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Abstract
We present closed-form solutions for the generic class of plunging geodesics
in the extended Kerr spacetime using Boyer–Lindquist coordinates. We also
specialise to the case of test particles plunging from the innermost precess-
ing stable circular orbit (ISSO) and unstable spherical orbits. We find these
solutions in the form of elementary and Jacobi elliptic functions parameterised
by Mino time. In particular, we demonstrate that solutions for the ISSO case
can be determined almost entirely in terms of elementary functions, depend-
ing only on the spin parameter of the black hole and the radius of the ISSO.
Furthermore, we introduce a new equation that characterises the radial inflow
from the ISSO to the horizon, taking into account the inclination. For ease of
application, our solutions have been implemented in a Mathematica package
that is available as part of the KerrGeodesics package in the Black Hole
Perturbation Toolkit.
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1. Introduction

Analysing the geodesic structure of a spacetime is one of the foundational means of under-
standing it in its unperturbed state. This is apparent in the fact that the geodesics of the Kerr
spacetime have been extensively studied since its original derivation [1]. A critical step in
the calculation of the geodesics in Kerr was the discovery of a fourth constant of motion, the
Carter constant Q [2], which along with the mass shell condition, the conserved energy E and
the angular momentum L allow for the full integrability of the geodesic equations of motion.
While exact solutions for various special cases had been derived (e.g, see [3] or [4]) no real
effort was made to tackle the generic case until the start of the 21st century [5]. Without get-
ting explicit solutions for the geodesics themselves, [6] found exact expressions for the orbital
frequencies with respect to coordinate time of generic bound orbits. The introduction of the
Mino time parameterisation [7] subsequently allowed for the full decoupling of the problem in
a much simpler manner to previous approaches [2]. This opened the door for finding analytic
solutions to generic bound geodesics in Kerr [8] as a system of piecewise smooth functions,
which were then notably simplified through analytic continuation [9].

The full class of analytic solutions to Kerr–de Sitter and Kerr–anti-de Sitter space-times has
been found generically [10]. However these solutions are presented in the form of Weierstrass
elliptic and hyperelliptic Kleinian functions, which can make them cumbersome to deal with.
This work also provided part of the motivation for deriving a more explicit solution for null
geodesics in the exterior of Kerr in terms of Jacobi elliptic functions [11]. Recent work has
subsequently derived these equations for the specified case of bound null geodesics [12], rel-
evant in pursuit of forming tight constraints on Black Hole parameters by observations of the
photon ring using the Event Horizon Telescope [13].

Recently, [14] has derived a much simplified analytic solution for the special case of equat-
orial plunging timelike geodesics which asymptote from the innermost stable circular orbit
(ISCO). In this work, they also provide a simple expression for the equatorial radial inflow
from the ISCO relevant to the study of accretion disk dynamics. In practice, these systems
will not always be confined to the equatorial plane, motivating the generalisation of this res-
ult to the inclined (i.e. non-spin aligned or precessing) case, as we will do in this paper. In the
interest of completeness we also provide solutions for plunges starting from a general (inclined
and eccentric) last stable orbit (LSO), i.e. asymptoting from a generic unstable spherical orbit
(USO).

Our work on generic plunges is further motivated by the fundamental role that geodesics
play in the gravitational self-force approach to solving the relativistic dynamics of binary black
holes [15]. In this approach the dynamics are expanded in powers of the mass-ratio between
to two black holes. In this scheme, the zeroth approximation to the motion of the lighter sec-
ondary component is given by a geodesic in the Kerr geometry generated by the (heavier)
primary black hole. At higher orders, this motion is corrected by an effective force term, the
gravitational self-force, causing the system to evolve. During the inspiral phase this evolu-
tion can be solved using a 2-timescale formalism [16–18], adiabatically evolving the system
along a sequence of bound geodesics. The 2-timescale formalism breaks down as the system
approaches the LSO around the black hole, where it enters a transition regime governed by
a new intermediate timescale [19–23]. In the asymptotic regime beyond the transition, the
motion is again well described by a perturbed geodesic, now of the plunging variety. The
timescale for the plunge is much shorter than radiation reaction timescale associated with the
self-force. Consequently, the dynamics in this regime are dominated by the geodesic term. In
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practice, full inspiral-transition-plunge trajectories are formed by asymptotically matching an
inspiral trajectory and a plunging geodesic to the jump obtained from analysing the transition
regime [20, 24].

Development of the gravitational self-force formalism was originally motivated by the need
for producing accurate gravitational waveforms for the observation of extreme mass-ratio
inspirals (EMRIs) with the planned space-based gravitational wave observatory LISA. EMRIs
are expected to havemass-ratios of order 10−5, and will therefore spend hundreds of thousands
of orbits in the strong field regime of the inspiral phase. Consequently, the handful of orbits
represented by the transition and plunge phases are generally expected to provide a negligible
contribution to the total signal. However, over time, evidence has mounted [25–34] suggest-
ing that the self-force formalism can produce accurate results at much higher mass-ratios, and
possibly even for comparable mass binaries. In these regimes the plunge and associated ring-
down form amuchmore significant portion of the waveform. Consequently, the realisation that
waveforms from the self-force formalism may be usable in the more comparable mass regime
has led to a renewed interest in modelling the transition and plunge phases [24, 35–37, 37–40]
and the gravitational waves produced during the plunge and subsequent ringdown [41–43].
So far this effort has focused mostly on special cases involving quasi-circular (possibly pre-
cessing) inspirals. As the work progresses towards fully generic inspirals, there is a need for
generic solutions for the plunge geodesics. This paper provides the latter by solving for generic
plunging geodesics in an easy to evaluate form.

