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1 Introduction

Black holes are solutions of the Einstein eqs. of classical general relativity (GR) in the
absence of sources, except for interior singularities where matter is compressed to infinite
pressures and densities. In addition to these singularities, the characteristic feature of a
classical black hole (BH) is its event horizon, the critical null surface of finite area from
which outwardly directed light rays cannot escape.

Whereas it is widely believed that quantum effects intervene to regulate interior BH
singularities, the horizon region is generally supposed to remain substantially unchanged
from the classical description. This description includes the important, but often unstated
assumption, of vanishing stress tensor Tµν = 0 on the horizon that permits continuation
of the exterior geometry into the BH interior by means of a (singular) transformation of
coordinates [1, 2].

It is important to critically examine this assumption for a number of reasons. Even in
classical GR, the hyperbolic character of Einstein’s eqs. allows generically for Tµν sources
and discontinuities on the horizon which would violate the hypothesis of analytic continu-
ation through it, potentially altering the geometry of the singular interior as well. Critical
examination of assumptions about the stress tensor on the horizon is all the more war-
ranted when quantum effects are considered. If the quantum state is assumed to be the
local vacuum at the horizon, the expectation value of the stress tensor 〈T ν

µ 〉 in this state
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can remain negligibly small, but only provided that quantum fluctuations measured by
higher point correlation functions such as 〈TαβTµν〉 also remain small on the horizon. This
condition in particular is very much open to question in the quantum theory, as we shall
discuss in this paper.

Regarding the quantum state on the horizon, it is well known that there is no unique
vacuum state in curved spacetime [3]. In flat Minkowski space the existence of a unique
vacuum ground state relies upon the Lorentz invariant separation of positive and negative
frequency modes, hence particle and anti-particle states, over a complete Cauchy surface,
and the existence of a positive definite Hamiltonian with respect to that hypersurface.
These requirements are not satisfied in general curved spacetimes, and are particularly
problematic when horizons are present. At a BH horizon the timelike Killing field ∂t (or the
co-rotating Killing field ∂t +ω ∂φ for rotating BHs) becomes null, and the clean separation
of particle and anti-particle modes breaks down, while beyond the horizon the Killing norm
changes sign and the corresponding Hamiltonian becomes unbounded from below. There is
thus no a priori reason for the state of QFT to correspond to the ‘empty’ Minkowski vacuum
at the horizon, or for quantum fluctuations from that state to remain small there. Certainly
a large variety of non-vacuum states with 〈T ν

µ 〉 6=0 are also allowed, and can be considered.
Early work established that the Hawking effect is dependent upon this choice of quan-

tum state, and is also closely related to the conformal anomaly that arises in defining the
renormalized 〈Tµν〉 in BH spacetimes [4, 5]. Later it was shown that Hawking thermal
emission at late times after gravitational collapse to a BH can be derived directly from
the assumption that the short distance properties of the quantum state and the Hadamard
behavior of its Green’s functions on the future horizon region are the same as those in flat
space [6]. This assumption also guarantees that the future horizon is smooth, and 〈T ν

µ 〉
remains regular there, so that quantum backreaction effects remain small. These conditions
correspond to the initial state of QFT in gravitational collapse to be the Unruh state [7].
Virtually all later investigations have assumed this state, including those with dynamical
backreaction [8, 9].

It is also the regularity of the horizon and absence of any stress tensor source there
that allows association of a temperature TH = 1/βH with the periodicity βH of the metric
at the horizon continued to Euclidean time [10, 11]. Yet paradoxically, it is just this
assumption of a smooth horizon and the Hawking temperature associated to it that leads
to an enormous Bekenstein-Hawking BH entropy equal to 1/4 of the area of the horizon,
which is particularly difficult to understand if the BH horizon is a smooth mathematical
boundary only, with no sources or independent degrees of freedom of its own. If matter
and information can freely fall just one-way through this mathematical horizon boundary,
the effect of Hawking thermal radiation also suggests the possibility of pure states evolving
into mixed states and the breakdown of quantum unitary evolution [12]. The difficulty, if
not impossibility, of recovering this lost information at the late or final stages of the BH
evaporation process leads to a severe ‘information paradox,’ that has been the subject of
numerous investigations and speculations spanning several decades [13–21].

Although the Hawking temperature TH of radiation far from the BH is very small,
the inverse of the gravitational redshift implies infinitely blueshifted local temperatures
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and energies if traced back to the horizon. It is thus by no means clear that quantum
fluctuations 〈TαβTµν〉 from the mean and their backreaction on the near-horizon geometry
can be neglected, as is usually assumed. The increasing time dilation and gravitational
blueshift of frequency and energy scales with respect to the asymptotically flat region as the
horizon is approached results in all fixed finite mass scales becoming negligible there, and
an effective classical conformal symmetry in the near-horizon region [22–24]. This implies
that the conformal behavior and conformal anomaly of QFT are relevant there [25–27].

It is also known that the conformal anomaly is necessarily associated with the exis-
tence and residue of a 1/k2 massless pole in stress tensor correlation functions, even in flat
space [26, 28–31]. Since this massless anomaly pole in quantum correlation functions is a
lightlike singularity, it is associated with effects on the light cone, which can extend to arbi-
trarily large macroscopic scales, and is particularly relevant on null horizons. The 1/k2 pole
can be expressed as the propagator of an effective scalar degree of freedom ϕ, a collective
conformalon mode of the underlying massless (or sufficiently light) quantum fields, whose
fluctuations and correlations are significantly enhanced in the vicinity of a BH horizon. The
existence of a lightlike singularity implies quantum correlations due to the anomaly which
influence the semi-classical mean value 〈T ν

µ 〉 as well. The dependence of the long range
conformalon scalar on the norm of the Killing vector ∂t carries non-local information about
the conformal transformation of the vacuum from the asymptotically flat region where the
Minkowski vacuum is preferred, to the expectation value 〈T ν

µ 〉 on the BH horizon.
These quantum anomaly effects on the horizon are generically large for wide classes of

non-vacuum initial conditions, notwithstading the smallness of the curvature there [25, 26,
32]. The local form of the anomaly effective action and stress tensor in terms of the scalar
ϕ makes the quantitative evaluation of these effects much simpler technically than the
much more involved and laborious method of obtaining renormalized expectations values
〈T ν
µ 〉 directly from the underlying QFT [33]. Indeed the technical complexity of the direct

method of calculating 〈T ν
µ 〉 has been sufficient to deter any systematic investigation of all

but a small number of special quantum states, in specific QFTs.
In contrast, a very wide class of states in generic conformal QFTs can be investigated

by simply considering the variety of possible solutions to the linear wave eq. satisfied by
the conformalon scalar ϕ field, and computing its semi-classical T ν

µ [ϕ], which is already
renormalized. Since the corresponding effective action of the anomaly is also quadratic in ϕ,
any particular occurrence of non-vacuum initial data in gravitational collapse is described
by a Gaussian wavefunctional in the Schrödinger representation, and its probability is
therefore also easily estimated. Because all of these essential features are present in both
two and four spacetime dimensions, it is advantageous to investigate their consequences
first in the 2D case, in a simplified computable model of gravitational collapse without
backreaction, as a proxy and warm-up to the more realistic 4D problem.

With this purpose in mind, the organization of the paper is as follows. In the next
section we define the two-dimensional model, and set notations and conventions in double
null coordinates suitable for gravitational collapse. In section 3 we specify and solve for
the interior and exterior geometry of an imploding null shell which creates a classical BH.
In section 4 we review the two-dimensional conformal anomaly and non-local Polyakov
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effective action corresponding to it, the massless pole it generates in vacuum polarization,
and the local representation of the effective action by the introduction of the massless
scalar conformalon field ϕ, showing how it can have significant effects on BH horizons. In
section 5 we evaluate the anomaly stress tensor T ν

µ [ϕ] in a subclass of interesting non-
vacuum states where it can become arbitrarily large and suppress the Hawking effect. In
section 6 we make use of the Gaussian distribution corresponding to these initial states
in the wavefunctional of the anomaly effective action to show that the probability of non-
vacuum initial conditions producing such effects on the horizon are non-negligible and O(1),
showing also how this is consistent with general theorems of finite initial data, such as [34].
Section 7 contains a discussion of the results, their implications for the importance of the
analogous state-dependent quantum effects of the conformal anomaly in four dimensions,
and outlook for the extension the results of this paper to gravitational collapse in the full
four-dimensional effective field theory (EFT) of gravity proposed in [27].

The paper also contains three appendices, wherein are collected for the convenience of
the reader the curvature components in double null coordinates (appendix A), the metric
functions for the collapsing null shell geometry (appendix B), and the stress tensors and
horizon finiteness conditions in the various coordinates used, and relations between them
(appendix C).

2 Radial collapse geometry in double null coordinates

The general spherically symmetric line element in 3+1 dimensions may be expressed in the
factorized 2× 2 form

ds2
4 = γab dx

adxb + r2dΩ2 (2.1)

where dΩ2 = dθ2 + sin2 θ dφ2 is the standard round line element on the unit S2, γab(x1, x2)
is the metric on the two-dimensional subspace of constant θ, φ, and r = r(x1, x2) is a
scalar function of the arbitrary two-dimensional coordinates xa (a = 1, 2). The radius r
is uniquely defined by the condition that the proper area of the sphere of constant r is
A = 4πr2 in the spherically symmetric spacetime.

