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Dynamical description of natural systems has generally focused on fixed points, with saddles
and saddle-based phase space objects such as heteroclinic channels and heteroclinic cycles
being central concepts behind the emergence of quasi-stable dynamics or long transients.
Reliable and robust quasi-stable dynamics observed for real, inherently noisy systems is,
however, not met by saddle-based dynamics, as demonstrated here. Generalizing the notion
of ghost states, we provide a complementary framework for emergence of sequential quasi-
stable dynamics that does not rely on (un)stable fixed points, but rather on slow directed
flows on ghost manifolds from which ghost channels and ghost cycles are generated. Moreover,
we show that these novel phase space objects are an emergent property of a broad class of
models, typically used for description of natural systems.

Keywords: ghost states; he stateteroclinic channels; heteroclinic cycles; saddle fixed points;
metastability; quasi-stable dynamics; slow manifolds

Living and man-made, but also ecological or climate
systems are classically described to exhibit asymptotic
behavior, implying that the observed dynamics is re-
tained indefinitely in absence of a perturbation. Math-
ematically, such dynamics corresponds to invariant sets
that represent objects in phase space, the simplest be-
ing stable fixed points that are separated by unstable
fixed points or saddles (Fig. 1(a)-(c)). However, a grow-
ing body of empirical evidence suggests that real-world
systems are often characterized by long transients which
are quasi-stable (with anomalously slow relaxation1,2)
with fast switching between them. The duration of the
quasi-stable dynamical patterns is much larger than one
would expect from the characteristic elementary pro-
cesses, whereas the switching is triggered by external sig-
nals or system-autonomously, and occur on a timescale
much shorter than the one of the preceding dynamical
pattern. Examples include neuronal firing patterns dur-
ing olfactory sensing or discrimination tasks3–5, pattern
matching during camouflage in animals6, cellular signal-
ing systems7,8, ecological9–11, as well as earth and cli-
mate systems12,13. Particularly in the context of neu-
ronal systems, the described dynamics has been often
referred to as metastable14–16. Some forms of these ob-
served long transients have been conceptualized by trap-
ping of the system’s dynamics (“crawl-by”) in the vicinity
of a saddle10, whereas heteroclinic objects consisting of
joined saddles are thought to explain the switching be-
tween different quasi-stable dynamical patterns17,18. Re-
cently, saddle-node “ghosts” have been additionally pro-
posed to underlie transient cell signaling7 or epigenetic
memory8, as well as regime-shifts in marine ecosystems10.

Generalizing the concept of ghost states1,19,20, we pro-
vide here a complementary theoretical framework that

does not rely on (un)stable fixed points, but rather
on transiently stable flows in phase space generated by
ghost manifolds, from which ghost channels and ghost
cycles can be created. The ghost manifold is repre-
sented by a very shallow slope in the quasi-potential
landscape, which transiently captures the incoming tra-
jectories, generating slow dynamics underlying quasi-
stability (Fig. 1(d)). The ghost structures correspond
to Lyapunov-unstable invariant set solutions which are
bounded21, enabling the dynamics to converge to spec-
ified areas in the system’s state space. By defining dy-
namical criteria for the characterization of slow dynam-
ics on the ghost manifolds, we demonstrate that they are
more suitable than saddles and heteroclinic objects for
the description of long transients and for reliable guiding
of trajectories in inherently noisy systems.

Properties of ghost manifolds.—To derive and gener-
alize the basic dynamical characteristics of ghost man-
ifolds, let us consider a conceptual 2D-system of first
order differential equations (Eq. 1): ẋ = F(x), where
x = (x, y) ∈ R2 and F(x) = (fx, fy); fx = α + x2,
fy = −y. For α < 0, the system has a stable fixed point
and a dissipative saddle (saddle value: ν = Reλs

λu
≈ 1.11),

whereas for α → 0+ (Supplementary Fig. 1(a)), a ghost
state or a so-called bottleneck exists20.

The phase space regions that are characterized by slow
dynamics can be identified using an auxiliary scalar func-
tion q(x) = 1

2 |F(x)| that is related to the kinetic energy
of the system22. q(x∗) = 0 if and only if x∗ is a fixed
point of the system, whereas low kinetic energy (q ≈ 0,
identified by minimizing |F(x)|) in turn corresponds to
regions with slow dynamics beyond fixed points. Calcu-
lating the kinetic energy for Eq. 1 shows that q is not
only minimized around the saddle fixed point (Fig. 2(a)
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Fig. 1 Schematics of different types of phase space objects. Quasi-
potential landscapes of (a) stable, (b) unstable, and (c) saddle fixed
point. Black/gray dot: stable/unstable fixed point localization.
(d) Quasi-potential landscape of a ghost state. Note the absence
of a fixed point. Green lines: trajectories with arrows showing the
direction of the flow. Inset: time course of a trajectory depicting a
slow transition through the ghost manifold.

