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Abstract

In this article, we study the quantum field theoretic generalization of the Caldeira-Leggett
model in general curved space-time considering interactions between two scalar fields in
a classical gravitational background. The thermalization phenomena is then studied from
the obtained de Sitter solution using quantum quench from one scalar field model obtained
from path integrated effective action. We consider an instantaneous quench in the time-
dependent mass protocol of the field of our interest. We find that the dynamics of the field
post-quench can be described in terms of the state of the generalized Calabrese-Cardy
(gCC) form and computed the different types of two-point correlation functions in this
context. We explicitly found the conserved charges ofW∞ algebra that represents the gCC
state after a quench in de Sitter space and found it to be significantly different from the flat
space-time results. We extend our study for the different two-point correlation functions
not only considering the pre-quench state as the ground state, but also a squeezed state.
We found that irrespective of the pre-quench state, the post quench state can be written
in terms of the gCC state showing that the subsystem of our interest thermalizes in de
Sitter space. Furthermore, we provide a general expression for the two-point correlators
and explicitly show the thermalization process by considering a thermal Generalized Gibbs
ensemble (GGE). Finally, from the equal time momentum dependent counterpart of the
obtained results for the two-point correlators, we have studied the hidden features of the
power spectra and studied its consequences for different choices of the quantum initial
conditions.
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1 Introduction and summary

The study of Brownian motion [1–6] of a particle coupled to a thermal bath has assumed

great significance owing to its relevance as a robust model for open quantum systems in

the context of macroscopic properties of a particle in a general environment. This has

been used to study quantum dissipation [1–5, 7, 8] and quantum decoherence due to the

system’s interaction with the environment [9]. This model of quantum brownian motion

has proven to be useful not only in studies of open quantum systems but also in the field

of quantum cosmology [10–19], quantum correlation problems [20–22], among others. It

has also been extensively used in the context of AdS/CFT [23–25]. The usual approach

of tackling this problem involves use of the influence functional technique developed by

Feynman and Vernon [26]. The contribution of the environment degrees of freedom is

quantified by the influence functional and one obtains the reduced subsystem of interest

whose dynamics is of particular interest. A very well-known model in this direction was

given by Caldeira and Leggett [2]. For the cosmological application look at ref. [27],

where the authors have studied the origin of time dependent mass from the coupling to an

inflaton field which is assumed to be in a coherent state leading to a time dependent mass

and further the phenomena of particle production is studied in detail. For more details see

also the other refs. [28–30].

The process of thermalization has grown to be an important area of research in the recent

past. The advent of holography has provided a one-to-one correspondence of the subject

of thermalization to the issue of gravitational collapse of a black hole. Quantum quench

is one such technique where the process of thermalization can be realized in the system

in the post-quench phase. In a quantum quench, some parameter of the Hamiltonian

change over a finite duration of time, and the initial wave function in the pre-quench

function evolves to a state after the quench that is not stationary. The evolution of the

state after the quench is then guided by the post-quench Hamiltonian which is in general

time-independent. This kind of study is crucial to find out if and when a closed system

reaches equilibrium subject to any disturbances. Due to the growing interest in studying

thermalization for integrable systems, there has been huge progress in the understanding

of thermalization in scalar fields and extensive studies in the direction can be found in

refs. [31]. Besides the theoretical motivation, in many experimental studies, the process

of quantum quench has been realized using cold atoms and the post quench phase can be

described in terms of free scalars or fermions [32]. Hence, the study of quantum quench

involving scalar fields is of prime significance not only theoretically but also experimentally.

Quantum quench has been extensively studied in various contexts in recent times.

Specifically, several studies have focused on the background of flat space-time, with the

system undergoing a sudden change in its parameter under a well-defined quench protocol.
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It has been seen that the system undergoing a quench tends to retain some memory of the

sudden change at late times independent of its initial state condition. This quench protocol

has also found its applications in the cosmology of the early universe. It has been used

to study the characteristics of fast phase transitions, under the settings of early cosmol-

ogy where temperature promptly decreases. An application of the quenching mechanism

in the context of inflation provided many new results that were in contrast with the flat

space-time results. During inflation, the post quench state in the background of de Sitter

space-time doesn’t retain the memory of the quench at late times which was in contrast

with the flat space-time [33]. Quantum quench has been an effective model to study the

undergoing transition to the broken phase, which is also used to study various physical

processes such as baryogenesis due to electroweak phase transition [34]. The process of

quantum quench has not only been studied for free fields but for the interacting fields as

well. Late time thermal characteristics of interacting quantum fields have also been stud-

ied using the quenching mechanism in [35], especially for the ϕ4 model. Unlike free field

theory which exhibits an exception in the 2d case due to a quantum quench of the energy

gap or mass, interacting fields tend to thermalize even for the massless 2d case.

The quench approximation has also been studied in the context of conformal field the-

ory [36, 37]. It was applied to study the properties of universal fast scaling of conformal

operators undergoing fast quench, in the limit where the coupling suddenly changes its

value from zero to δλ. The scale by which the holographic conformal operator changes has

been found to be universal, i.e., the same scaling factor appears in the sudden quench limit

of free scalar and fermionic field theories. One of the most interesting applications of quan-

tum quench comes in the context of holographic thermalization, i.e., the thermalization of

boundary operators, which has a direct correspondence with the collapse of gravitational

matter in the bulk. Hence memory retention of quench protocol at late times by post

quench state results in the retention of information of the collapsing matter by the final

black hole [38]. In other words, a quantum quench could probe the inside geometry of a

black hole. Besides all these applications, quantum quench could also be used to study

general systems which don’t involve phase transitions.

In this paper, we aim to study the thermalization phenomena at late times of two-point

correlation functions from the solution obtained in the background of de Sitter space-

time using quantum quench protocol. By making use of the well known Caldeira Leggett

Model, we start with two interacting scalar fields in the background of de Sitter spactime.

By doing the Euclidean path integration over one scalar field, we construct the reduced

subsystem of our interest consisting of one scalar field described by an effective partition

function. We then argue that our Caldeira Leggett (CL) Model in the context of cosmology,

in the background of curved space-time which describes the particle production, could be

translated in the language of Schrödinger quantum mechanics in one dimension where one

studies the motion of electron in a wire in the presence of an impurity. We then identify

the potential involved in the Schrödinger equation with the quench protocol and study the
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thermalization properties of two-point correlators, their spatial derivatives and canonically

conjugate momentum field in the ground state and generalized Calabrese-Cardy (gCC)

states. We find that the dynamics of the post-quench state of the field of our interest

can be described in terms of the state of the generalized Calabrese-Cardy (gCC) form and

compute different types of two-point correlation functions in this context. We explicitly

find that our post quench gCC state could be represented by the conserved W∞ algebra

after the mechanism of quench protocol in de Sitter space and found the conserved charges

to be significantly different from the flat space-time.

The underlying strong physical motivations and implications of this work are as follows:

1. The main motivation of the present work to provide a detailed framework of com-

puting the cosmological correlation functions from a given open quantum mechanical

system. Finding such correlations within the framework of cosmology is itself a very

interesting problem itself. Recently, using the the same two field coupled model with

a specific type of interaction (the QFT generalized version of CL model that we have

used as our starting point of our paper) in some refs. [39, 40], the authors have

tried to analyse this problem to address the phenomena of decohorence and recoher-

ence from the evolution of the system reduced density matrix using the cosmological

master equation perspective. However, in the mentioned references the authors have

not addressed the structure, behaviour and the cosmological consequences of such

correlations in the early time scale of the cosmological evolution. Though they have

very clearly and in detail have established their findings and can be treated as the

benchmark in a real sense in the context of cosmology with open quantum system.

Two possibilities one can utilize to study the underlying framework of cosmological

correlations from time dependent coupling parameter between the proposed two filed

coupled CL model. Quantum mechanical quench naturally serves the purpose to pro-

vide the explicit form of the time dependent coupling parameter within the present

framework. The mentioned two possibilities are slow and sudden time dependent

profile for quench which helps us to trigger the thermalization process studied in the

later half of this paper. We adopt the possibility of having fast or sudden quench

which serves the purpose very smoothly in the present context ∗. Sudden quench ac-

tually helps us to construct the accurate quantum states before quench, after quench

and after sufficient enough time when the underlying physical system fully thermal-

izes. Once we fix the quantum initial condition, which is appearing in terms of the

correct choice of the initial vacuum state, the structure of the pre-quench state is

∗In a more realistic cosmological set up, where the present methodology can be directly applicable,
the scale of sudden quench can be fixed before reheating, more precisely before achieving thermalization.
It might be fixed at end of inflation or just after the end of inflation. In the case of warm inflation since
there is no reheating involved the framework and the thermaliziation is achieved completely in a different
way, the choice of the quench scale should be chosen very appropriately.
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automatically fixed. Next, using such pre-quench state one can immediately con-

struct the post-quench state using Bogoliubov transformation and also using using

the Dirichlet or Neumann type of boundary conditions. Finally, using this specific

structure of the post-quench state one can able to fix the corresponding structure

of the quantum state which can directly contribute and trigger the thermalization

process in the present context of discussion. These constructed states helps us to

explicitly compute the cosmological correlations before quench, just after quench

and after a sufficient enough time when the thermalization is achieved. Before this

particular work, these possibilities have not been explored in great detail for open

quantum systems and we have tried our best to provide answers to the corresponding

question.

2. Now it might be established in great detail, but a natural question comes in our mind

that what the utility of the cosmological correlation computed from the present QFT

generalized version of CL model in the de Sitter background? The specific answer

to this question is as follows. We all know that the micro structure and the quan-

tum mechanical origin of the reheating process is not well known and corresponding

theoretical framework is not established yet. Till date this topic is completely un-

touched by the researcher due to having the lack of knowledge regarding the micro

structure of reheating process. We strongly believe that, since we have now a proper

understanding of the structure of the quantum states which helps us to thermalize

an underlying quantum mechanical system and we also know how exactly to quantify

the two-point cosmological correlation and its corresponding spectrum in the Fourier

space, using the present methodology one need not to be foricibly assume thermal-

ization of a theoretical set up written in the background of de Sitter space-time.

We also believe that the developed methodology in this work can able to address

many unexplored issues related to the phenomena of reheating in cosmology, which

is treated completely from the phenomenological point of view before this work.

3. The prime motivation of using the CL model within the framework of cosmology is

as follows. Actually this model automatically provide the theoretical origin of in-

corporating the phenomena of Quantum Brownian Motion in the present context.

Now naturally another crucial question comes in our mind that why at all Quantum

Brownian Motion is needed within the framework of cosmology? A correct answer

to question when we try to incorporate the effects of anisotropy and inhomogeneity

without introducing any concept of cosmological perturbations in the present frame-

work. Quantum Brownian Motion within the framework of cosmology naturally helps

us to incorporate the effects of anisotropy and inhomogeneity without introducing

any perturbations. Such anisotropic and inhomogeneous effects helps us to construct

the pre-quench state, post-quench state and the state responsible to achieve thermal-

ization. In an effective framework where two fields are interacting via complicated
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interactions, we really don’t have any proper understanding of the path integration

technique over an unwanted field in which at the end we are not interested in. This is

because of the fact that, having complicated two field interactions within the frame-

work of effective field theory we really don’t know how to quantize these fields in a

proper technical sense. CL model is the simplest framework where we really have

understanding as well as control over the technical computational part that how to

do the path integration over the fields which describes the thermal bath.

4. Also the present framework allows us to study the particle production process during

and after reheating with the help of the constructed post-quench state and the state

responsible to achieve thermalization in the present framework. Signatures of such

particle productions can be directly found in the enhancement of the power spectra

in Fourier space, which we have explicitly computed from the two-point cosmological

correlations in this paper.

5. Last but not the least, additionally, the present framework can also be utilized to

study the natural origin and outcomes of warm inflation where in absence of reheating

one can thermalize an underlying theory.

The main results of the paper are as follows:

• Our prime motivation in this work, is to study the thermalization phenomenon in de

Sitter space-time. It is important in the sense that if a system does not thermalize,

we can’t study its equilibrium properties for the system under consideration. This

phenomenon was studied using free quantum field theories with massive scalar and

fermion fields earlier in 1 + 1 and 1 + 2 dimensional flat space-time [41, 42], but

not, to the best of our knowledge, in the context of de Sitter space, which has its

own cosmological importance. In this paper, we have demonstrated how one can

implement the same methodology to study the thermalization phenomena using free

quantum field theory of a scalar field having an effective time-dependent mass term

in 1 + 3 dimensional de Sitter space written in planar coordinates.