The various geometric quantities for the metric (2.1) are given in appendix A. In par-
ticular the Einstein tensor of the full four-dimensional spacetime with the line element (2.1)
has the components [35]

Gab = γab
r2

[
(∇r)2 − 1 + 2 r r

]
− 2
r
∇a∇br , a, b = 1, 2 (2.2a)

Gθθ = Gφφ = r r − r2

2 R (2.2b)

with all other components vanishing. In (2.2) we make use of the notations

∇ar = ∂ar ≡
∂r

∂xa
, (∇r)2 ≡ γab(∇ar)(∇br) , r ≡ γab∇a∇br (2.3)

with ∇a the covariant derivative with respect to the two-dimensional metric γab, and R

the corresponding two-dimensional Ricci scalar. We shall generally suppress any special
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notation distinguishing quantities derived from the two-dimensional metric γab vs. the full
four-dimensional line element (2.1), as which is meant should be clear from the context. For
example eqs. (2.2) clearly refer to the four-dimensional Einstein tensor, since the Einstein
tensor of any two-dimensional space vanishes identically. It is useful also to define the three
functions h,m and κ in terms of r(x1, x2) by

h ≡ (∇r)2 ≡ 1− 2Gm
r

(2.4a)

κ ≡ −Gm
r2 = (∇r)2 − 1

2r (2.4b)

which are also scalars with respect to the two-geometry γab. The quantity m is the Misner-
Sharp mass function and κ is the acceleration or surface gravity at r.1

The Einstein eqs. for the general spherically symmetric four-geometry (2.1) are

−∇a∇b r +
(

r + κ
)
γab = 4πrGTab (2.5a)

r − r

2 R = 8πrGp⊥ (2.5b)

where
T θθ = T φφ ≡ p⊥ (2.6)

is the transverse pressure, which spherical symmetry requires must have equal θ and φ

components.
If one defines the effective two-dimensional stress tensor τab by

Tab ≡
τab

4πr2 , a, b = 1, 2 , (2.7)

covariant conservation of the full four-dimensional stress tensor gives [35]

∇bτ b
a = 4π∇b

(
r2T b

a

)
= 8πp⊥∇ar , (2.8)

all other components being satisfied identically. Hence the stress tensor τab is covariantly
conserved purely in two dimensions if and only if the transverse pressure vanishes identi-
cally, i.e.

∇bτ b
a = 0 , ⇔ p⊥ = 0 (2.9)

which we shall assume for a simplified model of gravitational collapse. This is a rather
restrictive condition, about which we comment further in sections 4 and 7.

With the restriction p⊥= 0 the Einstein eqs. (2.5) with (2.7) become

−∇a∇b r +
(

r + κ
)
γab = G

r
τab , (2.10a)

R = 2
r

r (2.10b)

1The definition of κ in this paper follows the conventions of [35], which differ from the more general
definition of the surface gravity κ = 1

2

√
h
f

df
dr
. The two become equal, except for a sign change, when f = h

and m is independent of r.
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which define a reduced 2D model, with a general covariantly conserved ∇bτab = 0. By
differentiating (2.4a) and using (2.4b) and (2.10) we obtain the useful relation

∂m

∂xa
=
(
τ b
a − δ b

a τ c
c

) ∂r
∂xb

(2.11)

for the Misner-Sharp mass flux or gradient, where τ c
c = γcdτcd is the two-dimensional trace.

To this point the coordinates (x1, x2) of the two-geometry at fixed θ, φ have been left ar-
bitrary to emphasize covariance under arbitrary coordinate transformations of (x1, x2). We
will make use of two specific useful choices of coordinates. The first is that of Schwarzschild
coordinates, obtained by identifying one of the coordinates (x2 say) with r itself. A possible
dt dr cross term can be eliminated by a redefinition of t, so that x1 can then be identi-
fied as the Schwarzschild time t. This results in the line element taking on the standard
Schwarzschild form [1]

γab dx
adxb = −f dt2 + dr2

h
(2.12)

with f and h two functions of (t, r). In these coordinates h = grr is the same function
defined in general two-dimensional coordinates by (2.4a), while (2.11) for a = 2, x2 = r

becomes
∂m

∂r
= −τ t

t = −4πr2 T t
t = 4πr2ρ (2.13)

in terms of the energy density ρ. Integrating this eq. with respect to r shows that m(t, r)
is the Misner-Sharp mass-energy within the sphere of radius r on the time slice fixed by t.

Since Schwarzschild coordinates (2.12) become singular at h = 0, and the causal struc-
ture is tied to the behavior of null rays, a different coordinate choice that proves useful is
that of double null (u, v) coordinates. These rely on the fact that every two-geometry is
locally conformally flat, so the general two-dimensional line element (2.1) can be expressed
in the form

γab dx
adxb = −e2σ du dv (2.14)

with the metric γuv = γvu = −1
2e

2σ and inverse γuv = γvu = −2e−2σ, in terms of σ(u, v).
The line element (2.14) is invariant under the redefinitions

u→ ũ(u) , v → ṽ(v) (2.15)

with the simultaneous redefinition of

σ → σ̃ = σ − 1
2 ln

(
dũ

du

)
− 1

2 ln
(
dṽ

dv

)
,

dũ

du
> 0 , dṽ

dv
> 0 . (2.16)

Thus there is still considerable coordinate freedom to redefine u and v independently, and
we will make use of several different sets of double null coordinates. Since the conformal
factor eσ changes under the coordinate transformation (2.15)–(2.16), such coordinate trans-
formations are also conformal transformations, and form the infinite dimensional conformal
group in two dimensions. The coordinate freedom can be fixed by e.g. setting σ = 0 in a
region where the spacetime is flat, so that u = t− r, v = t+ r become the standard radial
null coordinates in two-dimensional flat spacetime.
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In double null coordinates the coordinate invariant condition for the location of the
apparent horizon (AH) is

h = (∇r)2 = −4 e−2σ ∂r

∂u

∂r

∂v
AH= 0 (2.17)

showing that the rate of change of the radius with respect to at least one of the null
coordinates must vanish there. The conditions

∂r

∂v
= 0 future AH (2.18a)

∂r

∂u
= 0 past AH (2.18b)

define the future or past apparent horizons respectively, which are also invariant un-
der (2.15).

The two-dimensional scalar curvature in double null coordinates (2.14) is

R = −2 σ = 8 e−2σ ∂2σ

∂u∂v
(2.19)

and the Einstein eqs. (2.10) with p⊥ = 0 take the form of (A.13), which are covariant with
respect to the two-dimensional coordinate/conformal transformation (2.15)–(2.16). Thus
τab dx

adxb = τãb̃ dx
ãdxb̃, so for example τuu transforms as

τuu =
(
dũ

du

)2
τũũ (2.20)

under (2.15)–(2.16). The Misner-Sharp mass is given by

m(u, v) = r

2G

[
1 + 4 e−2σ

(
∂r

∂u

)(
∂r

∂v

)]
, (2.21)

while eqs. (2.11) become

∂m

∂u
= 2 e−2σ

(
τuv

∂r

∂u
− τuu

∂r

∂v

)
(2.22a)

∂m

∂v
= 2 e−2σ

(
τuv

∂r

∂v
− τvv

∂r

∂u

)
(2.22b)

in double null coordinates.

3 Classical radial collapse of a null shell

The simplest model of radial collapse which will form a BH classically is that of a spherical
shell imploding upon its center at the speed of light. The classical energy-momentum-stress
tensor of such a lightlike infalling shell is

τCvv = dE

dv
, (3.1)
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with E(v) determining its profile as function of the advanced null coordinate time v, and
with all other components of τCab vanishing. The total classical mass-energy carried by the
incoming null shell of radiation is

M =
∫ ∞
−∞

dE

dv
dv . (3.2)

The simplest case to analyze and solve explictly is that of an infinitesimally thin shell for
which

E(v) = M θ(v − v0) , dE

dv
= M δ(v − v0) (3.3)

so that the four-dimensional classical energy-momentum tensor is

TCvv = τCvv
4πr2 = M

4πr2 δ(v − v0) (3.4)

on the incoming null shell.
In this case the metric functions can be found explicitly in each region as follows. In

the first region I, for v < v0 interior to the imploding shell, spacetime is flat, so that the
two-dimensional line element at constant θ, φ is

I : ds2 = −dt2 + dr2 = −du dv , with u ≡ t− r, v ≡ t+ r < v0 ,

σ(u, v) = 0 , r(u, v) = v − u
2 (3.5)

which satisfies (A.13) with τab = 0.
In the exterior region v > v0 outside of the shell, the geometry is that of the sourcefree

four-dimensional Schwarzschild solution, i.e. the two-dimensional solution is

II : ds2 = f(r)
(
−dt2 + dr∗ 2

)
= −f(r) dũ dṽ , with f(r) = 1− rM

r
, rM ≡

2GM
c2

dr∗ = dr

f(r) , r∗ ≡ r + rM ln
(
r

rM
− 1

)
, ũ ≡ t− r∗, ṽ ≡ t+ r∗ > ṽ0 . (3.6)

We denote with tildes the Schwarzschild null coordinates (ũ, ṽ), since they are allowed to
differ from the corresponding (u, v) coordinates in the flat region (3.5). The relations (3.6)
yield a solution to the sourcefree Einstein eqs. (A.13) with τab = 0 and

σ̃ = 1
2 ln f(r) , ṽ − ũ

2 = r∗ = r + rM ln
(
r

rM
− 1

)
(3.7)

determining r and σ̃ implicitly as functions of ṽ − ũ, and ṽ + ũ = 2t in this Schwarzschild
region II.

The two sets of double null coordinates must be matched for a continuous (C0) metric at
v = v0. This is accomplished by noting that the radius r has the same invariant geometric
meaning in terms of the four dimensional metric (2.1) in either region. Comparison of (3.5)
and (3.7) shows that σ 6= σ̃, so that the solution in the two regions in these coordinates as
they stand is discontinuous across the null shell. In order to find a solution to the geometry
of the spherical collapse of a null shell with C0 continuous metric functions we utilize the
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gauge freedom (2.15)–(2.16) to match the solution I (3.5) of the interior to the exterior
solution II (3.6).

For r � rM and u, ũ→ −∞, both regions I and II are asymptotically flat, so that we
may choose the advanced null coordinates v and ṽ to be equal there. The reparametrization
freedom in v can be used to require the interior v coordinate to match the exterior ṽ
coordinate for all u, ũ. Hence

ṽ = v , dṽ = dv , ṽ0 = v0 . (3.8)

Then requiring the metric function r = (v− u)/2 from (3.5) to be equal to that from (3.7)
at the location of the null shell at ṽ0 = v0 gives

r∗
∣∣
v=v0

= v0 − ũ
2 = r0(u) + rM ln

(
r0(u)
rM

− 1
)

(3.9)

with
r0(u) ≡ r(u, v0) = v0 − u

2 , (3.10)

so that the radius r is continuous across the shell. Eq. (3.9) determines [36]

ũ(u) = u− 2rM ln
(
v0 − u
2rM

− 1
)

(3.11)

as a function of u and

r∗(u, v) = r(u, v) + rM ln
(
r(u, v)
rM

− 1
)

= v − u
2 + rM ln

(
r0(u)
rM

− 1
)

(3.12)

as an implicit function of the original (u, v) of region I, in region II.
Differentiating (3.10) and using dr∗ = dr/f(r), or directly from (3.11) we have

dũ

du
= 1
f(r)

∣∣∣∣
r=r0(u)

≡ 1
f0

=
(

1− rM

r0(u)

)−1
=
(

1− 2rM
v0 − u

)−1
(3.13)

so that using (2.16) with (3.7) and (3.8), we obtain

σ = σ̃ + 1
2 ln

(
dũ

du

)
= 1

2 ln
(
f(r)
f(r0)

)
= 1

2 ln
(
f

f0

)
(3.14)

in region II, determining also the second metric function σ in the Schwarzschild region
II, now expressed in the original (u, v) coordinates. Since (3.14) vanishes at v = v0, r =
r0(u), σ(u, v0) is continuous with σ = 0, (3.5) of the interior flat region I. Thus the two-
dimensional line element

ds2 = −e2σ du dv = − f(r)
f(r0) du dv = −f(r) dũ dṽ = −f(r) dt2 + dr2

f(r) (3.15)

is indeed the Schwarzschild exterior geometry in region II for ṽ = v > v0, after the passage
of the null shell, continuously matched to the flat region I at v = v0, with the coordinate
transformation (3.11).
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Figure 1. Carter-Penrose conformal diagram of radial collapse of a null shell. The shaded region
I, v < v0 is flat, while the unshaded region II, v > v0 is Schwarzschild with mass M . The point C
with coordinates (3.22) is where the shell crosses its future event horizon.

