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Abstract
We study the stochastic dynamics of an arbitrary number of noise-activated cyclic processes, or
oscillators, that are all coupled to each other via a dissipative coupling. The N coupled oscillators
are described by N phase coordinates driven in a tilted washboard potential. At low N and strong
coupling, we find synchronization as well as an enhancement in the average speed of the oscillators.
In the large N regime, we show that the collective dynamics can be described through a mean-field
theory, which predicts a great enhancement in the average speed. In fact, beyond a critical value of
the coupling strength, noise activation becomes irrelevant and the dynamics switch to an effectively
deterministic ‘running’ mode. Finally, we study the stochastic thermodynamics of the coupled
oscillators, in particular their performance with regards to the thermodynamic uncertainty
relation.

1. Introduction

A system of driven, nonlinear coupled oscillators is nontrivial and can quickly lead to complex and
unexpected situations when these oscillators synchronize, like in the famous case of the Millennium bridge
[1]. Generic features of synchronization have been widely studied using minimal models such as the
Kuramoto model [2–5]. Networks of such oscillators give rise to fascinating phenomena such as states
displaying coexistence of synchronization and incoherence, known as chimera states [6].

In biological systems, at the microscopic scale, the interactions are usually mediated by a viscous
medium. For instance, hydrodynamic interactions can cause beating cilia or flagella to become synchronised
[7, 8] displaying emergent phenomena such as metachronal waves [9]. At an even smaller scale, on the scale
of enzymes and molecular motors, many relevant processes are stochastic and thermally-activated: thermal
noise is required to push the system over free energy barriers, e.g. during chemical reactions inside enzymes
or during the mechanical steps of molecular motors. These cyclic processes convert chemical energy into
mechanical energy and heat [10–12].

Enzymes and other catalytically active particles can self-organize in space thanks to the gradients
generated by their nonequilibrium chemical activity [13, 14]. Additionally, the catalytic activity of the
enzymes may be associated to conformational changes or oscillations in the enzyme shape [15, 16]. The
effect of such conformational changes on the spatial dynamics and the rheology of enzyme-rich solutions has
been a topic of great recent interest [17–20]. In this context, a new mechanism for synchronization between
two enzymes was recently reported, for enzymes that undergo conformational changes during their
noise-activated catalytic steps, and which are coupled to each other through a viscous medium [21]. The
model for coupled phase dynamics that emerges after coarse graining the microscopic degrees of freedom in
this system has some very peculiar features and emergent properties that are entirely different from those in
conventional models for synchronization such as the Kuramoto model. In particular, interactions between
phases are dissipative, in the sense that they are mediated not by interaction potentials but rather by the
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Figure 1. (a) Enzymes densely clustered in a biomolecular condensate can mechanically interact with each other. (b) Network
illustrating the ‘all-to-all’ interactions between the coupled oscillators considered here. (c) Each stochastic step corresponds to the
phase ϕ advancing by 2π in a tilted washboard potential, which involves a noise-activated barrier crossing event.

mobility tensor (inverse to a friction tensor) that couples forces to velocities in the system. The same mobility
tensor determines the stochastic noise in the system through the fluctuation-dissipation relation, making the
model thermodynamically-consistent. Additionally, the transition to synchronization with increasing
coupling was found to be due to a global bifurcation in the underlying dynamical system, defined on the
torus.

Inspired by these observations on the behavior of two coupled enzymes, here we generalize the model to
a system composed of an arbitrary number of stochastic oscillators, which interact with each other through a
constant coupling of the dissipative kind. This could for example represent the interactions between enzymes
in an enzyme-rich biomolecular condensate or metabolon [22, 23], see figure 1(a); but also any generic
collection of noise-activated processes that are dissipatively coupled to each other. For simplicity, and in the
spirit of minimal models of synchronization such as the original Kuramoto model [2], we neglect the spatial
structure and consider that each phase coupled with all other phases with equal strength, see figure 1(b). The
individual dynamics of each process is governed by a tilted washboard potential, see figure 1(c). The resulting
equations are rather generic and thus may find application as minimal models of not only catalytic processes
but also other excitable systems [24], such as Josephson junctions [25–28] or firing neurons [29–31].

Because the model studied here is thermodynamically-consistent, it allows us to examine detailed
features of its thermodynamic performance. A theoretical framework to understand the thermodynamics of
fluctuating systems has been developed in recent years [32]. Of particular interest is a bound on the precision
achievable by driven processes, determined by their entropy production, or equivalently their heat
dissipation, known as the thermodynamic uncertainty relation (TUR) [33, 34]. There is a growing interest in
understanding how synchronization affects such thermodynamic measures of precision or efficiency, with
applications to e.g. beating cilia [35], generic Kuramoto oscillators [36], or molecular clocks [37].

The paper is organized as follows. We begin by presenting the model of dissipatively coupled oscillators
in its most general form, followed by its particularization to the minimal model studied here of N identical
oscillators with global (all-to-all) coupling. We then present the results of stochastic simulations for small
and large numbers of oscillators. Next, we focus on the large N limit, for which we show that the dynamics
can be well understood using a mean-field theory. Finally, we study the stochastic thermodynamics of
precision in the presence of coupling in our system.

