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The macroscopic effects of the quantum conformal anomaly are evaluated in a simplified

two-dimensional model of gravitational collapse. The effective action and stress tensor of

the anomaly can be expressed in a local quadratic form by the introduction of a scalar con-

formalon field φ, which satisfies a linear wave equation. A wide class of non-vacuum initial

state conditions is generated by different solutions of this equation. An interesting subclass

of solutions corresponds to initial states that give rise to an arbitrarily large semi-classical

stress tensor
〈
T ν
µ

〉
on the future horizon of the black hole formed in classical collapse. These

lead to modification and suppression of Hawking radiation at late times after the collapse,

and potentially large backreaction effects on the horizon scale due to the conformal anomaly.

The probability of non-vacuum initial conditions large enough to produce these effects is es-

timated from the Gaussian vacuum wave functional of φ in the Schrödinger representation

and shown to be O(1). These results indicate that quantum effects of the conformal anomaly

in non-vacuum states are relevant for gravitational collapse in the effective theory of gravity

in four dimensions as well.
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I. Introduction

Black holes are solutions of the Einstein eqs. of classical general relativity (GR) in the absence of

sources, except for interior singularities where matter is compressed to infinite pressures and densities.

In addition to these singularities, the characteristic feature of a classical black hole (BH) is its event

horizon, the critical null surface of finite area from which outwardly directed light rays cannot escape.

Whereas it is widely believed that quantum effects intervene to regulate interior BH singularities,

the horizon region is generally supposed to remain substantially unchanged from the classical de-

scription. This description includes the important, but often unstated assumption, of vanishing stress

tensor Tµν = 0 on the horizon that permits continuation of the exterior geometry into the BH interior

by means of a (singular) transformation of coordinates [1, 2].

It is important to critically examine this assumption for a number of reasons. Even in classical GR,

the hyperbolic character of Einstein’s eqs. allows generically for Tµν sources and discontinuities on the

horizon which would violate the hypothesis of analytic continuation through it, potentially altering

the geometry of the singular interior as well. Critical examination of assumptions about the stress

tensor on the horizon is all the more warranted when quantum effects are considered. If the quantum

state is assumed to be the local vacuum at the horizon, the expectation value of the stress tensor ⟨T ν
µ ⟩

in this state can remain negligibly small, but only provided that quantum fluctuations measured by

higher point correlation functions such as ⟨TαβTµν⟩ also remain small on the horizon. This condition

in particular is very much open to question in the quantum theory, as we shall discuss in this paper.

Regarding the quantum state on the horizon, it is well known that there is no unique vacuum state

in curved spacetime [3]. In flat Minkowski space the existence of a unique vacuum ground state

relies upon the Lorentz invariant separation of positive and negative frequency modes, hence parti-

cle and anti-particle states, over a complete Cauchy surface, and the existence of a positive definite

Hamiltonian with respect to that hypersurface. These requirements are not satisfied in general curved

spacetimes, and are particularly problematic when horizons are present. At a BH horizon the timelike

Killing field ∂t (or the co-rotating Killing field ∂t +ω∂ϕ for rotating BHs) becomes null, and the clean

separation of particle and anti-particle modes breaks down, while beyond the horizon the Killing

norm changes sign and the corresponding Hamiltonian becomes unbounded from below. There is

thus no a priori reason for the state of QFT to correspond to the ‘empty’ Minkowski vacuum at the

horizon, or for quantum fluctuations from that state to remain small there. Certainly a large variety of

non-vacuum states with ⟨T ν
µ ⟩,0 are also allowed, and can be considered.
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Early work established that the Hawking effect is dependent upon this choice of quantum state, and

is also closely related to the conformal anomaly that arises in defining the renormalized ⟨Tµν⟩ in BH

spacetimes [4, 5]. Later it was shown that Hawking thermal emission at late times after gravitational

collapse to a BH can be derived directly from the assumption that the short distance properties of the

quantum state and the Hadamard behavior of its Green’s functions on the future horizon region are

the same as those in flat space [6]. This assumption also guarantees that the future horizon is smooth,

and ⟨T ν
µ ⟩ remains regular there, so that quantum backreaction effects remain small. These conditions

correspond to the initial state of QFT in gravitational collapse to be the Unruh state [7]. Virtually all

later investigations have assumed this state, including those with dynamical backreaction [8, 9].

It is also the regularity of the horizon and absence of any stress tensor source there that allows

association of a temperature TH = 1/βH with the periodicity βH of the metric at the horizon continued

to Euclidean time [10, 11]. Yet paradoxically, it is just this assumption of a smooth horizon and

the Hawking temperature associated to it that leads to an enormous Bekenstein-Hawking BH entropy

equal to 1/4 of the area of the horizon, which is particularly difficult to understand if the BH horizon is

a smooth mathematical boundary only, with no sources or independent degrees of freedom of its own.

If matter and information can freely fall just one-way through this mathematical horizon boundary,

the effect of Hawking thermal radiation also suggests the possibility of pure states evolving into mixed

states and the breakdown of quantum unitary evolution [12]. The difficulty, if not impossibility, of

recovering this lost information at the late or final stages of the BH evaporation process leads to a

severe ‘information paradox,’ that has been the subject of numerous investigations and speculations

spanning several decades [13–21].

Although the Hawking temperature TH of radiation far from the BH is very small, the inverse

of the gravitational redshift implies infinitely blueshifted local temperatures and energies if traced

back to the horizon. It is thus by no means clear that quantum fluctuations ⟨TαβTµν⟩ from the mean

and their backreaction on the near-horizon geometry can be neglected, as is usually assumed. The

increasing time dilation and gravitational blueshift of frequency and energy scales with respect to the

asymptotically flat region as the horizon is approached results in all fixed finite mass scales becoming

negligible there, and an effective classical conformal symmetry in the near-horizon region [22–24].

This implies that the conformal behavior and conformal anomaly of QFT are relevant there [25–27].

It is also known that the conformal anomaly is necessarily associated with the existence and residue

of a 1/k2 massless pole in stress tensor correlation functions, even in flat space [26, 28–31]. Since

this massless anomaly pole in quantum correlation functions is a lightlike singularity, it is associated
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with effects on the light cone, which can extend to arbitrarily large macroscopic scales, and is par-

ticularly relevant on null horizons. The 1/k2 pole can be expressed as the propagator of an effective

scalar degree of freedom φ, a collective conformalon mode of the underlying massless (or sufficiently

light) quantum fields, whose fluctuations and correlations are significantly enhanced in the vicinity

of a BH horizon. The existence of a lightlike singularity implies quantum correlations due to the

anomaly which influence the semi-classical mean value ⟨T ν
µ ⟩ as well. The dependence of the long

range conformalon scalar on the norm of the Killing vector ∂t carries non-local information about the

conformal transformation of the vacuum from the asymptotically flat region where the Minkowski

vacuum is preferred, to the expectation value ⟨T ν
µ ⟩ on the BH horizon.

These quantum anomaly effects on the horizon are generically large for wide classes of non-

vacuum initial conditions, notwithstading the smallness of the curvature there [25, 26, 32]. The local

form of the anomaly effective action and stress tensor in terms of the scalar φ makes the quantita-

tive evaluation of these effects much simpler technically than the much more involved and laborious

method of obtaining renormalized expectations values ⟨T ν
µ ⟩ directly from the underlying QFT [33].

Indeed the technical complexity of the direct method of calculating ⟨T ν
µ ⟩ has been sufficient to deter

any systematic investigation of all but a small number of special quantum states, in specific QFTs.

In contrast, a very wide class of states in generic conformal QFTs can be investigated by simply

considering the variety of possible solutions to the linear wave eq. satisfied by the conformalon scalar

φ field, and computing its semi-classical T ν
µ [φ], which is already renormalized. Since the correspond-

ing effective action of the anomaly is also quadratic in φ, any particular occurrence of non-vacuum

initial data in gravitational collapse is described by a Gaussian wavefunctional in the Schrödinger

representation, and its probability is therefore also easily estimated. Because all of these essential

features are present in both two and four spacetime dimensions, it is advantageous to investigate their

consequences first in the 2D case, in a simplified computable model of gravitational collapse without

backreaction, as a proxy and warm-up to the more realistic 4D problem.

With this purpose in mind, the organization of the paper is as follows. In the next section we define

the two-dimensional model, and set notations and conventions in double null coordinates suitable for

gravitational collapse. In Sec. III we specify and solve for the interior and exterior geometry of an im-

ploding null shell which creates a classical BH. In Sec. IV we review the two-dimensional conformal

anomaly and non-local Polyakov effective action corresponding to it, the massless pole it generates

in vacuum polarization, and the local representation of the effective action by the introduction of the

massless scalar conformalon field φ, showing how it can have significant effects on BH horizons. In
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Sec. V we evaluate the anomaly stress tensor T ν
µ [φ] in a subclass of interesting non-vacuum states

where it can become arbitrarily large and suppress the Hawking effect. In Sec. VI we make use of

the Gaussian distribution corresponding to these initial states in the wavefunctional of the anomaly

effective action to show that the probability of non-vacuum initial conditions producing such effects

on the horizon are non-negligible and O(1), showing also how this is consistent with general theorems

of finite initial data, such as [34]. Sec. VII contains a discussion of the results, their implications for

the importance of the analogous state-dependent quantum effects of the conformal anomaly in four

dimensions, and outlook for the extension the results of this paper to gravitational collapse in the full

four-dimensional effective field theory (EFT) of gravity proposed in [27].

The paper also contains three appendices, wherein are collected for the convenience of the reader

the curvature components in double null coordinates (Appendix A), the metric functions for the col-

lapsing null shell geometry (Appendix B), and the stress tensors and horizon finiteness conditions in

the various coordinates used, and relations between them (Appendix C).

II. Radial Collapse Geometry in Double Null Coordinates

The general spherically symmetric line element in 3+1 dimensions may be expressed in the fac-

torized 2 × 2 form

ds2
4 = γab dxadxb + r2dΩ2 (2.1)

where dΩ2 = dθ2+ sin2 θ dϕ2 is the standard round line element on the unit S2, γab(x1, x2) is the metric

on the two-dimensional subspace of constant θ, ϕ, and r = r(x1, x2) is a scalar function of the arbitrary

two-dimensional coordinates xa (a = 1, 2). The radius r is uniquely defined by the condition that the

proper area of the sphere of constant r is A = 4πr2 in the spherically symmetric spacetime.