• To implement this methodology we use the phenomena of quantum mechanical

quench in our setup. This is a very successful technique providing a consistent

theoretical way to equilibrate and hence thermalize a quantum mechanical system,

initially out of equilibrium due to some response in the system. This technique pro-

vides a continuous description of the system in the associated time scale as it helps

to express the quantum mechanical state of the system just before thermalization in

terms of the state before applying quench. In this case, explicit solution of the time

evolution of the quantum state from the time-dependent Hamiltonian of the system

in 1 + 3 dimensional de Sitter space is not needed.
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• We do not use this methodology in our work in an ad hoc fashion. We provide a con-

sistent theoretical framework from the beginning where one can naturally implement

the above mentioned mechanism. In this work, we start with a theory of quantum

Brownian motion in a general curved space-time background, described in terms of

two scalar fields quadratically interacting with each other having minimal gravita-

tional interaction, canonical kinetic terms as well as mass terms for both the fields.

The model can be treated as a quantum field theoretic generalization of the well

known Caldeira Leggett model, used to study the phenomena of quantum Brownian

motion in the context of quantum mechanics. The original Caldeira Leggett model is

approximated by a harmonic oscillator coupled to the environment consisting of N

oscillators, which are integrated out. However, in our case we have taken a simplified

version where instead of N scalar fields we have a single scalar field as our envi-

ronment, which is technically identified with a noise field. On the other hand, the

other scalar field in this context is identified to be the signal field, our main point of

interest is to study the thermalization phenomena by implementing the methodology

of quantum mechanical quench in 1 + 3 dimensional de Sitter space. This hitherto

unexplored possibility was not explored before in 1 + 3 dimensional de Sitter space

and has cosmological consequences.

• Since the quantum Brownian motion is studied here in 1 + 3 dimensional de Sitter

space, the signal and noise fields are dependent on both space and time. From the

beginning, both the fields are considered to be inhomogeneous. See refs. [12, 43–

50] where a similar approach has been followed earlier in various contexts. This

approach is usually adapted to study outcomes of cosmological perturbation theory

in the presence of a scalar field. There the field is taken be homogeneous in the 1+3

dimensional de Sitter background and on top of that the inhomogeneous fluctuation

of the field appears due to space-time-dependent perturbation with respect to the

background. But in our computation we don’t need to perform any perturbation on

the background 1+3 dimensional de Sitter space-time. The inhomogeneous effect in

the signal and noise fields are considered from the beginning due to random movement

in space-time in the presence of quantum Brownian motion.

• Since we are interested in the signal field, we path integrate the noise field using the

Feynman path integral technique, treating the background 1+3 dimensional de Sitter

space classically. This is thus a semi-classical treatment allowing for the extraction

of the information of the signal field.

• The quantum effective action of the signal field, in the Euclidean signature, is con-

structed using the saddle point technique, where the path integration is implemented

at the local minimum of the noise field appearing in the model, described above. Af-

ter carrying out the path integration, it is observed that the mass of the signal field
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gets modified in presence of the coupling parameter of the signal and noise field and

the mass of the noise field. Here, during the implementation of the saddle point

technique it is assured that at the local minimum of the noise field the gravitational

back-reaction effect also gets minimized.

• As we are interested in understanding the large time behavior of the system in 1+ 3

dimensional de Sitter space, the contribution from the quantum correction terms

in the effective action goes to zero as in that limit the noise kernel appearing from

two-point noise-noise field correlation function decays exponentially. As a result, the

Klein Gordon equation of motion of the signal field appears to be similar to a damped

parametric oscillator instead of a forced one in presence of the Hubble term in the

d’Alembertian operator.

• Next, we Fourier transform the equation of motion in the momentum space. The

sudden quench protocol in the effective mass profile of the signal field is implemented

and the equations of motion for both the pre-quench and the post-quench phases of

the evolution of the system under consideration are solved.

• Using the continuity condition for the solutions of the field and its conjugate mo-

menta, we compute the Bogoliubov coefficients. This helps obtaining the solutions

before the quench in terms of the solutions after quench and vice versa.

• After constructing the pre-quench, post-quench and the post thermalization state of

the system, we study the signal-signal two-point correlation functions in the momen-

tum space.

• Last but not least, instead of doing the exact computation of the two-point functions

in the coordinate space, we study a much more observationally relevant quantity

known as the power spectrum and observe various non-trivial features in the spec-

trum. We have also found that at a certain value of the co-moving wave number, the

numerical amplitude of the spectrum exactly matches with the result obtained from

the power spectrum using cosmological perturbation theory. This is quite interesting

in the sense that it helps us to conclude that at very large time limit, when the effect

of quantum corrections in the effective action for the signal field vanishes, the power

spectrum evaluated from this computation and from cosmological perturbation the-

ory exactly matches. On top of that our obtained results have the advantage that

they naturally thermalize the system using quantum quench. This is not yet prop-

erly understood in the context of quantum fluctuations generated from cosmological

perturbation theory.

7



The organization of the paper is as follows:

• In Sec. 2, we review the Caldeira-Leggett model in quantum mechanics and a quan-

tum field theoretic generalized version of it in curved space-time consisting of scalar

fields interacting with each other. We derive the effective action for the scalar field

of our interest by path integrating out the contribution of the other field.

• In Sec. 3, we consider the solutions of the mode functions in spatially flat de Sit-

ter space-time and by computing the Bogoliubov coefficients, derive the conserved

charges of theW∞ algebra for the quench profile considered in this paper. We further

provide a generalized expression of the correlation functions for different initial start-

ing states of the pre-quench Hamiltonian. We choose the ground state as well as some

squeezed state of the initial Hamiltonian as the starting wave functions and showed

that the final state in the post-quench phase can be expressed in the gCC form. We

also compute the thermal correlators to check whether the subsystem thermalizes or

not.

• In Sec. 4, we provide the plots of the power spectrum obtained from the correlators

for all different choices of the initial vacuum state and do a comparative analysis.

• In Sec. 5, we conclude and dicuss possible future prospects of the present work.

2 Quantum Field Theoretic generalization of Caldeira-Leggett model

in curved space

In the Caldeira-Leggett (CL) model the phenomenon of quantum dissipation was dis-

cussed and closed equations for such a quantum system were obtained. For the purpose

of studying such phenomenon, a particular model describing such system-bath interaction

was chosen and the parameters of the model were fitted in such a way that the classical

equations of Brownian motion were reproduced.

2.1 The two field interacting model

In this section, our prime objective is to provide the quantum field theoretic generalized

version of Caldeira-Leggett model in a curved space-time. In general this framework is

commonly used to describe Quantum Brownian Motion [51–53]. To describe this set up

let us first start with the following two scalar field interacting theory, which is described
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by the following action:

SCL[ϕ, χ] =

∫
d4x
√
−g


(
−1

2
(∂ϕ)2 +

m2
ϕ

2
ϕ2

)
︸ ︷︷ ︸

Free theory of ϕ

+

(
−1

2
(∂χ)2 +

m2
χ

2
χ2

)
︸ ︷︷ ︸

Free theory of χ

+ cϕχ︸︷︷︸
Interaction

 , (2.1)

In this description both the fields are minimally coupled to the classical background gravity.

In the above action, the first two underbrace terms represent two free massive scalar fields

ϕ and χ and the last term represent the quadratic interaction term between them having

interaction strength c which is a function of space-time in general to describe an open

quantum system. Physically it represents the coupling strength of the system (signal

field χ) and the environment (noise field ϕ) in the Markovian limiting situation when

the parameter c is dependent on both space and time strongly. Such Markovian limiting

situation is directly associated with the inherent memory of the evolution of the each of the

mentioned fields and their interactions. However, as our goal is to develop a cosmological

set up out of the present open quantum quantum quantum field theory model in the weak

coupling regime of the theory where the interaction between the system and the bath

degrees of freedom is considerably small, so that one can safely apply the path integral

formalism to integrate out the bath contribution to write down an effective field theory of

the system field and then apply the perturbation theory in such a fashion that the outcomes

become trustworthy. Such weak coupling limiting approximation within the framework of

open quantum field theory is commonly known as the non-Markovian limit which can

be implemented when the coupling between the system and the bath don’t remember

any previous past memory in the evolution and behaves according to the instantaneous

information provided to the system-bath combined open quantum set up. In the simpler

language this can only be implemented when the associated coupling parameter is slowly

varying function of space-time. If we closely look into our model action then it can be

clearly visible that the coupling parameter c don’t have any kinetic term. This is simply

chosen from the perspective of non-Markovian quantum critical quench (instantaneous

information) is applicable within the framework of open quantum system which is one of

the key ingredients of the underlying physical concept studied in this paper. Since the

parameter c don’t have any kinetic term because of the non-Markovianity we can safely

consider the fact that such parameter vary extremely slowly with respect to space and time.

In the initial part of the computation of the path integral formalism before introducing

the explicit mathematical structure of the space-time metric we will treat the coupling

parameter c between the system and bath becomes extremely weak under the influence of

non-Markovian perturbative approximation and for this reason in general very slowly with

space-time both. However, in the later half of this paper once we describe the space-time

structure in terms of the spatially flat quasi de Sitter metric, one can consider that the
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coupling parameter between the system and bath c become only time dependent due to

having isotropy and homogeneity in this cosmological background. Though in this specific

case also non-Markovian weak coupling approximation is strictly maintained throughout

the analysis to validate the physical outcomes of the perturbation theory in the context of a

cosmological set up which is described in terms of an open quantum system as designed in

this paper. A time dependent heaviside function which describes a sudden quench protocol

is one of the promising choice of the coupling parameter c which can suffice the purpose

and in our discussions related to cosmology we haver explicitly used this functional form.

We are identifying this action as the very simplest quantum field theory version of the

Caldeira-Leggett model in curved space-time. In this description, the quantum harmonic

oscillators are replaced by the scalar fields, which is quite justifiable. By following the

same logical arguments applied in the Caldeira-Leggett model, in the present quantum field

theoretic construction we path integrate over the field ϕ and construct an effective action

for the field χ. This is because of the fact that within the description of Quantum Brownian

Motion we have identified ϕ as the noise field and χ is the field, of the system of interest.

To proceed further, let us write down the total contribution in the potential for the ϕ

and χ(x) fields as appearing in the above action:

V (ϕ, χ) =

(
m2

ϕ

2
ϕ2 +

m2
χ

2
χ2 + cϕχ

)
. (2.2)

From this one can ask a question that for a given value of χ(x) what is the minimum of

the above potential, which can be answered as:(
∂V (ϕ, χ)

∂ϕ

)
ϕ=ϕ0

∼ m2
ϕϕ0 + cχ0 = 0 =⇒ ϕ0 ∼ −

cχ0

m2
ϕ

, (2.3)(
∂2V (ϕ, χ)

∂ϕ2

)
ϕ=ϕ0

∼ m2
ϕ > 0 =⇒ minimum. (2.4)

Now at this point one can really think of the correctness of considering the minimization

of the potential with respect to one field, where both the fields as well well as the coupling

parameter is space-time dependent. The confusion arise because of the fact due to having

space-time dependence in the coupling our general notion guided us to simplify the problem

by solving the classical equations of motion of both fields, and due to having the coupling

among both the fields we will have coupled equations in both the cases. Though this

is the perfect approach to treat the underlying problem under consideration, but using

this approach solving the coupled system of two fields is almost impossible in general.

Particularly in the case where the system and the bath degrees of freedom are strongly

coupled to each other and Markovian approximations are valid. It may be done for very

special type of restricted cases, which we obviously don’t want to do in this paper. The

justification of performing minimization are as follows point-wise:
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1. First of all, to solve this problem using the simplistic approach we have assumed that

the coupling between the two fields vary with background space-time very slowly, so

that one can approximately neglect the space and time derivatives of the coupling

parameter from this present computation. For this reason we take, ∂µc(x) ∼ 0. This

approximation is completely justifiable with the weakly coupled regime of open quan-

tum field theory where the system and bath degrees of freedom follow non-Markovian

approximations to maintain the perturbativity throughout the analysis performed in

this paper. Particularly when we implement the designed technology within the

framework of cosmology driven by a open quantum system we consider that in the

background of quasi-de Sitter space-time the coupling parameter is independent of

space but vary very slowly with respect to the time coordinate for which one can

safely neglect the time derivatives of the coupling parameter where this methodology

and the prescribed framework is further applied explicitly in the later half of this

paper. To implement such described framework and minute details one needs to

parametrize the behaviour of the coupling parameter very precisely. In the later half

of this paper once we start discussing about the cosmological implications of open

quantum set up designed in this paper we have used sudden quench time depen-

dent profile which actually helps us to prepare quantum states to achieve effective

thermalization in the present context. Such sudden quench (memoryless profile) pro-

tocol supports all the initial prerequisites that we have used to maintain the weak

coupling approximation in terms of non-Markovianity as well as the perturbaitivity

throughout the computation performed in the rest part of the paper.