The layout of this paper is as follows, in section 2 we begin with an introduction on the
geodesic equations of Kerr and provide explicit definitions for the related conserved quantit-
ies. In section 3 we then focus our attention on the special case of plunging timelike geodesics
which asymptote from the innermost stable precessing circular orbit (ISSO)3. From these
equations we determine the exact and two approximate expressions for the rate of radial inflow
from the ISSO to the horizon. We then go on to determine the fully analytic solutions to these
geodesic equations for ISSO plunges. In section 4 of this work, we determine novel, fully ana-
lytic, expressions for generic timelike plunging geodesics in the Kerr spacetime, in terms of
elementary and (Jacobi) elliptic functions. These generic plunges are presented in a manifestly
real form such to be easily implementable, supporting current work in the self-force com-
munity on the aforementioned transition to plunge. In relation to solutions of special classes
of geodesics we also provide the solutions for plunges asymptoting from an USO in appendix.
Finally, we have implemented these solutions in the KerrGeodesics package of the Black
Hole Perturbation Toolkit. We work in geometric units where G = c = 1.

2. Geodesic equations

We work in modified Boyer–Lindquist coordinates (z= cos(θ)) and denote the mass and
spin of the black hole as M= 1 and a, respectively. We further use the standard definitions,
Σ= (r2 + a2z2) and ∆= (r− r+)(r− r−). The inner and outer event horizons are given by

r± := 1±
√
1− a2. (1)

3 In this paper, we use the acronym ISSO to refer to the general case of the last stable circular orbit for spherical
(i.e. inclined precessing) orbits. The term ISCO will be used exclusively for the special case of circular equatorial last
stable orbits.
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The symmetries of the Kerr geometry provide two constants of motion, the conserved energy
and angular momentum, which are given as

E :=−uµgµν
(
∂

∂t

)ν

,and (2)

L := uµgµν

(
∂

∂ϕ

)ν

, (3)

respectively. Here gµν is the Kerr metric tensor in modified Boyer–Lindquist coordinates.
There also exists a third constant of motion Q known as the Carter constant [2] which arises
in some families of spacetimes exhibiting Type D symmetry [44]. These conserved quantit-
ies arise as a result of the existence of certain Killing tensors, which are defined to satisfy
the condition ∇(aKbc) = 0. In Kerr, a tensor satisfying this conditions can be found, and is
given by,

Kµν := 2Σl(µnν) + r2gµν . (4)

Here lµ and nν are the principal null vectors of the Kinnersly tetrad [45] defined by

lµ = [ r
2+a2

∆ ,1,0, a∆ ], and nν = 1
2Σ [r

2 + a2,−∆,0,a]. The Carter constant is then given by,

Q := uµKµνu
ν − (L− aE)2. (5)

The Kerr metric also satisfies the Killing tensor condition, giving rise to a final constant of
motion, gµνuµuν =−1, also known as the mass shell condition,. Taking these four conserved
quantities the equations of geodesic motion in Kerr are given by [2],(

dr
dλ

)2

= (E(r2 + a2)− aL)2 −∆(r2 +(aE −L)2 +Q)

= (1−E2)(r1 − r)(r2 − r)(r3 − r)(r− r4)

= R(r),

(6)

(
dz
dλ

)2

= Q− z2(a2(1−E2)(1− z2)+L2 +Q)

= (z2 − z21)(a
2(1−E2)z2 − z22)

= Z(z),

(7)

dt
dλ

=
(r2 + a2)

∆
(E(r2 + a2)− aL)− a2E(1− z2)+ aL, and (8)

dϕ
dλ

=
a
∆
(E(r2 + a2)− aL)+ L

1− z2
− aE , (9)

where we have specialised to working in Mino(-Carter) [7] time defined by

dτ =Σdλ. (10)

By taking advantage of the Mino time parameterisation the equations of motion completely
decouple and can be solved hierarchically. This is done by first solving for r(λ) and z(λ)
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then naturally solving the equations in the form t(r,z,λ) = tr(r)+ tz(z)− aEλ and ϕ(r,z,λ) =
ϕr(r)+ϕz(z)+ aLλ. The solutions for r(λ) and z(λ) can be directly substituted to obtain t(λ)
and ϕ(λ).

Analysing the radial equation in its explicit form (6), one can see that the distinction between
bound and plunging orbits is fully determined by the root structure of the fourth order poly-
nomial R(r). In particular, plunges occur when we have bound motion between some roots
ri,rj of R(r) with ri < r− < r+ < rj. In this work, we restrict to geodesics with E < 1, which
implies that the radial potential R(r) is negative in the limit r→∞, ensuring that the geodesic
is bound to the Kerr black hole. Moreover, since R(r±)> 0 it guarantees that there is at least
one real root of R(r) outside r+. A less obvious implication comes from the polar equation (7).
Rewriting the polar potential as

Z(z) = (1− z2)Q− z2(a2(1−E2)(1− z2)+L2), (11)

it becomes apparent that when E < 1 the polar equation has solutions with −1< z< 1 if and
only if Q⩾ 0. For the radial potential this implies that R(0)⩽ 0, and consequently that there
exists at least one real root of the radial equation between r= 0 and the inner horizon. We thus
find that for any values of E < 1 and Q⩾ 0, there exists a plunging geodesic. It is important
to note that the case of E > 1 with Q< 0 also contributes to a small subset of parameter space
for which a real solution is allowed. Its dynamics are quite interesting as by a brief analysis
of the equations of motion one can see that this would give a test particle which plunges from
infinity, poloidally oscillating around some z0 ̸= 0.

Generically, a plunging geodesic will eternally oscillate between two turning points of the
radial potential and return to the same radial point after a finite amount of Mino (and proper)
time. Geometrically, this corresponds to a geodesic diving into the Kerr black hole and passing
through the two horizons before being scattered back out, passing the horizons in reversed
order and exiting in a different asymptotically flat region of the maximally extended Kerr
solution, as shown in the Penrose diagrams in figure 1.

Exceptions to this picture occur for equatorial trajectories and when one of the bound-
ing roots has a multiplicity greater than one. In the first case Q= 0, one finds that r= 0 is
a root of the radial equation. If this is the inner turning point of the geodesic, the plunge
will end on the singularity after a finite amount of Mino (and proper) time. In the second
case, approaching a root with higher multiplicity takes an infinite amount of Mino (and
proper) time. In section 3, we will see the physically relevant case where the outer turn-
ing point of the solution is a triple root, i.e. lies on the ISSO, where the radial solution
takes a particularly simple form generalising the result of [14]. The right panel in figure 1
shows this edge case trajectory in a Penrose diagram. In appendix, we also treat the spe-
cial case where the outer turning point is a double root, generalising some of the results
in [46].