The piecewise solutions to r and σ in the two regions and the full geometry determined
by the impolding null shell localized at v = v0 according to (3.1)–(3.3) can be combined in
terms of Heaviside step function

Θ(v − v0) =
{

1, v > v0
0, v < v0

in the form
σ(u, v) = 1

2 ln
(
f(r)
f(r0)

)
Θ(v − v0) (3.16)

with r(u, v) determined by the implicit relation for v > v0 in region II

r(u, v) = v − u
2 + rM ln

(
r0f0
rf

)
Θ(v − v0) = v − u

2 + rM ln
(
r0 − rM
r − rM

)
Θ(v − v0) (3.17)

and r0(u) given by (3.10).
From (3.16)–(3.17) it is clear that although σ and r are C0 continuous at v = v0,

their first derivatives with respect to v are not. Since the derivative of the Heaviside step
function Θ is a Dirac δ-function, the second derivative

∂2r

∂v2 = −rM2r δ(v − v0) + . . . (3.18)
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contains a Dirac δ-function contribution at v = v0 (with the ellipsis indicating the remaining
terms which are non-singular). The various first and second derivatives of r and σ with
respect to u and v in each region are catalogued in appendix B. With those full expressions
one may check that the classical Einstein eqs. (A.13) are satisfied everywhere, including
the only component with a non-zero source

Gvv = 8πGTCvv (3.19)

from the stress tensor (3.4) of the null shell, with the δ-function from (3.18). The Carter-
Penrose conformal diagram for the classical geometry of the radially collapsing null shell
of finite mass M but infinitesimal thickness is illustrated in figure 1.

From (3.11) as the u coordinate in region I approaches the finite value

I : u→ v0 − 2rM (3.20)

where r → rM , which corrresponds to

II : ũ→ +∞ ,
∂r

∂v
= f

2 → 0 (3.21)

in the Schwarzschild region II, the condition (2.18a) is satisfied. Thus u=v0 − 2rM , v≥v0
is the location of the future marginally outermost trapped surface and apparent horizon
(AH). There is a last incoming null ray at v= v0 − 2rM which reflects from the origin at
u=v=v0−2rM and becomes the outgoing null ray defining the future BH horizon, but the
conditions (2.17)–(2.18a) are not satisfied until v≥v0. Incoming rays with v0−2rM <v<v0
reflect from the origin too late and are trapped, being pulled back finally to the future
singularity at r= 0. Thus the point C at which the imploding null shell crosses its future
horizon, with coordinates

(u, v)C = (v0 − 2rM , v0) (3.22)

is where the AH and marginally trapped surface first appears, and a classical BH is formed,
cf. figure 1.

Since the approach of u to the horizon is important in evaluating the quantum effects
in the following sections, we note that (3.17) may be written in the form

exp
(
r

rM

) (
r

rM
− 1

)
= exp

(
v − u
2rM

) (
r0
rM
− 1

)
, v > v0 , (3.23)

so that if u = v0 − 2rM (1 + ε)

r0
rM

= 1 + ε ,
r

rM
= 1 + ε exp

(
v − v0
2rM

)
+O(ε2) (3.24)

as ε → 0. Thus both r0 → rM and r → rM at fixed v in the horizon limit, and both
f0, f → 0, while

f

f0
→ exp

(
v − v0
2rM

)
(3.25)

remains finite in this limit at fixed v (while growing exponentially with v).
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4 The stress tensor of the conformal anomaly and the BH horizon

With the classical geometry of the imploding null shell forming a BH determined in sec-
tion 3, we turn to quantum effects in this two-dimensional spacetime. Since with p⊥= 0,
τab is the conserved stress tensor of the 2D spacetime at fixed (θ, φ), we can model the
quantum effects from the stress tensor of the two-dimensional conformal anomaly, which
has been considered previously for the vacuum state in [9].

We note in passing that the condition p⊥ = 0 does not follow from the dimensional
reduction of the 4D theory to consideration of the spherically symmetric s-waves only.
Without the restriction p⊥=0 the s-wave reduction of the full 4D theory contains additional
terms, as have been found and discussed in a number of papers [36–38]. These additional
terms in what is known as 2D dilaton gravity arise from the metric function r(x1, x2)
becoming a dilaton and an additional dynamical field in the effective 2D theory [8, 39].
However the 2D dilaton theory has been extensively studied and gives unphysical results
for the 4D stress tensor in BH spacetimes, and for Hawking radiation in the gravitational
collapse problem [36–38].

There are several reasons for this failure of the dimensionally reduced 2D dilaton theory
to correctly reproduce even qualitatively the features of the 4D theory, the principal one
being the ‘dimensional reduction anomaly’ [40]. This is the fact that dimensional reduction
does not commute with quantization and renormalization, since the 4D theory requires
more counterterms and counterterms of different types than the 2D theory. The result is
that the s-wave contribution to the renormalized stress tensor of the 4D theory does not
coincide with the renormalized stress tensor of the dimensionally reduced 2D dilaton theory,
which behaves in qualitatively different (and physically incorrect) ways from the 4D theory.
For this reason the 2D dilaton theory of [8, 37, 39] is not the theory we consider or discuss
in this paper. The true theory is intrinsically four dimensional, even in the case of spherical
symmetry, and requires use of the four-dimensional conformal anomaly instead [36].

Since the 4D anomaly effective action and stress tensor is technically much more in-
volved [25], our purpose in this paper is to first study the state-dependent effects of the
stress tensor derived from the 2D conformal anomaly on the future horizon in a simplified
model of a 2D black hole, which requires that we impose the restriction p⊥=0.

In two dimensions the effective action corresponding to the conformal trace anomaly
was given in ref. [41] in the non-local form

Sanom[γ] = −N~
96π

∫
d2x
√
−γ

∫
d2x′

√
−γ′ Rx ( −1)x,x′Rx′ (4.1)

whereN = Ns+Nf is the number of free massless fields (scalar or fermion) in the underlying
QFT. This effective action is the result of functionally integrating out N free massless
quantum fields ψi, i = 1, . . . , N with classical action Scl[ψi; γ] in two-dimensional curved
spacetime, i.e.

exp
{
i

~
Sanom[γ]

}
=
∫ N∏

i=1
[Dψi] exp

{
i

~
Scl[ψi; γ]

}
(4.2)

which defines the one-particle irreducible (1PI) effective action of the quantum fields in a
general 2D curved space with metric γab. The explicit factor of ~ in (4.1) reminds that this is
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the result of the quantum functional integral (4.2). It gives the compact (and exact) result
of all connected quantum one-loop stress tensor correlation functions 〈τ b1

a1 (x1) . . . τ bn
an

(xn)〉
by successive variations of Sanom[γ] with respect to the arbitrary metric γab. A normaliza-
tion factor, which drops out of all 1PI connected correlation functions for n > 1 has been set
equal to unity in (4.2), so that Sanom[γ] and 〈τ b

a (x)〉 vanishes in infinite flat space with no
boundaries. In other words, Sanom[γ] is the renormalized effective action functional, whose
variations define the renormalized stress tensor correlation functions, and no further renor-
malization is required. For the first variation we drop the brackets and write τ b

a for 〈τ b
a 〉.

In the form (4.1) it should be clear that non-local quantum effects are contained in this
effective action through the boundary conditions needed to specify the Green’s function
( −1)x,x′ of the scalar wave operator. It is this essential non-local state dependence that
leads to the possibility of novel quantum effects on BH horizons, which are not determined
by the local curvature alone. However, the non-local action (4.1) may also be written in
the local form

SA[γ;ϕ] ≡ −N~
96π

∫
d2x
√
−γ

(
γab∇aϕ∇bϕ− 2Rϕ

)
(4.3)

by the introduction of a new scalar field ϕ, called a conformalon, since shifts in ϕ corre-
spond to conformal transformations eϕ of the metric. The equivalence of (4.1) and (4.3) is
demonstrated by variation of (4.3) with respect to ϕ which yields its eq. of motion

− ϕ = R (4.4)

which is linear in ϕ, since (4.3) is quadratic in ϕ. If (4.4) is formally solved for ϕ = − −1R

by means of its Green’s function, and substituted back into (4.3) the non-local form of the
action (4.1) is recovered, up to a surface term. Clearly this inversion of (4.4) is not unique
since the Green’s function −1 depends on as yet unspecified boundary conditions, which
are in one-to-one correspondence with the specification of the solution to (4.4) by the
fixing of solutions ϕ0 to the corresponding homogeneous eq. ϕ0 = 0. Thus in the local
form (4.3), the state-dependent effects of the underlying QFT are contained in the choice
of the particular homogeneous solution to the wave eq. (4.4).

Varying the local form of the action (4.3) with respect to the two dimensional metric
γab gives the energy-momentum tensor of the 2D quantum conformal anomaly

τAab ≡ −
2√
−γ

δ

δγab
SA[γ;ϕ] = N~

48π

(
2∇a∇bϕ− 2γab ϕ+∇aϕ∇bϕ−

1
2γab∇cϕ∇

cϕ

)
(4.5)

which is covariantly conserved in 2D, by use of (4.4) and by virtue of the vanishing of the
Einstein tensor in two dimensions. The trace of (4.5) reproduces the 2D trace anomaly [3],
i.e.