The various geometric quantities for the metric (2.1) are given in Appendix A. In particular the Ein-

stein tensor of the full four-dimensional spacetime with the line element (2.1) has the components [35]

Gab =
γab

r2

[
(∇r)2 − 1 + 2 r r

]
−

2
r
∇a∇br , a, b = 1, 2 (2.2a)

Gθ
θ = Gϕ

ϕ = r r −
r2

2
R (2.2b)

with all other components vanishing. In (2.2) we make use of the notations

∇ar = ∂ar ≡
∂r
∂xa , (∇r)2 ≡ γab(∇ar)(∇br) , r ≡ γab∇a∇br (2.3)
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with ∇a the covariant derivative with respect to the two-dimensional metric γab, and R the correspond-

ing two-dimensional Ricci scalar. We shall generally suppress any special notation distinguishing

quantities derived from the two-dimensional metric γab vs. the full four-dimensional line element

(2.1), as which is meant should be clear from the context. For example eqs. (2.2) clearly refer to

the four-dimensional Einstein tensor, since the Einstein tensor of any two-dimensional space vanishes

identically. It is useful also to define the three functions h,m and κ in terms of r(x1, x2) by

h ≡ (∇r)2 ≡ 1 −
2Gm

r
(2.4a)

κ ≡ −
Gm
r2 =

(∇r)2 − 1
2r

(2.4b)

which are also scalars with respect to the two-geometry γab. The quantity m is the Misner-Sharp mass

function and κ is the acceleration or surface gravity at r.1

The Einstein eqs. for the general spherically symmetric four-geometry (2.1) are

−∇a∇b r +
(

r + κ
)
γab = 4πr G Tab (2.5a)

r −
r
2

R = 8πr G p⊥ (2.5b)

where

T θ
θ = T ϕ

ϕ ≡ p⊥ (2.6)

is the transverse pressure, which spherical symmetry requires must have equal θ and ϕ components.

If one defines the effective two-dimensional stress tensor τab by

Tab ≡
τab

4πr2 , a, b = 1, 2 , (2.7)

covariant conservation of the full four-dimensional stress tensor gives [35]

∇bτ
b

a = 4π∇b
(
r2T b

a
)
= 8πp⊥∇ar , (2.8)

all other components being satisfied identically. Hence the stress tensor τab is covariantly conserved

purely in two dimensions if and only if the transverse pressure vanishes identically, i.e.

∇bτ
b

a = 0 , ⇔ p⊥ = 0 (2.9)

1 The definition of κ in this paper follows the conventions of [35], which differ from the more general definition of the
surface gravity κ = 1

2

√
h
f

d f
dr . The two become equal, except for a sign change, when f = h and m is independent of r.
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which we shall assume for a simplified model of gravitational collapse. This is a rather restrictive

condition, about which we comment further in Secs. IV and VII.

With the restriction p⊥= 0 the Einstein eqs. (2.5) with (2.7) become

−∇a∇b r +
(

r + κ
)
γab =

G
r
τab , (2.10a)

R =
2
r

r (2.10b)

which define a reduced 2D model, with a general covariantly conserved ∇bτa
b = 0. By differentiating

(2.4a) and using (2.4b) and (2.10) we obtain the useful relation

∂m
∂xa =

(
τ b

a − δ
b

a τ c
c
) ∂r
∂xb (2.11)

for the Misner-Sharp mass flux or gradient, where τ c
c = γ

cdτcd is the two-dimensional trace.

To this point the coordinates (x1, x2) of the two-geometry at fixed θ, ϕ have been left arbitrary to

emphasize covariance under arbitrary coordinate transformations of (x1, x2). We will make use of

two specific useful choices of coordinates. The first is that of Schwarzschild coordinates, obtained by

identifying one of the coordinates (x2 say) with r itself. A possible dt dr cross term can be eliminated

by a redefinition of t, so that x1 can then be identified as the Schwarzschild time t. This results in the

line element taking on the standard Schwarzschild form [1]

γab dxadxb = − f dt2 +
dr2

h
(2.12)

with f and h two functions of (t, r). In these coordinates h = grr is the same function defined in

general two-dimensional coordinates by (2.4a), while (2.11) for a = 2, x2 = r becomes

∂m
∂r
= −τ t

t = −4πr2 T t
t = 4πr2ρ (2.13)

in terms of the energy density ρ. Integrating this eq. with respect to r shows that m(t, r) is the Misner-

Sharp mass-energy within the sphere of radius r on the time slice fixed by t.

Since Schwarzschild coordinates (2.12) become singular at h = 0, and the causal structure is tied

to the behavior of null rays, a different coordinate choice that proves useful is that of double null (u, 3)

coordinates. These rely on the fact that every two-geometry is locally conformally flat, so the general
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two-dimensional line element (2.1) can be expressed in the form

γab dxadxb = −e2σ du d3 (2.14)

with the metric γu3 = γ3u = −
1
2e2σ and inverse γu3 = γ3u = −2e−2σ, in terms of σ(u, 3). The line

element (2.14) is invariant under the redefinitions

u→ ũ(u) , 3→ 3̃(3) (2.15)

with the simultaneous redefinition of

σ→ σ̃ = σ −
1
2

ln
(
dũ
du

)
−

1
2

ln
(
d3̃
d3

)
,

dũ
du

> 0 ,
d3̃
d3

> 0 . (2.16)

Thus there is still considerable coordinate freedom to redefine u and 3 independently, and we will

make use of several different sets of double null coordinates. Since the conformal factor eσ changes

under the coordinate transformation (2.15)-(2.16), such coordinate transformations are also confor-

mal transformations, and form the infinite dimensional conformal group in two dimensions. The

coordinate freedom can be fixed by e.g. setting σ = 0 in a region where the spacetime is flat, so that

u = t − r, 3 = t + r become the standard radial null coordinates in two-dimensional flat spacetime.

In double null coordinates the coordinate invariant condition for the location of the apparent hori-

zon (AH) is

h = (∇r)2 = −4 e−2σ ∂r
∂u
∂r
∂3

AH
= 0 (2.17)

showing that the rate of change of the radius with respect to at least one of the null coordinates must

vanish there. The conditions

∂r
∂3
= 0 future AH (2.18a)

∂r
∂u
= 0 past AH (2.18b)

define the future or past apparent horizons respectively, which are also invariant under (2.15).

The two-dimensional scalar curvature in double null coordinates (2.14) is

R = −2 σ = 8 e−2σ ∂2σ

∂u∂3
(2.19)

and the Einstein eqs. (2.10) with p⊥ = 0 take the form of (A.13), which are covariant with re-
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spect to the two-dimensional coordinate/conformal transformation (2.15)-(2.16). Thus τab dxadxb =

τãb̃ dxãdxb̃, so for example τuu transforms as

τuu =

(
dũ
du

)2

τũũ (2.20)

under (2.15)-(2.16). The Misner-Sharp mass is given by

m(u, 3) =
r

2G

[
1 + 4 e−2σ

(
∂r
∂u

) (
∂r
∂3

)]
, (2.21)

while eqs. (2.11) become

∂m
∂u
= 2 e−2σ

(
τu3

∂r
∂u
− τuu

∂r
∂3

)
(2.22a)

∂m
∂3
= 2 e−2σ

(
τu3

∂r
∂3
− τ33

∂r
∂u

)
(2.22b)

in double null coordinates.

III. Classical Radial Collapse of a Null Shell

The simplest model of radial collapse which will form a BH classically is that of a spherical shell

imploding upon its center at the speed of light. The classical energy-momentum-stress tensor of such

a lightlike infalling shell is

τC
33 =

dE
d3

, (3.1)

with E(3) determining its profile as function of the advanced null coordinate time 3, and with all other

components of τC
ab vanishing. The total classical mass-energy carried by the incoming null shell of

radiation is

M =
∫ ∞

−∞

dE
d3

d3 . (3.2)

The simplest case to analyze and solve explictly is that of an infinitesimally thin shell for which

E(3) = M θ(3 − 30) ,
dE
d3
= M δ(3 − 30) (3.3)

so that the four-dimensional classical energy-momentum tensor is

TC
33 =

τC
33

4πr2 =
M

4πr2 δ(3 − 30) (3.4)
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on the incoming null shell.

In this case the metric functions can be found explicitly in each region as follows. In the first region

I, for 3 < 30 interior to the imploding shell, spacetime is flat, so that the two-dimensional line element

at constant θ, ϕ is

I : ds2 = −dt2 + dr2 = −du d3 , with u ≡ t − r, 3 ≡ t + r < 30 ,

σ(u, 3) = 0 , r(u, 3) =
3 − u

2
(3.5)

which satisfies (A.13) with τab = 0.

In the exterior region 3 > 30 outside of the shell, the geometry is that of the sourcefree four-

dimensional Schwarzschild solution, i.e. the two-dimensional solution is

II : ds2 = f (r)
(
−dt2 + dr∗ 2

)
= − f (r) dũ d3̃ , with f (r) = 1 −

rM

r
, rM ≡

2GM
c2

dr∗ =
dr
f (r)

, r∗ ≡ r + rM ln
(

r
rM

− 1
)
, ũ ≡ t − r∗, 3̃ ≡ t + r∗ > 3̃0 . (3.6)

We denote with tildes the Schwarzschild null coordinates (ũ, 3̃), since they are allowed to differ from

the corresponding (u, 3) coordinates in the flat region (3.5). The relations (3.6) yield a solution to the

sourcefree Einstein eqs. (A.13) with τab = 0 and

σ̃ =
1
2

ln f (r) ,
3̃ − ũ

2
= r∗ = r + rM ln

(
r
rM

− 1
)

(3.7)

determining r and σ̃ implicitly as functions of 3̃ − ũ, and 3̃ + ũ = 2t in this Schwarzschild region II.

The two sets of double null coordinates must be matched for a continuous (C0) metric at 3 = 30.

This is accomplished by noting that the radius r has the same invariant geometric meaning in terms of

the four dimensional metric (2.1) in either region. Comparison of (3.5) and (3.7) shows that σ , σ̃,

so that the solution in the two regions in these coordinates as they stand is discontinuous across the

null shell. In order to find a solution to the geometry of the spherical collapse of a null shell with C0

continuous metric functions we utilize the gauge freedom (2.15)-(2.16) to match the solution I (3.5)

of the interior to the exterior solution II (3.6).

For r ≫ rM and u, ũ→ −∞, both regions I and II are asymptotically flat, so that we may choose the

advanced null coordinates 3 and 3̃ to be equal there. The reparametrization freedom in 3 can be used
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to require the interior 3 coordinate to match the exterior 3̃ coordinate for all u, ũ. Hence

3̃ = 3 , d3̃ = d3 , 3̃0 = 30 . (3.8)

Then requiring the metric function r = (3−u)/2 from (3.5) to be equal to that from (3.7) at the location

of the null shell at 3̃0 = 30 gives

r∗
∣∣∣
3=30
=
30 − ũ

2
= r0(u) + rM ln

(
r0(u)

rM

− 1
)

(3.9)

with
r0(u) ≡ r(u, 30) =

30 − u
2

, (3.10)

so that the radius r is continuous across the shell. Eq. (3.9) determines [36]

ũ(u) = u − 2rM ln
(
30 − u
2rM

− 1
)

(3.11)

as a function of u and

r∗(u, 3) = r(u, 3) + rM ln
(
r(u, 3)

rM

− 1
)
=
3 − u

2
+ rM ln

(
r0(u)

rM

− 1
)

(3.12)

as an implicit function of the original (u, 3) of region I, in region II.