In the generic case, we know at least two of the four roots of R(r) are real. The other two
roots are either both real or both complex. If the other two roots are real, they come in a pair that
lies either entirely outside the outer turning point, entirely between the inner turning point and
r= 0, or entirely in the r< 0 region. In the first of these cases, the plunging orbit exists inside
of a normal bound orbit, a case sometimes referred to as a ‘deeply bound’ orbit. The solutions
for cases with 4 real roots turn out to be a straightforward generalisation from the solutions
of [8, 9]. The derivation of the solution for the complex case will turn out to be substantially
more involved.
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Figure 1. Penrose diagrams of the maximally analytic extension of the Kerr metric
showing different plunge trajectories. Left image: a generic plunging orbit whereby the
solutions oscillate between the largest root of R(r) which is less than r− and the smallest
root of R(r) greater than r+. These trajectories correspond to geodesic motion entering
the black hole, reaching a turning a point, and exiting the white hole into a different
asymptotically flat region. Each point on the dashed lines in region I and I′ correspond
to a spacelike 2-surface of constant radius corresponding to the outer turning point.
Right image: a plunge which asymptotes to rI as λ→±∞, where γ(λ) represents the
geodesic in question. On the Penrose diagram these trajectories begin at past spacial
infinity i− and end at future spacial infinity i+ in a different asymptotically flat region.
Each point on the dashed lines in region I and I′ correspond to a spacelike 2-surface of
constant radius corresponding to the ISSO radius rI.

3. The ISSO

Before determining the solutions to fully generic plunges in Kerr we begin by solving for
plunges which asymptote to the ISSO. In this case the radial potential R(r) is imbued with
a triple root at the ISSO radius r= rI. Two of these roots come from the fact that the ISSO
must be a (precessing) circular orbit and the additional root arises from the fact we are looking
specifically at the innermost of these orbits meaning R(r) must also inflect at this point. As a
result we determine a radial equation of the form

(
dr
dλ

)2

= (1−E2)(rI− r)3(r− r4). (12)

By equating equation (6) with equation (12) one immediately obtains the result,

r4 =
a2Q

(1−E2)r3I
. (13)

6
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The roots of the polar equation can be found to be given by [11],

z1 =

√√√√√1
2

1+
L2 +Q

a2(1−E2)
−

√(
1+

L2 +Q
a2(1−E2)

)2

− 4Q
a2(1−E2)

,and (14a)

z2 =

√√√√√a2(1−E2)

2

1+
L2 +Q

a2(1−E2)
+

√(
1+

L2 +Q
a2(1−E2)

)2

− 4Q
a2(1−E2)

. (14b)

Finally, we define

kz = a
√
(1−E2)

z1
z2
, (15)

as a quantity which will recurrently show up throughout this work4.

3.1. Determining the conserved quantities

Naturally geodesics asymptoting to the ISSO must also share the same constants of motion as
the ISSO. We can therefore identify a plunging geodesic of this type with those of a particular
ISSO, which has two degrees of freedom. These two degrees of freedom can be set by picking
a black hole spin (a) and maximum orbital angle of inclination θmax ∈ (−π

2 ,
π
2 ). This then

determines a unique rI. One can also invert this relation to set the parameterisation in terms
of (a,rI). Making this choice one finds for each value of a there exists a range of allowed
rI’s each of which corresponds to a unique inclination either in prograde or retrograde. The
innermost and outermost of these quantities correspond to the equatorial ISCOs in prograde
and retrograde respectively. Defining A= (27− 45a2 + 17a4 + a6 + 8a3(1− a2))

1
3 and B=√

3+ a2 + 9−10a2+a4
A +A the range of possible rI values for a given a are,

RI,min/max = 3+B∓ 1
2

√(
72+ 8(a2 − 6)− 4(9− 10a2 + a4)

A
− 4A+

64a2

B

)
. (16)

Forms of these bounds have been known in the literature for some time [47]. If one wishes to
parameterise by inclination, one can use the KerrGeodesics package in the Black hole per-
turbation theory toolkit [48] to find E ,L andQ parameterised by (a,θinc), where θinc runs from
0 for equatorial prograde orbits to π for equatorial retrograde orbits [49]. In parameterising the
conserved quantities by (a,rI)we begin with the expression for the marginally stable spherical
orbits Q written in terms of rI [50] which gives,

Q= r
5
2
I

(√
(rI− r+)(rI− r−)− 2

√
rI
)2

− 4a2

4a2
(√

(rI− r+)(rI− r−)+
√
rI− r

3
2
I

) . (17)

4 Note that the definition of kz (and later kr) differs from the conventions used in [9].
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Equating the remaining coefficients between equations (6) and (12) we obtain the equations,

E =

√
a2Q− 2r3I + 3r4I√

3r2I
, and (18)

L=±
√
3a2Q− a2r2I −Qr2I + 3r4I + a2r2I E2 − 3r4I E2

rI
. (19)

where the ± is determined by whether or not the rI picked corresponds to a prograde or retro-
grade orbit respectively. The correct sign is determined by the condition,

Sign=

{
+, if rI ⩽ Lroot

−, if rI > Lroot
, (20)

where, defining κ=
√
a2 − 2r+ r2, the value of Lroot is given as the root of the function

α(r) = a6 − 3a2r
5
2

(
3r

3
2 +κ(6− 2r)

)
+ r

9
2

(
r

1
2 (20− 11r)+κ(5+ 3r)

)
+ a4

(
r(3r− 4)+κr

1
2 (1+ 3r)

)
,

(21)

which is real and closest to r= 6. Equation (21) has been given in a form such that the root
can be found numerically to high precision which is not the case for equation (19). It is worth
noting that as E ,L, andQ have all been determined in terms of rI, and z1 is the root that defines
the maximum range of oscillation allowed for a given rI, our solution immediately defines a
spacelike surface (r,z,ϕ) = (rI,z1(rI),u) for rI ∈ (rImin,Lroot) and u ∈ (0,2π) inside which no
stable spherical orbits can exist. Taking our exact solution for this spacelike surface to the
extremal limit also provides us with the ISSO surfaces found in the near-horizon extremal
Kerr geometry previously found in both [51, 52].