2. Now in between two fields χ is identified to be signal field and χ is identified to be the

noise field in this framework, out of which we want to construct the effective theory

of the signal field χ at the end by integrating out the contributions from the noise

(bath) degrees of freedom. For this purpose we treat the set up as an open quantum

field theoretic system along with the tools and techniques of quantum quench to

sufficiently trigger the process of achieving thermalization within the framework of

primordial cosmology. To technically perform this step we have considered a flat

direction along the ϕ field and the position in the field space is implemented at the

point of minimum, which is at:

ϕ = ϕ0 ∼ −
cχ0

m2
ϕ

. (2.5)

3. Our next job is to rewrite the action around the point ϕ = ϕ0, which gives us:

SCL[ϕ, χ] ≈
∫
d4x
√
−g

[
−1

2
(∂ (ϕ− ϕ0))

2 +
m2

ϕ

2
(ϕ− ϕ0)

2

11



−1

2
(∂χ)2 +

m2
χ

2
χ2 + c (ϕ− ϕ0)χ

]
. (2.6)

After substituting ϕ0 ∼ − cχ0

m2
ϕ
we get the following simplified form of the action:

SCL[ϕ, χ] ≈
∫
d4x
√
−g

[
−1

2
(∂ϕ)2 +

m2
ϕ

2
ϕ2 − 1

2
(∂ (χ+ χ0))

2 +
m2

χ

2
χ2 + cϕ (χ+ χ0)

+
c2

2m2
ϕ

χ2
0 +

c2

m2
ϕ

χχ0

]
. (2.7)

Now we use the field redefinition, χ+ χ0 = χ̃, which further gives:

SCL[ϕ, χ̃] ≈
∫
d4x
√
−g

[
−1

2
(∂ϕ)2 +

m2
ϕ

2
ϕ2 − 1

2
(∂χ̃)2 +

m2
χ

2
χ̃2 + cϕχ̃

+
1

2

(
c2

m2
ϕ

−m2
χ

)
χ2
0 +

(
c2

m2
ϕ

−m2
χ

)
χ̃χ0

]
. (2.8)

4. Further, we use the following constraint condition on the system-bath coupling pa-

rameter:

c = mϕmχ, (2.9)

which helps us to remove the contributions from the last two terms as appearing in

the above mentioned equation (2.8). Consequently, we get the following simplified

expression for the open quantum field theory set up which further can be used to

remove the contribution of the bath by implementing path integral technique.:

SCL[ϕ, χ̃] ≈
∫
d4x
√
−g

[
−1

2
(∂ϕ)2 +

m2
ϕ

2
ϕ2 − 1

2
(∂χ̃)2 +

m2

2
χ̃2 + cϕχ̃

]
. (2.10)

Here the following effective potential for the field χ̃:

Veff(χ̃) =
m2

2
χ̃2 where m ∼ mχ = c/mϕ ̸= mϕ, (2.11)

where m is the effective mass term of the newly introduced redefined χ̃ field which

strictly satisfy the constraint condition as stated in equation (2.9). Here it is impor-

tant to note that, the constraint condition as stated in equation (2.9) also pointing

towards the fact that though we have used the field redefinition, χ + χ0 = χ̃, but

in this construction the old bath field χ is not extremely far from the newly defined

bath field χ̃. The direct consequence of this fact is that the mass of both the fields

12



are of the same order i.e. m ∼ mχ
∗.

5. In terms of the above mentioned effective potential for the field χ (which is actually

χ̃) one can further recast the previously mentioned model action as:

SCL[ϕ, χ] =

∫
d4x
√
−g

[
−1

2
(∂ϕ)2 +

m2
ϕ

2
ϕ2 − 1

2
(∂χ)2 + Veff(χ) + cϕχ

]
, (2.12)

using which we now perform the path integration over the field ϕ in the next sub-

section. In this description we use a semi-classical treatment where we consider the

background gravity classically and the fields quantum mechanically, which enables

the determination of the partition function and path integration over the field ϕ.

6. Now before going to further technical derivations and the corresponding discussions

let us further clarify few important issues which one needs to understand very clearly.

Let us now mention these issues in detail which we believe makes the theoretical

ground of the proposed framework more stronger and will be also helpful to under-

stand the rest of the computations performed in the later half of this paper.

Apart from the techniques used to reduce the problem in the language of quantum

mechanical path integral one can use different prescriptions for the field redefinition

to reduce the two field coupled model to a single field set up where the coupling

term is absorbed. Let us consider the following two field redefinitions which may be

useful:

Field redefinition I : Ψ =
1√
2
(ϕ+ iχ) , Ψ† =

1√
2
(ϕ− iχ) , (2.13)

Field redefinition II : Φ(+) =
√
2 (ϕ+ χ) , Φ(−) =

√
2 (ϕ− χ) . (2.14)

using which the model action can be further recast as:

Using Field redefinition I :

SCL[ϕ, χ]→ SCL[Ψ,Ψ
†] =

∫
d4x
√
−g

[
−1

2
(∂Ψ)† (∂Ψ) +

(
m2

ϕ +m2
χ − 2ic

)
Ψ2

+
(
m2

ϕ +m2
χ + 2ic

) (
Ψ†)2

+2
(
m2

ϕ −m2
χ

)
Ψ†Ψ

]
, (2.15)

Using Field redefinition II :

SCL[ϕ, χ]→ SCL[Φ
(+),Φ(−)] =

∫
d4x
√
−g

[
−1

2

(
∂Φ(+)

)2 − 1

2

(
∂Φ(−)

)2
∗For the further computational purpose henceforth we will not use the notation χ̃ and instead of this

for simplicity we will write it as χ. However, one needs to always remember that this new system field χ
is different from the old system field χ.

13



+
1

2

(
m2

ϕ +m2
χ

2
+ c

)(
Φ(+)

)2
+
1

2

(
m2

ϕ +m2
χ

2
− c
)(

Φ(−)
)2

+
1

2

(
m2

ϕ −m2
χ

)
Φ(+)Φ(−)

]
, (2.16)

From the above mentioned obtained structures after field redefinitions it clearly

suggests that the interaction term only absent when we have a very special case,

mϕ = mχ. Under this condition the two coupled scalar field theory is decoupled to

a single complex scalar field or two copies of real scalar fields having no interaction

term. In this case there is no need of performing path integral to construct an Effec-

tive Field Theory as various fields degrees of freedom are completely decoupled in the

absence of interaction term. However, it is important to note such type of field redef-

initions are only allowed if we are strictly considering a closed quantum mechanical

system where the quantum system under consideration is adiabatically shielded from

the environment and not interacting with the any type of thermal bath. However,

our objective is to study open quantum system and its cosmological applications in

this paper. For this reason this particular possibility is discarded in this context.

Using the previously mentioned Field redefinition II one can also consider another

situation where mϕ ̸= mχ, particularly mϕ > mχ, which give rise to the positive

interaction strength in the newly field redefined description ∗. In this limit two

newly defined fields Φ(+) and Φ(−) interacting with each other which one cannot

able to ignore the interaction even after performing field redefinition. In this case

one needs to apply path integral formalism to integrate out the heavy degrees of

freedom from the description and to construct an Effective Field Theory description

of the light degrees of freedom. This is another possibility using which one can

also construct the theory of system-bath interaction within the framework of open

quantum field theory set up. However, apart from having another possibility we will

stick to the previous methodology and the corresponding field redefinition used in

the previous part of the computation to construct an Effective Field Theory of a

system from the interacting system-bath model of open quantum field theory set up

as proposed earlier.

∗Here it is important to note that, using the Field redefinition I along with the limiting situation
mϕ ̸= mχ and mϕ > mχ one cannot able to construct the Effective Field Theory description of open
quantum system as it described in terms of single complex degrees of freedom. Since in this paper we are
interested only in pen quantum set up where system-bath two field interaction is necessarily required, this
possibility is also discarded in this context of discussion.
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2.2 Quantum partition function and effective action

In this section our prime objective is to construct the quantum partition function and

the effective action [54] for the field χ(x) by path integrating over the field ϕ(x). To

perform this one needs to compute the following quantity:

Zeff [χ] :=

∫
Dϕ exp [iSCL[ϕ, χ]] = exp [iSeff [χ]] . (2.17)

However, instead of performing the above mention path integral in the Lorentzian signature

we will do it in the Euclidean signature which can be obtained by replacing Seff
CL[ϕ, χ] with

the Euclidean action iSeff
E,CL[ϕ, χ]. In this new notation the above mentioned quantum

partition function takes the following simplified form:

Zeff [χ] :=

∫
Dϕ exp

[
−SE

CL[ϕ, χ]
]
= exp

[
−SE

eff [χ]
]
. (2.18)

Here, Seff [χ] and SE
eff [χ] are the effective action for the field χ in the Lorentzian and

Euclidean signatures, respectively.

In the Euclidean signature the quantum partition function can be further simplified to

the following form ∗:

Zeff [χ] = Z(0)
eff [χ] exp

[ ∫
d4x

√
−g(x)

∫
d4y

√
−g(y) c(x)χ(x) Gϕ(x, y) c(y)χ(y)

]
, (2.19)

where Gϕ(x, y) is the Feynman Green’s function (or the propagator) in this construction,

which appears as a result of the two-point correlation of the ϕ field in a specific classical

gravitational background. In the context of Quantum Brownian Motion this is commonly

identified as the noise kernel. The explicit form of this Feynman Green’s function is given

by the following expression:

Gϕ(x, y) =

(
1

2x +m2
ϕ

)(
δ4(x− y)√
−g(x)

)
, (2.20)

∗In the expression for the quantum partition function we have used the general space-time metric
where the coupling parameter between the system and bath degrees of freedom is taken to be space-time
dependent but the dependency is very slow so that the derivatives approach to zero. This is because of the
fact that we can only perform the computation of the partition function in the Euclidean signature only
when the perturbative approximations holds good perfectly, which can be implemented only in the weak
coupling regime of system-bath interaction. In this weak coupling regime of the open quantum field theory
this is technically applicable only when we can treat the coupling parameter as a memoryless parameter.
This directly implies that we are working in the regime where non-Markovianity is maintained strictly and
this can only possible only when system-bath coupling varies very slowly with the background space-time
coordinates.
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where the D’Alembertian operator in general gravitational background can be defined as:

2x =
1√
−g(x)

∂µ

[√
−g(x) gµν(x)∂ν

]
= gµν(x)∇µ∇ν . (2.21)

For a given gravitational classical background one can explicitly compute the mathematical

structure of this Green’s function. Additionally, the quantum partition function in the

Euclidean signature without interaction (c = 0) for the free massive theory of the χ field

is given by the following expression:

Z(0)
eff [χ] = Z(0)

eff [0] exp

[
−
∫
d4x
√
−g
{(
−1

2
(∂χ)2 + Veff(χ)

)}]
. (2.22)

Here we define the contribution from the Euclidean quantum partition for the free massive

scalar field ϕ, after doing the path integration, as:

Z(0)
eff [0] =

∫
Dϕ exp

[
−
∫
d4x
√
−g
{(
−1

2
(∂ϕ)2 +

m2
ϕ

2
ϕ2

)}]
=

1√
Det

(
2x +m2

ϕ

) . (2.23)

From this derived result the effective action for the field χ can be computed as:

SE
eff [χ] = − ln [Zeff [χ]]

=
1

2
ln
[
Det

(
2x +m2

ϕ

)]
+

∫
d4x
√
−g
{(
−1

2
(∂χ)2 + Veff(χ)

)}
−
∫
d4x

√
−g(x)

∫
d4y

√
−g(y) c(x)χ(x) Gϕ(x, y) c(y)χ(y). (2.24)

Up to this point the results are valid for any arbitrary general gravitational space-time.