Differentiating (3.10) and using dr∗ = dr/ f (r), or directly from (3.11) we have

dũ
du
=

1
f (r)

∣∣∣∣∣
r=r0(u)

≡
1
f0
=

(
1 −

rM

r0(u)

)−1

=

(
1 −

2rM

30 − u

)−1

(3.13)

so that using (2.16) with (3.7) and (3.8), we obtain

σ = σ̃ +
1
2

ln
(
dũ
du

)
=

1
2

ln
(

f (r)
f (r0)

)
=

1
2

ln
(

f
f0

)
(3.14)

in region II, determining also the second metric function σ in the Schwarzschild region II, now ex-

pressed in the original (u, 3) coordinates. Since (3.14) vanishes at 3 = 30, r = r0(u), σ(u, 30) is contin-

uous with σ = 0, (3.5) of the interior flat region I. Thus the two-dimensional line element

ds2 = −e2σ du d3 = −
f (r)
f (r0)

du d3 = − f (r) dũ d3̃ = − f (r) dt2 +
dr2

f (r)
(3.15)
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is indeed the Schwarzschild exterior geometry in region II for 3̃ = 3 > 30, after the passage of the null

shell, continuously matched to the flat region I at 3 = 30, with the coordinate transformation (3.11).

The piecewise solutions to r and σ in the two regions and the full geometry determined by the

impolding null shell localized at 3 = 30 according to (3.1)-(3.3) can be combined in terms of Heaviside

step function

Θ(3 − 30) =

 1, 3 > 30

0, 3 < 30

in the form

σ(u, 3) =
1
2

ln
(

f (r)
f (r0)

)
Θ(3 − 30) (3.16)

with r(u, 3) determined by the implicit relation for 3 > 30 in region II

r(u, 3) =
3 − u

2
+ rM ln

(
r0 f0

r f

)
Θ(3 − 30) =

3 − u
2
+ rM ln

(
r0 − rM

r − rM

)
Θ(3 − 30) (3.17)

and r0(u) given by (3.10).

FIG. 1. Carter-Penrose conformal diagram of ra-
dial collapse of a null shell. The shaded region I,
3 < 30 is flat, while the unshaded region II, 3 > 30
is Schwarzschild with mass M. The point C with
coordinates (3.22) is where the shell crosses its
future event horizon.

From (3.16)-(3.17) it is clear that although σ and

r are C0 continuous at 3 = 30, their first derivatives

with respect to 3 are not. Since the derivative of the

Heaviside step function Θ is a Dirac δ-function, the

second derivative

∂2r
∂32
= −

rM

2r
δ(3 − 30) + . . . (3.18)

contains a Dirac δ-function contribution at 3 = 30 (with

the ellipsis indicating the remaining terms which are

non-singular). The various first and second derivatives

of r and σ with respect to u and 3 in each region are

catalogued in Appendix B. With those full expressions

one may check that the classical Einstein eqs. (A.13)

are satisfied everywhere, including the only component

with a non-zero source

G33 = 8πG TC
33 (3.19)
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from the stress tensor (3.4) of the null shell, with the δ-function from (3.18). The Carter-Penrose

conformal diagram for the classical geometry of the radially collapsing null shell of finite mass M but

infinitesimal thickness is illustrated in Fig. 1.

From (3.11) as the u coordinate in region I approaches the finite value

I : u→ 30 − 2rM (3.20)

where r → rM , which corrresponds to

II : ũ→ +∞ ,
∂r
∂3
=

f
2
→ 0 (3.21)

in the Schwarzschild region II, the condition (2.18a) is satisfied. Thus u = 30 − 2rM , 3 ≥ 30 is the

location of the future marginally outermost trapped surface and apparent horizon (AH). There is a last

incoming null ray at 3 = 30 − 2rM which reflects from the origin at u = 3 = 30−2rM and becomes the

outgoing null ray defining the future BH horizon, but the conditions (2.17)-(2.18a) are not satisfied

until 3≥ 30. Incoming rays with 30−2rM < 3< 30 reflect from the origin too late and are trapped, being

pulled back finally to the future singularity at r=0. Thus the point C at which the imploding null shell

crosses its future horizon, with coordinates

(u, 3)C = (30 − 2rM , 30) (3.22)

is where the AH and marginally trapped surface first appears, and a classical BH is formed, cf. Fig. 1.

Since the approach of u to the horizon is important in evaluating the quantum effects in the follow-

ing sections, we note that (3.17) may be written in the form

exp
(

r
rM

) (
r
rM

− 1
)
= exp

(
3 − u
2rM

) (
r0

rM

− 1
)
, 3 > 30 , (3.23)

so that if u = 30 − 2rM (1 + ϵ)

r0

rM

= 1 + ϵ ,
r
rM

= 1 + ϵ exp
(
3 − 30

2rM

)
+ O(ϵ2) (3.24)

as ϵ → 0. Thus both r0 → rM and r → rM at fixed 3 in the horizon limit, and both f0, f → 0, while

f
f0
→ exp

(
3 − 30

2rM

)
(3.25)

remains finite in this limit at fixed 3 (while growing exponentially with 3).
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IV. The Stress Tensor of the Conformal Anomaly and the BH Horizon

With the classical geometry of the imploding null shell forming a BH determined in Sec. III, we

turn to quantum effects in this two-dimensional spacetime. Since with p⊥ = 0, τab is the conserved

stress tensor of the 2D spacetime at fixed (θ, ϕ), we can model the quantum effects from the stress

tensor of the two-dimensional conformal anomaly, which has been considered previously for the

vacuum state in [9].

We note in passing that the condition p⊥ = 0 does not follow from the dimensional reduction of

the 4D theory to consideration of the spherically symmetric s-waves only. Without the restriction

p⊥ = 0 the s-wave reduction of the full 4D theory contains additional terms, as have been found and

discussed in a number of papers [36–38]. These additional terms in what is known as 2D dilaton

gravity arise from the metric function r(x1, x2) becoming a dilaton and an additional dynamical field

in the effective 2D theory [8, 39]. However the 2D dilaton theory has been extensively studied and

gives unphysical results for the 4D stress tensor in BH spacetimes, and for Hawking radiation in the

gravitational collapse problem [36–38].

There are several reasons for this failure of the dimensionally reduced 2D dilaton theory to cor-

rectly reproduce even qualitatively the features of the 4D theory, the principal one being the ‘dimen-

sional reduction anomaly’ [40]. This is the fact that dimensional reduction does not commute with

quantization and renormalization, since the 4D theory requires more counterterms and counterterms

of different types than the 2D theory. The result is that the s-wave contribution to the renormalized

stress tensor of the 4D theory does not coincide with the renormalized stress tensor of the dimen-

sionally reduced 2D dilaton theory, which behaves in qualitatively different (and physically incorrect)

ways from the 4D theory. For this reason the 2D dilaton theory of [8, 37, 39] is not the theory we

consider or discuss in this paper. The true theory is intrinsically four dimensional, even in the case of

spherical symmetry, and requires use of the four-dimensional conformal anomaly instead [36].

Since the 4D anomaly effective action and stress tensor is technically much more involved [25],

our purpose in this paper is to first study the state-dependent effects of the stress tensor derived from

the 2D conformal anomaly on the future horizon in a simplified model of a 2D black hole, which

requires that we impose the restriction p⊥=0.

In two dimensions the effective action corresponding to the conformal trace anomaly was given in
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Ref. [41] in the non-local form

Sanom[γ] = −
Nℏ
96π

∫
d2x
√
−γ

∫
d2x′

√
−γ′ Rx ( −1)x,x′Rx′ (4.1)

where N = Ns + N f is the number of free massless fields (scalar or fermion) in the underlying QFT.

This effective action is the result of functionally integrating out N free massless quantum fields ψi, i =

1, . . . ,N with classical action Scl[ψi; γ] in two-dimensional curved spacetime, i.e.

exp
{

i
ℏ

Sanom[γ]
}
=

∫ N∏
i=1

[Dψi] exp
{

i
ℏ

Scl[ψi; γ]
}

(4.2)

which defines the one-particle irreducible (1PI) effective action of the quantum fields in a general 2D

curved space with metric γab. The explicit factor of ℏ in (4.1) reminds that this is the result of the

quantum functional integral (4.2). It gives the compact (and exact) result of all connected quantum

one-loop stress tensor correlation functions ⟨τ b1
a1 (x1) . . . τ bn

an (xn)⟩ by successive variations of Sanom[γ]

with respect to the arbitrary metric γab. A normalization factor, which drops out of all 1PI connected

correlation functions for n > 1 has been set equal to unity in (4.2), so that Sanom[γ] and ⟨τ b
a (x)⟩

vanishes in infinite flat space with no boundaries. In other words, Sanom[γ] is the renormalized effective

action functional, whose variations define the renormalized stress tensor correlation functions, and no

further renormalization is required. For the first variation we drop the brackets and write τ b
a for ⟨τ b

a ⟩.

In the form (4.1) it should be clear that non-local quantum effects are contained in this effective

action through the boundary conditions needed to specify the Green’s function ( −1)x,x′ of the scalar

wave operator. It is this essential non-local state dependence that leads to the possibility of novel

quantum effects on BH horizons, which are not determined by the local curvature alone. However,

the non-local action (4.1) may also be written in the local form

SA[γ;φ] ≡ −
Nℏ
96π

∫
d2x
√
−γ

(
γab ∇aφ∇bφ − 2Rφ

)
(4.3)

by the introduction of a new scalar field φ, called a conformalon, since shifts in φ correspond to

conformal transformations eφ of the metric. The equivalence of (4.1) and (4.3) is demonstrated by

variation of (4.3) with respect to φ which yields its eq. of motion

− φ = R (4.4)

which is linear in φ, since (4.3) is quadratic in φ. If (4.4) is formally solved for φ = − −1R by means
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of its Green’s function, and substituted back into (4.3) the non-local form of the action (4.1) is recov-

ered, up to a surface term. Clearly this inversion of (4.4) is not unique since the Green’s function −1

depends on as yet unspecified boundary conditions, which are in one-to-one correspondence with the

specification of the solution to (4.4) by the fixing of solutions φ0 to the corresponding homogeneous

eq. φ0 = 0. Thus in the local form (4.3), the state-dependent effects of the underlying QFT are

contained in the choice of the particular homogeneous solution to the wave eq. (4.4).