τA aa = −N~
24π ϕ = N~

24π R (4.6)

upon making use of (4.4). Henceforth we drop the superscript A on the anomaly stress
tensor (4.5) to simplify notation, since it is clearly distinguished from the classical stress
tensor τCab of the null shell in (3.1)–(3.4).
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Figure 2. Left: the one-loop stress tensor vacuum polarization of a 2D CFT, which exhibits the
massless 1/k2 pole of (4.7a). Right: the equivalent classical tree graph of the conformalon scalar
1/k2 propagator. See the text and ref. [30] for the details of this correspondence.

The scalar conformalon field ϕ may be regarded as an effective or collective degree of
freedom that can be related to two-particle Cooper-pair intermediate states of the under-
lying massless conformal field theory [30]. This may be seen by taking a second variation
of (4.3) with respect to the arbitrary metric γcd and then evaluating the result in flat space.
This results in the vacuum polarization diagram of Πabcd = i〈τabτcd〉, whose intermediate
two particle state exhibits a 1/k2 pole in momentum space that can be expressed as the
Greens’ function propagator of the effective scalar degree of freedom ϕ. Thus the one-loop
Πabcd may be represented by a classical tree graph in ϕ, with no loops cf. figure 2.

The one-loop polarization tensor in the underlying quantum theory has the form in
momentum space

Πabcd(k)
∣∣∣
2D

= N}
12πk2

(
ηabk

2 − kakb
) (
ηcdk

2 − kckd
)

(4.7a)

Π c
ab c(k)

∣∣∣
2D

= N}
12π

(
ηabk

2 − kakb
)

(4.7b)

showing that the non-zero trace and coefficient on the right side of (4.6) is directly related to
the existence and residue of the 1/k2 pole in Πabcd. In fact, once the tensor index structure
indicated in (4.7a) is fixed, as required by symmetries and the covariant conservation Ward
identity kaΠabcd(k) = 0 on any index, the one-loop diagram of figure 2 is UV finite and
completely determined, with (4.7) the result [28]. This shows that the conformal anomaly
and pole is independent of the regularization scheme and detailed UV behavior of the
quantum theory, provided that the identities following from the covariant conservation
law (2.8) are maintained.

The correspondence with the propagator tree graph in figure 2 is established by defining
the vertex τ (1)

ab by the term linear in ϕ in (4.5), i.e.

τ
(1)
ab = N~

24π (∇a∇bϕ− γab ϕ) (4.8)

and recognizing that the normalization of the ϕ field in (4.3) differs by a factor of N~/48π
from that of a canonically normalized scalar field, so that its propagator is (48π/N~)×1/k2.
Attaching the vertex factor (4.8) to each vertex in the ϕ tree graph of figure 2 and taking
account of the normalization of the ϕ propagator gives for the ϕ tree graph in momentum
space(

N~
24π

)2 ( 48π
N~ k2

) (
ηabk

2−kakb
) (
ηcdk

2−kckd
)

= N}
12πk2

(
ηabk

2−kakb
) (
ηcdk

2−kckd
)
(4.9)
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which coincides with (4.7a), establishing their equivalence. Note that the classical theory
of 2D gravity defined by

∫
d2x
√
γ R has no transverse modes and no propagating degrees

of freedom at all, so the 1/k2 propagator and effective scalar degree of freedom it describes
arises entirely from the quantum effect of the anomaly, described by (4.3) in which ~ is a
parameter, but in terms of an effective classical field satisfying (4.4) [26, 30].

The essential point now is that the massless pole in (4.7a), equivalently (4.9), is a light-
like singularity, signaling significant effects of the quantum conformal anomaly on the light
cone, which extends to macroscopic distance scales, irrespective of the local curvature R.
To see the effect of the anomaly and ϕ on horizons directly, and to relate it to the classical
BH geometry of the section 3, consider the 2D line element of the Schwarzschild form (3.6).
The components of the 2D anomaly stress tensor (4.5) in the (t, r∗) coordinates of (3.6) are

τ t
t = N~

24π

{
− 1

4f
(
ϕ̇2 + ϕ2

,r∗ − 2f ′ϕ,r∗
)
− ϕ̈

f
+R

}
(4.10a)

τ t
r∗ = N~

48πf
{
−2 ϕ̇,r∗ + ϕ̇

(
f ′ − ϕ,r∗

) }
(4.10b)

τ r∗
r∗ = N~

24π

{ 1
4f
(
ϕ̇2 + ϕ2

,r∗ − 2f ′ϕ,r∗
)

+ ϕ,r∗r∗

f
+R

}
(4.10c)

where ϕ,r∗ = ∂ϕ
∂r∗ and ϕ,r∗r∗ = ∂2ϕ

∂r∗ 2 .
The linear eq. (4.4) for ϕ is

ϕ = − 1
f

∂2ϕ

∂t2
+ ∂

∂r

(
f
∂ϕ

∂r

)
= 1
f

(
− ∂2

∂t2
+ ∂2

∂r∗ 2

)
ϕ = −R = f ′′ = d2f

dr2 (4.11)

in these coordinates. A particular solution to this inhomogeneous eq. is ϕ = ln f . The
associated homogeneous wave eq. has general wave solutions exp{ik(r∗ ± t)}. If we are
interested in stationary states, and restrict to k = 0, we may illustrate the behavior of the
anomaly stress tensor on the horizon with linear functions of t and r∗. In this case one can
examine the effect of a stationary state solution of (4.11) in the form

ϕP,Q = Pt+Qr∗ + ln f(r) = P +Q

2 v + P −Q
2 ũ+ ln f(r) (4.12)

where an irrelevant constant is set to zero because (4.3) and (4.5) depend only upon the
derivatives of ϕ. Substituting this solution into the stress tensor (4.4) with ϕ,r∗ = Q + f ′

and ϕ,r∗r∗ = ff ′′, we find

τ t
t = −N~

24π

{ 1
4f
(
P 2 +Q2 − f ′ 2

)
+ f ′′

}
(4.13a)

τ t
r∗ = −N~

48π
PQ

f
(4.13b)

τ r∗
r∗ = N~

96π
1
f

(
P 2 +Q2 − f ′ 2

)
(4.13c)

in the (t, r∗) coordinates. If one then specializes to the Schwarzschild exterior line element
of (3.6), with

f(r) = 1− rM
r
, f ′ = rM

r2 , f ′′ = −2rM
r3 = −R (4.14)
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the stress tensor (4.13) of the quantum anomaly becomes

τ t
t = −N~

24π

{
1

4f

(
p2 + q2

r2
M

−
r2

M

r4

)
− 2rM

r3

}
(4.15a)

τ t
r∗ = − N~

48πr2
M

pq

f
(4.15b)

τ r∗
r∗ = N~

96π
1
f

(
p2 + q2

r2
M

−
r2

M

r4

)
(4.15c)

where we have set the constants P = p/rM and Q = q/rM , so that (p, q) are dimensionless.
Eqs. (4.15) show that the stress tensor due to the quantum anomaly generically gives

divergent 1/f contributions as r→ rM , f→ 0 on the BH horizon, irrespective of the small
curvature there. This is a reflection of the 1/k2 light cone singularity of (4.7a). The
divergences can be arranged to cancel on the future horizon by the particular choice p=
−q =±1/2, or on the past horizon by the choice p=q = ±1/2, corresponding to the future
or past Unruh states [7], or on both horizons by the choice p=0, q=±1, corresponding to
the Hartle-Hawking thermal state [10, 42, 43] at the price of being non-vanishing as r →∞
(and being thermodynamically unstable due to negative heat capacity [44]).

Any other values for (p, q) result in divergences on the horizon. If one requires a
time independent truly static solution then p = 0. The case p = q = 0 is both time
independent and gives a ϕ and stress tensor that tends to zero as r → ∞, corresponding
to asymptotically flat conditions, but for this choice

τ b
a

∣∣
p=q=0 → −

N}
96πr2

M
f

(
−1 0

0 1

)
→∞ as r → rM (4.16)

which diverges on the two-dimensional horizon as r→ rM , f→ 0. These conditions corre-
spond to the Boulware state [5, 45].

The significance of the solution ϕ= ln f to (4.12) corresponding to this state is that
eϕ=f is the conformal transformation that takes the 2D flat line element −dt2+dr∗ 2 to the
curved space line element of (3.6). The stress tensor (4.16) is the effect on the expectation
value of τ b

a of this conformal transformation on the quantum vacuum state. In this way the
local conformalon scalar incorporates information about the non-local quantum state over
the entire t = const. Cauchy surface, relating the value of τ b

a to the standard Minkowski
vacuum state in the asymptotically flat region where f→1 and ϕ→0. The divergence of
ϕ = ln f as r→rM reflects the vanishing of the norm of the timelike Killing vector ∂t on the
horizon, and breakdown of the separation of positive and negative frequency (particle and
anti-particle) solutions of the underlying quantum field theory, upon which the definition
of the unique quantum vacuum state in flat Minkowski space is based.

The results (4.15) show that the special states which are regular on the horizon are iso-
lated points of measure zero in the two-parameter space of general (p, q), and in particular,
there is no value of (p, q) which yields a time independent regular solution for ϕ and (4.15)
on both the horizon and as r →∞. Apart from these specific states and particular values
of (p, q), each of which would require a rather technically involved calculation and renor-
malization of a quantum stress tensor to derive directly from the underlying quantum field
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theory in curved space, the effective action (4.3) of the conformal anomaly and its stress
tensor (4.5) permits consideration of a wide class of non-vacuum initial states and their
possible quantum effects, simply by changing the integration constants or more general
homogeneous solutions of the conformalon ϕ field eq. (4.4). This permits the investigation
of quantum effects of non-vacuum initial conditions for general quantum fields on the BH
horizon very simply and systematically.

5 Non-vacuum initial states and suppression of the Hawking flux

To apply the anomaly stress tensor (4.5), (4.10) for non-vacuum states in the case of
gravitational collapse of the null shell and formation of the BH considered in section 3,
consider eq. (4.4) in the double null coordinates (2.14)

∂2ϕ

∂u∂v
= 2 ∂2σ

∂u∂v
(5.1)

the general solution of which may be expressed

ϕ(u, v) = 2
[
σ(u, v) +A(u) +B(v)

]
(5.2)

in terms of two arbitrary functions A(u), B(v). The particular solution ϕ = 2σ with
A=B = 0 gives τab = 0 in the flat region I, corresponding to the initial state being the
Minkowski vacuum. However in the Schwarzschild region II, ϕ = 2σ = ln(f/f0) from (3.14).
Note that in relation to (4.12), ϕ = ln f−ln f0 in region II corresponds to adding a particular
homogeneous solution, namely − ln f0(u) to the solution of the inhomogeneous eq., ln f .
Tying ϕ rigidly to the geometry in this way, with a very particular homogeneous solution
to the ϕ eq. (4.12), as was assumed in earlier works [4, 7, 9] corresponds to the Unruh
vacuum initial conditions after the passage of the null shell in the Schwarzschild region II,
as we shall see presently.