2. Model

2.1. Dissipative coupling
We consider stochastic cyclic processes (oscillators) that are coupled to each other not through interaction
forces, but through a mobility tensor that has nonzero off-diagonal components. That is, we will consider
phases ϕα with α= 1, . . . ,N which evolve according to the coupled overdamped Langevin equations

ϕ̇α =−Mαβ∂βU+ kBTΣαν∂βΣβν +
√
2kBTΣαβξβ (1)

where ∂β ≡ ∂
∂ϕβ

, the Einstein summation convention for repeated indices is used, and the stochastic

equation is to be interpreted in the Stratonovich sense. Here, the first term represents the deterministic
velocity of the phases. The mobility tensorMαβ(ϕ1, . . . ,ϕN) can in principle be phase-dependent. For the
dynamics to be thermodynamically consistent, this mobility tensor must be symmetric and positive definite
[38, 39]. Because there are no interaction forces between the phases, the potential U is separable and may be
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written as U(ϕ1, . . . ,ϕN) = V1(ϕ1)+ . . .+VN(ϕN). The third term represents the noise where, in order to
satisfy the fluctuation-dissipation relation, Σ is the square root of the mobility tensor defined via
Mαβ =ΣανΣβν , and ξβ is unit white noise such that ⟨ξβ(t)⟩= 0 and ⟨ξα(t)ξβ(t ′)⟩= δαβδ(t− t ′). This
structure necessarily introduces correlations between the noise experienced by different oscillators. The
second term represents a spurious drift term that is only present when the noise is multiplicative, i.e. when
the mobility tensor is phase-dependent.

The stochastic dynamics given by (1) may equivalently be written in the Fokker-Planck representation for
the evolution of the probability distribution P(ϕ1, . . . ,ϕN; t) as

∂tP= ∂α {Mαβ [kBT∂βP+(∂βU)P]} , (2)

which highlights that, when the choice of potential allows it, the system will relax to a steady state
corresponding to thermodynamic equilibrium such that we recover the Boltzmann distribution
P(ϕ1, . . . ,ϕN)∝ exp[−U(ϕ1, . . . ,ϕN)/kBT], independently of the choice of mobility tensorMαβ . In fact,
because the potential U is separable, we may write P(ϕ1, . . . ,ϕN) =

∏N
α=1Pα(ϕα), with each phase

independently satisfying the Boltzmann distribution Pα(ϕα)∝ exp[−Vα(ϕα)/kBT].
Importantly, when the choice of potential does not allow thermodynamic equilibrium, as in driven but

periodic systems such as the ones that we will consider in the following, the system relaxes to a
nonequilibrium steady state which (i) does depend on the choice of the mobility tensorMαβ and therefore
on the strength of the coupling between oscillators determined by its off-diagonal components; and (ii) is no
longer separable, so that there are correlations between the different phases.

A coupling of the form given by (1) or equivalently (2) arises naturally in processes that are coupled to
each other through mechanical interactions at the nano- and microscale, as these are mediated by viscous,
overdamped fields described by low Reynolds number hydrodynamics [39]. It represents a form of dissipative
coupling, as it can be understood as arising from taking the overdamped limit of full Langevin dynamics in
the presence of a friction force on phase ϕα going as fα =−Bαβϕ̇β , where B≡M−1 is a friction tensor.

2.2. Noise-activated processes with global coupling
As anticipated, we will consider here N identical driven, noise-activated oscillators. This implies that the
potentials for each phase are chosen to be identical, i.e. U(ϕ1, . . . ,ϕN) = V(ϕ1)+ . . .+V(ϕN), and V(ϕ) is
chosen to be a tilted washboard potential of the form V(ϕ) =−Fϕ − vcos(ϕ+ δ), with F< v and
δ = arcsin(F/v) so that the minima are located at multiple integers of 2π. The maxima of the potential are in
turn located at ϕmax ≡ π − arcsin(F/v) (mod 2π). The values of v and the driving force F can be related to
the energy barrier Eba of the noise-activated step and to the energy E∗ released in each step, see figure 1(c),
through Eba = [2

√
1− (F/v)2 − (F/v)(π − 2δ)]v and E∗ = 2πF [21]. For an uncoupled oscillator, the height

of the energy barrier relative to the thermal energy kBT controls the typical waiting time between stochastic
steps, which scales as eEba/kBT for Eba ≫ kBT [40]. Note that, when F> v, the potential no longer displays
energy barriers and becomes monotonically decreasing, so that the dynamics are no longer noise-activated.

We will consider the simplest possible dissipative coupling between the oscillators, where each of them
interacts equally with all others via a mobility matrixMαβ = µϕ M̃αβ with constant diagonal coefficients
M̃αα = 1, and constant off-diagonal coefficients M̃αβ = h/(N− 1) for α ̸= β. Here, µϕ sets the mobility
scale, and h is a dimensionless parameter that determines the strength of the coupling. This can be seen as an
N-dimensional generalization of the two-dimensional problem studied in [21], with the additional
simplification that the off-diagonal coefficients are constant, as it was shown in that work that this
simplification does not affect the observed phenomenology. For the mobility matrix to be positive definite,
the coupling strength must satisfy−1< h< N− 1. We will focus on positive values of h, for which the
synchronization phenomenology is observed. Note that, since we choose the mobility matrix to be constant,
the spurious drift term in the Langevin dynamics (1) vanishes.

With these choices, the equations of motion (1) become

ϕ̇α =
N∑

β=1

{
µϕ M̃αβ [F− v sin(ϕβ + δ)]+

√
2µϕ kBTΣ̃αβξβ

}
(3)

with Σ̃ defined by M̃αβ = Σ̃ανΣ̃βν . We remind that the parameter δ does not affect the dynamics, and is
only used to ensure that the minima of the potential are located at integer multiples of 2π. Choosing
(µϕ v)−1 as a unit of time, the dynamics then depend only on the number of oscillators N, as well as three
dimensionless parameters: the shape of the potential is determined by F/v, the strength of the noise by
kBT/v, and the strength of the coupling by h. Note that, to facilitate comparison with the experimentally
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measurable characteristics of the driving potential Eba and E∗ (figure 1(c)), F/v and kBT/v can be mapped
onto the dimensionless ratios Eba/E∗ and kBT/Eba, which we will report in all figures.