Varying the local form of the action (4.3) with respect to the two dimensional metric γab gives the

energy-momentum tensor of the 2D quantum conformal anomaly

τAab ≡ −
2
√
−γ

δ

δγab SA[γ;φ] =
Nℏ
48π

(
2∇a∇bφ − 2γab φ + ∇aφ∇bφ −

1
2
γab∇cφ∇

cφ
)

(4.5)

which is covariantly conserved in 2D, by use of (4.4) and by virtue of the vanishing of the Einstein

tensor in two dimensions. The trace of (4.5) reproduces the 2D trace anomaly [3], i.e.

τA a
a = −

Nℏ
24π

φ =
Nℏ
24π

R (4.6)

upon making use of (4.4). Henceforth we drop the superscriptA on the anomaly stress tensor (4.5) to

simplify notation, since it is clearly distinguished from the classical stress tensor τC
ab of the null shell

in (3.1)-(3.4).

The scalar conformalon field φmay be regarded as an effective or collective degree of freedom that

can be related to two-particle Cooper-pair intermediate states of the underlying massless conformal

field theory [30]. This may be seen by taking a second variation of (4.3) with respect to the arbitrary

metric γcd and then evaluating the result in flat space. This results in the vacuum polarization diagram

of Πabcd = i⟨τabτcd⟩, whose intermediate two particle state exhibits a 1/k2 pole in momentum space

that can be expressed as the Greens’ function propagator of the effective scalar degree of freedom φ.

Thus the one-loop Πabcd may be represented by a classical tree graph in φ, with no loops cf. Fig. 2.

FIG. 2. Left: The one-loop stress tensor vacuum polarization of a 2D CFT, which exhibits the massless 1/k2

pole of (4.7a). Right: The equivalent classical tree graph of the conformalon scalar 1/k2 propagator. See the
text and Ref. [30] for the details of this correspondence.
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The one-loop polarization tensor in the underlying quantum theory has the form in momentum

space

Πabcd(k)
∣∣∣∣
2D
=

Nℏ
12πk2

(
ηabk2 − kakb

) (
ηcdk2 − kckd

)
(4.7a)

Π c
ab c(k)

∣∣∣∣
2D
=

Nℏ
12π

(
ηabk2 − kakb

)
(4.7b)

showing that the non-zero trace and coefficient on the right side of (4.6) is directly related to the

existence and residue of the 1/k2 pole in Πabcd. In fact, once the tensor index structure indicated in

(4.7a) is fixed, as required by symmetries and the covariant conservation Ward identity kaΠabcd(k) = 0

on any index, the one-loop diagram of Fig. 2 is UV finite and completely determined, with (4.7) the

result [28]. This shows that the conformal anomaly and pole is independent of the regularization

scheme and detailed UV behavior of the quantum theory, provided that the identities following from

the covariant conservation law (2.8) are maintained.

The correspondence with the propagator tree graph in Fig. 2 is established by defining the vertex

τ(1)
ab by the term linear in φ in (4.5), i.e.

τ(1)
ab =

Nℏ
24π

(∇a∇bφ − γab φ) (4.8)

and recognizing that the normalization of the φ field in (4.3) differs by a factor of Nℏ/48π from that of

a canonically normalized scalar field, so that its propagator is (48π/Nℏ) × 1/k2. Attaching the vertex

factor (4.8) to each vertex in the φ tree graph of Fig. 2 and taking account of the normalization of the

φ propagator gives for the φ tree graph in momentum space

(
Nℏ
24π

)2 (
48π

Nℏ k2

) (
ηabk2 − kakb

) (
ηcdk2 − kckd

)
=

Nℏ
12πk2

(
ηabk2 − kakb

) (
ηcdk2 − kckd

)
(4.9)

which coincides with (4.7a), establishing their equivalence. Note that the classical theory of 2D

gravity defined by
∫

d2x
√
γR has no transverse modes and no propagating degrees of freedom at

all, so the 1/k2 propagator and effective scalar degree of freedom it describes arises entirely from

the quantum effect of the anomaly, described by (4.3) in which ℏ is a parameter, but in terms of an

effective classical field satisfying (4.4) [26, 30].

The essential point now is that the massless pole in (4.7a), equivalently (4.9), is a lightlike singular-

ity, signaling significant effects of the quantum conformal anomaly on the light cone, which extends

to macroscopic distance scales, irrespective of the local curvature R. To see the effect of the anomaly
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and φ on horizons directly, and to relate it to the classical BH geometry of the Sec. III, consider the

2D line element of the Schwarzschild form (3.6). The components of the 2D anomaly stress tensor

(4.5) in the (t, r∗) coordinates of (3.6) are

τ t
t =

Nℏ
24π

{
−

1
4 f

(
φ̇2 + φ2

,r∗ − 2 f ′φ,r∗
)
−
φ̈

f
+ R

}
(4.10a)

τ t
r∗ =

Nℏ
48π f

{
−2 φ̇,r∗ + φ̇

(
f ′ − φ,r∗

) }
(4.10b)

τ r∗
r∗ =

Nℏ
24π

{
1

4 f

(
φ̇2 + φ2

,r∗ − 2 f ′φ,r∗
)
+
φ,r∗r∗

f
+ R

}
(4.10c)

where φ,r∗ =
∂φ

∂r∗ and φ,r∗r∗ =
∂2φ

∂r∗ 2 .

The linear eq. (4.4) for φ is

φ = −
1
f
∂2φ

∂t2 +
∂

∂r

(
f
∂φ

∂r

)
=

1
f

(
−
∂2

∂t2 +
∂2

∂r∗ 2

)
φ = −R = f ′′ =

d2 f
dr2 (4.11)

in these coordinates. A particular solution to this inhomogeneous eq. is φ = ln f . The associated

homogeneous wave eq. has general wave solutions exp{ik(r∗ ± t)}. If we are interested in stationary

states, and restrict to k = 0, we may illustrate the behavior of the anomaly stress tensor on the horizon

with linear functions of t and r∗. In this case one can examine the effect of a stationary state solution

of (4.11) in the form

φP,Q = Pt + Qr∗ + ln f (r) =
P + Q

2
3 +

P − Q
2

ũ + ln f (r) (4.12)

where an irrelevant constant is set to zero because (4.3) and (4.5) depend only upon the derivatives of

φ. Substituting this solution into the stress tensor (4.4) with φ,r∗ = Q + f ′ and φ,r∗r∗ = f f ′′, we find

τ t
t = −

Nℏ
24π

{
1

4 f

(
P2 + Q2 − f ′ 2

)
+ f ′′

}
(4.13a)

τ t
r∗ = −

Nℏ
48π

PQ
f

(4.13b)

τ r∗
r∗ =

Nℏ
96π

1
f

(
P2 + Q2 − f ′ 2

)
(4.13c)

in the (t, r∗) coordinates. If one then specializes to the Schwarzschild exterior line element of (3.6),

with

f (r) = 1 −
rM

r
, f ′ =

rM

r2 , f ′′ = −
2rM

r3 = −R (4.14)
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the stress tensor (4.13) of the quantum anomaly becomes

τ t
t = −

Nℏ
24π

{
1

4 f

(
p2 + q2

r2
M

−
r2

M

r4

)
−

2rM

r3

}
(4.15a)

τ t
r∗ = −

Nℏ
48πr2

M

pq
f

(4.15b)

τ r∗
r∗ =

Nℏ
96π

1
f

(
p2 + q2

r2
M

−
r2

M

r4

)
(4.15c)

where we have set the constants P = p/rM and Q = q/rM , so that (p, q) are dimensionless.

Eqs. (4.15) show that the stress tensor due to the quantum anomaly generically gives divergent 1/ f

contributions as r→ rM , f → 0 on the BH horizon, irrespective of the small curvature there. This is

a reflection of the 1/k2 light cone singularity of (4.7a). The divergences can be arranged to cancel

on the future horizon by the particular choice p = −q = ±1/2, or on the past horizon by the choice

p=q = ±1/2, corresponding to the future or past Unruh states [7], or on both horizons by the choice

p = 0, q = ±1, corresponding to the Hartle-Hawking thermal state [10, 42, 43] at the price of being

non-vanishing as r → ∞ (and being thermodynamically unstable due to negative heat capacity [44]).

Any other values for (p, q) result in divergences on the horizon. If one requires a time independent

truly static solution then p = 0. The case p = q = 0 is both time independent and gives a φ and stress

tensor that tends to zero as r → ∞, corresponding to asymptotically flat conditions, but for this choice

τ b
a

∣∣∣
p=q=0

→ −
Nℏ

96πr2
M

f

−1 0

0 1

→ ∞ as r → rM (4.16)

which diverges on the two-dimensional horizon as r→ rM , f→0. These conditions correspond to the

Boulware state [5, 45].

The significance of the solution φ = ln f to (4.12) corresponding to this state is that eφ = f is the

conformal transformation that takes the 2D flat line element −dt2 + dr∗ 2 to the curved space line

element of (3.6). The stress tensor (4.16) is the effect on the expectation value of τ b
a of this conformal

transformation on the quantum vacuum state. In this way the local conformalon scalar incorporates

information about the non-local quantum state over the entire t = const. Cauchy surface, relating the

value of τ b
a to the standard Minkowski vacuum state in the asymptotically flat region where f→1 and

φ→0. The divergence of φ = ln f as r→ rM reflects the vanishing of the norm of the timelike Killing

vector ∂t on the horizon, and breakdown of the separation of positive and negative frequency (particle
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and anti-particle) solutions of the underlying quantum field theory, upon which the definition of the

unique quantum vacuum state in flat Minkowski space is based.

The results (4.15) show that the special states which are regular on the horizon are isolated points

of measure zero in the two-parameter space of general (p, q), and in particular, there is no value of

(p, q) which yields a time independent regular solution for φ and (4.15) on both the horizon and as

r → ∞. Apart from these specific states and particular values of (p, q), each of which would require

a rather technically involved calculation and renormalization of a quantum stress tensor to derive

directly from the underlying quantum field theory in curved space, the effective action (4.3) of the

conformal anomaly and its stress tensor (4.5) permits consideration of a wide class of non-vacuum

initial states and their possible quantum effects, simply by changing the integration constants or more

general homogeneous solutions of the conformalon φ field eq. (4.4). This permits the investigation of

quantum effects of non-vacuum initial conditions for general quantum fields on the BH horizon very

simply and systematically.