top; we omit the stable fixed point for α < 0 for brevity),
but also a region of slow dynamics exists for α → 0+

(Fig. 2(b) top). In this parameter regime the system
does not have a fixed point, and the slow dynamics spans
across a phase space area (corresponding to the shallow
slope region in Fig.1(d)). In the regions where the norm
of the dynamics is close to zero (qthresh = 10−2), local lin-
ear expansion of the dynamics is still valid22. We thus nu-
merically evaluated the two eigenvalues (λs

max and λs
min)

in these regions using the Jacobian of Eq. 1 and found
λs
min to be negative in both cases (Supplementary sec-

tion I and Supplementary Fig. 1(b)). The λs
max on the

other hand remained positive in the complete qthresh re-
gion around the saddle, whereas a gradient of λs

max val-
ues is characteristic for the slow dynamics region when
α → 0+ (Fig. 2(a), (b), middle). As λs

max, λ
s
min deter-

mine the flow direction, trajectories starting along the
stable manifold are deflected along the unstable mani-
fold of the saddle, whereas for the ghost case, the flow
in phase space transverses across the complete low ki-
netic energy domain (Fig. 2(a) and (b) bottom, respec-
tively). This phase space structure of a set of orbits that
are reliably funneled in a unique direction we refer to as
ghost manifold. Moreover, a region with λs

max ≈ 0 along
the ghost manifold likely ensures a pronounced trapping,
such that the system effectively spends longer intervals in
this phase-space area, leading to the emergence of quasi-
stable dynamics.

To verify the conjecture that λs
max ≈ 0 induces longer

trapping time, we determined both analytically and nu-
merically the local piece-wise trapping times of the sys-
tem’s trajectories in the respective qthresh regions as
a function of the local λs

max, by explicitly integrat-
ing Eq. 1 along each of the N segments of the tra-
jectory (segments defined with an initial (xin,i, yin,i)
and final (xfin,i, yfin,i) point, Supplementary section

Fig. 2 Dynamical criteria for the emergence of quasi-stable tran-
sients from saddles vs. ghost manifolds. (a) Top: Kinetic energy
values (q(x, y)) around saddle fixed point (α = −0.4 in Eq. 1);
middle: Numerically estimated maximum eigenvalue (λs

max) at the
slow dynamics region (q(x, y) < qthresh = 0.01); Bottom: evolu-
tion of an exemplary phase space trajectory in the vicinity of the
saddle fixed point. Black contour: slow region. Magenta crosses:
entry and exit point of the trajectory. (b) Same as in (a), but for
a ghost state (α = 0.01 in Eq. 1). In (a), (b), gray lines with
arrows indicate phase space flow. (c) Analytical and numerical
piece-wise trapping time (cf. Supplementary section II for details)
as a function of λs

max for a trajectory that transverses across the
slow dynamics regions (q(x, y) < qthresh) of the saddle fixed point
(left) and the ghost state (right). Dashed vertical line: λs

max where
q(x, y) is minimum. (d) Dependence of the total trapping time in
the slow dynamics region of the saddle fixed point (left) and the
ghost state (right) for different noise intensities σ. Mean and stan-
dard deviation from estimated from 30 different trajectories are
shown. See also Supplementary Material.
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Fig. 3 Comparison of heteroclinic and ghost channels’ dynamics.
(a) Left: Schematic of a HCh: four saddle fixed points joined by
heteroclinic connections. Right: Exemplary trajectories starting
from six different initial conditions, for two different noise intensi-
ties σ. (b) Same as in (a), only for a ghost channel (GCh). (c) Eu-
clidean distance between pairwise trajectories in the HCh or GCh
as a function of σ. Mean ± SEM from 30 trajectories is shown.

II). The functional forms of the analytical expressions

τi,saddle =
1

λs
max

(ln |xfin,i−λs
max/2

xfin,i+λs
max/2

|−ln |xin,i−λs
max/2

xin,i+λs
max/2

|), and
τi,ghost =

2
λs
max

(tan−1(
2xfin,i

λs
max

)− tan−1(
2xin,i

λs
max

)) show that

the piece-wise trapping time quickly decays along posi-
tive λs

max for the saddle, whereas for the ghost-manifold,
a parabolic dependency on the gradient of λs

max applies
(corroborated by numerical simulations, Fig. 2 (c)). Any
trajectory approaching the saddle can pass only through
one quadrant of the low-kinetic energy domain. In the
case of the ghost manifold however, the trajectories pass
along the full length of the low-kinetic energy domain.
Thus, the total trapping time on the saddle compared
to the ghost manifold show an order of magnitude dif-
ference (in the presence of low noise intensity σ = 10−4,
Fig.2(d)). Moreover, the total trapping time on the sad-
dle decreases strictly monotonically with increasing σ,
whereas for the ghost manifold it is constant over large σ
range, decaying to half-maximum only at σ ∼ 10−1. This
robustness of the total trapping time, even under high in-
trinsic noise for the ghost (and thereby the emergence of
reliable quasi-stable dynamics), directly results from the
geometry of the manifold: the ghost has only a single un-
stable direction along which the system can escape the