Now we derive the results with quasi de Sitter solution described by the following line

element written in conformal time coordinate:

ds2 = a2(τ)
(
−dτ 2 + dx2

)
, (2.25)

where the scale factor and the determinant of the metric is defined as:

a(τ) = − 1

Hτ
and

√
−g(τ) = a4(τ). (2.26)

For quasi de Sitter space-time considering the Gaussian part of the kinetic operator of
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the noise field ϕ having mass mϕ we get the following simplified expression:

Z(0)
eff [0] =

1√√√√[Det( 1

a2(τ)

(
∂2

∂τ 2
−∇2 + 2H(τ) ∂

∂τ

)
+m2

ϕ

)]
τ=τT

=
1√√√√[ exp(Tr( ln

[
1

a2(τ)

(
∂2

∂τ 2
−∇2 + 2H(τ) ∂

∂τ

)
+m2

ϕ

]))]
τ=τT

=
1

mϕT

∞∏
n=1

(
1 +

(
mϕT

2πn

)2)−1

=
1

mϕT

∞∏
n=1

{
n2(

n2 +

(
mϕT

2π

)2)
}

=
1

2
cosech

(
mϕT

2

)
, (2.27)

where we have:

τT = − 1

H
exp(−HT ) =⇒ T =

1

H
ln

(
− 1

HτT

)
. (2.28)

Here T represents the IR cut-off scale on the co-moving time. The physical origin comes

from the fact that here during the integration over the co-moving conformal time instead

of using −∞ < τ < 0 (which is 0 < t < ∞) we need to use −∞ < τ < τT (which is

0 < t < T ) to avoid the IR divergence at the late time scale T where CMB observations

take place. This makes Z(0)
eff [0] finite. However, the final outcomes, which is the correlation

functions as well as the equation of motion for the field χ will be completely independent

of such choice in this paper.

Then the corresponding quantum partition function in the quasi de Sitter space can be

expressed as :

Zeff [χ] =
1

2
cosech

(
mϕT

2

)
exp

[
−
∫
d4x
√
−g
{(
−1

2
(∂χ)2 + Veff(χ)

)}]
× exp

[ ∫
d3x

∫
d3y

∫ − exp(−TH)/H

−1/H

dτ
√
−g(τ)

∫ − exp(−TH)/H

−1/H

dτ ′
√
−g(τ ′)

× c(τ)χ(x, τ) Gϕ(x− y, τ, τ ′) χ(y, τ ′)c(τ ′)

]
, (2.29)
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where the noise kernel or the propagator Gϕ(x− y, τ, τ ′) can be expressed as:

⟨ϕ(x, τ)ϕ(y, τ ′)⟩ = Gϕ(x− y, τ, τ ′). (2.30)

Additionally, we have:

⟨ϕ(x, τ)⟩ = 0 = ⟨ϕ(y, τ)⟩. (2.31)

Here we assume that the coupling parameter is only time-dependent in the de Sitter back-

ground for simplicity and there are no explicit or implicit dependencies on the space coor-

dinates.

In this computation the temporal part of the propagator or the noise kernel can be

computed as:

Gϕ(x− y, τ, τ ′) =
1

4π2

∣∣∣∣∣Γ (νϕ)

Γ
(
3
2

) ∣∣∣∣∣
2 cosh

(
mϕ

{
|τ − τ ′| − T

2

})
sinh

(
mϕT

2

)
× 1

|x− y|3−2νϕ
× 1[
|x− y|2 − (|τ − τ ′| − iϵ)2

]
=

1

4π2

∣∣∣∣∣Γ (νϕ)

Γ
(
3
2

) ∣∣∣∣∣
2

exp

(
−mϕ |τ − τ ′|

)

×

(1 + exp

(
mϕ |τ − τ ′|

)
exp(−mϕT )

1− exp(−mϕT )

)
× 1

|x− y|3−2νϕ
× 1[
|x− y|2 − (|τ − τ ′| − iϵ)2

] , (2.32)

where the mass parameter νϕ for the field ϕ is given by the following expression:

νϕ =

√
9

4
−
m2

ϕ

H2
. (2.33)

Here, we have used the fact, in two different conformal times τ and τ
′
the Hubble parame-

ters are exactly identical. Here we consider quasi de Sitter phase which is used throughout

the paper. Only the tricky part is, instead of using the explicit structure of the interaction

potential we are going to use a sudden quench profile in the effective mass of the required

χ field which serves the same purpose in the present work effectively. Such choice actually
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helps us both theoretically as well from the observational perspective. We all know using

just a quadratic potential of the χ field having constant mass one cannot satisfy strictly

the observational constraints on inflation (from the amplitude, tilt of the spectrum and

tensor-to-scalar ratio becomes large) using Planck 2018 data. Now if we insert a theoret-

ically justifiable time dependent profile for the coupling parameter c between the χ and

ϕ field in the CL model action this will automatically fix the time dependent effective

mass of the χ field. In this work, such time dependent profile is supplied by the quantum

mechanical quench, which allows us take a sudden quench profile for the same purpose.

Inserting a time dependent profile will going to directly effect the dynamic features before

quench, just after quench and after long of the quench. This further implies that it is

indirectly modifying the previously mentioned quadratic potential of the χ field having

constant mass in the present of a time dependent dynamical mass profile. It is important

to note that, in the late time limit τT → 0 or T →∞, then we get the following simplified

late time limiting result for the Green’s function:

Gϕ(x− y, τ, τ ′) = lim
τT→0

Gϕ(x− y, τ, τ ′)

=
1

4π2

∣∣∣∣∣Γ (νϕ)

Γ
(
3
2

) ∣∣∣∣∣
2

exp

(
−mϕ |τ − τ ′|

)
× 1

|x− y|3−2νϕ
× 1[
|x− y|2 − (|τ − τ ′| − iϵ)2

] . (2.34)

Further, varying this semi-classical effective action with respect to the field χ we get

the following equation of motion in de Sitter space:[
1

a2(τ)

(
∂2

∂τ 2
−∇2 + 2H(τ) ∂

∂τ

)
+m2(τ)

]
χ(x, τ)

=

(∫
d3x

∫
d3y

∫ − exp(−TH)/H

−1/H

dτ
√
−g(τ)

∫ − exp(−TH)/H

−1/H

dτ ′
√
−g(τ ′)

×Gϕ(x− y, τ, τ ′)× c(τ) c(τ ′)

(
χ(y, τ ′) + χ(x, τ)δ3(x− y)δ(τ − τ ′

)

))
, (2.35)

which describes the Brownian motion of the χ field in presence of the noise kernel Gϕ(x−
y, τ, τ ′). Here one can consider the following two conditions to analyse the system:

1. One can consider that, |τ − τ ′| → ∞ which means that τ ≪ τ
′
i.e. large separation

in time scale, then in this case we have:

lim
|τ−τ ′ |→∞

Gϕ(x− y, τ, τ ′) ≈ 0. (2.36)
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2. If we consider that the spatial separation between two points where the field χ is

placed are separated by a large distance scale but in the time scale they are closely

separated then we have:

lim
|τ−τ ′ |→0

lim
|x−y|→∞

Gϕ(x− y, τ, τ ′) ≈ 0. (2.37)

In both the limiting cases we have the following simplified form of the equation of motion:

[
1

a2(τ)

(
∂2

∂τ 2
−∇2 + 2H(τ) ∂

∂τ

)
+m2(τ)

]
χ(x, τ) = 0 , (2.38)

For the rest of the analysis we will only concentrate on the free part of the effective

action for the χ field as in both the limits no other terms contribute effectively. Hence we

have :

Seff [χ] ≈
∫
d4x
√
−g
{(
−1

2
(∂χ)2 + Veff(χ)

)}
. (2.39)

Using the conformal coordinates the effective action for the χ field in the large time limit

can be re-expressed as ∗:

Seff
free[χ] =

1

2

∫
dτ d3x a2(τ)

[
(∂τχ(x, τ))

2 − (∂iχ(x, τ))
2 −m2(τ)a2(τ)χ2(x, τ)

]
, (2.40)

∗In the expression for the finally derived effective action describing an Effective Field Theory of the
signal field out of the weakly coupled system-bath open quantum field theoretic set up we have used the
spatially flat FLRW metric with quasi de Sitter solution of the scale factor. In such a case the coupling
parameter between the system and bath degrees of freedom is taken to be only time dependent but the
dependency is very slow so that the derivatives approach to zero. Here the space derivatives are absent
in the coupling parameter due to having isotropy and homogeneity in the back ground space-time metric
describing the primordial cosmological set up. In this description slowly time dependence is compatible
with the perturbative approximations implemented during the performing the computations throughout
the paper. In the cosmological context this can be implemented only when we consider the weak slowly
varying time dependent coupling of system-bath interaction. In this weak coupling regime of the open
quantum field theory this is technically applicable only when we can treat the coupling parameter as a
memoryless slowly varying time dependent parameter. This directly implies that we are working in the
regime where the cosmological evolution is described by the non-Markovianity and this can only possible
only when system-bath coupling varies very slowly with the background time coordinate. In the next
section we will mention that we need a proper parametrization to describe this interesting phenomena and
sudden profile appearing in the context of quantum quench is sufficient enough to describe this mentioned
additional features. As an immediate outcome of such specific choice quantum states are prepared which
helps us to establish the phenomena of effective thermalization within the framework of open quantum
field theory of quasi de Sitter space.
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where the conformal time-dependent mass parameter for the field χ can be written in terms

of the interaction strength c(τ) as m2(τ) = c2(τ). Here the masses for the field χ are not

initially conformal time-dependent. But since the coupling strength is time-dependent it

turns out that the effective mass for the field χ eventually becomes time-dependent.

3 Mass quench in sudden limit in de Sitter space

Quantum quench has been proved to be very effective for probing the dynamics of a

system undergoing a change in parameters over a short period of time [41, 42, 55, 56].

The initial wave function or in other words the state corresponding to the Hamiltonian

before undergoing a change is called a pre-quench state while the state corresponding to the

Hamiltonian after quench is called a post-quench state. The quench protocol that has been

followed in recent times is to consider a mass function m2(τ) such that in the sudden limit

its value changes from m2
0 in past to 0 in future, interpolating the behavior of correlators

at late times. This method is known as sudden quenching of mass parameter from some

constant value m2
0 to 0 in the limit −τ →∞. Now an important question to ask is do these

late time correlators equilibrate and whether or not the post quench state remembers the

quench protocol m2(τ). In the context of the AdS/CFT correspondence these questions

have direct relevance to the memory retention of the black hole of the collapsing matter

and been studied in [11, 12, 41, 43, 56–63] by checking whether the post-quench state could

be described by a thermal ensemble or not.

Let us start with the previously derived effective action for the dynamical scalar field χ

to implement the phenomena of quantum mechanical quench in the present context:

Seff
free[χ] =

1

2

∫
dτ d3x a2(τ)

[
(∂τχ(x, τ))

2 − (∂iχ(x, τ))
2 −m2(τ)a2(τ)χ2(x, τ)

]
, (3.1)

where we have used the de Sitter solution described by the following line element:

ds2 = a2(τ)
(
−dτ 2 + dx2

)
where a(τ) = − 1

Hτ
. (3.2)

Here conformal time-dependent quench protocol mass profile for the sudden quench phe-

nomena is given by the following expression:

m2(τ) = c2(τ) = m2
0Θ(−τ) =


m2

0 Before quench : τ < η;

0 After quench : τ ≥ η,

. (3.3)

where η is considered as the point of quench in the conformal time scale. Further for
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Figure 3.1: Mass profile in sudden quench limit.

computational simplicity we use the following redefinition:

v(x, τ) :≡ a(τ)χ(x, τ). (3.4)

Now using this newly defined field v(x, τ) one can further re-express the classical effective

action is defined as:

Seff
free[χ] =

1

2

∫
dτ d3x

[
(∂τv(x, τ))

2 − (∂iv(x, τ))
2 −

(
m2(τ)a2(τ)− a′′(τ)

a(τ)

)
v2(x, τ)

]
. (3.5)

Next, we choose the following ansatz for the Fourier transform to convert both the effective

action and the Hamiltonian in the momentum space:

v(x, τ) :=

∫
d3k

(2π)3
exp(ik.x) v(k, τ). (3.6)

Using this convention the effective action in Fourier space can be expressed as:

Seff
free[χ] =

∫
dτ d3k

[
|v′(k, τ)|2 − ω2(k, τ)|v(k, τ)|2

]
, (3.7)

Here we have used the notation ′ to represent the ∂τ operation and will use this notation

through out the paper.