3.2. Radial inflow

Weare now ready to begin analysing the physical consequences of extending the results of [14],
regarding equatorial ISCO flow to inclined orbits. The exact solution to this equation includes
functional dependence on certain Jacobi elliptic functions. In order to simplify the results we
provide two approximate forms of the inflow. The first, approximated to a modified form of
the equatorial inflow equation which removes all dependence on Jacobi elliptic functions. The
second, a polar averaged formwhich simplifies the functional dependence on the Jacobi elliptic
functions to a constant dependence for any given set of parameter values. We find the modified
equatorial flow to be given by,

dr
dt

∣∣∣∣
Equatorial

=
−
√
(1−E2)(rI− r)3(r− a2Q

(1−E2)r3I
)

aL+ (r2+a2)
∆ (E(r2 + a2)− aL)− a2E

. (22)

In the equatorial limit (Q= 0), this reproduces the result of [14], but gives an improved rep-
resentation of the radial inflow for inclined disks where Q, E ,and L are given by their true
values equations (17)–(19) respectively. Next we go on to determine the form of the radial
inflow when averaged over the polar period, this is found to be

dr
d⟨t⟩z

∣∣∣∣
PolarAvg

=
−
√
(1−E2)(rI− r)3(r− a2Q

(1−E2)r3I
)

aL+ (r2+a2)
∆ (E(r2 + a2)− aL)− a2E +

z22E
1−E2

(
1− E(k2z )

K(k2z )

) (23)

8
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Figure 2. Plot of differing radial inflow equations from the ISSO to horizon, for para-
meter values (a,rI) =(0.9,4) for plot range (r+,rI) on the radial axis. The lightly oscil-
lating purple line corresponding to the exact solution exhibiting small oscillations over
each polar period. The blue and orange dashed lines correspond to the equatorial and
polar averaged approximations respectively. The radial flow measured on the y axis is
given by the dimensionless quantity dr/dt for each of the three flow equations.

whereK(·) andE(·) are the complete elliptic functions of the first and second kind respectively.
We have defined the polar average as follows, given some function f(λ) that (partially) depends
on λ through z such that f(λ) = F(r(λ),z(λ),λ), we take

⟨ f⟩z(λ) =
1
Λz

ˆ Λz/2

−Λz/2
F(r(λ),z(λ+ δ),λ)dδ, (24)

where

Λz =
4K(k2z )
z2

, (25)

is the polar period. For example when we have an equation of the form t(r,z,λ) = tr(r)+
tz(z)+ aLλ then ⟨t⟩z(λ) = tr(r(λ))+ ⟨tz⟩z(λ)+ aLλ. Here the purpose of taking this aver-
age is to integrate out the oscillatory dependence and isolate the secular dependence in λ of
terms originally containing polar dependence. Finally, we give the exact equation for the radial
inflow as,

dr
dt

=

−
√

(1−E2)(rI− r)3
(
r− a2Q

(1−E2)r3I

)
aL+ (r2+a2)

∆ (E(r2 + a2)− aL)− a2E
(
1− z21sn

2

(
2z2

√
r−r4√

(1−E2)(rI−r)(rI−r4)2

∣∣k2z)) (26)

where sn(·|·) is the Jacobi sine function.
In figure 2, which depicts the radial flow from the differing equations, we see an improve-

ment of accuracy in the polar averaged approximation over the equatorial approximation. We
also provide a brief error analysis comparing our approximated solutions to the true solution
equation (26) over the entire parameter space. Here we parameterise our space using (xinc,a)
where xinc = cosθinc such that (xinc,a) ∈ ({−1,1},{0,1}). From figure 3 we see that over the
parameter space the equatorial approximation confines the error to be below 5% whilst the

9
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Figure 3. Left image: plot of themaximum relative error between the equatorial and true
flow over the range (r+,rI). Right image: plot of the maximum relative error between
the polar averaged and true flow over the range (r+,rI). Both plots give the error over
the entire parameter space (a,xinc).

polar averaged form provides a bound of 2%maximum relative error. In reality this is a gener-
ous upper bound and for the majority of parameter space the error of the approximated particle
inflow will be notably smaller, as can be seen in figure 3.

3.3. Solutions to the equations of motion

At this stage we are now ready to solve the equations of motion. In the generic case we expect
the solutions to arise in terms of elliptic functions. In the ISSO case however, we find that
the triple root significantly simplifies the terms with radial dependence to the form of ele-
mentary functions. For convenience the solutions for the entirety of the ISSO case are given
with initial conditions (t(λ),r(λ),z(λ),ϕ(λ))|λ=0 = (0,r4,0,0). The full solution can be easily
reconstructed using equation (27).

3.3.1. Radial equation. Solving equation (12) and inverting the solution gives

λ(r) =
2
√
r− r4√

(1−E2)(rI− r)(rI− r4)2
, and (27)

r(λ) =
rI(rI− r4)2(1−E2)λ2 + 4r4
(rI− r4)2(1−E2)λ2 + 4

, (28)

respectively.

3.3.2. Polar equation. The polar solution is unchanged from the generic bound case [9] and
given by

z(λ) = z1 sinξz(λ). (29)

Here we have defined,

ξz(λ) = am(z2λ|k2z ), (30)

10
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where am(·|·) is the Jacobi amplitude function. Conveniently for the remaining equations of
motion, the polar and radial dependence in the time and azimuthal equation fully decouple from
each other in Mino time. This means we are only required to resolve the radial component as
the polar part will simply remain the same as has already been found for bound orbits in [8, 9].
The polar dependence still remains in the form of elliptic integrals where F(·), E(·) and П(·)
are the elliptic integral of the first, second and third kind respectively.