low-kinetic energy domain, whereas the saddle features
two unstable directions resulting in decreased stability
with increasing σ. These features are not a peculiarity of
the given model, but generic for ghost manifolds (Sup-
plementary Fig. 1(e)).
Ghost channels and ghost cycles.—The empirically ob-

served sequential quasi-stable dynamics has been so far
described to occur from heteroclinic objects, where the
unstable manifold of the preceding saddle represents a
stable manifold for the next in the sequence. Considering
the lack of fidelity of single saddles in presence of noise,
we hypothesized that the observed real-world dynamics
could instead emerge from a novel type of phase-space
objects based on ghost manifolds. In analogy to hetero-
clinic objects, we term these objects ghost channels and
ghost cycles. Similarly to heteroclinic channels (HCh)
(Fig. 3(a), left), we construct ghost channels (GCh) by
aligning ghost manifolds such that the unique unstable
direction of the preceding ghost is the stable direction for
the following one (Fig. 3(b), left). Numerical simulations
showed that the reproducibility of the HCh dynamics is
compromised for increasing noise intensity, as the tra-
jectories stochastically exit the channel along the unsta-
ble manifold of the saddles (eventually getting trapped
in the nearby attractors, Fig. 3(a), right; Supplemen-
tary Fig. 2(a,b)). Thus, quasi-stable sequential dynam-
ics cannot be guarantied for the HCh. In contrast, the
GCh uniquely funnels the system’s trajectories in phase
space even for increased noise intensity (Fig. 3(b) and
Fig. 2(c,d)), as corroborated by low Euclidean distance
(ED < 1) among them, even for σ ≤ 10−1 (Fig. 3(c)).
This suggests that GCh guaranty reproducible quasi-
stable sequential switching dynamics, in contrast to the
HCh. Ghost channels are an emergent property of a
broad class of systems including low-dimensional systems
in a parametric vicinity of aligned saddle-node bifurca-
tions, or sequentially coupled network modules as typical
for signal transduction systems in cells (Supplementary
Fig. 2(e) and section III.C).
To conceptualize the emergence of transiently stable

sequential oscillatory dynamics, we next construct ghost
cycles (GC; Fig.4(e)) and characterize their dynamics in
comparison to heteroclinic cycles (HC; Fig.4(a)). We
set the trapping times (in arbitrary units) along a sin-
gle saddle and ghost to be similar at low noise intensity
by adjusting the saddle-values of a generic noise-driven
Lotka-Volterra HC model (Supplementary Fig. 3). The
period of the HC23, T ∼ |lnσ|/λu decreases almost ex-
ponentially as the noise intensity is increased, as higher
σ causes a decrease of the total trapping time at the
saddle fixed points (Fig. 4(b), (d)). Moreover, the in-
tervals in which the system’s dynamics spends switch-
ing between the saddles within one HC period dominates
even for intermediate noise intensities (σ ⩽ 10−3). Gen-
erally, to maintain the trajectory of the system within the
heteroclinic cycle, the system’s variables have to be re-
stricted to positive values24. However, during the noise-
induced switching, the system’s trajectories increasingly
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Fig. 4 Comparison of dynamical characteristics of heteroclinic and ghost cycles. Schematic (a) and exemplary time series (b) of a
heteroclinic cycle for two different noise intensities σ. (c) Exemplary phase space trajectories with color-coded velocity for the same noise
intensities as in (b). (d) Characteristic HC times as a function of σ: HC period (red), total trapping time at the saddles (solid black) and
switching time (dashed black line) are shown. Vicinity was determined by three-dimensional spheres of radius ϵ = 0.1 centered around
the saddles. The mean ± root mean squared error of the standard deviation over time is plotted from 30 trajectories. (e, f, g) Same as in
(a, b, c), only for a ghost cycle. In (g), color bar as in (c). (h) Characteristic GC times as a function of σ. Labeling and quantification
equivalent to (d).