After varying the action we found the following field equation for the redefined scalar
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field v(k, τ) in Fourier space: [
d2

dτ 2
+ ω2(k, τ)

]
v(k, τ) = 0. (3.8)

The explicit solutions of the above equations before quench (incoming) and after quench

(outgoing) solutions are explicitly derived and studied in the next subsection. This equa-

tion in general physically represents the particle production phenomena in de Sitter back-

ground [64]. In this work, our prime objective is to solve this classical field equation using

the tools and techniques of quantum quench. On top of that, quench also provides us a

theoretical framework of thermalization, which we implement in de Sitter space for the

first time to study the thermalization process and its impact on quantum correlations in

de Sitter space [46, 48]. Since the methodology is developed for conformally flat space-

time, classical solutions other than de Sitter can also be used to study the thermalization

phenomena in other cosmologically relevant epochs of our universe.

Here in this construction the effective conformal time-dependent frequency in the Fourier

space can be expressed as:

ω2(k, τ) =
(
k2 +m2

eff(τ)
)
, (3.9)

and the conformal time-dependent effective mass can be expressed in terms of the sudden

quench protocol as:

m2
eff(τ) =

(
m2(τ)a2(τ)− a′′(τ)

a(τ)

)
= − 1

τ 2

(
ν2(τ)− 1

4

)
. (3.10)

Here we have used the fact that in the de Sitter space:

a′′(τ)

a(τ)
=
(
H2(τ) +H′(τ)

)
=

2

τ 2
for a(τ) = − 1

Hτ
. (3.11)

Here ν(τ) is the conformal time mass parameter for the given quench protocol:

ν(τ) =

√
9

4
− m2(τ)

H2

=


νin =

√
9

4
− m2

0

H2
Before quench : τ < η;

νout =
3

2
After quench : τ ≥ η.

(3.12)

As mentioned above a mass quenching in the sudden limit is considered, i.e., we take a

mass function m2(τ) and change its value from m2
0 to 0 in the future using which we
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compute the quantum correlators. Specifically in this paper we have computed the two-

point correlators.

The present problem describing the particle production in de Sitter space can be trans-

lated in the language of Schrödinger quantum mechanics as a problem in 1 dimension,

where one needs to study the movement of an electron inside an electrical wire in the pres-

ence of an impurity. This impurity is the quantum mechanical potential which is appearing

in the corresponding Schrödinger equation:[
d2

dx2
+ (E − V (x))

]
ψ(x) = 0. (3.13)

In this interpretation the following one-to-one map is set up between the particle production

problem and the Schrödinger quantum mechanical problem:

Distance x ←→ Conformal time τ, (3.14)

Quantum impurity potential V (x) ←→ Effective quench protocol −m2
eff(τ), (3.15)

Quantum wave function ψ(x) ←→ Rescaled mode function v(k, τ). (3.16)

In studying the behavior of wave functions in the quench protocol one of the main ap-

proximations we usually employ is solving the Klein-Gordon equation for constant masses

instead for time-dependent parameter m2(τ) which in turn is very difficult to interpolate.

By doing the approximation m2(τ) =m2
0 =constant and repeating the procedure for each

recursion we get more and more precise results for the effective mass. However, in the con-

text of sudden quenching we choose transition in masses close to zero and this diminishes

our need for repeated iteration. In this we will also study quenches for masses close to

zero because they correspond to half integer orders of the Hankel function which makes

the wave-functions easy to interpolate. As mentioned above quantum quench, which cor-

responds to the change in the parameters of Hamiltonian for a short period of time has

been employed in various areas. Starting from the study of various phenomenon under

various regimes from studying the behavior of thermalization of correlators at late times

in the de Sitter space-time, where the value of post-quench parameters doesn’t depend on

the quench protocol [10, 65–69]. In this paper, we are going to study the behavior of fields

in terms of the correlators in intermediate time scales, we will encode the effects of the

fields on the correlators through the quench profile followed by the mass parameter in the

Hamiltonian of the field.

3.1 Solution of mode equation in de Sitter space

In this section, we study the solution of the equation of motion of the Fourier modes of
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the rescaled field in de Sitter background with scale factor a(τ) = −1/Hτ , participating
in the quantum quench driven Brownian motion [51, 70–72], which are given by:

Before quench :

[
d2

dτ 2
+ ω2

eff,in(k, τ)

]
vin(k, τ) = 0, (3.17)

After quench :

[
d2

dτ ′2
+ ω2

eff,out(k, τ
′)

]
vout(k, τ

′) = 0, (3.18)

where vin(k, τ) and vout(k, τ
′) signify the incoming and the outgoing solutions of the

rescaled field, and particularly in the present context these play the role of the classical

solution of the equation of motion before and after the quench mechanism. Due to having

quantum quench in the time-dependent effective mass profile at a particular conformal

time scale one can differentiate the solutions with respect to the mass parameters involved

in the time-dependent effective frequencies, which are given by the following expressions:

ω2
eff,in(k, τ) : =

(
k2 −

ν2in − 1
4

τ 2

)
with νin =

√
9

4
− m2

0

H2
, (3.19)

ω2
eff,out(k, τ

′) : =

(
k2 −

ν2out − 1
4

τ ′2

)
with νout =

3

2
. (3.20)

Here it is important to note that, τ is the associated conformal time scale before the mass

quench operation. Also τ ′ = τ + η is the associated conformal time scale after the mass

quench operation, where the quench is performed at the point η in the forward direction

in the conformal time scale.

Now, the solution of the mode equations in the Fourier space before and after quenched

mass profile can be written in spatially flat background de Sitter space as:

Before quench : vin(k, τ) =
√
−τ [d1H

(1)
νin

(−kτ) + d2H
(2)
νin

(−kτ)], (3.21)

After quench : vout(k, τ) =
√
−τ ′ [d3H(1)

νout(−kτ
′) + d4H

(2)
νout(−kτ

′)], (3.22)

where the solutions appear as linear combinations of the Hankel function of the first

and second kind of order νin for the incoming and νout outgoing solutions.

It is important to note that here we have the following total effective mass for the sudden

mass quench profile:

m2
eff(τ) =

1

τ 2

(
m2(τ)

H2
− 2

)
=



1

τ 2

(
m2

0

H2
− 2

)
Before quench : τ < η;

− 2

(τ + η)2
After quench : τ ≥ η.

(3.23)
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Figure 3.2: Effective mass profile.

This is plotted in Fig. (3.2). If we closely look into the obtained analytical solutions for

the ingoing and the outgoing modes then we see that both the solutions are fixed with

respect to choice of constants d1, d2 and d3 , d4. Due to having mass quench at a preferred

conformal time scale η in this particular set up the constants appearing in the outgoing

after quench solution, d3 and d4 can be determined in terms of the constants appearing in

the incoming before quench solution, d1 and d2. The specific choices for these constants

can be fixed by choosing the following set of quantum initial conditions [73]:

Bunch−Davies vacuum : d1 = 1, d2 = 0, (3.24)

α vacua : d1 = coshα, d2 = sinhα, (3.25)

Motta−Allen vacua : d1 = coshα, d2 = exp(iγ) sinhα. (3.26)

For the Bunch-Davies case [74–76] we will get very simple expressions, though the expres-

sions for the α or Motta-Allen case will become complicated. To avoid confusion during

the computation we do not substitute these values of the constants for the three different

choices of the quantum initial conditions. However, during the numerical computations

from the obtained results we will use them explicitly to determine the differences in be-

havior. In the appendices we present some results pertaining to these initial conditions

for completeness. Our result, presented here, are valid for the any arbitrary choice of the

quantum initial conditions, out of which for numerical purpose we will only focus on the

three above mentioned possibilities.

The Eqs.(3.21) represents the most general solution valid for all time scales. However,

working with these general solutions is often cumbersome and the asymptotic limits of
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the above solutions are found convenient for analysis. The Hankel functions in these

asymptotic limits can be expressed as:

Sub− horizon asymptotic expansion :

lim
−kτ→∞

H(1)
ν =

√
2

π

1√
−kτ

exp(−i{kτ +∆ν}), (3.27)

lim
−kτ→∞

H(2)
ν = −

√
2

π

1√
−kτ

exp(i{kτ +∆ν}), (3.28)

Super− horizon asymptotic expansion :

lim
−kτ→0

H(1)
ν =

i

π
Γ(ν)

(
−kτ
2

)(−ν)

, (3.29)

lim
−kτ→0

H(2)
ν = − i

π
Γ(ν)

(
−kτ
2

)(−ν)

. (3.30)

where we define the factor ∆ν as:

∆ν =
π

2

(
ν +

1

2

)
=


π

2

(
νin +

1

2

)
with νin =

√
9

4
− m2

0

H2
Before quench : τ < η;

π

2

(
νout +

1

2

)
with νout =

3

2
After quench : τ ≥ η.

(3.31)

Let us now discuss the solution of the above equation in the sub horizon limit where modes

of quantum fluctuations are inside the cosmological horizon, it behaves like a quantum

mechanical plane wave. In the limit −kτ → ∞ (−kτ ≫ 1), using the above limiting

solutions of the Hankel functions, the fluctuation solution reduces to:

Sub-horizon asymptotic incoming solution:

vin(k, τ)|−kτ→∞ =

√
2

πk

[
d1 exp

{
−i
(
kτ +

π

2

(
νin +

1

2

))}
− d2 exp

{
−i
(
kτ +

π

2

(
νin +

1

2

))}]
,

(3.32)

Πin(k, τ)|−kτ→∞ =
1

i

√
2k

π

[
d1 exp

{
−i
(
kτ +

π

2

(
νin +

1

2

))}
+ d2 exp

{
−i
(
kτ +

π

2

(
νin +

1

2

))}]
,

(3.33)

where Πin(k, τ) is the canonically conjugate momentum of the field vin(k, τ), which is

defined as, Πin(k, τ) = v′in(k, τ).

On the other hand, in the super-horizon limit when the fluctuating modes are goes

outside the cosmological horizon it behaves classically. In the limit −kτ → 0 (−kτ ≪ 1),
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using the above limiting solutions of the Hankel functions, the fluctuation solution reduces

to:

Super-horizon asymptotic incoming solution:

vin(k, τ)|−kτ→0 =

√
2

k

i

π
Γ(νin)

(
−kτ
2

) 1
2
−νin

(d1 − d2), (3.34)

Πin(k, τ)|−kτ→0 =

√
2

k

i

2πk

(
νin −

1

2

)
Γ(νin)

(
−kτ
2

)−(νin+
1
2
)

(d1 − d2). (3.35)

Sub-horizon asymptotic outgoing solution:

vout(k, τ)|−kτ→∞ =

√
2

πk

[
d3 exp

{
−i
(
k(τ + η) +

π

2

(
νout +

1

2

))}
− d4 exp

{
−i
(
k(τ + η) +

π

2

(
νout +

1

2

))}]
, (3.36)

Πout(k, τ)|−kτ→∞ =
1

i

√
2k

π

[
d3 exp

{
−i
(
kτ +

π

2

(
νout +

1

2

))}
+ d4 exp

{
−i
(
kτ +

π

2

(
νout +

1

2

))}]
. (3.37)

Super-horizon asymptotic outgoing solution:

vout(k, τ)|−kτ→0 =

√
2

k

i

π
Γ(νout)

(
−k(τ + η)

2

) 1
2
−νout

(d3 − d4), (3.38)

Πout(k, τ)|−k(τ+η)→0 =

√
2

k

i

2πk

(
νout −

1

2

)
Γ(νout)

(
−k(τ + η)

2

)−(νout+
1
2
)

(d3 − d4), (3.39)

where Πout(k, τ) is the canonically conjugate momentum of the field vout(k, τ), which is

defined as, Πout(k, τ) = v′out(k, τ).