The formulation in terms of a local independent field ϕ is considerably more general
and allows for arbitrary homogeneous solutions of the differential eq. (4.4) to be added as
in (5.2), corresponding to non-vacuum initial states. Substituting the general solution (5.2)
for ϕ into the stress tensor (4.5) we obtain the general form of the two-dimensional quantum
anomaly stress tensor in the double null coordinates, with components

τuu = N~
12π

[
∂2σ

∂u2 −
(
∂σ

∂u

)2
+ d2A

du2 +
(
dA

du

)2]
(5.3a)

τuv = −N~
12π

∂2σ

∂u∂v
, (5.3b)

τvv = N~
12π

[
∂2σ

∂v2 −
(
∂σ

∂v

)2
+ d2B

dv2 +
(
dB

dv

)2]
. (5.3c)

It should be noted that (5.3) does not obey classical positivity conditions, nor should that
be expected for the expectation value of a quantum stress tensor [3].
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In the Schwarzschild region II (5.3) may be evaluated in the classical background
geometry (i.e. ignoring backreaction), with the aid of eqs. (B.5) to obtain

τuu = N~rM
48πf2

0

[ 1
r3

0
− 1
r3 + 3rM

4

( 1
r4 −

1
r4

0

)]
+ N~

12π

[
d2A

du2 +
(
dA

du

)2]
, (5.4a)

τuv = −N~rM
48πr3

f

f0
(5.4b)

τvv = −N~rM
48πr3

(
1− 3rM

4r

)
+ N~

12π

[
d2B

dv2 +
(
dB

dv

)2]
. (5.4c)

for v > v0. An important observation about the vacuum A = B = 0 terms in (5.4) is
that all components satisfy the finiteness conditions of [5] and appendix C. In particular,
although τuu of (5.4a) contains a factor of 1/f2

0 , the quantity in square brackets multiplying
it vanishes up to second order in ε in the expansion near horizon limit (3.24).

From the last eq. (5.4c) for τvv it is also clear that the function B(v) adds to the
classical stress tensor of the null shell (3.4) an ingoing flux contribution from non-vacuum
initial conditions at I −, which would change the mass M and position of the BH horizon,
but is otherwise of no particular interest for the behavior of the geometry near the future
horizon, or the Hawking effect on I +. Therefore we set B(v)=0 and focus on the possible
effects of non-vacuum initial conditions determined by A(u).

Evaluating the derivatives of the flux of energy associated with the quantum energy-
momentum tensor (5.4) with B=0, from the time derivative of the Misner-Sharp mass in
region II in the Schwarzschild (t, r) coordinates using (2.11) we find

∂m

∂t

∣∣∣∣
B=0

= f0
∂m

∂u
+ ∂m

∂v
= −f2

0 τuu + τvv

= −N~rM

48πr3
0

(
1− 3rM

4r0

)
− N~f2

0
12π

[
d2A

du2 +
(
dA

du

)2]
. (5.5)

For the vacuum initial conditions, A=B=0, at late times t→∞ as ũ, v →∞, u→ v0−2rM
at future null infinity I +, r0 → rM and outgoing quantum energy flux goes to the limit

ṁH = ∂m

∂t

∣∣∣∣
A=B=0

→ − N~
192πr2

M

= −Nπ12~ (kBTH )2 (5.6)

which is exactly the flux of N quantum fields radiating at the Hawking temperature TH =
~/(8πkBGM) in two dimensions expected in the Unruh state. We obtain the Hawking
flux for two dimensions and not four dimensions because we are using the two-dimensional
conformal anomaly as a proxy for the quantum anomaly in four dimensions. This is in
agreement with earlier results [4, 5, 7, 9].

Note that the full energy flux (5.5) is a function only of u if B = 0 (as we neglect
any backreaction) and that the factor of f2

0 multiplying τuu can lead to a finite result at
late times on I + as u → v0 − 2rM , f0 → 0, only if there is a compensating factor of
1/f2

0 in (5.4a). Stated in a different way, the Hawking flux result (5.6) is dependent upon
the regularity of the vacuum stress tensor on the horizon, but conversely if the regularity
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conditions are violated by non-vacuum terms from A(u), then they can change the energy
flux (5.5) at I + at late times. This is possible if and only if the non-vacuum terms in τuu
are 1/f2

0 singular on the future horizon, consistent with the analysis of [6].
Comparing the general solution (5.2) for ϕ in the Schwarzschild region II after the null

shell collapse with the particular solution (4.12) in the static Schwarzschild geometry, we
see that it corresponds to p = −q and

A(u)
∣∣
p=−q =

(
q + 1

2

)
ln f0 +Areg(u) , where Areg(u) = − qu

2rM
+ q ln

(
r0
rM

)
(5.7)

and the latter Areg(u) is finite and regular on the horizon, u = v0 − 2rM , r0 = rM . Since
the important effects on the horizon are associated with the divergent ln f0 term, we drop
the regular contributions and consider the effects of the simpler non-vacuum perturbation
of the form

A(u) =
(
q + 1

2

)
ln f0 =

(
q + 1

2

)
ln
(

1− rM
r0

)
, r0 > rM . (5.8)

This gives the additional contribution to τuu

τAuu = N~
12π

[
d2A

du2 +
(
dA

du

)2]
= N~

48π

(
q2 − 1

4

)
r2

M

r4
0f

2
0
− N~

24π

(
q + 1

2

)
rM
r3

0f0
(5.9)

in (5.4a), which has the 1/f2
0 behavior in the horizon limit f0 → 0 required to give a

non-vanishing contribution to the flux (5.5) at late times. Thus we now find

∂m

∂t
= N~

48π

[
−rM
r3

0
+

3r2
M

4r4
0
−
(
q2 − 1

4

)
r2

M

r4
0

+
(
q + 1

2

) 2rM
r3

0
f0

]

→ − N~
48πr2

M

q2 (5.10)

as u→ v0 − 2rM , r0→ rM , f0→ 0 at late times. If q=−1/2 and the non-vacuum perturba-
tion (5.8) vanishes, one recovers the Hawking vacuum flux (5.6) in the Unruh state, which
is regular on the future horizon, but if q = 0 this flux is precisely cancelled, corresponding
to the Boulware state, which has a singular stress tensor (4.16) on the horizon, and there
is no Hawking radiation.

It is clear from this exercise that the Hawking flux and the behavior of the stress tensor
on the horizon are intimately connected and dependent upon one another, and both are
determined by the particular solution of the ϕ eq. (4.4) and stress tensor (4.5). That the
assumption of regularity of the stress tensor on the horizon implies the Hawking effect was
shown in ref. [6]. The considerations above show that the converse is also true, namely a
singular contribution to the quantum stress tensor τuu from an initial state perturbation
can modify or even eliminate the Hawking flux.

Now a strictly divergent perturbation is disallowed by the requirement that the initial
state be UV finite with a Hadamard two-point function in QFT, in accordance with a
theorem of [34]. Any A(u) homogeneous solution to (4.4), if followed backwards in time and
reflected from the origin must have been present in the initial state as incoming radiation
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in B(v). Hence requiring that B(v) be non-singular in the initial state on I − prior
to collapse implies that A(u) must also be non-singular on the horizon, and the strictly
diverging behavior of (5.8) on the future horizon in (5.9) is excluded.

On the other hand, there is no need for the quantum stress tensor to diverge. If
it becomes arbitrarily large, while still finite, it can produce backreaction effects on the
horizon that could lead to significantly different results than those obtained with vacuum
initial data. Quantitative control of this large growth of the stress tensor on the horizon re-
quires regulating the logarithmic divergence of (5.8) and the corresponding 1/f2

0 divergence
of (5.9) by a smooth cutoff for small but finite f0.

Let the divergence in the τuu component of the stress tensor in the non-vacuum state
described by (5.8) be regulated by a small quantity ε � 1, such that (5.8) holds nearly
everwhere but as f0 → 0, the logarithm is cut off by ε. That is, let A(u) of (5.8) be replaced
by Aε(u) such that

lim
ε→0+

Aε(u) =
(
q + 1

2

)
ln |f0| (5.11)

but also such that
lim

u→v0−2r
M

Aε(u)→
(
q + 1

2

)
ln ε (5.12)

remains finite, regulated by the non-zero value of ε � 1. One simple such regulated A(u)
(by no means unique), with the required properties in the near horizon region might be

Ãε(u) = 1
2

(
q + 1

2

)
ln
(
f2

0 + ε2
)

= 1
2

(
q + 1

2

)
ln
[(

1− rM
r0(u)

)2
+ ε2

]
(5.13)

which unlike (5.8) is also defined for f0 < 0. We may also require that Aε(u) have no
singular behavior at any other u, whereas (5.14) still exhibits singular behavior at the
origin u = v0, r0 = 0 where f0 → −∞. Thus another possible fully regularized A(u) is

Aε(u) = 1
2

(
q + 1

2

) {
ln
[(

r0(u)
rM

− 1
)2

+ ε2
]
− ln

[(
r0(u)
rM

)2
+ ε2

]}
(5.14)

where both logarithmic singularities of (5.8) at r0 = rM and r0 = 0 are removed and
regularized by the same ε� 1 small parameter. Then

Aε(u)→ ±
(
q + 1

2

)
ln ε (5.15)

for u → v0 − 2rM or u → v0, respectively, as ε → 0+. This regularized function Aε(u) is
shown as a function of u for q = 0 and various ε in figure 3.

The function A′′ + (A′)2 which appears in the quantum stress tensor (5.9) has a max-
imum at f0 ∼ ε� 1 or at u− (v0 − 2rM ) ∼ 2 ε rM with that maximum value there of order
ε−2. The width in u of the peak maximum in Aε is ∆u ∼ 4rM ε. The functions A′′, (A′)2

and A′′ + (A′)2 are plotted in figures 4. The main contribution comes from the region of
∆u ∼ εrM around the maximum.

Since f0 is a function of u, this effect is concentrated in an interval of u near the horizon
of order

∆u ∼ ∆r ∼ εrM ∼
√
NLPl (5.16)
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Figure 3. The regularized perturbation in the initial conditions (5.14) for q = 0 and various ε.