The deterministic (T= 0) version of the Langevin equation (3) can, with the redefinitions ω ≡
(1+ h)Fµϕ, a≡ µϕ v(1− h

N−1 ), K≡ hµϕ v
N

N−1 , and θα ≡ ϕα − δ+π, be rewritten as θ̇α = ω+ a sinθα

+ K
N

∑N
β=1 sinθβ . It is worth noting that this dynamical system has been previously studied in the context of

superconducting Josephson junction arrays [25–28]. These studies however focused mostly in the barrier-free
regime where no fixed points exist (F> v or equivalently ω > a+K), and mostly in its deterministic
behavior, with a few exceptions in which an ad-hoc white noise was added [25, 27]. Here, on the other hand,
we will focus on the stochastic dynamics of the system in the noise-activated regime (F< v or equivalently
ω < a+K) where fixed points exist, and in the presence of a thermodynamically-consistent noise (satisfying
the fluctuation-dissipation theorem, which introduces correlations in the noise experienced by different
oscillators). Furthermore we will focus on quantifying its collective, nonequilibrium stochastic dynamics
(average speed, phase diffusion coefficient, phase correlations, and thermodynamic costs of precision), rather
than on the properties of the underlying dynamical system. Our model is also distinct from the ‘active
rotator’ model for the synchronization of excitable units previously studied [41–43], as the latter is based on
a Kuramoto-type coupling and uncorrelated noise, with the two models showing distinct phenomenologies.

A particularly interesting feature of our dissipative coupling is that the location and the nature of the
fixed points of the underlying deterministic dynamics are by construction unaffected by the strength of the
coupling h, and always located at the points at which the forces vanish, i.e. at the minima or maxima of the
potential. In particular, within the unit cell−π < ϕα < π there is always a stable fixed point located at the
origin (ϕα = 0 for all α= 1, . . . ,N) corresponding to all phases being at the minimum of the potential; an
unstable fixed point (located at ϕα = ϕmax for all α= 1, . . . ,N) corresponding to all phases being at the
maximum of the potential; and 2N − 2 saddle points located at all other vertices of the N-dimensional
hypercube spanned by 0 and ϕmax, corresponding to some phases being at the minimum and others at the
maximum of the potential. As a consequence, any bifurcation in the deterministic dynamics occurring as a
function of the coupling strength hmust be a global bifurcation.

2.3. Quantitative measures of the stochastic dynamics
In order to quantitatively assess synchronization, we must construct an order parameter. The usual order
parameter in traditional synchronization problems, such as the Kuramoto model [2], is r≡ | 1N

∑N
α=1 e

iϕα |.
However, in the context of noise-activated oscillators such as those studied here, the oscillators tend to spend
a major fraction of the time in the stable fixed point corresponding to the minima of the driving potential
(here at integer multiples of 2π), independently of the strength of the coupling. The order parameter r is thus
not suitable in this context, as it would give r≈ 1 even for uncoupled oscillators.

Following Agudo-Canalejo et al [21], we will use the correlations between the stochastic dynamics of the
oscillators as an order parameter. In particular, defining δϕα(τ ; t)≡ ϕα(t+ τ)−ϕα(t), we may define the
diffusion coefficient Dϕ of an individual oscillator as

⟨[δϕα(τ ; t)−⟨δϕα(τ ; t)⟩α,t]2⟩α,t ∼
τ→∞

2Dϕ τ (4)

where the operator ⟨. . .⟩α,t denotes a combined average over the N oscillators and over time. The∼ symbol
indicates that the equality is achieved asymptotically as τ →∞. We may also define the diffusion coefficient
Dδ of the phase difference between a pair of oscillators, as

⟨[δϕα(τ ; t)− δϕβ(τ ; t)]
2⟩αβ,t ∼

τ→∞
2Dδτ (5)

where the operator ⟨. . .⟩αβ,t denotes a combined average over the N(N− 1)/2 pairs of oscillators and over
time. Finally, we can define the correlation C as the long τ limit of the correlation function (dimensionless
covariance) between pairs of oscillators, i.e.

⟨[δϕα(τ ; t)−⟨δϕα(τ ; t)⟩α,t][δϕβ(τ ; t)−⟨δϕβ(τ ; t)⟩β,t]⟩αβ,t
⟨[δϕα(τ ; t)−⟨δϕα(τ ; t)⟩α,t]2⟩α,t

∼
τ→∞

C (6)

which we will use as our order parameter for synchronization. It is straightforward to show that C is related
to the two diffusion coefficients defined above through

C= 1− Dδ

2Dϕ
. (7)

In particular, for uncorrelated oscillators we have Dδ = 2Dϕ and thus C= 0, whereas for perfectly correlated
oscillators we have Dδ = 0 and thus C= 1. Anticorrelations would correspond to C< 0, with a lower bound
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C=−1/(N− 1) for maximally anticorrelated oscillators. Note that this measure of correlations can be easily
generalized to the case of non-identical processes. Lastly, we will define the average speed Ω of the
oscillators as

⟨δϕα(τ ; t)⟩ ∼
τ→∞

Ωτ. (8)

We note that, in these definitions, combined ensemble and time averages were performed to make
optimal use of our simulation data. This combined averaging is justified by the ergodicity of our stochastic
dynamics together with the symmetry inherent to the global coupling, and we verified the equivalence
between time averages and ensemble averages in our simulations. Ergodicity necessarily arises in the finite N
stochastic dynamics because the Langevin dynamics (1) are equivalent to the Fokker–Planck equation (2),
which has a unique steady state to which all solutions relax at sufficiently long times [44, 45]. This is true
even if the corresponding deterministic dynamics may show chaotic behavior, as has been shown for small
number of oscillators in the context of Josephson junctions [28]. An example of how the quantitative
measures above are extracted from simulations is shown in the supplementary material.