fill phase-space regions distant to the heteroclinic back-
bone. Consistently, the speed of the trajectory in phase
space, an indicator of how long the trajectory spends in
distinct phase space regions, shows that the separation of
slow dynamics in the saddle vicinity and fast switching
between saddles is diminished for increased noise inten-
sity (Fig. 4(c)). These results therefore indicate that the
ability of HCs to serve as a basis for quasi-stable oscilla-
tory dynamics with rapid sequential switching is strongly
compromised in the presence of noise. In contrast, in-
creasing noise intensity does not affect the mean period
of the GC over a large range of noise levels and the tra-
jectories stay bounded along the cycle (Fig. 4(f-h)). The
times spent on the ghosts along the cycle remain more
than 2 fold larger than the transition times between the
ghosts, even for σ > 10−2. This is also reflected in the
speed of the trajectory in phase space: the slow dynamics
at the ghosts and fast switching between them are pre-
served even under the influence of high noise (Fig. 4(g)).
These results therefore demonstrate that GCs provide
the dynamical basis for description of quasi-stable dy-
namical patterns with rapid switching among them that
is frequently observed in real-world systems. Generally,
GCs can occur when a limit cycle terminates via a single
or multiple simultaneous Saddle Nodes on Invariant Cy-
cle (or SNIC) bifurcations25–28. Bifurcation analysis of

the GC model indeed shows that decreasing α leads to
switching from stable steady state to stable limit cycle
oscillations (via a Hopf bifurcation), which is terminated
via 4 SNICs (Supplementary Fig. 4(a-c)). In the vicin-
ity of the SNICs, the dynamics of the system is governed
by the SNs that are about to emerge: after being tran-
siently trapped on a ghost manifold, the system escapes
this state just to be trapped by the next one, thus con-
tinually switching between the ghost manifolds in the se-
quence. Equivalent quantitative changes in the dynam-
ics, and thus emergence of a GC is also observed e.g.
for generic gene regulatory network models proposed to
underlie stem cell differentiation27 (Supplementary Fig.
4(d-f)) or anterior-posterior patterning in metazoans26.

Chimeric ghost/saddle structures.—Real-world data,
especially one from neuronal recordings during cogni-
tive tasks or distinct behavioral sequences29,30, shows
that the system’s components not only have quasi-stable
dynamics, but also selectively explore distinct phase
space areas. This dynamics is usually described by low-
dimensional manifolds characterised by interconnecting
loops from which other branches bifurcate or rejoin31.
We propose here that minimal phase space objects giv-
ing rise to such behavior could likely be chimeras of sad-
dles and ghost, as exemplified in Fig.5(a). The ghost
cycles endow the system with slow dynamics giving rise
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Fig. 5 (a) Chimeric phase-space object consisting of two ghost
cycles joined by a saddle fixed point (s). (b) Time courses of the
chimeric structure for σ = 10−4. (c) Bifurcation diagram depicting
the dynamic mechanism by which the phase-space object emerges
for α ≈ 0+, in the vicinity of the SNIC (saddle-node on invariant
cycle bifurcation). Blue/green lines: stable spiral fixed points/limit
cycles; dashed lines: unstable saddle fixed point. HB: Andronov-
Hopf bifurcation.

to quasi-stable sequential oscillatory patterns (Fig.5(b)),
whereas the saddle fixed point at the junction enables
noise-induced alternating between the GCs (σ = 10−4).
The dynamic mechanism by which this chimeric phase
space object emerges is generic as depicted by the bifur-
cation diagram Fig.5 (c), and thus likely to emerge in a
broad class of systems.

Conclusions and outlook.—In summary, we have intro-
duced the concepts of ghost channels and cycles as novel
phase space objects that reliably give rise to sequential
quasi-stable dynamical patterns with a fast switching
among them. Such dynamics has been experimentally
observed for neuronal activity during behavioral or
cognitive tasks29–31, olfactory processing3, ecological
systems10 etc. The quantification of the time spent on
the ghost manifold in comparison to that for a saddle
demonstrates that ghosts provide robust trapping of the
system’s dynamics and thereby reliable quasi-stability
of the dynamical pattern in the presence of noise. This
emerges from slow dynamics of the system which spans a
larger region in phase space, characterized by a gradient
of eigenvalues that passes through zero. Effectively,
the emergence of a slow time scale is related to the
closeness to a bifurcation point - a parametric region
where the nullclines of the system do not intersect, but
are close to each other. Given that the ghost manifold
that emerges has a single unstable direction (in contrast
to an unstable dimension for the saddle), the dynamics
of the system is not organized by fixed points, but
rather a continuous flow in phase space that is uniquely
guided, providing robustness to the system. However,

to generate context-dependent dynamics, alternating
the flow direction in phase space can be achieved with
the presence of a saddle, as we have demonstrated.
We therefore suggest that these chimeric phase-space
objects, in contrast to the heteroclinic concept32, can
potentially give a mechanistic understanding how the
dynamics along the manifold arises for neuronal activity
or behavioral data6,29. It would be therefore of interest
to investigate whether the alternating dynamics can be
reliably controlled given defined time-dependent input
signals, and to which extent these chimeric structures
can be used for computation. Moreover, the presence of
distinct time-scales can provide a novel direction for de-
velopment of time-series analysis methods for detecting
quasi-stable patterns and corresponding transitions, e.g.
via phase-space based metrics33. We propose that this
conceptual framework will provide new perspectives on
natural systems where long transients are typical.