3.3.3. Azimuthal equation. Going on to solve the azimuthal component we first rewrite
equation (9) as

dϕ =
−a
∆

E(r2 + a2)− aL√
(1−E2)(rI− r)3(r− r4)

dr

+
L

1− z2
1√

(z2 − z21)(a
2(1−E2)z2 − z22)

dz− aEdλ.
(31)

We then integrate each of the terms individually. The component comprising of r dependence
is found to be given by,

ϕr(λ) = a
(E(r2I + a2)− aL)λ
(rI− r−)(rI− r+)

+
a√

(1−E2)

(
(E(r2− + a2)− aL)

2
√
r− − r4(rI− r−)

3
2 (r+ − r−)

× log

((
2
√
r− − r4 +λ(rI− r4)

√
(1−E2)(rI− r−)

)2(
2
√
r− − r4 −λ(rI− r4)

√
(1−E2)(rI− r−)

)2
)
+(r− ⇐⇒ r+)

)
,

(32)

where the arrow notation denotes taking the other term within the shared brackets and swap-
ping all occurrences of r− with r+. The component with z dependence is then given by,

ϕz(λ) =
L
z2

П(z21;ξz(λ)|k2z ). (33)

The polar average form of this solution can also be found and dramatically simplifies the
functional dependence,

⟨ϕz⟩z(λ) =
L

K(k2z )
П(z21;k

2
z )λ, (34)

whereП(·, ·) is the complete elliptic integral of the third kind. Thus, we find the full azimuthal
solution to be given by

ϕ(λ) = ϕr(λ)+ϕz(λ)− aEλ. (35)

11
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3.4. Time equation

We perform a similar separation in the integration of the equation of motion for coordinate
time giving,

tr(λ) =
(a2 + r2I )(E(r2I + a2)− aL)λ

(rI− r−)(rI− r+)
+

2(rI− r4)2Eλ
4+(1−E2)(rI− r4)2λ2

− (r4 + 3rI+ 2(r+ + r−))√
(1−E2)

E arctan

(
λ(rI− r4)

√
(1−E2)

2

)

+

(
(a2 + r2−)(E(r2− + a2)− aL)

2
√
r− − r4(rI− r−)

3
2 (r+ − r−)

√
(1−E2)

× log

((
2
√
r− − r4 +λ(rI− r4)

√
(1−E2)(rI− r−)

)2(
2
√
r− − r4 −λ(rI− r4)

√
(1−E2)(rI− r−)

)2)+(r− ⇐⇒ r+)

)
.

(36)

Next we find the polar dependent part of the time solution to be given by,

tz(λ) =
E

1−E2

((
z22 − a2

(
1−E2

))
λ− z2E

(
ξz(λ)|k2z

))
, (37)

and the polar averaged form of this solution is given by,

⟨tz⟩z(λ) =
z22E

1−E2

(
1− a2(1−E2)

z22
−

E(k2z )
K(k2z )

)
λ. (38)

This is the expression that was necessary to derive the polar averaged radial flow in
equation (23). Putting this all together we then find the full time solution to be given by

t(λ) = tr(λ)+ tz(λ)+ aLλ. (39)

We find that all of the novel radial integrals which are required to be solved can be done so
without too much issue through the use of partial fractions. They can then be fully analytically
continued by applying some simple trigonometric substitutions.

Additionally one can follow this approach to find the solution for proper time as a function
of Mino time along a plunging ISSO geodesic,

τr(λ) =

(
r2I +

2(rI− r4)2

4+(1−E2)(rI− r4)2λ2

)
λ

+

(
r24 + 2r4rI− 3r2I

)
arctan

(
λ(rI−r4)

√
(1−E2)

2

)
√
(1−E2)(rI− r4)

,

(40)

τz(λ) =
z2

(1−E2)

(
F(ξz|k2z )−E(ξz|k2z )

)
,with (41)

τ(λ) = τr(λ)+ τz(λ). (42)

From figure 4 it can now be seen explicitly that enforcing the triple root places us in a
regime where these geodesics asymptote from the ISSO and subsequently plunge in through
the horizon. This showcases a number of properties of the plunge in Boyer–Lindquist co-
ordinates. The structure of these geodesics ismore easily depictedwhen orthogonally projected
onto azimuthally co-precessing and poloidally co-rotating planes fixed to a particle as it follows
the geodesic.

12
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Figure 4. Orbital plots of plunging geodesics which asymptote to the ISSO in the infinite
past with (a,rI) = (0.9,2.6) and θ = arccos(z). Here the cyan and orange planes are the
azimuthally co-precessing and poloidally co-rotating planes respectively. Examples of
the projection on these planes are shown in figure 5.

Figure 5. Co-rotating orbital plots of plunging geodesics which asymptote to the ISSO
in the infinite past with (a,rI) = (0.9,2.6) . Left image: orthogonal projection of ISSO
plunge onto the co-precessing azimuthal plane. Right image: orthogonal projection of
ISSO plunge onto co-rotating polar plane. The cyan and orange frames represent the
projection onto the planes seen in figure 4 as they track a particle following the geodesic
trajectory.

In figure 5we see that the azimuthal coordinate diverges at both the inner and outer horizons.
Analysis of the coordinate time solution shows it also diverges at these points, this occurs for a
similar reason as to the coordinate time divergence at the horizon in Schwarzschild coordinates
for a non-spinning black hole, i.e. due to the infinite redshift. In much the same way as we
have an infinite redshift on the horizon one can intuitively think of this azimuthal divergence

13
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occurring as a consequence of the infinite redshift on the horizon forcing the geodesics to also
co-rotate with the black hole an infinite number of times before passing through the horizon.
Naturally this is only a co-ordinate singularity and the process occurs in finite Mino and proper
time. Due to this discontinuity care must be taken in the choice of branch between r+ and r−.
The solutions depicted in figures 4 and 5 seem to invert between the horizons but it can be
checked that our solutions conserve E ,L and Q throughout their parameterisation, confirming
we have chosen the correct branch. In the equatorial (Q= 0) limit, these solutions are found
to agree with the results of [14].