3. Results

3.1. Stochastic simulations
3.1.1. Small number of oscillators
For the case N = 2 [21], we previously found that the system exhibits synchronization and an enhanced
average speed above a critical h. Examples of stochastic trajectories resulting from numerical solution of the
Langevin dynamics (1) for N = 2 are shown in figures 2(a) and (b), where the steps (jumps) correspond to a
complete oscillatory cycle, in which the phase advances by 2π by crossing over the energy barrier (see
figure 1(c)). Note that, here and throughout the text, time is given in units of (µϕ v)−1. One clearly observes
how, at zero or low coupling (figure 2(a)), the trajectories appear independent, whereas at high coupling
(figure 2(b)) the two oscillators are strongly correlated. Moreover, the average speed increases: within the
same timescale, a much larger number of steps is observed in the presence of coupling, and long ‘runs’ of
several consecutive steps are observed, as indicated by the black arrows.

A similar behavior is observed for a larger, but still small, number of oscillators (2< N≲ 25). As seen in
figures 2(c) and (d), with increasing coupling the oscillators become correlated, the average speed increases,
and long runs become apparent (black arrows).

The dynamics are quantified in figure 3 as a function of number of oscillators N and strength of the
coupling h. The average speed increases with increasing coupling for all N, see figure 3(a), although this
increase is significantly more pronounced at higher N. On the other hand, synchronization as measured by C
increases monotonically with h at small N, while it appears to peak at intermediate h for larger N, see
figure 3(b). The minimal value of h required to observe synchronization (large C) is also smaller for small N.
Interestingly, for sufficiently large values of N the phase diffusion coefficient Dϕ appears to peak at a specific,
N-dependent value of the coupling, see figure 3(c). The phase-difference diffusion coefficient Dδ also
appears to peak at intermediate h (figure 3(d)) for sufficiently large values of N, but to a much smaller extent
than Dϕ, so that all in all the order parameter C still peaks at an intermediate h for larger values of N.

It is worth noting that enhanced phase diffusion in a tilted washboard potential has been previously
reported for the motion of a single phase in such a potential [46, 47], in which case it was related to the
transition from noise-activated dynamics to deterministic dynamics mediated by the saddle-node
bifurcation of the system at F= v. However, in our case we have F< v in all cases, i.e. the dynamics remain
noise-activated and integer values of 2π always correspond to stable fixed point of the ϕα’s, independently of
the strength of the coupling h. A relation between these two distinct systems can still be established (and will
be further clarified when we study the large N limit in section 3.2). In [21], exploring the case N = 2, it was
found that at a critical value of h a global bifurcation of the underlying deterministic dynamical system
(kBT= 0) occurs, giving rise to a splitting of the (ϕ1,ϕ2) phase space, which corresponds modulo 2π to a
torus, into two disconnected regions, see figures 4(a)–(c). In all three panels, the whole blue region
corresponds to the basin of attraction of the (ϕ1,ϕ2) = (0,0) stable fixed point. This region is further
subdivided into four subregions with different shades of blue marked (0,0), (1,0), (0,1), and (1,1), which
indicate the winding of trajectories around the torus as they reach the fixed point, i.e. whether when
unwrapping the torus the trajectories would reach the fixed point at (0,0), (2π,0), (0,2π), or (2π,2π),
respectively. These subregions are initially (figure 4(a)) separated by heteroclinic orbits joining the unstable
fixed point [in red, located at (ϕmax,ϕmax) as described in section 2.2] and the saddle points [in blue, located
at (ϕmax,0) and (0,ϕmax)]. At the global bifurcation, these orbits collide and form a heteroclinic cycle.
Beyond the bifurcation (figures 4(b) and (c)), we find two homoclinic cycles connecting the saddle points to
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Figure 2. Stochastic trajectories for small number of oscillators, with N= 2 in (a), (b) and N= 10 in (c), (d). Without coupling
[h= 0 in (a) and (c)], the dynamics are clearly noise activated, with single steps occurring independently for each oscillator. With
coupling [h= 0.5 in (b) and h= 0.75 in (d)], we observe strong correlations among all oscillators, and the dynamics moreover
show multi-step ‘runs’, marked by black arrows. In all panels, Eba/E∗ = 10−2 and kBT/Eba = 0.35.

themselves, in between which a new region (in yellow) corresponding to a band of periodic orbits emerges,
along which ϕ1 and ϕ2 increase deterministically. We refer the reader to [21] for further details on the N = 2
bifurcation. This bifurcation had also been previously reported in a study of two coupled Josephson junctions
[26]. Our work further shows that this bifurcation is responsible for the emergence of synchronization,
enhanced average speed, and the ‘running trajectories’ in the stochastic system [kBT> 0, figures 2(b) and
(d)]. The enhancement in the phase and phase-difference diffusion coefficients observed at intermediate h is
therefore likely related to the transition from purely noise-activated dynamics before the bifurcation, to a
mixture of noise-activated and deterministic dynamics once the periodic orbits have emerged.