A.K. acknowledges funding by the Max Planck So-
ciety via the Lise Meitner Excellence Programme. The
authors thank A. Aulehla and K. Lehnertz for valuable
feedback on the manuscript, and J. Gunawardena and
J. Garcia-Ojalvo for insightful discussions.

SUPPLEMENTARY MATERIALS

I. NUMERICAL ESTIMATION OF EIGENVALUE
SPECTRUM AT PHASE SPACE REGION OF SLOW
DYNAMICS

Generally, in the regions where the norm of the dynam-
ics is close to zero (q(x) < qthresh), local linear expansion
of the dynamics is still valid. When linearizing around a
slow point, xs, the local linear system takes the form,

dδx

dt
= F(xs) + F′(xs)δx (1)

where F′(xs) is the Jacobian of the system evaluated
at the slow point, and δx is the perturbation added to
xs. In practice, it can be considered that the constant
term F(xs) is negligible, therefore it can be set to zero22.
This enables to estimate the eigenvalues of F′(xs), λs

min

and λs
max as in classical linear stability analysis20, and

approximate the local dynamics of the slow points using
the manifolds shaped by these eigenvalues.

II. ANALYTICAL DESCRIPTION OF TRAPPING
TIME AT GHOST/SADDLE STATES

In order to find the dependence between the trapping
time at the ghost state and the eigenvalues, let us con-
sider the normal form of the saddle-node bifurcation in
Eq. 1. The equations has steady states for x∗ = ±

√
−α,

and a saddle-node bifurcation at α = 0. The Jacobian of
the system is given by,
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J =

[
2x∗ 0
0 −1

]
(2)

with eigenvalues λmin = −1 and λmax = 2x∗ (Supple-
mentary Fig. 1(a), (b) and Fig. 1 (a), (b)).

Since Eq.1 is explicitly integrable, the time of flight of
the trajectory τ(α) from an initial (xin, yin) to a final
point (xfin, yfin) is given by,

τ(α) =

∫ xfin

xin

1

dx/dt
dx

=

∫ xfin

xin

1

α+ x2
dx

(3)

For α < 0 (where the saddle and the stable fixed point
co-exist) this integral is given by,

τ(α) =

∫ xfin

xin

1

−|α|+ x2
dx

=
1

2
√
|α|

(ln|
xfin −

√
|α|

xfin +
√
|α|

| − ln|
xin −

√
|α|

xin −
√
|α|

|)
(4)

where |α| denotes the absolute value of α, whereas for
α > 0 the integral is given by:

τ(α) =

∫ xfin

xin

1

α+ x2
dx

=
1√
α
(tan−1(

xfin√
α
)− tan−1(

xin√
α
))

(5)

Since the ghost state exists for α → 0+, the total trap-
ping time along the trajectory in the region of slow points
can be analytically estimated as a sum of piece-wise trap-
ping times estimated by integrating along each of the
trajectory’s segments (the trajectory is divided into N
segments of length 2ω = 0.01, Supplementary Fig. 1(c)):

τi(α) =
1√
α
(tan−1(

xfin,i√
α

)− tan−1(
xin,i√

α
)) (6)

where i ∈ [0, N ] denotes the ith piece of trajectory be-
tween xin,i, xfin,i with xin,0 = xin, xfin,N = xfin for the
boundary segments and xin,i = xfin,(i−1) for the rest.

The total trapping time is then given by
∑N

i=1 τi(α) =
τ(α).
Let us consider a fictitious fixed point (xf , yf ) =

(
√
α, 0) which is a reflection of the saddle fixed point

that disappeared at α = 0. In the vicinity of the bifur-
cation this fictitious fixed point satisfies the criteria of a
slow point (q(xf , yf ) < qthresh), hence the local eigen-
value along the ghost manifold can be approximated to

be λs
max = λi

max = 2
√
α. Using this relation, an expres-

sion of τi as a function of the eigenvalue λi
max is given

by:

τi(λ
i
max) =

2

λi
max

(tan−1(
2xfin,i

λi
max

)− tan−1(
2xin,i

λi
max

)) (7)

Numerical and analytical dependence is shown in Fig.
2(c). Given that the trapping time is a local quantity, the
approximation is valid only for small w (xfin,i ≈ xin,i).
Similarly, from Eq. (4) the piecewise trapping time

around the saddle fixed point is given by”

τi(λ
i
max) =

1

λi
max

(ln|2xfin,i − λi
max

2xfin,i + λi
max

| − ln|2xin,i − λi
max

2xin,i − λi
max

|)
(8)

III. MODEL EQUATIONS AND PARAMETERS

III.A. Supplementary example of a ghost model

To examine the dynamical features of ghost state, we
have additionally analyzed a single ghost model described
by Sussillo et al.22:

ẋ = y − (x2 +
1

4
+ α);

ẏ = x− y
(9)

The ghost state is observed for α = 0.001, and the de-
pendence of the total trapping time on the ghost vs. the
noise intensity σ is shown in Supplementary Fig. 1(e).

