNA in larval midguts of *S. frugiperda* strains DH-R and DH-S for six genes previously reported to affect responses to Vip3Aa (the first three are putative Vip3Aa receptors, the last three putatively defend against Vip3Aa).

|                                          | Short             |                 |           | Count <sup>a</sup> |       | FPKM <sup>b</sup> |       | FPKM             |         |
|------------------------------------------|-------------------|-----------------|-----------|--------------------|-------|-------------------|-------|------------------|---------|
| Complete gene name                       | gene<br>name      | Chromosome      | Gene ID   | DH-S               | DH-R  | DH-S              | DH-R  | log₂ (DH-R/DH-S) | P°      |
| Scavenger receptor-C                     | SRC               | 30              | 118280749 | 18.0               | 8.5   | 0.70              | 0.31  | -1.20            | 0.27    |
| Fibroblast growth factor receptor        | FGFR              | 25              | 118277870 | 141.8              | 129.8 | 2.14              | 1.80  | -0.26            | 0.17    |
| Ribosomal S2                             | S2                | 5               | 118263612 | 355.0              | 148.0 | 29.45             | 11.65 | -1.39            | 2.4E-07 |
| Autophagy related gene 5                 | ATG5 <sup>d</sup> | 4               | 118262572 | 119.0              | 70.3  | 8.60              | 4.71  | -0.91            | 0.24    |
| Phenoloxidase-<br>activating enzyme-like | PAE               | 27 <sup>e</sup> | 118279360 | 4.0                | 9.3   | 0.21              | 0.42  | 1.00             | 0.36    |
| Phenoloxidase<br>subunit 2-like          | PO2 <sup>d</sup>  | 20              | 118275234 | 12.3               | 5.0   | 0.39              | 0.14  | -1.48            | 0.06    |

<sup>a</sup> Mean of normalized counts from three replicates of 24 fourth instar larvae for each strain

78 <sup>b</sup> FPKM, fragment per kilobase of transcript per million mapped reads

<sup>c</sup> based on Wald test.

<sup>80</sup> <sup>d</sup> Expression is numerically lower in DH-R than DH-S, which is opposite of the direction predicted if the putative defensive genes ATG5 and

81 PO2 contributed to resistance in DH-R.

<sup>e</sup> PAE is at 8.34 - 8.35 Mb on chromosome 27, which is outside the region linked with resistance in DH-R.

### 83 SI References

- 84
- 1. Y. Benjamini, Y. Hochberg, Controlling the false discovery rate a practical and powerful approach to multiple testing. J. Roy. Stat. Soc. B 57,
- 86 289-300 (1995).
- 87 2. B. C. Orsburn, Proteome discoverer A community enhanced data processing suite for protein informatics. *Proteomes* 9, 15 (2021).