V. Non-Vacuum Initial States and Suppression of the Hawking Flux

To apply the anomaly stress tensor (4.5), (4.10) for non-vacuum states in the case of gravitational

collapse of the null shell and formation of the BH considered in Sec. III, consider eq. (4.4) in the

double null coordinates (2.14)
∂2φ

∂u∂3
= 2

∂2σ

∂u∂3
(5.1)

the general solution of which may be expressed

φ(u, 3) = 2
[
σ(u, 3) + A(u) + B(3)

]
(5.2)

in terms of two arbitrary functions A(u), B(3). The particular solution φ = 2σ with A = B = 0 gives

τab = 0 in the flat region I, corresponding to the initial state being the Minkowski vacuum. However

in the Schwarzschild region II, φ = 2σ = ln( f / f0) from (3.14). Note that in relation to (4.12),

φ = ln f−ln f0 in region II corresponds to adding a particular homogeneous solution, namely − ln f0(u)

to the solution of the inhomogeneous eq., ln f . Tying φ rigidly to the geometry in this way, with

a very particular homogeneous solution to the φ eq. (4.12), as was assumed in earlier works [4,

7, 9] corresponds to the Unruh vacuum initial conditions after the passage of the null shell in the

Schwarzschild region II, as we shall see presently.

The formulation in terms of a local independent field φ is considerably more general and allows

for arbitrary homogeneous solutions of the differential eq. (4.4) to be added as in (5.2), corresponding

20



to non-vacuum initial states. Substituting the general solution (5.2) for φ into the stress tensor (4.5)

we obtain the general form of the two-dimensional quantum anomaly stress tensor in the double null

coordinates, with components

τuu =
Nℏ
12π

∂2σ

∂u2 −

(
∂σ

∂u

)2

+
d2A
du2 +

(
dA
du

)2 (5.3a)

τu3 = −
Nℏ
12π

∂2σ

∂u∂3
, (5.3b)

τ33 =
Nℏ
12π

∂2σ

∂32
−

(
∂σ

∂3

)2

+
d2B
d32
+

(
dB
d3

)2 . (5.3c)

It should be noted that (5.3) does not obey classical positivity conditions, nor should that be expected

for the expectation value of a quantum stress tensor [3].

In the Schwarzschild region II (5.3) may be evaluated in the classical background geometry (i.e.

ignoring backreaction), with the aid of eqs. (B.5) to obtain

τuu =
NℏrM

48π f 2
0

[
1
r3

0

−
1
r3 +

3rM

4

(
1
r4 −

1
r4

0

)]
+

Nℏ
12π

d2A
du2 +

(
dA
du

)2 , (5.4a)

τu3 = −
NℏrM

48πr3

f
f0

(5.4b)

τ33 = −
NℏrM

48πr3

(
1 −

3rM

4r

)
+

Nℏ
12π

d2B
d32
+

(
dB
d3

)2 . (5.4c)

for 3 > 30. An important observation about the vacuum A=B=0 terms in (5.4) is that all components

satisfy the finiteness conditions of [5] and Appendix C. In particular, although τuu of (5.4a) contains

a factor of 1/ f 2
0 , the quantity in square brackets multiplying it vanishes up to second order in ϵ in the

expansion near horizon limit (3.24).

From the last eq. (5.4c) for τ33 it is also clear that the function B(3) adds to the classical stress tensor

of the null shell (3.4) an ingoing flux contribution from non-vacuum initial conditions at I−, which

would change the mass M and position of the BH horizon, but is otherwise of no particular interest

for the behavior of the geometry near the future horizon, or the Hawking effect on I+. Therefore we

set B(3)=0 and focus on the possible effects of non-vacuum initial conditions determined by A(u).

Evaluating the derivatives of the flux of energy associated with the quantum energy-momentum

tensor (5.4) with B = 0, from the time derivative of the Misner-Sharp mass in region II in the
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Schwarzschild (t, r) coordinates using (2.11) we find

∂m
∂t

∣∣∣∣∣
B=0
= f0

∂m
∂u
+
∂m
∂3
= − f 2

0 τuu + τ33

= −
NℏrM

48πr3
0

(
1 −

3rM

4r0

)
−

Nℏ f 2
0

12π

d2A
du2 +

(
dA
du

)2 . (5.5)

For the vacuum initial conditions, A=B=0, at late times t → ∞ as ũ, 3 → ∞, u → 30 − 2rM at future

null infinity I+, r0 → rM and outgoing quantum energy flux goes to the limit

ṁH =
∂m
∂t

∣∣∣∣∣
A=B=0

→ −
Nℏ

192πr2
M

= −
Nπ
12ℏ

(kBTH )2 (5.6)

which is exactly the flux of N quantum fields radiating at the Hawking temperature TH = ℏ/(8πkBGM)

in two dimensions expected in the Unruh state. We obtain the Hawking flux for two dimensions and

not four dimensions because we are using the two-dimensional conformal anomaly as a proxy for the

quantum anomaly in four dimensions. This is in agreement with earlier results [4, 5, 7, 9].

Note that the full energy flux (5.5) is a function only of u if B = 0 (as we neglect any backreaction)

and that the factor of f 2
0 multiplying τuu can lead to a finite result at late times on I+ as u → 30 −

2rM , f0 → 0, only if there is a compensating factor of 1/ f 2
0 in (5.4a). Stated in a different way, the

Hawking flux result (5.6) is dependent upon the regularity of the vacuum stress tensor on the horizon,

but conversely if the regularity conditions are violated by non-vacuum terms from A(u), then they can

change the energy flux (5.5) at I+ at late times. This is possible if and only if the non-vacuum terms

in τuu are 1/ f 2
0 singular on the future horizon, consistent with the analysis of [6].

Comparing the general solution (5.2) for φ in the Schwarzschild region II after the null shell col-

lapse with the particular solution (4.12) in the static Schwarzschild geometry, we see that it corre-

sponds to p = −q and

A(u)
∣∣∣
p=−q
=

(
q +

1
2

)
ln f0 + Areg(u) , where Areg(u) = −

qu
2rM

+ q ln
(

r0

rM

)
(5.7)

and the latter Areg(u) is finite and regular on the horizon, u = 30 − 2rM , r0 = rM . Since the important

effects on the horizon are associated with the divergent ln f0 term, we drop the regular contributions

and consider the effects of the simpler non-vacuum perturbation of the form

A(u) =
(
q +

1
2

)
ln f0 =

(
q +

1
2

)
ln

(
1 −

rM

r0

)
, r0 > rM . (5.8)

22



This gives the additional contribution to τuu

τA
uu =

Nℏ
12π

d2A
du2 +

(
dA
du

)2 = Nℏ
48π

(
q2 −

1
4

) r2
M

r4
0 f 2

0

−
Nℏ
24π

(
q +

1
2

) rM

r3
0 f0

(5.9)

in (5.4a), which has the 1/ f 2
0 behavior in the horizon limit f0→ 0 required to give a non-vanishing

contribution to the flux (5.5) at late times. Thus we now find

∂m
∂t
=

Nℏ
48π

−rM

r3
0

+
3r2

M

4r4
0

−

(
q2 −

1
4

) r2
M

r4
0

+

(
q +

1
2

) 2rM

r3
0

f0


→ −

Nℏ
48πr2

M

q2 (5.10)

as u→ 30 − 2rM , r0 → rM , f0 → 0 at late times. If q = −1/2 and the non-vacuum perturbation (5.8)

vanishes, one recovers the Hawking vacuum flux (5.6) in the Unruh state, which is regular on the

future horizon, but if q = 0 this flux is precisely cancelled, corresponding to the Boulware state,

which has a singular stress tensor (4.16) on the horizon, and there is no Hawking radiation.

It is clear from this exercise that the Hawking flux and the behavior of the stress tensor on the

horizon are intimately connected and dependent upon one another, and both are determined by the

particular solution of the φ eq. (4.4) and stress tensor (4.5). That the assumption of regularity of the

stress tensor on the horizon implies the Hawking effect was shown in Ref. [6]. The considerations

above show that the converse is also true, namely a singular contribution to the quantum stress tensor

τuu from an initial state perturbation can modify or even eliminate the Hawking flux.

Now a strictly divergent perturbation is disallowed by the requirement that the initial state be UV

finite with a Hadamard two-point function in QFT, in accordance with a theorem of [34]. Any A(u)

homogeneous solution to (4.4), if followed backwards in time and reflected from the origin must

have been present in the initial state as incoming radiation in B(3). Hence requiring that B(3) be non-

singular in the initial state on I− prior to collapse implies that A(u) must also be non-singular on the

horizon, and the strictly diverging behavior of (5.8) on the future horizon in (5.9) is excluded.

On the other hand, there is no need for the quantum stress tensor to diverge. If it becomes arbi-

trarily large, while still finite, it can produce backreaction effects on the horizon that could lead to

significantly different results than those obtained with vacuum initial data. Quantitative control of this

large growth of the stress tensor on the horizon requires regulating the logarithmic divergence of (5.8)

and the corresponding 1/ f 2
0 divergence of (5.9) by a smooth cutoff for small but finite f0.
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Let the divergence in the τuu component of the stress tensor in the non-vacuum state described by

(5.8) be regulated by a small quantity ϵ ≪ 1, such that (5.8) holds nearly everwhere but as f0 → 0,

the logarithm is cut off by ϵ. That is, let A(u) of (5.8) be replaced by Aϵ(u) such that

lim
ϵ→0+

Aϵ(u) =
(
q +

1
2

)
ln | f0| (5.11)

but also such that
lim

u→30−2rM

Aϵ(u)→
(
q +

1
2

)
ln ϵ (5.12)

remains finite, regulated by the non-zero value of ϵ ≪ 1. One simple such regulated A(u) (by no

means unique), with the required properties in the near horizon region might be

Ãϵ(u) =
1
2

(
q +

1
2

)
ln

(
f 2
0 + ϵ

2
)
=

1
2

(
q +

1
2

)
ln

[(
1 −

rM

r0(u)

)2
+ ϵ2

]
(5.13)

which unlike (5.8) is also defined for f0 < 0. We may also require that Aϵ(u) have no singular

behavior at any other u, whereas (5.14) still exhibits singular behavior at the origin u = 30, r0 = 0

where f0 → −∞. Thus another possible fully regularized A(u) is

Aϵ(u) =
1
2

(
q +

1
2

) ln
(r0(u)

rM

− 1
)2

+ ϵ2

 − ln
(r0(u)

rM

)2

+ ϵ2

 (5.14)

where both logarithmic singularities of (5.8) at r0 = rM and r0 = 0 are removed and regularized by the

same ϵ ≪ 1 small parameter. Then

Aϵ(u)→ ±
(
q +

1
2

)
ln ϵ (5.15)

for u → 30 − 2rM or u → 30, respectively, as ϵ → 0+. This regularized function Aϵ(u) is shown as a

function of u for q = 0 and various ϵ in Fig. 3.
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u/rM

ε = 1e–1
ε = 1e–2
ε = 1e–3

FIG. 3. The regularized perturbation in the initial condi-
tions (5.14) for q = 0 and various ϵ.