Indeed, an analysis of the deterministic dynamics for N > 2 shows that a similar splitting of the phase
space (now an N-torus) into disconnected regions occurs beyond an N-dependent critical value of h, one
region corresponding to the basin of attraction of the fixed point, the others to periodic orbits along which
all ϕα increase deterministically. The regions containing periodic orbits in the case N = 3 can be seen in
figure 4(d). In this case, there are two distinct ‘tubes’ corresponding to periodic orbits in which ϕ1, ϕ2, and
ϕ3 advance in the order (. . .1 2 3 1 2 3 . . .) and (. . .1 3 2 1 3 2 . . .), respectively. For arbitrary N, the number of
higher-dimensional ‘tubes’ containing periodic orbits therefore is (N− 1)!, the number of circular
permutations of N distinct objects, as previously reported in the context of Josephson junction arrays [25].

A global measure of the dominance of a given basin of attraction in the dynamics of a system is the
volume fraction of the phase space occupied by said basin, also known as ‘basin stability’ [48, 49]. We have
measured the volume fraction of the phase space that is occupied by periodic bands as a function of h, for
several values of N, see figure 4(e). For this purpose, we scanned a N-dimensional grid of 30N equally spaced
points in the unit cell−π < ϕα < π for all α, and determined whether the trajectory starting from each
point was periodic, or reached the stable fixed point. To improve the performance of this calculation we used
the symmetries of the equations (ϕα ↔ ϕβ), where the exact number of points used was

(L+N−1
N

)
, with

L= 30. Periodic trajectories were operationally defined as trajectories that reach ϕα = 6π for any α at some
t> 0, which implies that they do not end at the stable fixed point of the starting unit cell or any of its nearest
neighbors. Beyond the critical h, the volume fraction grows from zero and saturates towards a limiting value
as h increases. Interestingly, with increasing N, the growth of this volume fraction beyond the critical h
becomes sharper, and the limiting value at large h becomes closer to one. Extrapolating this trend we may

6



New J. Phys. 25 (2023) 093014 M Chatzittofi et al

Figure 3. Quantification of the dynamics for small number of oscillators. (a), (b) Heatmaps of the average speed (a) and the
synchronization order parameter (b), as a function of coupling strength and number of oscillators. (c), (d) Phase diffusion
coefficient (c) and phase-difference diffusion coefficient (d) as a function of coupling strength, for several values of the enzyme
number. Both are normalized by their value in the absence of coupling. The inset in (c) is a zoomed-out version showing the full
N= 2 curve. In all panels, Eba/E∗ = 10−2 and kBT/Eba = 0.5.

speculate that, for large N, a sharp transition occurs at a critical h at which the phase space becomes almost
entirely occupied, or ‘crowded’ [25], by periodic orbits. In figure 4(f), some stochastic trajectories are shown,
for h beyond the critical value and several values of N. For N = 2 we see longer periods in which the system is
‘resting’ at the fixed point and the phases do not advance, interspersed with short deterministic runs. As N is
increased, the resting periods become shorter while the runs become longer, as one may expect from the
considerations just described regarding the phase space volume occupied by periodic orbits.

3.1.2. Large number of oscillators
As the number of oscillators increases, the behavior observed in stochastic simulations becomes largely
independent of this number. We observe that, beyond an N-independent critical value of h, trajectories
mostly run deterministically, without barely any resting periods at which the oscillators visit the fixed point
of the dynamics, see figure 5. The stochastic dynamics are quantified for various values of N in figure 6. All
relevant quantities Ω, Dϕ, and Dδ depend only very weakly on N and approach an asymptotic limit as
N→∞, with Dϕ showing the slowest approach towards this limit.

Interestingly, however, the synchronization order parameter becomes strongly nonmonotonic as a
function of the coupling h, see figure 6(b): while synchronization is absent at low h, it rises sharply as we
approach the critical h, but then quickly decreases back to zero (uncorrelated trajectories) as h is further
increased. Intuitively, in light of the results described in the previous section, this implies that the oscillators
are most correlated the phase space volume fraction occupied by periodic orbits is intermediate, neither too
small (in which case trajectories are predominantly noise-activated, with independent steps by each
oscillator) not too large (in which case trajectories are effectively deterministic and uncoupled).

7



New J. Phys. 25 (2023) 093014 M Chatzittofi et al

Figure 4. (a)–(c) Phase portraits of the deterministic dynamics for N= 2, with Eba/E∗ = 10−2 and h= 0,0.2,0.5 respectively.
The differently-shaded blue regions correspond to basins of attraction of the stable fixed point at (0,0) which wind differently
around the torus. The yellow region in (b), (c) is the ‘running band’ containing periodic orbits, which grows with increasing h
beyond the critical value [21]. (d) The two ‘running tubes’ containing periodic orbits that appear beyond the critical coupling for
N= 3, one corresponding to trajectories in which the phases advance in the (123) order (in green), the other in the (132) order
(in yellow). Here, Eba/E∗ = 10−2 and h= 0.45. In (a)–(d), the green, red, and blue circles represent the stable, unstable, and
saddle fixed points of the dynamics. (e) The fraction of the phase space volume occupied by running bands as a function of the
coupling strength, for several values of N. (f) Stochastic trajectories for the same values of N when h= 0.6 and kBT/Eba = 0.3. In
(e), (g), Eba/E∗ = 2.5× 10−3.

Figure 5. Stochastic trajectories for large number of oscillators N= 50. (a) For h= 0.5, below the critical coupling, trajectories are
largely uncorrelated, with single noise-activated steps. (b) For h= 0.8, just above the critical coupling, trajectories are strongly
correlated and mostly run deterministically. Here, Eba/E∗ = 10−2 and kBT/Eba = 0.5.