4. Fully generic plunging orbits

We nowmove on to the case of generic timelike plunging geodesics in Kerr with no restriction
on the root structure of the effective radial potential. In this regime the integrals we need to
compute are notably more involved, separating into two primary classes. The first being when
the radial potential admits four real roots and the second being when the radial potential admits
two real and two complex roots. In the case with R(r) having four real roots (r4 < r3 < r2 <
r1) with r4 < r− < r+ < r3 < r2 < r1 the solution can be directly borrowed from the bound
orbit case [8, 9] with the substitution r1 ⇐⇒ r3 and r2 ⇐⇒ r4. In addition, in the case of four
real roots (r4 < r3 < r2 < r1) with r4 < r3 < r2 < r− < r+ < r1 then the solutions can again
be found from [8, 9], this time with no modification. Naively, in the case of two real and two
complex roots (the interesting case for self-force plunges) one may think it to be sufficient to
simply take the previously found bound solutions and analytically continue them to allow for
complex values of the radial roots. With care this can be done to give correct answers, however
intermediate terms in the evaluations give rise to large cancellations between complex numbers
effecting numerical accuracy and evaluation speed. To find these solutions in a manifestly real,
easy to evaluate, and practical manner, we are required to begin the procedure of solving the
complicated elliptic integrals from scratch.

4.1. Generic plunge orbits with two complex roots

In calculating the integrals for this case we follow the procedure outlined in [53] and give an
overview of the steps involved. We begin by again noting that only the radial components of
each of the equations need to be solved as the other remaining terms are identical to those
already found in the ISSO case above. Recall we now have the general expression R(r) =
(E(r2 + a2)− aL)2 −∆(r2 +(aE −L)2 +Q)where E ,L andQ are all independent quantities.
At this stage the integrals of concern are given by

λ=−
ˆ

dr ′√
R(r ′)

,

tr(r) =−
ˆ

(r ′2 + a2)(E(r ′2 + a2)− aL)dr ′

∆
√
R(r ′)

, and

ϕr(r) =−
ˆ

a(E(r ′2 + a2)− aL)dr ′

∆
√
R(r ′)

.

(43)

Although these integrals look to be of the same form as those we just solved for in the ISSO
case without much mention, the cause for the substantial increase in complexity is due to the
fact that R(r), in general, no longer contains any double or triple roots. This forces us to much
more carefully consider the elliptic integrals at hand. The key idea in the procedure we wish
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to apply is to reduce the integrals of equation (43) such that we must only solve integrals of
the form,

λ=−
ˆ

dr√
R(r)

, Ir =
ˆ

rdr√
R(r)

,

Ir2 =
ˆ

r2dr√
R(r)

, and Ir± =

ˆ
dr

(r− r±)
√
R(r)

.

(44)

We solve these integrals in terms of the radial co-ordinate r, which can then be parameterised in
terms of Mino time by inverting the solution for λ(r). We begin solving these integrals by first
continually applying partial fractions to the radial parts of the ϕ and t equations until arriving
at the forms,

ϕr = a

(
(E(r2− + a2)− aL)

(r− − r+)
Ir− +(r− ⇐⇒ r+)

)
+ aEλ,and (45)

tr = E(r2+ + r2− + r+r− + 2a2)λ+ E (Ir2 + Ir(r− + r+))

+

(
(r2− + a2)(E(r2− + a2)− aL)

r− − r+
Ir− +(r− ⇐⇒ r+)

)
− aLλ.

(46)

At this point we can now concentrate on calculating the four elliptic integrals defined in
equation (44). We do this my applying a transformation given for the case of two complex
roots in [53]. This procedure begins by letting R(r) have two real roots r2 < r1 and two com-
plex roots r3 and r4. We then rewrite R(r) in the form R(r) = (1−E2)(r1 − r)(r− r2)(r2 −
2ρrr+ ρ2r − ρ2i ) where ρr = ℜ(r3) and ρi = ℑ(r4). Further we define

A=
√
(r1 − ρr)2 + ρ2i , B=

√
(r2 − ρr)2 + ρ2i ,

f =
4AB

(A−B)2
, kr =

√
(r1 − r2)2 − (A−B)2

4AB
,and

p2 = r2A
2 + r1B

2 − (r1 + r2)AB.

(47)

Next, motivated by the tables provided in [53], we make the substitution in the integrals
equation (44) of the form,

r(y) =
p2y2 + 2(r1 + r2)AB+ 2(r1 − r2)AB

√
1− y2

(A−B)2y2 + 4AB
. (48)

Applying this transformation to equation (44) and again repeatedly applying partial fractions
we find each integral reduces to a sum over elliptic integrands and rational polynomials. The
solutions we then obtain are only analytic on the range r ∈ (r2,

r1A+r2B
A+B )where for convenience

we have set the initial conditions to be given by (t(λ),r(λ),z(λ),ϕ(λ))|λ=0 = (0,r2,0,0,).
Next we analytically extend these solutions through the point r= r1A+r2B

A+B by use of trigono-
metric and elliptic substitutions providing a fully analytic solution on the range r ∈ (r2,r1).
The fully analytical solution to these integrals is then given byˆ

dr√
R(r)

=
1√

(1−E2)AB
F
(
π

2
− arcsin

(
B(r1 − r)−A(r− r2)
B(r1 − r)+A(r− r2)

)∣∣∣∣k2r) , (49)

Ir(λ) =
Ar2 −Br1
A−B

λ− 1√
(1−E2)

arctan

(
(r1 − r2)

2
√
AB

sin(ξr)√
1− k2r sin(ξr)2

)

+
(A+B)(r1 − r2)

2(A−B)
√
(1−E2)AB

П
(
−1
f
;ξr|k2r

)
,

(50)
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Ir2(λ) =
(Ar22 −Br21)
(A−B)

λ+

√
AB

(1−E2)
E
(
ξr|k2r

)
− (A+B)(A2 + 2r22 −B2 − 2r21)

4(A−B)
√
(1−E2)AB

П
(
−1
f
;ξr|k2r

)
−

√
AB(A+B− (A−B)cos(ξr))