III.B. Construction of generic heteroclinic/ghost channels

(HCh/GCh), heteroclinic/ghost cycles (HC/GC) and mixed

ghost/saddle networks

To define ghost channels/cycles as phase space objects,
we used a generic, geometric modeling approach to define
the flow in an abstract 2D/3D phase space, following
the method described by Morrison & Young32 (a similar
approach has been used in34). For this, the phase space
is partitioned into 1 ≤ i ≤ k distinct areas or volumes,
and for each area or volume, a function fi defines specific
dynamics in each partition (e.g. ghost, saddle, uniform
flow etc.). The full system’s dynamics is thus given by
d
dtx =

∑n
i=1 wi(x)f(x), and wi(x) assigns a high weight

to fi if and only if x is within the ith partition of the
phase space, to ensure a unique dynamics. Specifically,
partitions of the phase space are given by cubes defined
by coordinates xmin

i ,xmax
i ,ymin

i , ymax
i , zmin

i and zmax
i

and weighting functions by

wi(x) =
1

4
(tanh(γ(x− xmin

i ))− tanh(γ(x− xmax
i )))

×(tanh(γ(y − ymin
i ))− tanh(γ(y − ymax

i )))

×(tanh(γ(z − zmin
i ))− tanh(γ(z − zmax

i ))),
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where x = (x,y, z)T and γ defines how steep the transi-
tions in the weighting functions between partitions are.
Generally, the dynamics within a partition is defined by
f(x) = (f̂(x), ĝ(y), ĥ(z)), where ĥ(z) = −(z − 0.5). For

ghosts dynamics, f̂ is given by x 7→ ci(α+(x−xoffset)
2),

ci ∈ (−1, 1), and ĝ(y) by y 7→ c̃i(y − yoffset), c̃i ∈
(−1, 1), or vice versa. The offset defines the center of
the partition. In both functions, c and c̃ were cho-
sen to funnel the flow from three directions on the x/y

plane. Saddle dynamics is defined by f̂(x) given by
x 7→ −ν(x − xoffset)) defining the stable manifold, and
ĝ(y) by x 7→ (y−yoffset) defining the unstable manifold,
or vice versa. ν is the saddle value. The uniform flow is
defined by f̂(x) = m1, ĝ(y) = m2, m1,m2 ∈ R. For 2D

systems, the z dimension (and thus ĥ) was omitted.

To construct a heteroclinic channel in 2D, fis and wis
were chosen such that four saddles are positioned within
partitions on a diagonal and the flow on the neighbour-
ing partitions was defined to be uniform (Fig. 3(a) and
Supplementary Fig. 2(a)). To construct a ghost chan-
nel in 2D,fis and wis were chosen such that the unique
unstable direction of the preceding ghost is a stable di-
rection for the following ghost in the sequence (Fig. 3(b)
and Supplementary Fig. 2(b)). For a ghost cycle, the
repelling direction of the last ghost in the sequence is an
attracting direction of the first ghost (Fig. 4(e)). Sim-
ilarly, the chimeric saddle and ghost structure (Fig. 5)
was generated by connecting the unstable manifold of a
saddle with the attracting direction of a ghost or by con-
necting the repelling direction of a ghost with the stable
manifold of a saddle. The full set of equations and pa-
rameters for these systems can be found in the Python

and XPPAUT35 code accompanying this article.

To obtain similar shape of the ghost cycle oscilla-
tions (Supplementary Fig. 3(a)) to that of the het-
eroclinic cycle oscillations (cf. equation 13 and Fig.
4(a,b)), a Euclidean distance of each point in the tra-
jectory to each of the ghost position was obtained (dj =
||x−Gj ||, 1 ≤ j ≤ 4,, Supplementary Fig. 3(b) left), and
the corresponding distance time series (Supplementary
Fig. 3(b), right) were mapped using a Hill-type function
θ Θ(d) = d−3/(d−3 + 0.3−3) (Supplementary Fig. 3(c)).
This ensures that the shape of the oscillations in the ghost
cycle are comparable to those in the heteroclinic cycle.
To construct HC and GC that have comparable trapping
time on the saddles/ghosts, the saddle value was set to
ν = 4 to adjust the differences of the average time spent
in saddle/ghost vicinity (colored triangles) to ¡ 1% for
the lowest noise level used in this work (σ = 10−4, Sup-
plementary Fig. 3(d).

To quantify the robustness of the trajectories within
the heteroclinic and ghost channels, we estimated the Eu-
clidean distance (ED) between pairs of trajectories from
different realizations of stochastic simulations: ED =√

((x2(t)−x1(t))
2+(y2(t)−y1(t))

2), where 1, 2 represent
trajectory pairs. To avoid effects from different trapping
times on the ghosts/saddles, the trajectories were ini-

tially time warped using the dtaidistance package (v
2.3.9) in Python. The average ED over time from 30
replicates (mean ± root mean squared error of the stan-
dard deviation over time) is shown in Fig. 3(c).