Combining the above two limiting solutions, the asymptotic solution of the mode equa-

tion can be written as:

Asymptotic solution for the mode before quench:

vin(k, τ) =
2νin−

3
2 i (−kτ) 3

2
−νin

√
2k3/2τ

∣∣∣∣ Γ(νin)Γ(3/2)

∣∣∣∣× [d1(1 + ikτ) exp

(
−i
{
kτ +

π

2
(νin +

1

2
)

})
− d2(1− ikτ) exp

(
i

{
kτ +

π

2
(νin +

1

2
)

})]
. (3.40)

The above equation basically represents the incoming solution before the point of quench.

Similarly, the general expression for the canonically conjugate momentum variable for the

incoming solutions (solution before the point of quench) in this asymptotic limit simplifies
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to the following expression:

Asymptotic momentum before quench:

Πin(k, τ) =
2νin−

3
2 i (−kτ) 3

2
−νin

√
2k5/2

∣∣∣∣ Γ(νin)Γ(3/2)

∣∣∣∣[d1{(1

2
− νin

)
(1 + ikτ)

k2τ 2
+ 1

}
exp

(
− i
{
kτ +

π

2
(νin +

1

2
)

})
−d2

{(
1

2
− νin

)
(1 + ikτ)

k2τ 2
+ 1

}
exp

(
i

{
kτ +

π

2

(
νin +

1

2

)})]
. (3.41)

By following the same logical argument, the outgoing solutions can be calculated as:

Asymptotic solution for the mode after quench:

vout(k, τ) =
2νout−

3
2 i (−k(τ + η))

3
2
−νout

√
2k3/2(τ + η)

∣∣∣∣Γ(νout)Γ(3/2)

∣∣∣∣× [d3(1 + ik(τ + η)) exp

(
−i
{
k(τ + η)

+
π

2

(
νout +

1

2

)})
− d4(1− ik(τ + η)) exp

(
i

{
k(τ + η) +

π

2

(
νout +

1

2

)})]
.

(3.42)

The canonically conjugate momentum variable for the outgoing solution can also be

described as:

Asymptotic momentum after quench:

Πout(k, τ) =
2νout−

3
2 i (−k(τ + η))

3
2
−νout

√
2k5/2

∣∣∣∣Γ(νout)Γ(3/2)

∣∣∣∣[d3{(1

2
− νout

)
(1 + ik(τ + η))

k2(τ + η)2
+ 1

}
exp

(
−i
{
k(τ + η) +

π

2

(
νout +

1

2

)})
− d4

{(
1

2
− νout

)
(1 + ik(τ + η))

k2(τ + η)2
+ 1

}
exp

(
i

{
k(τ + η) +

π

2

(
νout +

1

2

)})]
.

If we closely look into the expressions for the field variables and their associated canonically

conjugate momentum variables for the incoming and outgoing situations then we see that

the solutions differ, (A). in terms of the mass parameters νin and νout and (B). in terms

of the constants di∀i = 1, · · · , 4. As we have already mentioned, one can compute the

expressions for the outgoing constants, d3 and d4 in terms of the incoming constants, d1
and d2, thereby expressing the incoming solution in terms of the outgoing solution or vice

versa using the Bogoliubov transformation technique. This technique is particularly useful

in the present context, not just for expressing one solution in terms of the other, but

also for constructing the ground state as well as the excited generalized Calabresse Cardy

(gCC) states, which are the key ingredients for computing the two-point functions for both

the cases. The two-point functions also play another role here . They tell us that how the
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quantum correlations can be explicitly quantified when the system tending to thermalize.

For the flat space-time, particularly in 1 + 1 dimensional system this formalism is easily

understandable and was explicitly studied in [41]. Later this work was generalized to 1+2

dimensions in [42]. But there has been no such development in the presence of background

classical gravitational solution. The presented technique in this paper will going to be an

attempt for a very simplest case, where the space-time is described by de Sitter solution.

The results that we have have obtained in this paper is an attempt to understand the

underlying physical phenomena and its related physical explanation of the thermalization

phenomena in de Sitter space-time in presence of sudden mass quench. We now develop

the tools which would be needed for the mentioned purpose.

To determine the outgoing coeffcients d3 and d4 in terms of the ingoing coefficients d1
and d2 one needs to use the following two cruicial conditions:

1. Continuity in the field variable:

First of all, the solution obtained before quench and after quench has to be con-

tinuous at the point of quench η, i.e.,

vin(k, τ)|τ=η = vout(k, τ)|τ=η. (3.43)

2. Continuity in the momentum variable:

Secondly, the canonically conjugate momenta obtained from both the solutions before

quench and after quench has to be continuous at the point of quench η, i.e.,

Πin(k, τ)|τ=η = Πout(k, τ)|τ=η. (3.44)

Again using the continuity condition of the solutions and its derivatives at the point of

quench we can fix the constants d3 and d4 in terms of d1 and d2. It can be easily found

that the constants d3 and d4 expressed in terms of d1 and d2 can be written as:

d3 =
2νin−

9
2 exp(iηk)

kη

[
d1(6ηk − 3i) + id2(2ηk + 3i) exp(i(2ηk + πνin))

]
, (3.45)

d4 =
2νin−

9
2 exp{−i(3kη + πνin)}

kη

[
−d1(3 + 2ikη) + 3d2 exp{i(2kη + πνin)}(i+ 2kη)

]
.

(3.46)

Here it is important to note that, incoming and the outgoing mode functions before and
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after quench can be expressed in terms of each other via the following relations:

vin(k, τ) = α(k, η) vout(k, τ) + β(k, η) v∗out(−k, τ), (3.47)

vout(k, τ) = α∗(k, η) vin(k, τ)− β(k, η) v∗in(−k, τ). (3.48)

Consequently, the general solution for the field equation can be written as:

v(k, τ) = ain(k)vin(k, τ) + a†in(−k)v∗in(−k, τ)
= aout(k)vout(k, τ) + a†out(−k)v∗out(−k, τ), (3.49)

which satisfy the following reality constraint:

v∗(k, τ) = v(−k, τ). (3.50)

Using these above mentioned equations one can explicitly show that:

ain(k) = α∗(k, η)aout(k)− β∗(k, η)a†out(−k), (3.51)

aout(k) = α∗(k, η)ain(k) + β∗(k, η)a†in(−k). (3.52)

Here the Bogolyubov coefficients at the point of quench η, are calculated using the following

equations:

α(k, η) =
v′out(k, τ)v

∗
in(k, τ)− vout(k, τ)v′∗in(k, τ)

2i

∣∣∣∣
η

, (3.53)

β∗(k, η) =
v′out(k, τ)vin(k, τ)− vout(k, τ)v′in(k, τ)

2i

∣∣∣∣
η

. (3.54)

Using the above equation the Bogoliubov coefficients for our quench profile can be calcu-

lated as

α(k, η) =
22νin−5

π
exp{−i(2kη + πνin)}(−kη)−2νin

[
d1d

∗
2(1 + ikη)(1 + kη(i+ 2kη − 2iνin)− 2νin)

+ d∗1d2 exp{2i(2kη + πνin)}(i+ kη)(i+ kη(1 + 2ikη − 2νin)− 2iνin)

− d2d∗2 exp{i(2kη + πνin)} (i+ k2η2(3i+ 6kη − 2iνin)− 2iνin)

+ d1d
∗
1 exp{i(2kη + πνin)} (k2η2(−3i+ 6kη + 2iνin) + i(−1 + 2νin))

]
|Γ(νin)|2,

(3.55)

β(k, η) =
22νin−5

π
exp{i(2kη + πνin)}(−kη)−2νin

[
d1(i+ kη)− id2 exp{−i(2kη + πνin)}(−i+ kη)

]
[
d2 exp{−i(2kη + πνin)}(1 + kη(i+ 2kη − 2iνin)− 2νin)
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+ d1(−i+ 2iνin + kη(−1− 2ikη + 2νin))

]
|Γ(νin)|2. (3.56)

Once the Bogoliubov coefficients is found for a given quench profile, one defines a quantity

γ(k) which is defined as

γ(k) =
β∗(k, η)

α∗(k, η)
, (3.57)

where in principle the coefficient γ is functions of both k and η, but for a given fixed value

of the quench time scale, the coefficient γ turns out to be a function of k only.

Another quantity that will be of significance in the formulation of the in states is defined

as

For Dirichlet boundary state : κ(k) = −1

2
log(−γ(k)), (3.58)

For Neumann boundary state : κ(k) = −1

2
log(γ(k)). (3.59)

A power series expansion of κ and γ around k = 0 gives us the conserved charges. In

[41], the authors have explicitly found out the relationship between various coefficients of

γ(k) and κ(k). For the quench profile considered above, it can be found that the series

expansion of γ(k) can be written as.

γ(k) = γ0 + γ2|k|+ γ3|k|2 + γ4|k|3 + γ5|k|4 + γ6|k|5 + .... (3.60)

and the corresponding κ(k) parameter for the Dirichlet and Neumann boundary states can

be expressed in terms of the following series expansions around k = 0, as given by:

For Dirichlet boundary state :

κ(k) =

(
κ0,DB +

∞∑
n=1

κn+1,DB|k|n
)
, (3.61)

For Neumann boundary state :

κ(k) =

(
κ0,NB +

∞∑
n=1

κn+1,NB|k|n
)
, (3.62)

where it is important to note that:

κ0,DB =

(
κ0,NB +

iπ

2

)
, and κn+1,DB = κn+1,NB ∀ n = 1, 2, 3, · · · ,∞ (3.63)
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In this expansion the various non-vanishing coefficients of γ(k) can be easily verified to be:

γ0 = −
id1 + d2 exp(iπνin)

id∗2 + d∗1 exp(iπνin)
, (3.64)

γ4 = −
2(d1d

∗
1 − d2d∗2) exp(iπνin)η3(5 + 2νin)

3((id∗2 + d∗1 exp(iπνin))
2(−1 + 2νin))

, (3.65)

γ6 =
2(d1d

∗
1 − d2d∗2) exp(iπνin)η5(−29 + 4νin(4 + νin))

5((id∗2 + d∗1 exp(iπνin))
2(1− 2νin)2)

. (3.66)

Similarly, the non-vanishing coefficients of the κ(k) expansion can be calculated for Dirich-

let and Neumann boundary state in the present context, which we have quoted explicitly

in the Appendix A.

Thus for our quench profile, the relationship between the various coefficients of κ(k) and

γ(k) can be found out. However, before doing that it can be seen that for the expansion

contains an first constant term which is independent of |k| and thus only acts as a phase

for the states expressed in terms of them.

κ4,DB = κ4,NB =
i

2

(
id∗2 + d∗1 exp(iπνin)

d1 − id2 exp(iπνin)

)
γ4 =

1

2

(
d1 + id2 exp(iπνin)

d1 − id2 exp(iπνin)

)
γ4
γ0

(3.67)

κ6,DB = κ6,NB =
1

2

(
id∗2 + d∗1 exp(iπνin)

id1 + d2 exp(iπνin)

)
γ6 =

1

2

(
−id1 + d2 exp(iπνin)

id1 + d2 exp(iπνin)

)
γ6
γ0

(3.68)

The explicit expressions of the above coefficients for the three different choices of quan-

tum initial conditions has been given in the Appendix.A

Additionally it is important to point that, the classical solution of the field χ can be

promoted further as a quantum operator by the following expression:

χ̂(k, τ) =
ain(k)vin(k, τ) + a†in(−k)v∗in(−k, τ)

a(τ)
(3.69)

=
aout(k)vout(k, τ) + a†out(−k)v∗out(−k, τ)

a(τ)
, (3.70)

where additionally the following reality condition in Fourier space has to be satisfied:

χ̂∗(k, τ) = χ̂(−k, τ). (3.71)

By following this identification at the quantum level the canonically conjugate momentum

operator corresponding to the field operator χ̂(k, τ) can be expressed as:

Π̂χ(k, τ) =
ain(k)v

′
in(k, τ) + a†in(−k)v∗′in(−k, τ)

a(τ)
− ain(k)vin(k, τ) + a†in(−k)v∗in(−k, τ)

a2(τ)
a′(τ)

(3.72)
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=
aout(k)v

′
out(k, τ) + a†out(−k)v∗′out(−k, τ)

a(τ)
− aout(k)vout(k, τ) + a†out(−k)v∗out(−k, τ)

a2(τ)
a′(τ).