-10
ε -5ε 0ε 5ε 10

ε

−0.125

0.000

0.125

0.250

0.375

0.500

0.625

0.750

0.875

1.000

u/rM

d2A
du2

ε = 1e–1
ε = 1e–2
ε = 1e–3

-10
ε -5ε 0ε 5ε 10

ε

u/rM

(
dA
du

)2

-10
ε -5ε 0ε 5ε 10

ε

u/rM

τAuu =
d2A
du2 +

(
dA
du

)2

Figure 4. First Two Panels: ε2A′′ and ε2A′ 2 of the regularized perturbation (5.14) as functions
of u in units of 1/8r2

M
for q = 0. The horizon is at u = 0, the u−axis is rescaled by ε and the

magnitude is rescaled by ε2, showing that the self-similar behavior of the rescaled curves coincide
for ε→ 0. Third Panel: the sum which contributes to (5.9) and τuu in units of N~/96πr2

M
, also for

q = 0 and with axes similarly rescaled.

which is of the order or somewhat larger than the Planck scale LPl ≡
√
~G/c3 = 1.616 ×

10−33 cm., if we take ε ∼
√
NLPl/rM , which we shall show presently is the size needed for

the quantum effects to significantly alter the classical geometry. Since h=f(r)→0 for the
Schwarzschild line element (2.12), this corresponds to a physical distance scale of

` ∼ ∆r√
ε
∼ N

1
4

√
rMLPl � LPl (5.17)

from the horizon. For a solar mass BH, ` is of order 10−14 cm or greater. Although very
small by astrophysical standards, since `� LPl by some 19 orders of magnitude, one may
still expect to be able to apply semi-classical methods in this regime.

The behavior of the Hawking flux suppression for some moderately small values of
ε is illustrated in figure 5, showing that this suppression persists for longer and longer
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Figure 5. Upper Panels: mass flux (5.5) as a function of horizon advanced time u, showing the
suppression of the Hawking flux by the perturbation Aε(u) in the initial state for u increasingly
close to the horizon at u = 0 for decreasing values of ε. ṁH denotes the value of the 2D Hawking
flux (5.6) to which all regular perturbations tend finally at u = 0. Lower Panel: expanded u scale
showing the self-similar behavior under rescalings of ε.

retarded u times closer to u = v0 − 2rM on the future horizon, for smaller and smaller ε.
Given (3.6) and (3.11), this corresponds at fixed r to times t ∝ rM ln(1/ε) after the collapse
of the null shell. Figure 5 also exhibits the self-similar behavior of the flux suppression as
u→v0− 2rM for ε→0, which is a consequence of the conformal properties of the spacetime
in near-horizon region [22–24].

For a quantitative estimate of how large the effects of the perturbation (5.14) on the ge-
ometry would be, if backreaction were to be taken into account, note that the overall scale of
the quantum effects encoded in τab are of order N~/48πr2

M
. From the four-dimensional Ein-

stein tensor (2.2) and stress tensor (2.7), τab leads to effects on Gab of order (8πG/4πr2) τab,
or N~G/24πr4

M
. This is to be compared with the 4D classical curvature components com-

puted in the Schwarzschild geometry, given in appendix A which are of order 1/r2
M

at the
horizon. Thus the quantum backreaction effects are generally suppressed by an overall
relative factor of

αG ≡
N~G
24πr2

M

= N

24π

(
LPl
rM

)2
� 1 (5.18)

compared to the classical geometry. This is certainly a very substantial suppression for
a macroscopically large BH compared to the Planck scale, and the reason that quantum
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effects in classical GR are generally considered to be quite negligible. However even such an
enormous suppression factor as (5.18) can be overcome if the quantum stress-tensor (5.3)
components become large enough (while still remaining finite) in the vicinity of the future
apparent horizon.

With (5.14) as a complete regularization of the non-vacuum initial state perturba-
tion (5.8) in both regions, the A′′ + (A′)2 term in (5.9) is of order ε−2 in the near horizon
region and the quantum suppression (5.18) is overcome if

αG
ε2

(
q2 − 1

4

)
& 1 , or ε . Max(1, |q|)×

√
N

6π

(
LPl
2rM

)
. (5.19)

For large |q| � 1 the condition on how small ε must be to overcome the suppression of
quantum non-vacuum effects on the horizon is weakened by the appearance of a large factor
of |q| in (5.19), but in the following we assume that q is of order 1 and not particularly
large, which we show in section 6 has the highest probability of occuring in the initial state.

Since the finite regularized perturbation (5.14) is present in the initial state, prior to
the formation of the BH so we also estimate its total Misner-Sharp energy in the flat space
region I where R = 0 and (3.5) applies. Using (2.22) and (5.3) with (5.16) gives

m =
∫ ∞
−∞

du
∂m

∂u
=
∫ ∞
−∞

du τuu ∼ ∆u ~N
24π(∆u)2 ∼

~N
24πεrM

∼

√
N

6π
MPl

2 �M (5.20)

of the order the Planck massMPl = 2.177×10−5 gm. In the flat region ∆u ∼ LPl, so that a
quantum perturbation on the future apparent horizon of the BH large enough to overcome
the suppression (5.18) and produce significant backreaction on the classical geometry only
requires a Planck mass-energy fluctuation MPl concentrated within a Planck length LPl
distance, just the scale at which such quantum fluctuations in the initial state are expected
on general grounds of the uncertainty principle.

In the next section we give a quantitative estimate of the probability that such a non-
vacuum quantum fluctuation large enough to satisfy the conditions (5.19)–(5.20) exists in
the wave functional of the initial vacuum state.

6 Probability distribution for non-vacuum initial conditions

The effective action of the conformal anomaly (4.3) is quadratic in the conformalon scalar
field ϕ, and its eq. of motion (4.4) in the asymptotically flat region where R = 0 is that of
a free scalar field. Since in a free theory the wave functional of the ground state vacuum
is a simple Gaussian, evaluating the width of this Gaussian enables us to give a quanti-
tative estimate of the probability of the coherent state perturbation of the form of (5.14)
parametrized by ε and q.

For one simple harmonic oscillator with frequency ω, the classical action

Sosc[x] = 1
2

∫
dt
(
ẋ2 − ω2x2

)
(6.1)
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is quadratic in x, and the ground state of the oscillator is described by the Schrödinger
wave function

ψ0(x) =
(
ω

π~

)1
4

exp
(
−ωx

2

2~

)
(6.2)

which is a simple Gaussian, normalized to
∫∞
−∞ dx |ψ0(x)|2 = 1. Since dx |ψ0(x)|2 is the

probability of finding the oscillator with a value of the coordinate between x and x + dx,
the probability of finding the coordinate x with any absolute value |x| ≥ x̄ > 0 is

P (x̄) = 2
∫ ∞
x̄

dx |ψ0(x)|2 = erfc
(√

ω

~
x̄

)
(6.3)

in terms of the complementary error function erfc.
This simple result can be generalized to a free QFT, viewed as a collection of free

harmonic oscillators, in both the fixed time and light cone quantization schemes. For initial
data on a lightlike null surface such as I − the Schrödinger wave functional formulation is
given in [46]. The Gaussian wave functional on the initial data for a canonically normalized
scalar field φ is proportional to

exp
{
−1
~
(
φ−,Ωφ+)} (6.4)

where φ± are the positive and negative frequency parts of φ, and Ω = 2k, the analog of
ω in (6.2), is called the ‘covariance’ and given in momentum space with k the momentum
conjugate to the light front variable u or v. For a real scalar field the positive and negative
frequency parts are simply related by complex conjugation, i.e. φ− = (φ+)∗. Applying
this general result to the anomaly effective action (4.3), the square of the ground state
Schrödinger wave functional for the conformalon scalar ϕ on an initial null hypersurface is

∣∣Ψ0[ϕ]
∣∣2 ∝ exp

{
− N

24π

∫ ∞
0

dk

2π ϕ−(k) (2k)ϕ+(k)
}

(6.5)

after account is taken of the normalization of (4.3) with the factor of N~/48π relative to
the canonical normalization of 1/2 for a free scalar field. The overall normalization factor
in (6.5) is to be determined by the requirement that |Ψ0|2 integrated over all values of the
parameters characterizing the initial state perturbation is ϕ is unity.

For the unregularized perturbation ϕ = 2A(u) with A(u) given by (5.8), the positive
frequency component in momentum space is

ϕ+(k) = (2q + 1)
∫ ∞
−∞

du eiku ln |f0| , k > 0 . (6.6)

which is the result of the ε → 0 limit of the regularized form (5.14). With the change of
variables u = v0 − 2rMx, (6.6) is

ϕ+(k) = 2rM (2q + 1) eikv0 I(z)
∣∣
z=2kr

M
(6.7)
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where the integral I(z) is finite and given by

I(z) =
∫ ∞
−∞
dx e−ixz ln

∣∣∣∣1− 1
x

∣∣∣∣ =
∫ ∞

1
dx e−ixz ln

(
1− 1

x

)
+
∫ 1

0
dx e−ixz ln

(1
x
− 1

)
+
∫ ∞

0
dx eixz ln

(
1 + 1

x

)
= π

z

(
1− e−iz

)
. (6.8)

Although each of the three integrals in (6.8) involves sine-integral (Si) and cosine-integral
(Ci) special functions, their sum turns out to be expressible in terms of elementary functions
in the last form.

Substituting (6.7) with (6.8) and z = 2krM into (6.5) gives the probability density of
the initial state perturbation

∣∣Ψ0
∣∣2 ∝ exp

{
− N

24π2
(
2q + 1

)2∫ ∞
0
dz z |I(z)|2

}
(6.9)

for the unregularized initial state perturbation (5.8). Now observe from (6.8) that the
integrand of the z integral in (6.9) is

z |I(z)|2 = z
π2

z2

∣∣∣1− e−iz∣∣∣2 = 4π2

z
sin2

(
z

2

)
∼ 2π2

z
(6.10)

so that in fact the integral in (6.9) as it stands diverges logarithmically, and would give
an identically zero probability for any q 6= −1/2, which is the vacuum state. This is
consistent with the general theorem of ref. [34], which excludes the possibility that truly
singular behavior on the future horizon could be generated in gravitational collapse, starting
from smooth initial data. The perturbation (5.8) is such a singular perturbation for any
q 6= −1/2, also with diverging energy (5.20) in the initial state.