III.C. Supplementary examples of ghost channels

An infinite number of saddle-node bifurcations at the
same parameter value can be constructed using a periodic
function such as sin or cos. Parameterizing such a system
in the vicinity of the SN bifurcation results in a ghost
channel. One realization of such a GCh is given by:

ẋ = α− sin(kx)

ẏ = x− y
(10)

For k = 1 and α=1.01, infinite number of ghost states
in a sequence are observed. Phase space with numerical
λs
max estimation at the regions of slow dynamics and cor-

responding time series are shown in Supplementary Fig.
2(e).
We next considered a biochemical network motif with

double negative feedback model from Dey et al.36, which
has been re-parameterized to obtain a GCh that visits
two ghost states and a stable attractor in a sequence:

ẋ = Gx(S, y)− kxx

ẏ = Gy(x, y)− kyy

Gx(S, y) = gx,0H
−(S)H−

1 (y) + gx,SH
+(S)H−

1 (y)

+ gx,yH
−(S)H+

1 (y) + gx,y,SH
+(S)H+

1 (y)

Gy(y, x) = gy,0H
−(x)H−

2 (y)PR + gy,yH
−(x)H+

2 (y)

+ gy,xH
+(x)H−

2 (y)PR + gy,xyH
+(x)H+

2 (y)PR

H−(S) =
1

1 +
(

S
Sx,0k0

)nS,x

H+(S) = 1−H−(S)

H−
1 (y) =

1

1 +
(

y
yx,0

)ny,x

H+
1 (y) = 1−H−

1 (y)

H−(x) =
1

1 +
(

x
xy,0

)nx,y

H+(x) = 1−H−(x)

H−
2 (y) =

1

1 +
(

y
yy,0

)ny,y

H+
2 (y) = 1−H−

2 (y)

(11)

where S = 1.835, gx,0 = 4.0, gx,S = 18.0, gA,y = 0.7,
gx,y,S = 4.0, gy,0 = 7.5, gy,y = 39.0,
gy,x = 1.0, gy,xy = 7.5, Sx,0 = 140
Bx,0 = 315, xy,0 = 130, yy,0 = 75,
nS,x = 2.0, ny,x = 4.0,nx,y = 5.0,
ny,y = 6.0, kx = 0.05, ky = 0.075, PR = 1, and k0 = 0.01.

https://pypi.org/project/dtaidistance/
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Phase space with numerical λs
max estimation at the

regions of slow dynamics and corresponding time series
are shown in Supplementary Fig. 2(e) middle.

As a third example, we adapted a biochemical model
from Ferrel et al.37 to construct a GCh by undirectionally
coupling two biochemical modules:

ẋ =

(
k1S +

k2x
n

(Kn + xn))

)
(xtot − x)− k3x

ẏ =

(
(k1x+

k2y
n

(Kn + yn))

)
(xtot − y)− k3y

(12)

For S = 0, xtot = 1, k1 = 1, k2 = 2, k3 = 1,
K = 0.505, n = 4, the model has two ghost states in a
sequence (ghost channel) followed by a stable fixed point.
The corresponding phase space with the numerical λs

max

estimation at the regions of slow dynamics, and the time
series are shown in Supplementary Fig. 2(e) right.

III.D. Model of a heteroclinic cycle

To model heteroclinic cycle dynamics, we used the 3D
HC described by Horchler et al.24:

d

dt
x = x(̇α− ρx), (13)

where x = (x, y, z)T , α = (α1, α2, α3),

ρ =

 α1/β1 (α1 + α2)/β2 (α1 − α3

ν3
)/β3

(α2 − α1

ν1
)/β1 α2/β2 (α2 + α3)/β3

(α3 + α1)/β1 (α3 − α2

ν2
)/β2 α3/β3

,
αi = 2, βi = 1 and νi = 4, for i = 1, ..3.

III.E. Supplementary example of a ghost cycle

We analyzed additionally a genetic network model de-
scribed in27:

ẋ = b+
g

(1 + α(yh))(1 + β(zh))
− dx

ẏ = b+
g

(1 + α(zh))(1 + β(xh))
− dy

ż = b+
g

(1 + α(xh))(1 + β(yh))
− dz

(14)

For α = 9, β = 0.1, h = 3, d = 0.2, b = 10−5 and
g = 1.51, the limit cycle oscillations terminate at three
SNIC bifurcations (Supplementary Fig. 4(d)). For or-
ganization before the SNIC, the behavior of the system
is guided by the three SN that are about to appear, ef-
fectively displaying ghost cycle oscillations. The bifur-
cation diagram, the phase trajectories (colour-coded by
the speed) for different parameter values, as well as the
emergence of a stable fixed point and a saddle right after
the SNIC bifurcation are shown in Supplementary Fig.
4(d)-(f).