(3.73)

Further using Eq (3.69) and Eq (3.70) in Eq (3.74) and Eq (3.75) we finally get the following

simplified form of the momentum operator:

Π̂χ(k, τ) =
ain(k)Πin(k, τ) + a†in(−k)Π∗

in(−k, τ)
a(τ)

− χ̂(k, τ)

a(τ)
a′(τ) (3.74)

=
aout(k)Πout(k, τ) + a†out(−k)Π∗

out(−k, τ)
a(τ)

− χ̂(k, τ)

a(τ)
a′(τ),

(3.75)

where we define the canonically conjugate momenta for the incoming and outgoing

modes as:

Πin(k, τ) = v′in(k, τ), (3.76)

Πout(k, τ) = v′out(k, τ). (3.77)

Also it is important to note that the term a(τ) = − 1

Hτ
represents the scale factor in de

Sitter space. All these expressions for the field and the momentum operators are very

useful for computing the two-point correlation functions [77–79], explicitly computed in

the next part of this paper.

3.2 Construction of in and out vacuum states

As discussed in the previous section, the solutions of the equation of motion before and

after the point of quench is not exactly identical mainly because the mass profile changes.

Physically it can be thought as two different oscillators with different masses. They define

two distinct vacua |0, in⟩ and |0, out⟩, where the vacuum |0, in⟩ represents the initial vacua
of the oscillator before the point of quench and |0, out⟩ represents the initial vacua of the

oscillator after the point of quench. We begin with the assumption that we begin from

the ground state of the initial massive theory, i.e., |0, in⟩. Now since we are doing the

computation in de Sitter background solution, the above mentioned in-vacuum state is

not the usual Minkowski vacuum state used in the context of flat space-time. In this

construction for any arbitrary choice of quantum initial vacuum state the in-vacuum and

the out-vacuum state in general can be written in the following form:

|0, in⟩ = |d1, d2⟩ =
1√
|d1|

|0, in⟩vac , (3.78)
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where we define

|0, in⟩vac = exp

(
− id

∗
2

2d∗1

∫
d3k

(2π)3
a†in(k)a

†
in(−k)

)
|0, in⟩BD . (3.79)

Here |0, in⟩BD is the Bunch Davies Euclidean vacuum state. In this construction the in-

vacua state |0, in⟩vac can be expressed in terms of the out-vacua state using the above

mentioned definition as:

|0, in⟩vac = exp

[
1

2

∫
d3k

(2π)3
γ(k)a†out(k)a

†
out(−k)

]
|0, out⟩ . (3.80)

In this context the in-vacuum can be recast in the following form:

|0, in⟩vac = exp

[
−
∫

d3k

(2π)3
κ(k)a†out(k)aout(k)

]
|D⟩ , (3.81)

|0, in⟩vac = exp

[
−
∫

d3k

(2π)3
κ(k)a†out(k)aout(k)

]
|N⟩ , (3.82)

where, |D⟩ is the Dirichlet Boundary state and |N⟩, represents the Neumann boundary

state which are defined in terms of the out-vacuum |0, out⟩ state as follows:

|D⟩ = exp

[
−1

2

∫
d3k

(2π)3
a†out(k)a

†
out(−k)

]
|0, out⟩ , (3.83)

|N⟩ = exp

[
1

2

∫
d3k

(2π)3
a†out(k)a

†
out(−k)

]
|0, out⟩ . (3.84)

Now using the power series expansion of κ in Eqs (3.81) and (3.82), we find that our in

vacuum-state can be expressed in the following simplified form [35, 68, 80, 81]:

|0, in⟩ = 1√
|d1|

exp

[
−κ0,DBW0 −

∞∑
n=2

κ2n,DBW2n,DB

]
|D⟩ , (3.85)

|0, in⟩ = 1√
|d1|

exp

[
−κ0,NBW0 −

∞∑
n=2

κ2n,NBW2n,NB

]
|N⟩ . (3.86)

Thus, for the instantaneous quench from non-zero to zero mass in de Sitter space the

post quench wave function, starting from the ground state of the original Hamiltonian can

be represented by the generalized Calabrese Cardy (gCC) form with the coefficients κ′ns

given in (A.16), i.e.,

|0, in⟩ = |ψ⟩gCC . (3.87)

Thus for the instantaneous quenched mass profile in de Sitter space-time, the in-state before

35



quench takes the gCC form after the quench. Hence, one can represent the out-state in

terms of the state |ψ⟩gCC after the point of quench via the following relation:

gCC in terms of Dirichlet boundary state :

|ψgCC⟩DB =
1√
|d1|

exp

(
− κ0,DBW0 −

∞∑
n=2

κ2n,DBW2n,DB

)
|D⟩

=
1√
|d1|

exp

(
−κ0,DBW0 −

∞∑
n=2

κ2n,DBW2n

)
exp

(
−1

2

∫
d3k

(2π)3
a†out(k)a

†
out(−k)

)
|0, out⟩ .

(3.88)

gCC in terms of Neumann boundary state :

|ψgCC⟩NB =
1√
|d1|

exp

(
− κ0,NBW0 −

∞∑
n=2

κ2n,NBW2n

)
|N⟩

=
1√
|d1|

exp

(
−

∞∑
n=0

κ2n,NBW2n,NB

)
exp

(
1

2

∫
d3k

(2π)3
a†out(k)a

†
out(−k)

)
|0, out⟩ .

(3.89)

One can also calculate the various conserved charges for the post quench phases from

the expansion of κ. In [41], the authors found that for the same quench profile in flat

space-time, the in state after the point of quench can be expressed as

|0, in⟩ = exp

[
− H

m0

+
W4

6m3
0

+ ...

]
|D⟩ . (3.90)

Thus, we find a significant difference in the nature of the gCC state after the point of

quench for de Sitter space-time from the flat space results. The most striking difference

being the absence of the coefficient κ2 which implies the subsystem thermalization at a very

large temperature. This claim can be made by understanding the fact that the coefficient

κ2 is related to the inverse temperature Also, another thing to note is the dependence of

the coefficients on the choice of initial conditions. This is again a manifestation of the

fact that the choice of initial vacuum is not unique in curved space-time. In our case, the

expectation value of the number operator is given by:

⟨N⟩ = 4−5+2νin

π2
exp{−2i(2kη + πνin)}(−kνin)−4νin

(
[d2(−i+ kη) + id∗1 exp{i(2kη + πνin)}(i+ kη)]
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[(d1(−i+ kη) + id2 exp{i(2kη + πνin)})(i+ kη)][d∗2(1 + kη(i+ 2kη − 2iνin)− 2νin)

+ d∗1 exp{i(2kη + πνin)}(i(−1 + 2νin) + kη(−1− 2ikη + 2νin))]

[d1(1 + kη(i+ 2kη − 2iνin)− 2νin)] + d2 exp{i(2kη + πνin)}

(i(−1 + 2νin) + kη(−1− 2iηk + 2νin))

)
|Γ(νin)|4, (3.91)

which will finally appear in the following conserved charges of the W∞ algebra for gCC

states:

⟨W0⟩ :=
∫

d3k

(2π)3
⟨0, in|a†out(k)aout(k)|0, in⟩ =

∫
d3k

(2π)3
⟨N(k)⟩, (3.92)

⟨Wn+1⟩ :=
∫

d3k

(2π)3
|k|n⟨0, in|a†out(k)aout(k)|0, in⟩ =

∫
d3k

(2π)3
|k|n⟨N(k)⟩, (3.93)

∀ n = 1, 2, · · · ,∞ where ⟨N(k)⟩ = |β(k, η)|2.

3.3 Quenched two-point correlation functions without squeezing

In this section, we will compute the two-point correlation function of the ground state,

gCC in-vacuum in the post quench state by doing the mode expansion of fields in 3+1

dimensions. By changing the mass in the sudden limit from m0 to 0, which implies the

changing mass parameter from νin =

√
9

4
− m2

0

H2
to νout =

3

2
, the Hamiltonian of the system

changes; the post-quench state is given by a gCC state as described in the previous section.

3.3.1 Two-point functions from ground state

Once we have constructed the in-states in terms of the out-states, we can calculate the

following two-point correlation functions with respect to the ground state:

G0
χχ(x1,x2, τ1, τ2) = ⟨0, in|χ(x1, τ1)χ(x2, τ2) |0, in⟩ , (3.94)

G0
∂iχ∂iχ

(x1,x2, τ1, τ2) = ⟨0, in| ∂iχ(x1, τ1)∂iχ(x2, τ2) |0, in⟩ , (3.95)

G0
ΠχΠχ

(x1,x2, τ1, τ2) = ⟨0, in|Π(x1, τ1)Π(x2, τ2) |0, in⟩ , (3.96)

where, G0
χχ(x1,x2, τ1, τ2), G

0
∂iχ∂iχ

(x1,x2, τ1, τ2) and G
0
ΠχΠχ

(x1,x2, τ1, τ2) represent the prop-

agators in this computation. Additionally, we will define the spatial separation between

the two points x1 and x2 as:

r :≡ x1 − x2, (3.97)

which we willbe using in the subsequent computations.

It is important to note that, in this context, we are interested in the correlation function
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of the field χ, its spatial derivative and canonically conjugate momenta. This field χ is

redefined in terms of the classical mode function χ = v/a(τ), which we use in the derivation

of the two-point functions.

The two-point correlators can be expressed as:

G0
χχ(r; τ1, τ2) =

∫
d3k

(2π)3
⟨0, in|χin(k, τ1)χ

∗
in(k, τ2) |0, in⟩ exp(ik.r)

=

∫
d3k

(2π)3
G0χχ(k, τ1, τ2) exp(ik.r), (3.98)

G0
∂iχ∂iχ

(r; τ1, τ2) =

∫
d3k

(2π)3
⟨0, in| ∂jχ(k, τ1)∂jχ∗(k, τ2) |0, in⟩ exp(ik.r)

=

∫
d3k

(2π)3
G0∂jχ∂jχ(k, τ1, τ2) exp(ik.r), (3.99)

G0
ΠχΠχ

(r; τ1, τ2) =

∫
d3k

(2π)3
⟨0, in|Πχ(k, τ1)Π

∗
χ(k, τ2) |0, in⟩ exp(ik.r)

=

∫
d3k

(2π)3
G0ΠχΠχ

(k, τ1, τ2) exp(ik.r), (3.100)

where G0χχ(k, τ1, τ2), G0∂jχ∂jχ(k, τ1, τ2) and G
0
ΠχΠχ

(k, τ1, τ2) representing the Fourier trans-

form of the real space Green’s functions. From the present computation we get the following

expressions for the Fourier transform of the real space Green’s functions:

G0χχ(k, τ1, τ2) =
1

a(τ1)a(τ2)

1

|d1|

[ 4∑
b=1

∆b(k, τ1, τ2)

]
, (3.101)

G0∂jχ∂jχ(k, τ1, τ2) =
1

a(τ1)a(τ2)

1

|d1|

[
−k2

4∑
b=1

∆b(k, τ1, τ2)

]
, (3.102)

G0ΠχΠχ
(k, τ1, τ2) =

1

|d1|

[
a′(τ1)a

′(τ2)

(a(τ1))2(a(τ2))2

( 4∑
b=1

∆b(k, τ1, τ2)

)
(3.103)

− a′(τ1)

(a(τ1))2(a(τ2))

( 8∑
b=5

∆b(k, τ1, τ2)

)

− a′(τ2)

(a(τ1))(a(τ2))2

( 12∑
b=9

∆b(k, τ1, τ2)

)

+
1

a(τ1)a(τ2)

( 16∑
b=13

∆b(k, τ1, τ2)

)]
. (3.104)

Here we have introduced new symbols ∆i(k, τ1, τ2) ∀ i = 1, · · · , 16 which are used in the

above mentioned expressions for propagators and are explicitly given in Appendix B.1.