(A−B)
√
(1−E2)

sin(ξr)
√
1− k2r sin(ξr)2

( f+ sin(ξr)2)

+
A2 + 2r22 −B2 − 2r21
4(r1 − r2)

√
(1−E2)

× arctan

(
f − (1+ 2f k2r )sin

2(ξr),2sin(ξr)
√

1− k2r sin
2(ξr)

√
f(1+ f k2r )

)
,

(51)

and,

Ir±(λ) =
(A−B)λ

A(r2 − r±)−B(r1 − r±)

+
(r1 − r2)(A(r2 − r±)+B(r1 − r±))П

(
1
D2

±
;ξr|k2r

)
2
√
(1−E2)AB(r± − r2)(r1 − r±)(A(r2 − r±)−B(r1 − r±))

−
√
r1 − r2

4
√
(1−E2)(r1 − r±)(r± − r2)

×
log

((
D±

√
1−D2

±k
2
r+
√

1−k2r sin(ξr)
2sin(ξr)

)2
+
(
kr(D

2
±−sin(ξr)

2)
)2(

D±
√

1−D2
±k

2
r−
√

1−k2r sin(ξr)
2sin(ξr)

)2
+
(
kr(D2

±−sin(ξr)2)
)2)√

(A2(r± − r2)− (r1 − r±)(r22 −B2 + r1r± − r2(r1 + r±))

(52)

where we have defined,

D± =

√
4AB(r1 − r±)(r± − r2)

A(r± − r2)+B(r± − r1)
, and (53)

ξr(λ) = am
(√

(1−E2)ABλ|k2r
)
. (54)

In the abovewe have suppressed the explicit dependence of ξr on λ in the interest of readability.
The arctan function seen in equation (51) is the two argument arctan function which tracks the
sectors of the numerator and denominator.

4.2. Solutions to equations of motion

The solution for equations (49)–(52) for the elliptic integrals can then be readily substituted
back into equations (45) and (46) giving the full form of the solutions to generic plunges. We
present all solutions parameterised in terms on Mino time (λ), which is done by inverting the
solution to equation (49) to obtain r(λ) then substituting the solution for r(λ) everywhere r
appears in equations (50)–(52) . These solutions are provided in a fully analytic form. The
radial equation is first found by inverting the solution for equation (49) to give,
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Figure 6. Orbital plot of a generic plunging geodesic with parameter values
(a,E ,L,Q) = (0.9,0.94,0.1,12) and θ = arccos(z). The larger black sphere gives the
horizon of the black hole where as the smaller sphere simply gives a point along the
geodesics. Here the cyan and orange planes are the azimuthally co-precessing and pol-
oidally co-rotating planes respectively.

r(λ) =
(A−B)(Ar2 −Br1)sin(ξr)2 + 2AB(r2 + r1)− 2AB(r1 − r2)cos(ξr)

4AB+(A−B)2sin(ξr)2
. (55)

The solutions to the polar equation remain the same as for the ISSO case.
Taking equation (45), the solution to the azimuthal equations of motion can then immedi-

ately be found from the solutions of equation (44)

ϕ(λ) = ϕr(λ)+ϕz(λ)− aEλ. (56)

Similarly, from equation (46) we can now obtain

t(λ) = tr(λ)+ tz(λ)+ aLλ, (57)

where bothϕz and tz can be taken from the ISSO case. The solution for proper time as a function
of Mino time can also be found as,

τ(λ) = τr(λ)+ τz(λ),with (58)

τr(λ) = Ir2(λ),and (59)

τz(λ) =
z2

(1−E2)

(
F(ξz|k2z )−E(ξz|k2z )

)
. (60)

Having obtained the full set of solutions for generic plunges we plot the spatial component
depicting the orbital evolution of the generic plunging geodesics figure 6.
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Figure 7. Co-rotating orbital plots of a generic plunging geodesic with parameter values
(a,E ,L,Q) = (0.9,0.94,0.1,12). Left image: orthogonal projection of generic plunge
onto the co-precessing azimuthal plane. Right image: orthogonal projection of generic
plunge onto co-rotating polar plane. The cyan and orange frames represent the projection
onto the planes seen in figure 6 as they track a particle following the geodesic trajectory.

More informatively, the orthogonal projection onto the azimuthally co-precessing and pol-
oidally co-rotating planes in figure 7 again show the divergences at either horizon in the ϕ
coordinate. Importantly, once we have constructed these solution, we check that E and L are

indeed still conserved by evaluating −uνgµν
(
∂
∂t

)ν
and uνgµν

(
∂
∂ϕ

)ν
explicitly. We confirm

this is the case for all values of λ, not only acting as a consistency check of our equations,
but also showing we have selected the correct branches of the solution between each of the
horizon divergences. As a final consistency check, we substitute our solutions back into the
equations of motion for both the ISSO and generic case and find that our solutions do in fact
solve the original equations. Finally, from our solutions the radial and polar frequencies with
respect to Mino time for a generic plunge can be obtained,

Υr =

√
AB(1−E2)

2K(k2r )
,and (61)

Υz =
π K(k2z )
2z2

. (62)

5. Discussion

In this work we have obtained the closed form analytic solutions for generic bound plunging
geodesics in Kerr. We have also paid particular attention to the special edge case of plunges
starting asymptotically from the ISSO, in which the solutions take a particularly simple form.
This generalises the result of [14] to inclined motion. The general expression for the inflow
in this case, is more involved due to oscillations coming from the polar motion. Therefore we
have provided two simplified approximations for the inflow rate. We have also found that the
geodesics asymptoting from the ISSO can be parameterised purely in terms of black hole spin
and the radius of the ISSO. We expect these solutions to have applications in the modelling of
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accretion flow in Kerr spacetimes. In addition to the special case of ISSO plunges, we expect
the provided generic solutions for plunging geodesics to find practical use in modelling the
inspiral of binary black holes, since in the small mass-ratio limit they will describe the final
phase of the inspiral before merger. As small mass-ratio methods are applied to more equal
mass systems, including this phase becomes increasingly important. For ease of application we
have incorporated our results in the KerrGeodesics package in the Black hole perturbation
toolkit [48].