3.2. Mean-field theory in the largeN limit
3.2.1. General case
The fact that the oscillators become uncorrelated in the large N limit suggests that we may describe the
behavior of the system through a mean-field theory. Then we begin from the Fokker-Planck equation of this
model which, following (2), is given by

∂tP(ϕ1, . . . ,ϕN; t) = ∂α
{
µϕ M̃αβ [kBT∂βP+(∂βV(ϕβ))P]

}
. (9)
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Figure 6. Quantification of the dynamics for large number of oscillators. (a) Average speed as a function of coupling strength for
several values of N. (b) Heatmap of the synchronization order parameter as a function of coupling strength and the number of
oscillators. (c) Phase diffusion coefficient and (d) phase difference diffusion coefficient as a function of coupling strength for
several values of N. Values in (a), (c), (d) are normalized by the value in the absence of coupling. In all panels, Eba/E∗ = 10−2 and
kBT/Eba = 0.5, and the dashed black line corresponds to the critical coupling h∗ ≈ 0.64 predicted by the mean-field theory.

To study the large N limit we first coarse grain over (N− 1) degrees of freedom to get an equation for the
one-particle distribution ρ(ϕ; t),

ρ(ϕ; t) =

ˆ
dϕ2 . . .dϕNP(ϕ, . . . ,ϕN; t). (10)

By assuming that the processes are uncorrelated, so that the two-particle distribution reads
P2(ϕ,ϕ1; t) = ρ(ϕ; t)ρ(ϕ1; t), we close the hierarchy of equations and obtain an equation for the one-particle
distribution,

∂tρ(ϕ; t) = µϕ ∂ϕ {kBT∂ϕ ρ− [F+ hfave − v sin(ϕ+ δ)]ρ} , (11)

where

fave =−
ˆ 2π

0
dϕρ(ϕ; t)

∂V(ϕ)

∂ϕ
(12)

is the average force experienced by an oscillator. Therefore, in the mean-field approximation each oscillator
feels an effective driving force Feff = F+ hfave, independent of the number of enzymes, with the strength of
the deviation from the true driving force F governed by h. Notice that the equation of motion becomes
nonlinear and nonlocal in ϕ, due to the presence of ρ in the definition of fave.

Nonlinear partial differential equations such as equation (11) can have many solutions, including
solutions that oscillate at long times and chaotic solutions [28, 41, 43]. Because we want to understand the
results of the stochastic simulations at large but finite N described above, however, we will focus only on

9



New J. Phys. 25 (2023) 093014 M Chatzittofi et al

stationary (steady state) solutions satisfying ∂tρ(ϕ; t) = 0, which are of particular relevance. The steady
state(s) ρss(ϕ) of equation (11) can be found by imposing the condition of constant flux

− J/µϕ = kBT∂ϕ ρss − [F+ hfave − v sin(ϕ+ δ)]ρss, (13)

where J corresponds to the flux. This problem is identical to that of finding the steady state distribution of a
single particle in a washboard potential with driving force Feff = F+ hfave, which is well studied and easily
solved using standard methods [50], except that here one must additionally solve for fave in the implicit
equation fave =

´ 2π
0 dϕρss(ϕ)[F− v sin(ϕ+ δ)] (note that ρss depends on fave), required for self-consistency,

see (12). Armed with this self-consistent value of fave and thus of Feff, which is a function of all parameters of
the system and in particular of the coupling h, we can then obtain the average speed Ω and the phase
diffusion coefficient Dϕ (which corresponds to Dδ/2 given the absence of correlations) using the known
results for a single particle in a tilted washboard potential [46, 47, 50]. Additionally, we may calculate a
critical value of the coupling h= h∗ at which Feff = v, i.e. the value of the coupling for which the energy
barriers of the effective washboard potential vanish and the dynamics become deterministic (downhill). This
further showcases the analogy between the giant diffusion observed at F= v for a single particle in a
washboard potential, and that seen at h= h∗ for both the phase and phase-difference diffusion coefficients in
the present work.

The values for Ω, Dϕ, and Dδ obtained from this mean-field theory are compared to those obtained from
stochastic simulations with N = 200 in figure 7, for three different values of the noise kBT. We observe an
excellent match, except for Dϕ at the critical coupling, which is underestimated particularly for low
temperatures (as described above, the limit N→∞ is approached slowly for Dϕ). Interestingly, we find that
whether the transition to a running state with increasing h is continuous or discontinuous in the mean field
theory depends on whether the temperature is above or below a critical temperature, which for
Eba/E∗ = 10−2 as used in figure 7 we find to be kBT/Eba ≃ 0.48. Above the critical temperature, a single
branch of solutions exists, with monotonically increasing average speed, see figures 7(a)–(d). Below the
critical temperature, on the other hand, three different branches of stationary solutions exist: a slow or
arrested stable branch, a fast or running stable branch, and an unstable branch marking the transition state
between the two, see figures 7(e) and (f). The transition from the arrested to the running state is
discontinuous, with both states coexisting at an intermediate range of h-values. In this coexistence region,
the stochastic simulations at finite but large N show that the average speed interpolates between that of the
arrested and the running states of the mean field theory, see figure 7(f), whereas the phase diffusion
coefficient is greatly enhanced, see figure 7(e). This is consistent with the system stochastically switching
between the arrested and running states.

In figure 8, the critical coupling h∗ at which Feff = v and the dynamics become effectively deterministic is
shown as a function of the shape of the washboard potential [Eba/E∗, see figure 1(c), which is in one-to-one
correspondence with F/v], for various values of the noise strength. This line divides the parameter plane into
two regions corresponding to noise-activated and deterministic dynamics. Additionally, the critical coupling
h∗ obtained from the mean-field theory is plotted as the vertical line in figure 6, again with excellent
agreement. As expected, it marks the transition between noise-activated and deterministic dynamics.