IV. MODEL IMPLEMENTATION, NUMERICAL
INTEGRATION AND FEATURES
CHARACTERIZATION

The ODE models (Figs. 2(c), Supplementary Figs.
1(d), 2(e), 3, 4) were integrated using the 4th order
Runge-Kutta scheme implemented using custom-made
Python code. The contribution of the noise (Figs. 2(d),
3, 4 and 5, Supplementary Figs. 1(e), 2 (a-d)) is modeled
as a Wiener process where Gaussian white noise is intro-
duced as an additive term at each time step. This results
in a stochastic differential equation (SDE) in Ito form,
˙X(t) = f(X(t), t)dt + σ(t)dW (t), where dt denotes the

step size (0.05 or 0.01 were used throughout this study),
where σ(t) describes the additive noise and W (t) denotes
a Wiener process whose independent increments follow a
normal distribution

√
dtN(µ = 0, var = 1). For simula-

tion of stable heteroclinic cycles, integration of the sys-
tem was performed by restricting x to R≥0 as described
in24, to avoid escaping from the heteroclinic cycle via
the unstable directions. The velocity of the trajectories
in phase space (Figs. 4, 5 and Supplementary Fig. 4)
was normalized between the 5-95 percentile of the veloc-
ity values along the trajectories for the different noise
intensities form the SC and the GC independently.
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Supplementary Fig. 1 Characterization of the dynamics of saddle fixed points and ghost manifolds. (a) Bifurcation diagram corresponding
to Eq. 1. Solid/dashed lines: stable/unstable fixed points. Gray shaded area: region of ghost state. SN: saddle-node bifurcation. (b)
λs
min at the region of slow dynamics for the saddle fixed point (left) and the ghost state (right). Corresponding to Fig. 2(a),(b). (c)

Schematic of the total/piece-wise trapping time estimation in the region of slow dynamics. Magenta crosses: entry and exit points of
trajectory into the ith box, (xin, yin) and (xfin, yfin) are the entry and exit points of trajectory in the region. (d) Dependence of the
piece-wise trapping time on the λs

max for the saddle (left) and the ghost state (right). Mean ± s.d. from 10 realizations starting from
different initial conditions is shown. (e) Total trapping time as a function of noise intensity σ for the supplementary single ghost model
(Eq. 9). Mean ± s.d. from 30 realizations starting from different initial conditions are shown.
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Supplementary Fig. 2 Dynamics of heteroclinic (HCh) and ghost (GCh) channels. (a) Exemplary phase space trajectories from different
initial conditions and for different σ for a heteroclinic channel. (b) Corresponding time series of the sample trajectories. (c), (d) Same
as in (a), (b) but for a ghost channel. See Supplementary materials section on ’Construction of generic heteroclinic/ghost channels’ for
more details. (e) Top: Phase space trajectories (color-coded by the velocity) and the numerical λs

max estimation at the regions of slow
dynamics. Bottom: corresponding time series for models Eqs. 10, 11 and 12 (qthresh = 0.2, 0.5, 0.007) from left to right. Corresponding
to Fig. 3.
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Supplementary Fig. 3 Characteristics of the shape of GC/HC oscillations and trapping times. (a) Time courses of the system variables for
the ghost cycle (cf. section III.B). (b) Schematic and exemplary time series of Euclidean distances between each point in the trajectory to
each of the ghost position. (c) Mapped distance time series using a Hill-type function Θ. (d) To conduct the comparative analyses between
heteroclinic and ghost cycles starting from a similar baseline, the times spent within the vicinity of the ghost/saddle points were calculated
and the saddle value was adjusted to minimize the differences of the average time spent in saddle/ghost vicinity (colored triangles) for the
lowest noise level used in this work (σ = 10−4). At ν = 4, the difference between average trapping in saddle/ghost states reached < 1%,
which was thus used for all simulations of the HC.
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Supplementary Fig. 4 Mechanism of emergence of a ghost cycle. (a) Bifurcation diagram of ghost cycle described in section III.B.
Blue/green lines: stable fixed point/limit cycle, dashed line: saddle fixed point. HB: Andronov-Hopf bifurcation, SNIC: saddle-node on
infinite cycle bifurcation. (b) Phase space trajectories for different parameter values depicting the different dynamical regimes in (a),
colour-coded by the speed in phase space. (c) Phase-space cut-out depicting the emergence of a stable fixed point and a saddle after the
SNIC bifurcation. (d) Equivalent as in (a), only for the supplementary ghost cycle model, Eq. 14. Line description and notation as in (a).
(e) Corresponding phase-space trajectories for different parameter values depicting the different dynamical regimes in (d). (f) Same as in
(c), only for the model in (d).
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