The function A′′+(A′)2 which appears in the

quantum stress tensor (5.9) has a maximum at

f0 ∼ ϵ ≪ 1 or at u − (30 − 2rM ) ∼ 2 ϵ rM with

that maximum value there of order ϵ−2. The

width in u of the peak maximum in Aϵ is ∆u ∼

4rMϵ. The functions A′′, (A′)2 and A′′ + (A′)2

are plotted in Figs. 4. The main contribution

comes from the region of ∆u ∼ ϵrM around the

maximum.
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FIG. 4. First Two Panels: ϵ2A′′ and ϵ2A′ 2 of the regularized perturbation (5.14) as functions of u in units of
1/8r2

M
for q = 0. The horizon is at u = 0, the u−axis is rescaled by ϵ and the magnitude is rescaled by ϵ2,

showing that the self-similar behavior of the rescaled curves coincide for ϵ → 0. Third Panel: The sum which
contributes to (5.9) and τuu in units of Nℏ/96πr2

M
, also for q = 0 and with axes similarly rescaled.

Since f0 is a function of u, this effect is concentrated in an interval of u near the horizon of order

∆u ∼ ∆r ∼ ϵrM ∼
√

NLPl (5.16)

which is of the order or somewhat larger than the Planck scale LPl ≡
√
ℏG/c3 = 1.616 × 10−33 cm.,

if we take ϵ ∼
√

NLPl/rM , which we shall show presently is the size needed for the quantum effects

to significantly alter the classical geometry. Since h = f (r)→ 0 for the Schwarzschild line element

(2.12), this corresponds to a physical distance scale of

ℓ ∼
∆r
√
ϵ
∼ N

1
4
√

rM LPl ≫ LPl (5.17)

from the horizon. For a solar mass BH, ℓ is of order 10−14 cm or greater. Although very small by

astrophysical standards, since ℓ ≫ LPl by some 19 orders of magnitude, one may still expect to be

able to apply semi-classical methods in this regime.

The behavior of the Hawking flux suppression for some moderately small values of ϵ is illustrated

in Fig. 5, showing that this suppression persists for longer and longer retarded u times closer to

u = 30 − 2rM on the future horizon, for smaller and smaller ϵ. Given (3.6) and (3.11), this corresponds

at fixed r to times t ∝ rM ln(1/ϵ) after the collapse of the null shell. Fig. 5 also exhibits the self-similar

behavior of the flux suppression as u→ 30 − 2rM for ϵ→ 0, which is a consequence of the conformal

properties of the spacetime in near-horizon region [22–24].

For a quantitative estimate of how large the effects of the perturbation (5.14) on the geometry

would be, if backreaction were to be taken into account, note that the overall scale of the quantum
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FIG. 5. Upper Panels: Mass flux (5.5) as a function of horizon advanced time u, showing the suppression of the
Hawking flux by the perturbation Aϵ(u) in the initial state for u increasingly close to the horizon at u = 0 for
decreasing values of ϵ. ṁH denotes the value of the 2D Hawking flux (5.6) to which all regular perturbations
tend finally at u = 0. Lower Panel: Expanded u scale showing the self-similar behavior under rescalings of ϵ.

effects encoded in τab are of order Nℏ/48πr2
M

. From the four-dimensional Einstein tensor (2.2) and

stress tensor (2.7), τab leads to effects on Gab of order (8πG/4πr2) τab, or NℏG/24πr4
M

. This is to

be compared with the 4D classical curvature components computed in the Schwarzschild geometry,

given in Appendix A which are of order 1/r2
M

at the horizon. Thus the quantum backreaction effects

are generally suppressed by an overall relative factor of

αG ≡
NℏG
24πr2

M

=
N

24π

(
LPl

rM

)2

≪ 1 (5.18)

compared to the classical geometry. This is certainly a very substantial suppression for a macroscop-

ically large BH compared to the Planck scale, and the reason that quantum effects in classical GR are

generally considered to be quite negligible. However even such an enormous suppression factor as

(5.18) can be overcome if the quantum stress-tensor (5.3) components become large enough (while

still remaining finite) in the vicinity of the future apparent horizon.

With (5.14) as a complete regularization of the non-vacuum initial state perturbation (5.8) in both

regions, the A′′ + (A′)2 term in (5.9) is of order ϵ−2 in the near horizon region and the quantum
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suppression (5.18) is overcome if

αG

ϵ2

(
q2 −

1
4

)
≳ 1 , or ϵ ≲ Max(1, |q|) ×

√
N
6π

(
LPl

2rM

)
. (5.19)

For large |q| ≫ 1 the condition on how small ϵ must be to overcome the suppression of quantum

non-vacuum effects on the horizon is weakened by the appearance of a large factor of |q| in (5.19), but

in the following we assume that q is of order 1 and not particularly large, which we show in Sec. VI

has the highest probability of occuring in the initial state.

Since the finite regularized perturbation (5.14) is present in the initial state, prior to the formation

of the BH so we also estimate its total Misner-Sharp energy in the flat space region I where R = 0 and

(3.5) applies. Using (2.22) and (5.3) with (5.16) gives

m =
∫ ∞

−∞

du
∂m
∂u
=

∫ ∞

−∞

du τuu ∼ ∆u
ℏN

24π(∆u)2 ∼
ℏN

24πϵrM

∼

√
N
6π

MPl

2
≪ M (5.20)

of the order the Planck mass MPl = 2.177 × 10−5 gm. In the flat region ∆u ∼ LPl, so that a quantum

perturbation on the future apparent horizon of the BH large enough to overcome the suppression (5.18)

and produce significant backreaction on the classical geometry only requires a Planck mass-energy

fluctuation MPl concentrated within a Planck length LPl distance, just the scale at which such quantum

fluctuations in the initial state are expected on general grounds of the uncertainty principle.

In the next section we give a quantitative estimate of the probability that such a non-vacuum

quantum fluctuation large enough to satisfy the conditions (5.19)-(5.20) exists in the wave functional

of the initial vacuum state.

VI. Probability Distribution for Non-Vacuum Initial Conditions

The effective action of the conformal anomaly (4.3) is quadratic in the conformalon scalar field φ,

and its eq. of motion (4.4) in the asymptotically flat region where R = 0 is that of a free scalar field.

Since in a free theory the wave functional of the ground state vacuum is a simple Gaussian, evaluating

the width of this Gaussian enables us to give a quantitative estimate of the probability of the coherent

state perturbation of the form of (5.14) parametrized by ϵ and q.

For one simple harmonic oscillator with frequency ω, the classical action

Sosc[x] =
1
2

∫
dt

(
ẋ2 − ω2x2

)
(6.1)
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is quadratic in x, and the ground state of the oscillator is described by the Schrödinger wave function

ψ0(x) =
(
ω

πℏ

)1
4

exp
(
−
ωx2

2ℏ

)
(6.2)

which is a simple Gaussian, normalized to
∫ ∞
−∞

dx |ψ0(x)|2 = 1. Since dx |ψ0(x)|2 is the probability of

finding the oscillator with a value of the coordinate between x and x + dx, the probability of finding

the coordinate x with any absolute value |x| ≥ x̄ > 0 is

P(x̄) = 2
∫ ∞

x̄
dx |ψ0(x)|2 = erfc

(√
ω

ℏ
x̄
)

(6.3)

in terms of the complementary error function erfc.

This simple result can be generalized to a free QFT, viewed as a collection of free harmonic

oscillators, in both the fixed time and light cone quantization schemes. For initial data on a lightlike

null surface such as I− the Schrödinger wave functional formulation is given in [46]. The Gaussian

wave functional on the initial data for a canonically normalized scalar field ϕ is proportional to

exp
{
−

1
ℏ

(
ϕ−,Ωϕ+

)}
(6.4)

where ϕ± are the positive and negative frequency parts of ϕ, and Ω = 2k, the analog of ω in (6.2),

is called the ‘covariance’ and given in momentum space with k the momentum conjugate to the light

front variable u or 3. For a real scalar field the positive and negative frequency parts are simply related

by complex conjugation, i.e. ϕ− = (ϕ+)∗. Applying this general result to the anomaly effective action

(4.3), the square of the ground state Schrödinger wave functional for the conformalon scalar φ on an

initial null hypersurface is

∣∣∣Ψ0[φ]
∣∣∣2 ∝ exp

{
−

N
24π

∫ ∞

0

dk
2π

φ−(k) (2k)φ+(k)
}

(6.5)

after account is taken of the normalization of (4.3) with the factor of Nℏ/48π relative to the canonical

normalization of 1/2 for a free scalar field. The overall normalization factor in (6.5) is to be deter-

mined by the requirement that |Ψ0|
2 integrated over all values of the parameters characterizing the

initial state perturbation is φ is unity.

For the unregularized perturbation φ = 2A(u) with A(u) given by (5.8), the positive frequency
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component in momentum space is

φ+(k) = (2q + 1)
∫ ∞

−∞

du eiku ln | f0| , k > 0 . (6.6)

which is the result of the ϵ → 0 limit of the regularized form (5.14). With the change of variables

u = 30 − 2rM x, (6.6) is
φ+(k) = 2rM (2q + 1) eik30 I(z)

∣∣∣
z=2krM

(6.7)

where the integral I(z) is finite and given by

I(z) =
∫ ∞

−∞

dx e−ixz ln
∣∣∣∣∣1 − 1

x

∣∣∣∣∣ = ∫ ∞

1
dx e−ixz ln

(
1 −

1
x

)
+

∫ 1

0
dx e−ixz ln

(
1
x
− 1

)
+

∫ ∞

0
dx eixz ln

(
1 +

1
x

)
=
π

z

(
1 − e−iz

)
. (6.8)

Although each of the three integrals in (6.8) involves sine-integral (Si) and cosine-integral (Ci) special

functions, their sum turns out to be expressible in terms of elementary functions in the last form.

Substituting (6.7) with (6.8) and z = 2krM into (6.5) gives the probability density of the initial state

perturbation ∣∣∣Ψ0

∣∣∣2 ∝ exp
{
−

N
24π2

(
2q + 1

)2
∫ ∞

0
dz z |I(z)|2

}
(6.9)

for the unregularized initial state perturbation (5.8). Now observe from (6.8) that the integrand of the

z integral in (6.9) is

z |I(z)|2 = z
π2

z2

∣∣∣1 − e−iz
∣∣∣2 = 4π2

z
sin2

(
z
2

)
∼

2π2

z
(6.10)

so that in fact the integral in (6.9) as it stands diverges logarithmically, and would give an identically

zero probability for any q , −1/2, which is the vacuum state. This is consistent with the general

theorem of Ref. [34], which excludes the possibility that truly singular behavior on the future horizon

could be generated in gravitational collapse, starting from smooth initial data. The perturbation (5.8)

is such a singular perturbation for any q , −1/2, also with diverging energy (5.20) in the initial state.