3.2.2. Limit of vanishing noise
Further analytical progress is possible in the limit of vanishing noise T→ 0. Like in the case of small but finite
temperatures, there are several steady state solutions satisfying (13). One trivial solution, independent of all
parameters, is the arrested solution (J= 0) in which all oscillators are located at the stable fixed point ϕ= 0 of
the dynamics, with a Dirac delta distribution ρss(ϕ) = δ(ϕ). The non-trivial solutions (J> 0) corresponding
to the running state and the unstable branch are obtained by directly solving for ρss in (13), giving

ρss(ϕ) =
1

2π

√
(F+ hfave)2 − v2

F+ hfave − v sin(ϕ+ δ)
(14)

where J has been used to enforce normalization
´ 2π
0 ρssdϕ = 1. Note that these steady states are only

well-defined when Feff > v, so that the effective potential admits deterministic dynamics. Using (14) in the
self-consistency condition gives fave =

√
(F+ hfave)2 − v2 − hfave and, solving for fave, we obtain two solutions

given by

f±ave =
Fh±

√
F 2(1+ h)2 − (1+ 2h)v2

1+ 2h
. (15)

The solution with the plus sign corresponds to the stable running steady state, whereas the solution with the
minus sign corresponds to the unstable branch. Like in the case of small but finite temperatures, this
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Figure 7. Comparison between stochastic simulations for large number of oscillators (N= 200) and the predictions of our
mean-field theory. The noise strength is kBT/Eba = 1 in (a), (b), 0.5 in (c), (d), and 0.44 in (e), (f). As a function of coupling
strength, we show (a), (c), (e) the phase and phase-difference diffusion coefficients, normalized to their value in the absence of
coupling; and (b), (d), (f) the average speed (in units of µϕ v). In all panels, markers correspond to stochastic simulations and
black lines to the mean field theory at finite temperature. In (b), (d), (f), the mean field theory in the zero temperature limit is
shown in blue. At high temperatures [(a)–(d)] the transition to a running state is continuous. At low temperatures [(e), (f) and
T= 0 limit] it is discontinuous, and there are three distinct coexisting branches, including a stable running branch (solid), a
stable arrested branch (dashed), and an unstable branch (dotted) which represents the transition state between arrested and
running states. The inset in (e) is a zoomed-out version showing the high peak in Dϕ from simulations. In the T= 0 limit, the
running and unstable branches exist only for h ⩾ h∗T=0, with the critical coupling h∗T=0 given by equation (16), and their speed
given by equation (18). In all panels, Eba/E∗ = 10−2.

unstable branch corresponds to the transition state between the arrested state and the running state. These
two solutions are real only when the term inside the square root is positive, which is possible when

h>
v2 − F 2 +

√
v2 − F 2

F 2
≡ h∗T=0 (16)

and serves to define the critical value of the coupling h∗T=0 above which deterministic, ‘running’ trajectories
exist in the vanishing noise limit. Naturally, such a critical coupling is only well-defined when energy barriers
are present in the true washboard potential (F< v), and h∗T=0 → 0 from above as F→ v from below. The
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Figure 8. Parameter plane for the collective dynamics of a large number of dissipatively-coupled noise-activated processes, as a
function of the coupling strength h and the shape of the washboard potential Eba/E∗. The lines correspond to the critical coupling
h∗ above which trajectories become effectively deterministic, as calculated from the mean-field theory, for different values of the
noise strength. The T= 0 line (blue) corresponds to equation (16).

critical coupling given by equation (16) is shown as a function of Eba/E∗ (which is in one-to-one
correspondence with F/v) as the T= 0 line in figure 8; and as the vertical lines in figures 7(b), (d) and (f)).

Interestingly, at the critical coupling we do not find Feff(h∗T=0) = v as one might have naively expected,
but rather

Feff(h
∗
T=0) = F+ h∗T=0fave(h

∗
T=0) =

v2

F
(17)

which implies that Feff(h∗T=0)> v when F< v, i.e. the effective washboard potential is already beyond the
critical tilt, and the dynamics are therefore fully deterministic, when the critical coupling is reached. This is a
reflection of the fact that the transition to the running state is discontinuous and noise-activated, as for
h> h∗T=0 the running state still coexists with the arrested state. This also implies that, at the critical coupling,
there is already a finite, non-vanishing average speed Ω of the oscillators in the running state. Indeed, the
average speed for the running and unstable branches may be calculated as

Ω± = 2π J± = µϕ(1+ h)f±ave. (18)

At the critical coupling, both branches coincide and we find

Ω(h∗T=0) = µϕ(1+ h∗T=0)fave(h
∗
T=0) = µϕ v

√
v2 − F 2

F
(19)

which is real and positive for any F< v. The zero temperature average speed of the running (resp. unstable)
branch as given by Ω+ (resp. Ω−) in equation (18) is plotted as the blue solid (resp. dotted) lines in
figures 7(b), (d) and (f)). As discussed above, these two branches exist only for h⩾ h∗T=0. Additionally, the
arrested branch is plotted as the dashed blue line (Ω= 0), and exists for all h. The running branch in this
T= 0 limit is in very good agreement with both the stochastic simulations and the mean-field theory at finite
temperature, serving as further confirmation that the dynamics beyond the critical coupling are largely
deterministic.