It is not difficult to see that the large z behavior of the integral (6.8) is determined by
the behavior of A(u) at its logarithmic singular points where f0 becomes either 0 or ∞.
Thus if we replace the singular perturbation (5.8) by the finite one (5.14) regularized by a
small but finite ε parameter, the 1/z behavior of (6.8) and (6.10) is cut off at z ∼ 1/ε with
the result that ∫ ∞

0
dz z |Iε(z)|2 ∼ ln

(
1/ε
)

(6.11)

for the regularized perturbation (5.14), and as a result the probability functional (6.9)
becomes

|ψε(q)|2 ∝ exp
{
− N

24π2 (2q + 1)2 ln
(
1/ε
)}

= εN(2q+1)2/24π2 (6.12)

which is now a finite normalizable probability density in q and for any ε > 0.
If ε is required to satisfy (5.19) for q of order unity, it is instructive to evaluate the

exponent for a typical value of rM ' 3 km for a solar mass BH, for which

rM
LPl
' 1.9× 1038 � 1 . (6.13)
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Despite this very large value, the exponent in (6.12) is only weakly logarithimically depen-
dent on ε and

1
24π2 ln

(
1/ε
)

= 1
24π2 ln

(√
6π
N

2rM
LPl

)
' 0.38− lnN

48π2 (6.14)

is actually O(1). The lnN term in (6.14) is also negligibly small compared to 0.38 provided
lnN � (48π2)(0.38) ' 180, so that neglecting it, we find from (6.12) the normalized
probability distribution in q is approximately

|ψε(q)|2 '

√
(1.52)N

π
exp

{
−(0.38)N (2q + 1)2

}
(6.15)

centered on the vacuum value of q = −1
2 , where the normalization is now fixed by∫∞

−∞dq |ψε(q)|2 = 1.
For the perturbation (5.14) with q = 0 that produces a large suppression of the Hawking

effect and stress tensor on the horizon that is also large enough to produce significant
backreaction according to (5.19), we have

|ψε(0)|2 ' (0.70)
√
N e−(0.38)N = (0.70)

√
N (0.68)N (6.16)

which is O(1), unless N is very large. As in (6.3), the probability of finding a perturbation
in the initial state of the form (5.8) varying from the vacuum value by |∆q| ≥ 1/2 is

P

(
|∆q| ≥ 1

2

)
' erfc

(√
(0.38)N

)
=
{

0.38 , N = 1
0.08 , N = 4

(6.17)

which is also O(1), for N fields contributing to the 2D conformal anomaly, unless N is very
large.

7 Discussion and outlook

In this paper we have considered a simple 2D model of gravitational collapse, and stud-
ied the effects of the quantum conformal anomaly on the resulting classical BH horizon.
Although this and similar 2D models of gravitational collapse have been considered pre-
viously [4, 7, 9], attention has been focused almost exclusively on initial conditions corre-
sponding to the Minkowski vacuum on I −. This choice of initial state leads to the stress
tensor on the horizon that is regular in free-falling coordinates and backreaction effects
of Hawking radiation that are small, at least initially in the semi-classical approximation,
where quantum fluctuations from the mean 〈T ν

µ 〉 are ignored.
This study shows instead that the quantum effects of the conformal anomaly can be

extraordinarily large on BH horizons, overcoming even the enormous suppression of Planck
to macroscopic scales expressed by the ratio (6.13). This suppression, normally expected of
quantum effects in classical gravity, can be overcome in the stress tensor of the conformal
anomaly because of its sensitivity to light cone pole singularities of quantum field theory,
that occur in generic quantum states and extend to macroscopic scales. This specifically
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quantum, non-local effect, and its importance to the behavior of the stress tensor on BH
horizons is illustrated in the simple 2D model of this paper.

This is a proof of principle of state-dependent anomaly effects on BH horizons in a
simple 2D model with p⊥=0. Relaxing this condition to obtain a more realistic model will
require use of the full 4D conformal anomaly effective action and stress tensor of [25, 27],
which nonetheless is expected to have similar significant state-dependent effects on the
future event horizon of a 4D black hole, as already pointed out in [25]. The present
paper therefore provides a good motivation and warm-up for study of the more realistic
but technically more challenging 4D collapse problem by similar methods applied to the
4D anomaly stress tensor. The significant effects of the conformal anomaly even in the
simplified 2D model of this paper support the conclusion that the effective action of the
conformal anomaly is a relevant addition to the classical theory that should be added in a
full effective field theory (EFT) treatment of gravity at macroscopic scales [25–27, 29, 47].

By recasting the effective action of the 2D conformal anomaly in local form (4.3) via the
introduction of a local scalar conformalon field ϕ, a very wide class of initial conditions can
be considered, by allowing general homogeneous solutions to the linear wave eq. (4.4) that
ϕ satisfies. As a practical matter, this formulation of general initial conditions is simpler
and much less technically involved than calculating the stress tensor of every quantum field
in each and every quantum state, by the standard approach of mode sums, which requires a
cumbersome process of regularization and renormalization on a case by case basis, even on a
fixed background with a great deal of symmetry [3]. Calculations of quantum backreaction
in dynamically evolving spacetimes, or those with less symmetry rapidly become prohibitive
by this method. The local form of the conformal anomaly stress tensor and eq. of motion
provides a more practical approach to make progress in this class of quantum backreaction
problems in BH and other curved spacetimes, particularly in the horizon region where the
anomaly dominates other vacuum polarization effects because of its lightlike singularity.

The relevance of the anomaly stress tensor in the 2D model is illustrated through its
effect on Hawking emission, which can be modified or suppressed for indefinitely long times
after gravitational collapse, by different choices of the initial state easily studied by means
of different homogeneous solutions to the ϕ eq. (4.4). Since the anomaly effective action
is quadratic in ϕ, it is also a convenient route to estimating the probability of such non-
vacuum initial conditions in the vacuum wave functional. The probability of non-vacuum
initial conditions that can significantly affect the BH near-horizon geometry and Hawking
effect (6.16)–(6.17) are not negligibly small, but rather of O(1). This demonstrates the abil-
ity of the anomaly to overcome large quantum suppression factors in gravitational collapse,
and the special and fine-tuned nature of the vacuum initial conditions upon which virtually
all inferences of quantum effects in BHs have been based. The present study indicates that
a reconsideration of these conclusions for more general initial state conditions is warranted.

Clearly the estimates of the probability based on a 2D model of gravitational col-
lapse (6.16)–(6.17) are only illustrative, given that the 2D model itself is incomplete, by
setting identically to zero the transverse pressure as in (2.9). The shortcomings of this
model and similar ones have been pointed out [36]. For these reasons we do not take (6.16)–
(6.17) as accurate reliable predictions for the probability of non-vacuum initial conditions
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in 4D gravitational collapse. Nevertheless, general features of weak, logarithmic depen-
dence on the large ratio of scales 1/ε ∼ rM /LPl of this probability function, when initial
state perturbations are regularized by a small parameter that grow large on the horizon,
are expected to hold in four dimensions as well. The 4D effective action of the conformal
anomaly is also quadratic in ϕ, and its eq. of motion is also linear [27, 47]. Hence the
probability of non-vacuum initial conditions that lead to large effects on the BH horizon
found in [25, 26] can be studied by the same methods as those in the 2D case. Thus the
study of the simplified 2D model presented here justifies a detailed study of the analogous
non-vacuum perturbations by means of the 4D quantum conformal anomaly in more realis-
tic models of gravitational collapse, and in the full EFT of [27], where the ϕ conformalon is
coupled to dynamical vacuum energy, allowing it also to change in the near-horizon region,
and possibly leading to a regular de Sitter interior consistent with quantum theory [48].

A Curvature components in double null coordinates

To calculate the Riemann curvature components most rapidly we use the method of differ-
ential forms and the definition of the vierbeine or tetrad frame one-forms

eâ = eâµ dx
µ (A.1)

in the orthornormal coordinates denoted by the hatted indices, such that the metric can
be written

gµν = ηâb̂ e
â
µe
b̂
ν (A.2)

in terms of the constant metric and its inverse

ηûv̂ = ηv̂û = −1
2 , ηûv̂ = ηv̂û = −2 , ηθ̂θ̂ = ηφ̂φ̂ = ηθ̂θ̂ = ηφ̂φ̂ = 1 . (A.3)

In flat space r = (v−u)/2, whereas in the general spherical symmetric geometry in double
null coordinates the metric is given (2.1) and (2.14), in terms of two functions r(u, v) and
σ(u, v) to be determined. Therefore we may choose the frame one-forms and vierbein fields
to be

eû = eσ du , eûu = eσ (A.4a)
ev̂ = eσ dv , ev̂v = eσ (A.4b)

eθ̂ = r dθ , eθ̂θ = r (A.4c)

eφ̂ = r sin θ dφ , eφ̂φ = r sin θ (A.4d)

with all other components eâµ not listed in the second column vanishing.
From the above frame one-forms the connection one-forms wâ

b̂
are determined by the

requirement from Cartan’s second eq. of structure

T â ≡ deâ + wâ
b̂
∧ eb̂ = 0 (A.5)
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of vanishing torsion T â. Here d here denotes exterior differentiation of forms and the ∧
(‘wedge’) operation denotes the anti-symmetric product of forms. Thus from (A.4), (A.5)
and

deû = −eσ ∂vσ du ∧ dv (A.6a)
dev̂ = +eσ ∂uσ du ∧ dv (A.6b)

deθ̂ = +∂ur du ∧ dθ + ∂vr dv ∧ dθ (A.6c)

deφ̂ = + sin θ ∂ur du ∧ dφ+ sin θ ∂vr dv ∧ dφ+ r cos θ dθ ∧ dφ (A.6d)

one finds

wûû = −wv̂v̂ = ∂uσ du− ∂vσ dv (A.7a)
wûv̂ = wv̂û = 0 (A.7b)

wû
θ̂

= 2wθ̂v̂ = 2e−σ ∂vr dθ (A.7c)

wv̂
θ̂

= 2wθ̂û = 2e−σ ∂ur dθ (A.7d)

wû
φ̂

= 2wφ̂v̂ = 2e−σ sin θ ∂vr dφ (A.7e)

wv̂
φ̂

= 2wφ̂û = 2e−σ sin θ ∂ur dφ (A.7f)

wφ̂
θ̂

= −wθ̂
φ̂

= cos θ dφ (A.7g)

for the connection one-forms, with terms not listed vanishing.
The Riemann curvature two-form is then calculated from Cartan’s first eq. of structure