In this work we have restricted attention to ‘bound’ plunging geodesics, i.e. geodesics with
E < 1. In principle, the explicit solutions given here can easily be extended to the case of
‘direct plunges’ coming from infinity and falling into the black hole, or deeply bound plunges
inside a scattering geodesic. In both cases, this involves taking the expressions in this paper in
terms of the outermost real root and analytically continuing it past positive infinity to negative
values (e.g. by considering the reciprocal root). However, this will not give all E > 1 plunging
geodesics, which also includes so-called ‘vortical’ geodesics with negative values of Q [51]
leading to qualitatively different behaviour of the polar solutions.
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Appendix. Solutions for timelike geodesics asymptoting from an unstable
spherical orbit

In this appendix, we present the solutions for plunging geodesics asymptoting from a gen-
eric USO. In the phase space of geodesics, the USOs denote the separatrix between eccentric
inclined bound orbits and generic plunges. As such, they play a key role when considering the
transition of generic inspirals to plunge. As in sections 3 and 4 the components of the solu-
tions depending on the polar angle are left unchanged by restricting to this special case so we
are only required to solve for r(λ), ϕr(λ) and tr(λ) as described in the notation of the main
body of the text. In particular, plunges from an USO occur when the radial potential obtains
a double root as opposed to a triple root (which arises in the ISSO case). Explicitly the USO
plunge occurs when the radial potential admits a form,

R(r) = (1−E2)(r− r2)(r1 − r)(rs− r)2 , (A.1)

with r2 < r− < r+ < rs < r1, where rs is the radius of the USO. Specifically, the solutions
we present provide bound motion for r ∈ (r2,rs). The Penrose diagram depicting this class of
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motion is the same as in figure 1 for the ISSO plunges. As we have imbued the radial potential
with a double root we have reduced one degree of freedom in our systems parameterisation.
A natural choice of parameterisation for USO plunges is then given by {a,rs,Q}. Teo [50] has
determined expressions for E and L as functions of {a,rs,Q} for the case of USOs which are
given as,

E =
r3s (rs− 2)− a(aQ−

√
A)

r2s

√
r3s (rs− 3)− 2a(aQ−

√
A)

, (A.2)

L=− 2Mr3s +(r2s + a2)(aQ−
√
A)

r2s

√
r3s (rs− 3)− 2a(aQ−

√
A)

, (A.3)

where

A= r5s −Q(rs− 3)r3s + a2Q2. (A.4)

As USO plunges asymptote from the USO they must share the same constants of motion.
Similarly to the case of the ISSO the reduced complexity in the root structure of the radial
potential allows one to find solutions to the radial integrals fully in terms of elementary func-
tions of Mino time. Following the procedure shown explicitly in section 3 and defining,

ξr(λ) =
1
2
λ
√
1−E2

√
r1 − rs

√
rs− r2 , (A.5)

the solution for the radial coordinate is found to be given by,

r(λ) =
r2 (r1 − rs)+ r1 (rs− r2) tanh

2 (ξr)

r1 − rs+(rs− r2) tanh
2 (ξr)

. (A.6)

Writing the azimuthal equation in the form ϕ(λ) = ϕr(λ)+ϕz(λ)− aEλ and the time equation
in the form t(λ) = tr(λ)+ tz(λ)+ aLλ we find that for the case of timelike geodesics asymp-
toting from an USO,

ϕr(λ) =
2a√
1−E2

λ
√
1−E2

(
a2E − aL+ Er2s

)
2(rs− r−)(rs− r+)

(A.7)

+

(
a2E − aL+ r2−E

)
log

((√
(r−−r2)(r1−rs)+

√
(r1−r−)(rs−r2) tanh(ξr)

)
2(√

(r−−r2)(r1−rs)−
√

(r1−r−)(rs−r2) tanh(ξr)
)
2

)
4(r− − r+)

√
r1 − r−

√
r− − r2 (r− − rs)

+

(
a2E − aL+ r2+E

)
log

((√
(r−−r2)(r1−rs)+

√
(r1−r+)(rs−r2) tanh(ξr)

)2(√
(r+−r2)(r1−rs)−

√
(r1−r+)(rs−r2) tanh(ξr)

)
2

)
4(r+ − r−)

√
r1 − r+

√
r+ − r2 (r+ − rs)

 ,
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and,

tr(λ) =
1√

1−E2

λ
√
1−E2

(
a2 + r2s

)(
a2E − aL+ Er2s

)
(rs− r−)(rs− r+)

(A.8)

+

(
a2 + r2−

)(
a2E − aL+ r2−E

)
log

(
(
√
r−−r2

√
r1−rs+

√
r1−r−

√
rs−r2 tanh(ξr))2

(
√
r−−r2

√
r1−rs−

√
r1−r−

√
rs−r2 tanh(ξr))2

)
2(r− − r+)

√
r1 − r−

√
r− − r2 (r− − rs)

+

(
a2 + r2+

)(
a2E − aL+ r2+E

)
log

(
(
√
r+−r2

√
r1−rs+

√
r1−r+

√
rs−r2 tanh(ξr))2

(
√
r+−r2

√
r1−rs−

√
r1−r+

√
rs−r2 tanh(ξr))2

)
2(r+ − r−)

√
r1 − r+

√
r+ − r2 (r+ − rs)

+
(r1 − r2)E

√
(r1 − rs)(rs− r2) tanh(ξr)

−
(
(r2 − rs) tanh

2 (ξr)
)
− rs+ r1

−E (2(rs+ r− + r+)+ r1 + r2) tan
−1

(√
rs− r2 tanh(ξr)√

r1 − rs

)
where ϕzand tz are left unchanged from equations (33) and (37). In the equatorial limit (Q= 0)
these solutions agreewith the equatorial plunging orbits described in sectionV.C of [46], where
the radius of the unstable circular orbit is chosen between the innermost bound circular orbit
and the ISCO
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