It is not difficult to see that the large z behavior of the integral (6.8) is determined by the behavior

of A(u) at its logarithmic singular points where f0 becomes either 0 or ∞. Thus if we replace the

singular perturbation (5.8) by the finite one (5.14) regularized by a small but finite ϵ parameter, the

1/z behavior of (6.8) and (6.10) is cut off at z ∼ 1/ϵ with the result that∫ ∞

0
dz z |Iϵ(z)|2 ∼ ln

(
1/ϵ

)
(6.11)
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for the regularized perturbation (5.14), and as a result the probability functional (6.9) becomes

|ψϵ(q)|2 ∝ exp
{
−

N
24π2 (2q + 1)2 ln

(
1/ϵ

)}
= ϵN(2q+1)2/24π2

(6.12)

which is now a finite normalizable probability density in q and for any ϵ > 0.

If ϵ is required to satisfy (5.19) for q of order unity, it is instructive to evaluate the exponent for a

typical value of rM ≃ 3 km for a solar mass BH, for which

rM

LPl
≃ 1.9 × 1038 ≫ 1 . (6.13)

Despite this very large value, the exponent in (6.12) is only weakly logarithimically dependent on ϵ

and
1

24π2 ln
(
1/ϵ

)
=

1
24π2 ln

√6π
N

2rM

LPl

 ≃ 0.38 −
ln N
48π2 (6.14)

is actually O(1). The ln N term in (6.14) is also negligibly small compared to 0.38 provided ln N ≪

(48π2)(0.38) ≃ 180, so that neglecting it, we find from (6.12) the normalized probability distribution

in q is approximately

|ψϵ(q)|2 ≃

√
(1.52) N

π
exp

{
−(0.38) N (2q + 1)2

}
(6.15)

centered on the vacuum value of q = −1
2 , where the normalization is now fixed by

∫ ∞
−∞

dq |ψϵ(q)|2 = 1.

For the perturbation (5.14) with q = 0 that produces a large suppression of the Hawking effect and

stress tensor on the horizon that is also large enough to produce significant backreaction according to

(5.19), we have

|ψϵ(0)|2 ≃ (0.70)
√

N e−(0.38) N = (0.70)
√

N (0.68)N (6.16)

which is O(1), unless N is very large. As in (6.3), the probability of finding a perturbation in the initial

state of the form (5.8) varying from the vacuum value by |∆q| ≥ 1/2 is

P
(
|∆q| ≥

1
2

)
≃ erfc

(√
(0.38) N

)
=

 0.38 , N = 1

0.08 , N = 4
(6.17)

which is also O(1), for N fields contributing to the 2D conformal anomaly, unless N is very large.
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VII. Discussion and Outlook

In this paper we have considered a simple 2D model of gravitational collapse, and studied the

effects of the quantum conformal anomaly on the resulting classical BH horizon. Although this and

similar 2D models of gravitational collapse have been considered previously [4, 7, 9], attention has

been focused almost exclusively on initial conditions corresponding to the Minkowski vacuum on

I−. This choice of initial state leads to the stress tensor on the horizon that is regular in free-falling

coordinates and backreaction effects of Hawking radiation that are small, at least initially in the semi-

classical approximation, where quantum fluctuations from the mean ⟨T ν
µ ⟩ are ignored.

This study shows instead that the quantum effects of the conformal anomaly can be extraordinarily

large on BH horizons, overcoming even the enormous suppression of Planck to macroscopic scales

expressed by the ratio (6.13). This suppression, normally expected of quantum effects in classical

gravity, can be overcome in the stress tensor of the conformal anomaly because of its sensitivity to

light cone pole singularities of quantum field theory, that occur in generic quantum states and extend

to macroscopic scales. This specifically quantum, non-local effect, and its importance to the behavior

of the stress tensor on BH horizons is illustrated in the simple 2D model of this paper.

This is a proof of principle of state-dependent anomaly effects on BH horizons in a simple 2D

model with p⊥=0. Relaxing this condition to obtain a more realistic model will require use of the full

4D conformal anomaly effective action and stress tensor of [25, 27], which nonetheless is expected

to have similar significant state-dependent effects on the future event horizon of a 4D black hole, as

already pointed out in [25]. The present paper therefore provides a good motivation and warm-up for

study of the more realistic but technically more challenging 4D collapse problem by similar methods

applied to the 4D anomaly stress tensor. The significant effects of the conformal anomaly even in the

simplified 2D model of this paper support the conclusion that the effective action of the conformal

anomaly is a relevant addition to the classical theory that should be added in a full effective field

theory (EFT) treatment of gravity at macroscopic scales [25–27, 29, 47].

By recasting the effective action of the 2D conformal anomaly in local form (4.3) via the introduc-

tion of a local scalar conformalon field φ, a very wide class of initial conditions can be considered,

by allowing general homogeneous solutions to the linear wave eq. (4.4) that φ satisfies. As a practical

matter, this formulation of general initial conditions is simpler and much less technically involved than

calculating the stress tensor of every quantum field in each and every quantum state, by the standard

approach of mode sums, which requires a cumbersome process of regularization and renormalization
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on a case by case basis, even on a fixed background with a great deal of symmetry [3]. Calculations

of quantum backreaction in dynamically evolving spacetimes, or those with less symmetry rapidly

become prohibitive by this method. The local form of the conformal anomaly stress tensor and eq. of

motion provides a more practical approach to make progress in this class of quantum backreaction

problems in BH and other curved spacetimes, particularly in the horizon region where the anomaly

dominates other vacuum polarization effects because of its lightlike singularity.

The relevance of the anomaly stress tensor in the 2D model is illustrated through its effect on

Hawking emission, which can be modified or suppressed for indefinitely long times after gravita-

tional collapse, by different choices of the initial state easily studied by means of different homoge-

neous solutions to the φ eq. (4.4). Since the anomaly effective action is quadratic in φ, it is also a

convenient route to estimating the probability of such non-vacuum initial conditions in the vacuum

wave functional. The probability of non-vacuum initial conditions that can significantly affect the

BH near-horizon geometry and Hawking effect (6.16)-(6.17) are not negligibly small, but rather of

O(1). This demonstrates the ability of the anomaly to overcome large quantum suppression factors

in gravitational collapse, and the special and fine-tuned nature of the vacuum initial conditions upon

which virtually all inferences of quantum effects in BHs have been based. The present study indicates

that a reconsideration of these conclusions for more general initial state conditions is warranted.

Clearly the estimates of the probability based on a 2D model of gravitational collapse (6.16)-(6.17)

are only illustrative, given that the 2D model itself is incomplete, by setting to zero identically the

transverse pressure as in (2.9). The shortcomings of this model and similar ones have been pointed

out [36]. For these reasons we do not take (6.16)-(6.17) as accurate reliable predictions for the prob-

ability of non-vacuum initial conditions in 4D gravitational collapse. Nevertheless, general features

of weak, logarithmic dependence on the large ratio of scales 1/ϵ ∼ rM/LPl of this probability function,

when initial state perturbations are regularized by a small parameter that grow large on the horizon, are

expected to hold in four dimensions as well. The 4D effective action of the conformal anomaly is also

quadratic in φ, and its eq. of motion is also linear [27, 47]. Hence the probability of non-vacuum initial

conditions that lead to large effects on the BH horizon found in [25, 26] can be studied by the same

methods as those in the 2D case. Thus the study of the simplified 2D model presented here justifies

a detailed study of the analogous non-vacuum perturbations by means of the 4D quantum conformal

anomaly in more realistic models of gravitational collapse, and in the full EFT of [27], where the φ

conformalon is coupled to dynamical vacuum energy, allowing it also to change in the near-horizon

region, and possibly leading to a regular de Sitter interior consistent with quantum theory [48].
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A. Curvature Components in Double Null Coordinates

To calculate the Riemann curvature components most rapidly we use the method of differential

forms and the definition of the vierbeine or tetrad frame one-forms

eâ = eâ
µ dxµ (A.1)

in the orthornormal coordinates denoted by the hatted indices, such that the metric can be written

gµν = ηâb̂ eâ
µe

b̂
ν (A.2)
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in terms of the constant metric and its inverse

ηû3̂ = η3̂û = −
1
2
, ηû3̂ = η3̂û = −2 , ηθ̂θ̂ = ηϕ̂ϕ̂ = η

θ̂θ̂ = ηϕ̂ϕ̂ = 1 . (A.3)

In flat space r = (3 − u)/2, whereas in the general spherical symmetric geometry in double null

coordinates the metric is given (2.1) and (2.14), in terms of two functions r(u, 3) and σ(u, 3) to be

determined. Therefore we may choose the frame one-forms and vierbein fields to be

eû = eσ du , eû
u = eσ (A.4a)

e3̂ = eσ d3 , e3̂3 = eσ (A.4b)

eθ̂ = r dθ , eθ̂θ = r (A.4c)

eϕ̂ = r sin θ dϕ , eϕ̂ϕ = r sin θ (A.4d)

with all other components eâ
µ not listed in the second column vanishing.

From the above frame one-forms the connection one-forms wâ
b̂

are determined by the requirement

from Cartan’s second eq. of structure

T â ≡ deâ + wâ
b̂
∧ eb̂ = 0 (A.5)

of vanishing torsion T â. Here d here denotes exterior differentiation of forms and the ∧ (‘wedge’)

operation denotes the anti-symmetric product of forms. Thus from (A.4), (A.5) and

deû = −eσ ∂3σ du ∧ d3 (A.6a)

de3̂ = +eσ ∂uσ du ∧ d3 (A.6b)

deθ̂ = +∂ur du ∧ dθ + ∂3r d3 ∧ dθ (A.6c)

deϕ̂ = + sin θ ∂ur du ∧ dϕ + sin θ ∂3r d3 ∧ dϕ + r cos θ dθ ∧ dϕ (A.6d)

one finds

wû
û = −w3̂

3̂
= ∂uσ du − ∂3σ d3 (A.7a)

wû
3̂
= w3̂û = 0 (A.7b)

wû
θ̂
= 2wθ̂

3̂
= 2e−σ ∂3r dθ (A.7c)

w3̂
θ̂
= 2wθ̂

û = 2e−σ ∂ur dθ (A.7d)

wû
ϕ̂
= 2wϕ̂

3̂
= 2e−σ sin θ ∂3r dϕ (A.7e)
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w3̂
ϕ̂
= 2wϕ̂

û = 2e−σ sin θ ∂ur dϕ (A.7f)

wϕ̂

θ̂
= −wθ̂

ϕ̂
= cos θ dϕ (A.7g)

for the connection one-forms, with terms not listed vanishing.