Râ
b̂
≡ dwâ

b̂
+ wâĉ ∧ wĉb̂ = Râ

b̂ĉd̂
eĉ ∧ ed̂ (A.8)

from which we obtain the 20 non-vanishing components of the Riemann tensor

Rûûv̂û =Rv̂v̂ûv̂ = 2e−2σ ∂u∂vσ (A.9a)

Rû
θ̂ûθ̂

=Rû
φ̂ûφ̂

=Rv̂
θ̂v̂θ̂

=Rv̂
φ̂v̂φ̂

= 2Rθ̂
ûv̂θ̂

= 2Rθ̂
v̂ûθ̂

= 2Rφ̂
ûv̂φ̂

= 2Rφ̂
v̂ûφ̂

= 2
r
e−2σ ∂u∂vr

(A.9b)

Rû
θ̂v̂θ̂

=Rû
φ̂v̂φ̂

= 2Rθ̂
v̂v̂θ̂

= 2Rφ̂
v̂v̂φ̂

= 2
r
e−2σ

(
∂2
vr −2∂vr∂vσ

)
(A.9c)

Rv̂
θ̂ûθ̂

=Rv̂
φ̂ûφ̂

= 2Rθ̂
ûûθ̂

= 2Rφ̂
ûûφ̂

= 2
r
e−2σ

(
∂2
ur −2∂ur∂uσ

)
(A.9d)

Rθ̂
φ̂θ̂φ̂

=Rφ̂
θ̂φ̂θ̂

= 1
r2

(
1+4e−2σ ∂ur∂vr

)
(A.9e)

in the orthonormal basis, together with the 20 components related to these by anti-
symmetry in the last two indices: Râ

b̂ĉd̂
= −Râ

b̂d̂ĉ
.
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The non-vanishing components of the Ricci tensor are

Rûû = Rv̂v̂ = Ruu = Rvv = 4 e−2σ
(
∂u∂vσ + 1

r
∂u∂vr

)
(A.10a)

Rûv̂ = Ruv = 4
r
e−2σ

(
∂2
vr − 2 ∂vr ∂vσ

)
(A.10b)

Rv̂û = Rvu = 4
r
e−2σ

(
∂2
ur − 2 ∂ur ∂uσ

)
(A.10c)

Rθ̂
θ̂

= Rφ̂
φ̂

= Rθθ = Rφφ = 4 e−2σ
(1
r
∂u∂vr + 1

r2 ∂ur ∂vr

)
+ 1
r2 (A.10d)

given in both the orthonormal and coordinate bases. Thus the four-dimensional Ricci
scalar is

(4)R = 8 e−2σ
(
∂u∂vσ + 2

r
∂u∂vr + 1

r2 ∂ur ∂vr

)
+ 2
r2 (A.11)

and the non-vanishing components of the Einstein tensor are

Guu = Gvv = −4 e−2σ
(1
r
∂u∂vr + 1

r2 ∂ur ∂vr

)
− 1
r2 (A.12a)

Guv = 4
r
e−2σ

(
∂2
vr − 2 ∂vr ∂vσ

)
(A.12b)

Gvu = 4
r
e−2σ

(
∂2
ur − 2 ∂ur ∂uσ

)
(A.12c)

Gθθ = Gφφ = −4 e−2σ
(
∂u∂vσ + 1

r
∂u∂vr

)
(A.12d)

in the (u, v, θ, φ) coordinate basis. All curvature components vanish for σ = 0, r = (v−u)/2
in flat space. With these results the Einstein eqs. in the full four-dimensional space (2.1)
take the form

∂2r

∂u2 − 2 ∂r
∂u

∂σ

∂u
= −G

r
τuu , (A.13a)

∂2r

∂v2 − 2 ∂r
∂v

∂σ

∂v
= −G

r
τvv , (A.13b)

∂2r

∂u∂v
+ 1
r

∂r

∂u

∂r

∂v
+ e2σ

4r = G

r
τuv , (A.13c)

∂2σ

∂u∂v
+ 1
r

∂2r

∂u∂v
= σ + 1

r
r = 0 . (A.13d)

B The functions r(u, v) and σ(u, v) in regions I and II

In the flat region I, σ = 0 and the r = (v − u)/2. Thus we have simply

∂r

∂v
= 1

2 = −∂r
∂u

(B.1a)

∂2r

∂v2 = ∂2r

∂u2 = ∂2r

∂u∂v
= 0 in region I. (B.1b)
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In region II differentiation of (3.12) gives

dr∗ = dr

f
= dv

2 −
dũ

2 = dv

2 −
du

2f0
(B.2)

so that
∂r

∂u
= − f

2f0
(B.3a)

∂r

∂v
= f

2 (B.3b)

∂2r

∂u2 = ff ′

4f2
0
− ff ′0

4f2
0

(B.3c)

∂2r

∂v2 = ff ′

4 (B.3d)

∂2r

∂u∂v
= − ff

′

4f0
in region II (B.3e)

where
f ′ ≡ df

dr
= rM
r2 , f ′0 ≡ f ′

∣∣
r=r0

= rM
r2

0
(B.4)

so that r, ∂ur and ∂2
ur are continuous at v = v0, whereas the v derivatives and mixed u, v

second derivative of r are not.
From (3.14), we also have in region II that

∂σ

∂u
= − f ′

4f0
+ f ′0

4f0
(B.5a)

∂σ

∂v
= f ′

4 (B.5b)

∂2σ

∂u ∂v
= −ff

′′

8f0
(B.5c)

∂2σ

∂u2 = 1
8f2

0

(
f ′′f − f0f

′′
0 + f ′ 20 − f ′f ′0

)
(B.5d)

∂2σ

∂v2 = ff ′′

8 in region II (B.5e)

so that σ and ∂uσ are continuous at v = v0, whereas ∂vσ and ∂u∂vσ are not.
From these expressions one finds

Guu = Guv = Gθθ = Gφφ = 0 (B.6)

everywhere in both regions I and II, satisfying the vacuum Einstein eqs.
Gvv also vanishes in each region I and II separately, but since

∂r

∂v
= 1

2 Θ(v0 − v) + f

2 Θ(v − v0) (B.7)

is discontinuous at v = v0, its derivative

∂2r

∂v2 = f − 1
2 δ(v − v0) + f ′f

4 Θ(v − v0) (B.8)

– 31 –



J
H
E
P
0
8
(
2
0
2
3
)
2
2
3

has a Dirac δ-function contribution, and

Gvv = −2
r

(
∂2r

∂v2 − 2 ∂r
∂v

∂σ

∂v

)
= rM
r2 δ(v − v0) = 2Gτ (C)

vv

r2 = 8πGTvv (B.9)

evaluated at v = v0, r = r0, f = f0≡ f(r0). Hence eq. (B.9), which is the only non-trivial
Einstein eq. due to the null shell is also satisfied and is (3.19) of the text.

Additionally, for the quantum anomaly stress tensor the required terms are

∂2σ

∂u ∂v
= rM

4r3
f

f0
(B.10a)

∂2σ

∂u2 −
(
∂σ

∂u

)2
= 1

16f2
0

(
2ff ′′ − f ′ 2 − 2f0f

′′
0 + f ′ 20

)
= rM

4f2
0

[ 1
r3

0
− 1
r3 + 3rM

4

( 1
r4 −

1
r4

0

)]
(B.10b)

∂2σ

∂v2 −
(
∂σ

∂v

)2
= 1

16
(
2ff ′′ − f ′ 2

)
= − rM4r3

(
1− 3rM

4r

)
(B.10c)

in the Schwarzshild region II.

C Three sets of double null coordinates and horizon finiteness conditions

We use two different sets of double null coordinates in this paper, which we designate (u, v)
and (ũ, ṽ). A third set of Kruskal double null coordinates designated by (U, V ) are also
often used for the Schwarzschild solution. For the benefit of the reader we give here the
relationships between the three different sets of double null coordinates.

The first set are the simply double null coordinates in the flat region I before the
passage of the null shell, defined in (3.5). The two other sets of coordinates are referred
back and related to this first and primary set of (u, v) coordinates.

In crossing the imploding null shell at v = v0 into region II we are in a Schwarzschild
region with total mass M fixed by the null shell (3.2), (3.3). The Schwarzschild region II
has metric and double null Eddington-Finkelstein coordinates defined by (3.6), and denoted
(ũ, ṽ). In these Schwarzschild E-F coordinates one can find the solution to the ϕ eq. (4.11)–
(4.12) and see that it gives the diverging stress tensor stress tensor components (4.13).

Since both sets of Schwarzschild (t, r) and (ũ, ṽ) coordinates diverge at the horizon,
one can introduce Kruskal double null coordinates (U, V ) related to (ũ, ṽ) by

U = −2rM e−ũ/2rM = −2rM e−u/2rM
(
r0(u)
rM

− 1
)

(C.1a)

V = 2rM eṽ/2rM = 2rM ev/2rM (C.1b)

UV = −4r2
M
er
∗/r

M = −4rrM er/rM f(r) (C.1c)

which are regular on the horizon, mapping the future and past horizons to U = 0 and
V = 0 respectively. Thus the total Jacobian is

dU

du
= dU

dũ

dũ

du
= e−ũ/2rM

1
f0

= e−u/2rM
r0(u)
rM

(C.2)
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showing that the total transformation from the original (u, v) to Kruskal (U, V ) coordinates
is non-singular at u = v0 − 2rM , r0(u) = rM at the future classical horizon. Both these two
sets of double null coordinates are regular and horizon-penetrating on the future horizon,
whereas the E-F (ũ, ṽ) are not.

The conditions of horizon regularity on the stress tensor are that all components are
finite in any set of coordinates that are non-singular on the horizon. Since both the Kruskal
double null coordinates (U, V ) and flat double null coordinates (u, v) of region I are non-
singular on the horizon and

Tvv = Tṽṽ (C.3a)

Tuv =
(
dũ

du

)
Tũṽ =

( 1
f0

)
Tũṽ (C.3b)

Tuu =
(
dũ

du

)2
Tũũ =

( 1
f0

)2
Tũũ (C.3c)

with (3.11), finiteness on the horizon requires each of the three components at left must
be finite. Since the ratio f/f0 is finite on the horizon by (3.25), this implies

lim
r→r

M

|Tṽṽ| <∞ (C.4a)

lim
r→r

M

f−1 |Tũṽ| <∞ (C.4b)

lim
r→r

M

f−2 |Tũũ| <∞ (C.4c)

in agreement with ref. [5]. These conditions are satisfied for the regularized initial state
perturbation (5.14) for ε > 0.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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