3.3. Stochastic thermodynamics of precision
The coupling-induced transition marks a very strong change in the dynamics of the system, from
noise-activated to deterministic. It is thus interesting to explore how does the transition affect the precision
of the oscillators, which is bounded from below by the entropy production rate in the system [32].
Specifically, the TUR states the bound [33]

σ̇tϵ2 ⩾ 2kB, (20)
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Figure 9. Dimensionless thermodynamic uncertainty ratio Q as measured in our stochastic simulations, as a function of coupling
strength, for (a) weak coupling 0 ⩽ h ⩽ 1 and several values of the number of oscillators N; and (b) the full range of coupling
0 ⩽ h< N− 1 and N= 200. In both panels, the black dashed line corresponds to the lower bound Q= 1 given by the TUR,
which is satisfied for all h as expected. For sufficiently large, but not too large values of the coupling, an enhancement in precision
relative to that in the absence of coupling (h= 0) is possible. This corresponds to the shaded region in (b). The inset in (a) is a
zoomed-out version showing the full curve for N= 2. In both panels, Eba/E∗ = 10−2 and kBT/Eba = 0.5.

where σ̇ is the entropy production rate, and ϵ2 is the relative uncertainty defined as

ϵ2 =
⟨X2⟩− ⟨X⟩2

⟨X⟩2
, (21)

where X is the observable of interest. This inequality is crucial, since it implies that a higher precision in the
catalytic rate (smaller ε) requires higher entropy production or equivalently heat dissipation (higher σ̇). In
our model the observable of interest is the total amount of phase advanced by the oscillators

X=
N∑
i

ϕi. (22)

The entropy production rate σ̇ is easily calculated as

σ̇T= F⟨Ẋ⟩, (23)

and is directly related to the free energy E∗ = 2πF released in each noise-activated step, see figure 1(c).
In figure 9, we plot the dimensionless thermodynamic uncertainty ratio Q≡ σ̇tϵ2/(2kB) as a function of

the coupling h, as measured in our stochastic simulations for several values of N. According to the TUR (20),
satisfies Q⩾ 1. A process satisfying Q= 1 is performing optimally from a thermodynamic perspective (as
precisely as possible given its energy dissipation). We see that, as expected, the TUR is always respected. The
behavior of Q with increasing h is strongly non-monotonic (with the exception of the case N = 2). Starting
from the uncoupled case h= 0, Q first increases with increasing h, in the regime of noise-activated dynamics.
After peaking around the critical h= h∗, however, Q sharply decreases as h is further increased and we
venture further into the deterministic regime. Values of Q smaller than the value Q(h= 0) are observed in
this regime, implying that the coupling can enhance the thermodynamic performance of the oscillators.
Finally, as we approach the upper bound of h< N− 1 required by the positive definiteness of the mobility, Q
is observed to rise again. We note, however, that the regime 1≪ h< N− 1 is somewhat artificial, as it
corresponds to cases where the effects of cross-interactions between oscillators are much stronger than those
of self-interactions. Moreover, this regime only exists for finite N and becomes inaccessible in the
thermodynamic limit N→∞.

4. Conclusions

We have studied a minimal model describing the collective dynamics of noise-activated cylic processes, or
stochastic oscillators, that are coupled to each other through a dissipative coupling. That is, the processes are
not coupled to each other through an interaction potential (or interaction force), but through the mobility
tensor that connects forces to velocities in the overdamped dynamics. This mobility tensor also defines the
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properties of the stochastic noise through the fluctuation-dissipation relation, ensuring that the dynamics are
thermodynamically-consistent and relax to thermodynamic equilibrium when such an equilibrium is
available. Previously, we have shown how this kind of coupling arises naturally for processes that are
mechanically coupled (e.g. physically or through hydrodynamic interactions) in an overdamped, viscous
medium [21].

For low N, where N is the number of coupled oscillators, we found results analogous to those previously
obtained for N = 2 in [21]. Beyond a critical coupling h∗, strong synchronization (as measured by the
correlation function) and an enhancement in the average speed of the processes is observed. This transition
can be understood as arising from a global bifurcation of the underlying dynamical system, defined on the
N-torus, which leads to the emergence of periodic orbits that represent ‘running’ trajectories, along which
the phases of all the oscillators increase deterministically.

For large N, synchronization becomes confined to a narrow region near the critical coupling h∗. Below
h∗, the dynamics are uncorrelated and stochastic (noise-activated). Above h∗, they are uncorrelated and
effectively deterministic, and the average phase speed becomes greatly enhanced. We can understand this
effect in two complementary ways: (i) analysis of the underlying dynamical system shows that, at large N, the
volume fraction of the phase space occupied by periodic orbits increases very sharply at the bifurcation; and
(ii) a mean-field theory shows that the energy barriers in the effective potential landscape experienced by
each oscillator vanish at the critical coupling, and the dynamics become deterministic (downhill). The
mean-field theory provides a great match to the results of stochastic simulations at large N and allows for
analytical prediction of the critical coupling and the average speed of the oscillators, particularly in the limit
of low noise.

Finally, we have shown that the oscillator dynamics can become more optimal in the presence of
coupling, in the context of the trade-off between precision and entropy production described by the TUR.
This occurs within the deterministic regime of the dynamics, beyond the critical coupling h∗. Over the full
range of coupling strengths, the behavior relative to the thermodynamic bound on precision is rather
complex, and signatures of the stochastic-to-deterministic transition at the critical coupling are clearly
apparent in the precision.

Due to its simplicity, its general applicability to the description of coupled microscopic processes [21],
and its intriguing features in the context of nonequilibrium statistical physics and dynamical systems theory,
we believe that the model presented here merits significant further investigation. Future work may consider
local interactions between the nearest neighbours rather than all-to-all interactions as studied here,
endowing the model with a spatial structure, as well as the role of quenched disorder [51]. Of great interest
would also be the interactions between non-identical oscillators, as only the synchronization between
identical oscillators has been studied so far. Lastly, one may explore connections to Bose–Einstein-like
condensation in driven scalar active matter [52] when interactions among particles are non-negligible.
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