The Riemann curvature two-form is then calculated from Cartan’s first eq. of structure

Râ
b̂
≡ dwâ

b̂
+ wâ

ĉ ∧ wĉ
b̂
= Râ

b̂ĉd̂
eĉ ∧ ed̂ (A.8)

from which we obtain the 20 non-vanishing components of the Riemann tensor

Rû
û3̂û = R3̂

3̂û3̂ = 2 e−2σ ∂u∂3σ (A.9a)

Rû
θ̂ûθ̂
= Rû

ϕ̂ûϕ̂
= R3̂

θ̂3̂θ̂
= R3̂

ϕ̂3̂ϕ̂
= 2Rθ̂

û3̂θ̂
= 2Rθ̂

3̂ûθ̂
= 2Rϕ̂

û3̂ϕ̂
= 2Rϕ̂

3̂ûϕ̂
=

2
r

e−2σ ∂u∂3r (A.9b)

Rû
θ̂3̂θ̂
= Rû

ϕ̂3̂ϕ̂
= 2Rθ̂

3̂3̂θ̂
= 2Rϕ̂

3̂3̂ϕ̂
=

2
r

e−2σ
(
∂2
3r − 2 ∂3r ∂3σ

)
(A.9c)

R3̂
θ̂ûθ̂
= R3̂

ϕ̂ûϕ̂
= 2Rθ̂

ûûθ̂
= 2Rϕ̂

ûûϕ̂
=

2
r

e−2σ
(
∂2

ur − 2 ∂ur ∂uσ
)

(A.9d)

Rθ̂

ϕ̂θ̂ϕ̂
= Rϕ̂

θ̂ϕ̂θ̂
=

1
r2

(
1 + 4 e−2σ ∂ur ∂3r

)
(A.9e)

in the orthonormal basis, together with the 20 components related to these by anti-symmetry in the

last two indices: Râ
b̂ĉd̂
= −Râ

b̂d̂ĉ
.

The non-vanishing components of the Ricci tensor are

Rû
û = R3̂

3̂
= Ru

u = R33 = 4 e−2σ
(
∂u∂3σ +

1
r
∂u∂3r

)
(A.10a)

Rû
3̂
= Ru

3 =
4
r

e−2σ
(
∂2
3r − 2 ∂3r ∂3σ

)
(A.10b)

R3̂û = R3u =
4
r

e−2σ
(
∂2

ur − 2 ∂ur ∂uσ
)

(A.10c)

Rθ̂

θ̂
= Rϕ̂

ϕ̂
= Rθ

θ = Rϕ
ϕ = 4 e−2σ

(
1
r
∂u∂3r +

1
r2 ∂ur ∂3r

)
+

1
r2 (A.10d)

given in both the orthonormal and coordinate bases. Thus the four-dimensional Ricci scalar is

(4)R = 8 e−2σ
(
∂u∂3σ +

2
r
∂u∂3r +

1
r2 ∂ur ∂3r

)
+

2
r2 (A.11)

and the non-vanishing components of the Einstein tensor are

Gu
u = G33 = −4 e−2σ

(
1
r
∂u∂3r +

1
r2 ∂ur ∂3r

)
−

1
r2 (A.12a)
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Gu
3 =

4
r

e−2σ
(
∂2
3r − 2 ∂3r ∂3σ

)
(A.12b)

G3u =
4
r

e−2σ
(
∂2

ur − 2 ∂ur ∂uσ
)

(A.12c)

Gθ
θ = Gϕ

ϕ = −4 e−2σ
(
∂u∂3σ +

1
r
∂u∂3r

)
(A.12d)

in the (u, 3, θ, ϕ) coordinate basis. All curvature components vanish for σ = 0, r = (3 − u)/2 in flat

space. With these results the Einstein eqs. in the full four-dimensional space (2.1) take the form

∂2r
∂u2 − 2

∂r
∂u
∂σ

∂u
= −

G
r
τuu , (A.13a)

∂2r
∂32
− 2

∂r
∂3

∂σ

∂3
= −

G
r
τ33 , (A.13b)

∂2r
∂u∂v

+
1
r
∂r
∂u
∂r
∂v
+

e2σ

4r
=

G
r
τuv , (A.13c)

∂2σ

∂u∂v
+

1
r
∂2r
∂u∂v

= σ +
1
r

r = 0 . (A.13d)

B. The Functions r(u, 3) and σ(u, 3) in regions I and II

In the flat region I, σ = 0 and the r = (3 − u)/2. Thus we have simply

∂r
∂3
=

1
2
= −

∂r
∂u

(B.1a)

∂2r
∂32
=
∂2r
∂u2 =

∂2r
∂u∂3

= 0 in region I. (B.1b)

In region II differentiation of (3.12) gives

dr∗ =
dr
f
=

d3
2
−

dũ
2
=

d3
2
−

du
2 f0

(B.2)

so that
∂r
∂u
= −

f
2 f0

(B.3a)

∂r
∂3
=

f
2

(B.3b)

∂2r
∂u2 =

f f ′

4 f 2
0

−
f f ′0
4 f 2

0

(B.3c)

∂2r
∂32
=

f f ′

4
(B.3d)

∂2r
∂u∂3

= −
f f ′

4 f0
in region II (B.3e)
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where
f ′ ≡

d f
dr
=

rM

r2 , f ′0 ≡ f ′
∣∣∣
r=r0
=

rM

r2
0

(B.4)

so that r, ∂ur and ∂2
ur are continuous at 3 = 30, whereas the 3 derivatives and mixed u, 3 second deriva-

tive of r are not.

From (3.14), we also have in region II that

∂σ

∂u
= −

f ′

4 f0
+

f ′0
4 f0

(B.5a)

∂σ

∂3
=

f ′

4
(B.5b)

∂2σ

∂u ∂3
= −

f f ′′

8 f0
(B.5c)

∂2σ

∂u2 =
1

8 f 2
0

(
f ′′ f − f0 f ′′0 + f ′ 20 − f ′ f ′0

)
(B.5d)

∂2σ

∂32
=

f f ′′

8
in region II (B.5e)

so that σ and ∂uσ are continuous at 3 = 30, whereas ∂3σ and ∂u∂3σ are not.

From these expressions one finds

Guu = Gu3 = Gθθ = Gϕϕ = 0 (B.6)

everywhere in both regions I and II, satisfying the vacuum Einstein eqs.

G33 also vanishes in each region I and II separately, but since

∂r
∂3
=

1
2
Θ(30 − 3) +

f
2
Θ(3 − 30) (B.7)

is discontinuous at 3 = 30, its derivative

∂2r
∂32
=

f − 1
2

δ(3 − 30) +
f ′ f
4
Θ(3 − 30) (B.8)

has a Dirac δ-function contribution, and

G33 = −
2
r

(
∂2r
∂32
− 2

∂r
∂3

∂σ

∂3

)
=

rM

r2 δ(3 − 30) =
2Gτ(C)

33

r2 = 8πGT33 (B.9)

evaluated at 3 = 30, r = r0, f = f0 ≡ f (r0). Hence eq. (B.9), which is the only non-trivial Einstein

eq. due to the null shell is also satisfied and is (3.19) of the text.
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Additionally, for the quantum anomaly stress tensor the required terms are

∂2σ

∂u ∂3
=

rM

4r3

f
f0

(B.10a)

∂2σ

∂u2 −

(
∂σ

∂u

)2

=
1

16 f 2
0

(
2 f f ′′ − f ′ 2 − 2 f0 f ′′0 + f ′ 20

)
=

rM

4 f 2
0

[
1
r3

0

−
1
r3 +

3rM

4

(
1
r4 −

1
r4

0

)]
(B.10b)

∂2σ

∂32
−

(
∂σ

∂3

)2

=
1

16

(
2 f f ′′ − f ′ 2

)
= −

rM

4r3

(
1 −

3rM

4r

)
(B.10c)

in the Schwarzshild region II.

C. Three Sets of Double Null Coordinates and Horizon Finiteness Conditions

We use two different sets of double null coordinates in this paper, which we designate (u, 3) and

(ũ, 3̃). A third set of Kruskal double null coordinates designated by (U,V) are also often used for the

Schwarzschild solution. For the benefit of the reader we give here the relationships between the three

different sets of double null coordinates.

The first set are the simply double null coordinates in the flat region I before the passage of the

null shell, defined in (3.5). The two other sets of coordinates are referred back and related to this first

and primary set of (u, 3) coordinates.

In crossing the imploding null shell at 3 = 30 into region II we are in a Schwarzschild region with

total mass M fixed by the null shell (3.2), (3.3). The Schwarzschild region II has metric and double

null Eddington-Finkelstein coordinates defined by (3.6), and denoted (ũ, 3̃). In these Schwarzschild

E-F coordinates one can find the solution to the φ eq. (4.11)-(4.12) and see that it gives the diverging

stress tensor stress tensor components (4.13).

Since both sets of Schwarzschild (t, r) and (ũ, 3̃) coordinates diverge at the horizon, one can intro-

duce Kruskal double null coordinates (U,V) related to (ũ, 3̃) by

U = −2rM e−ũ/2rM = −2rM e−u/2rM

(
r0(u)

rM

− 1
)

(C.1a)

V = 2rM e3̃/2rM = 2rM e3/2rM (C.1b)

UV = −4r2
M

er∗/rM = −4rrM er/rM f (r) (C.1c)

which are regular on the horizon, mapping the future and past horizons to U = 0 and V = 0 respec-
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tively. Thus the total Jacobian is

dU
du
=

dU
dũ

dũ
du
= e−ũ/2rM

1
f0
= e−u/2rM

r0(u)
rM

(C.2)

showing that the total transformation from the original (u, 3) to Kruskal (U,V) coordinates is non-

singular at u = 30 − 2rM , r0(u) = rM at the future classical horizon. Both these two sets of double null

coordinates are regular and horizon-penetrating on the future horizon, whereas the E-F (ũ, 3̃) are not.

The conditions of horizon regularity on the stress tensor are that all components are finite in any set

of coordinates that are non-singular on the horizon. Since both the Kruskal double null coordinates

(U,V) and flat double null coordinates (u, 3) of region I are non-singular on the horizon and

T33 = T 3̃3̃ (C.3a)

Tu3 =

(
dũ
du

)
Tũ3̃ =

(
1
f0

)
Tũ3̃ (C.3b)

Tuu =

(
dũ
du

)2

Tũũ =

(
1
f0

)2
Tũũ (C.3c)

with (3.11), finiteness on the horizon requires each of the three components at left must be finite.

Since the ratio f / f0 is finite on the horizon by (3.25), this implies

lim
r→rM

|T 3̃3̃| < ∞ (C.4a)

lim
r→rM

f −1 |Tũ3̃| < ∞ (C.4b)

lim
r→rM

f −2 |Tũũ| < ∞ (C.4c)

in agreement with Ref. [5]. These conditions are satisfied for the regularized initial state perturbation

(5.14) for ϵ > 0.
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