Once we take the equal time case, τ1 = τ2 = τ , it is easy to determine the expressions for
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the amplitude of the Power Spectrum of the field χ, its spatial derivative and canonically

conjugate momentum:

G0χχ(k, τ1 = τ, τ2 = τ) : = P0
χχ(k, τ) =

1

a2(τ)

1

|d1|

[ 4∑
b=1

∆b(k, τ)

]
, (3.105)

G0∂jχ∂jχ(k, τ1 = τ, τ2 = τ) : = P0
∂jχ∂jχ

(k, τ) = −k2 P0
χχ(k, τ), (3.106)

G0ΠχΠχ
(k, τ1 = τ, τ2 = τ) : = P0

ΠχΠχ
(k, τ) =

[
(a′(τ))2

a2(τ)
P0

χχ(k, τ)

− a′(τ)

(a3(τ)

1

|d1|

( 12∑
b=5

∆b(k, τ)

)
+

1

a2(τ)

1

|d1|

( 16∑
b=13

∆b(k, τ)

)]
,

(3.107)

which are all cosmologically significant quantities. This will finally give rise to the following

cosmological two-point correlation function:

⟨0, in|χ(k, τ)χ(k′, τ) |0, in⟩ = (2π)3δ3(k+ k′)P0
χχ(k, τ), (3.108)

⟨0, in| (ikχ(k, τ))(ikχ(k′
, τ)) |0, in⟩ = (2π)3δ3(k+ k′)P0

∂jχ∂jχ
(k, τ)

= −(2π)3δ3(k+ k′) k2P0
χχ(k, τ), (3.109)

⟨0, in|Π(k, τ)Π(k′, τ) |0, in⟩ = (2π)3δ3(k+ k′)P0
ΠχΠχ

(k, τ). (3.110)

3.3.2 Two-point functions from gCC states

In this section, we focus on calculating the two-point correlation function for the gCC

state:

GgCC
χχ (x1,x2, τ1, τ2) = ⟨gCC| χ̂(x1, τ1)χ̂(x2, τ2) |gCC⟩ , (3.111)

GgCC
∂iχ∂iχ

(x1,x2, τ1, τ2) = ⟨gCC| ˆ∂iχ(x1, τ1) ˆ∂iχ(x2, τ2) |gCC⟩ , (3.112)

GgCC
ΠχΠχ

(x1,x2, τ1, τ2) = ⟨gCC| Π̂(x1, τ1)Π̂(x2, τ2) |gCC⟩ , (3.113)

where we use two types of gCC states, which are the |ψgCC⟩DB Dirichlet and |ψgCC⟩NB the

Neumann boundary states, respectively.

The two-point correlators in terms of the Dirichlet boundary states can be expressed

as:

GgCCDB
χχ (r; τ1, τ2) =

∫
d3k

(2π)3
DB ⟨gCC| χ̂in(k, τ1)χ̂

∗
in(k, τ2) |gCC⟩DB exp(ik.r)

=
1

|d1|

∫
d3k

(2π)3
exp

(
− (κ∗0,DB + κ0,DB)W0 −

∞∑
n=2

(κ∗2n,DB + κ2n,DB)W2n

)
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⟨D| χ̂in(k, τ1)χ̂
∗
in(k, τ2) |D⟩ exp(ik.r)

=

∫
d3k

(2π)3
GgCCDB
χχ (k, τ1, τ2) exp(ik.r), (3.114)

GgCCDB

∂jχ∂jχ
(r; τ1, τ2) =

∫
d3k

(2π)3
DB ⟨gCC| ∂jχ̂in(k, τ1)∂jχ̂

∗
in(k, τ2) |gCC⟩DB exp(ik.r)

=
1

|d1|

∫
d3k

(2π)3
exp

(
− (κ∗0,DB + κ0,DB)W0 −

∞∑
n=2

(κ∗2n,DB + κ2n,DB)W2n

)
⟨D| ∂jχ̂in(k, τ1)∂̂jχ

∗
in(k, τ2) |D⟩ exp(ik.r)

=

∫
d3k

(2π)3
GgCCDB

∂jχ∂jχ
(k, τ1, τ2) exp(ik.r), (3.115)

GgCCDB

ΠχΠχ
(r; τ1, τ2) =

∫
d3k

(2π)3
DB ⟨gCC| Π̂χ(k, τ1)Π̂

∗
χ(k, τ2) |gCC⟩DB exp(ik.r)

=
1

|d1|

∫
d3k

(2π)3
exp

(
− (κ∗0,DB + κ0,DB)W0 −

∞∑
n=2

(κ∗2n,DB + κ2n,DB)W2n

)
⟨D| Π̂χ(k, τ1)Π̂

∗
χ(k, τ2) |D⟩ exp(ik.r)

=

∫
d3k

(2π)3
GgCCDB

ΠχΠχ
(k, τ1, τ2) exp(ik.r), (3.116)

where GgCCDB
χχ (k, τ1, τ2), GgCCDB

∂jχ∂jχ
(k, τ1, τ2) and GgCCDB

ΠχΠχ
(k, τ1, τ2) represent the Fourier trans-

form of the real space Green’s functions calculated between the Dirichlet boundary gCC

states formed after quench. The state |D⟩ is the Dirichlet boundary state which is defined

in terms of the out-vacuum state by the following expression:

|D⟩ = exp

(
−1

2

∫
d3k

(2π)3
a†out(k)a

†
out(−k)

)
|0, out⟩ . (3.117)

Now we can express the Fourier transform of the Green’s functions GgCCDB
χχ (k, τ1, τ2),

GgCCDB

∂jχ∂jχ
(k, τ1, τ2) and GgCCDB

ΠχΠχ
(k, τ1, τ2) in terms of the out vacuum state. Hence, the out-

going solutions are represented by the following expressions:

GgCCDB
χχ (k, τ1, τ2) =

1

a(τ1)a(τ2)

1

|d1|

exp

(
− (κ∗0,DB + κ0,DB)⟨N(k)⟩ −

∞∑
n=2

(κ∗2n,DB + κ2n,DB)|k|2n−1⟨N(k)⟩
)

4∑
c=1

Θc(k, τ1, τ2), (3.118)

GgCCDB

∂jχ∂jχ
(k, τ1, τ2) = −k2GgCCDB

χχ (k, τ1, τ2), (3.119)
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GgCCDB

ΠχΠχ
(k, τ1, τ2) =

1

|d1|
exp

(
− (κ∗0,DB + κ0,DB)⟨N(k)⟩ −

∞∑
n=2

(κ∗2n,DB + κ2n,DB)|k|2n−1⟨N(k)⟩
)

{
a′(τ1)a

′(τ2)

(a(τ1)a(τ2))2

[ 4∑
c=1

Θc(k, τ1, τ2)

]
− a′(τ1)

a2(τ1)a(τ2)

[ 8∑
c=5

Θc(k, τ1, τ2)

]

− a′(τ2)

a2(τ2)a(τ1)

[ 12∑
c=9

Θc(k, τ1, τ2)

]
+

1

a(τ1)a(τ2)

[ 16∑
c=12

Θc(k, τ1, τ2)

]}
, (3.120)

where the functions Θc(k, τ1, τ2)∀ c = 1, · · · , 16 are given in Appendix B.2.

Once we take the equal time case, which is τ1 = τ2 = τ , then the expressions for the

amplitude of the Power Spectrum of the field χ, its spatial derivative and canonically

conjugate momentum from the gCC Dirichlet boundary states can be easily obtained:

GgCCDB
χχ (k, τ1 = τ, τ2 = τ) : = PgCCDB

χχ (k, τ)

=
1

a2(τ)

1

|d1|

exp

(
− (κ∗0,DB + κ0,DB)⟨N(k)⟩ −

∞∑
n=2

(κ∗2n,DB + κ2n,DB)|k|2n−1⟨N(k)⟩
)

[ 4∑
c=1

Θc(k, τ)

]
, (3.121)

GgCCDB

∂jχ∂jχ
(k, τ1 = τ, τ2 = τ) : = PgCCDB

∂jχ∂jχ
(k, τ) = −k2 PgCCDB

χχ (k, τ), (3.122)

GgCCDB

ΠχΠχ
(k, τ1 = τ, τ2 = τ) : = PgCCDB

ΠχΠχ
(k, τ) =

[
(a′(τ))2

a2(τ)
PgCCDB

χχ (k, τ)

− exp

(
− (κ∗0,DB + κ0,DB)⟨N(k)⟩ −

∞∑
n=2

(κ∗2n,DB + κ2n,DB)|k|2n−1⟨N(k)⟩
)

{
a′(τ)

(a3(τ)

1

|d1|

( 12∑
c=5

Θc(k, τ)

)
− 1

a2(τ)

1

|d1|

( 16∑
b=13

Θc(k, τ)

)}]
.

(3.123)

These are cosmologically significant quantities. This will finally give rise to the following

cosmological two-point correlation function for gCC Dirichlet boundary states:

DB ⟨gCC|χ(k, τ)χ(k′, τ) |gCC⟩DB = (2π)3δ3(k+ k′)PgCCDB
χχ (k, τ), (3.124)

DB ⟨gCC| (ikχ(k, τ))(ikχ(k
′
, τ)) |gCC⟩DB = (2π)3δ3(k+ k′)PgCCDB

∂jχ∂jχ
(k, τ)

= −(2π)3δ3(k+ k′) k2PgCCDB
χχ (k, τ), (3.125)

DB ⟨gCC|Π(k, τ)Π(k′, τ) |gCC⟩DB = (2π)3δ3(k+ k′)PgCCDB

ΠχΠχ
(k, τ). (3.126)

Similarly, the two-point correlators in terms of the Neumann boundary states can be
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expressed as:

GgCCNB
χχ (r; τ1, τ2) =

∫
d3k

(2π)3
NB ⟨gCC| χ̂in(k, τ1)χ̂

∗
in(k, τ2) |gCC⟩NB exp(ik.r)

=
1

|d1|

∫
d3k

(2π)3
exp

(
− (κ∗0,NB + κ0,NB)W0 −

∞∑
n=2

(κ∗2n,NB + κ2n,NB)W2n

)
⟨N | χ̂in(k, τ1)χ̂

∗
in(k, τ2) |N⟩ exp(ik.r)

=

∫
d3k

(2π)3
GgCCNB
χχ (k, τ1, τ2) exp(ik.r), (3.127)

GgCCNB

∂jχ∂jχ
(r; τ1, τ2) =

∫
d3k

(2π)3
NB ⟨gCC| ∂jχ̂in(k, τ1)∂jχ̂

∗
in(k, τ2) |gCC⟩NB exp(ik.r)

=
1

|d1|

∫
d3k

(2π)3
exp

(
− (κ∗0,NB + κ0,NB)W0 −

∞∑
n=2

(κ∗2n,NB + κ2n,NB)W2n

)
⟨N | ∂jχ̂in(k, τ1)∂̂jχ

∗
in(k, τ2) |N⟩ exp(ik.r)

=

∫
d3k

(2π)3
GgCCNB

∂jχ∂jχ
(k, τ1, τ2) exp(ik.r),

GgCCNB

ΠχΠχ
(r; τ1, τ2) =

∫
d3k

(2π)3
NB ⟨gCC| Π̂χ(k, τ1)Π̂

∗
χ(k, τ2) |gCC⟩NB exp(ik.r)

=
1

|d1|

∫
d3k

(2π)3
exp

(
− (κ∗0,NB + κ0,NB)W0 −

∞∑
n=2

(κ∗2n,NB + κ2n,NB)W2n

)
⟨N | Π̂χ(k, τ1)Π̂

∗
χ(k, τ2) |N⟩ exp(ik.r)

=

∫
d3k

(2π)3
GgCCNB

ΠχΠχ
(k, τ1, τ2) exp(ik.r),

where GgCCNB
χχ (k, τ1, τ2), GgCCNB

∂jχ∂jχ
(k, τ1, τ2) and GgCCNB

ΠχΠχ
(k, τ1, τ2) represents the Fourier trans-

form of the real space Green’s functions calculated between the gCC Neumann boundary

state formed after quench. The state |N⟩ is a Neumann boundary state which is defined

as

|N⟩ = exp

(
1

2

∫
d3k

(2π)3
a†out(k)a

†
out(−k)

)
|0, out.⟩ (3.128)

Now we can express the Fourier transform of the Green’s functions GgCCNB
χχ (k, τ1, τ2),

GgCCNB

∂jχ∂jχ
(k, τ1, τ2) and GgCCNB

ΠχΠχ
(k, τ1, τ2) in terms of the out vacuum state and hence the

outgoing solutions represented by the following expressions:

GgCCNB
χχ (k, τ1, τ2) =

1

a(τ1)a(τ2)

1

|d1|
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exp

(
− (κ∗0,NB + κ0,NB))⟨N(k)⟩ −

∞∑
n=2

(κ∗2n,NB + κ2n,NB))|k|2n−1⟨N(k)⟩
)

4∑
c=1

Θc(k, τ1, τ2), (3.129)

GgCCNB

∂jχ∂jχ
(k, τ1, τ2) = −k2GgCCNB

χχ (k, τ1, τ2), (3.130)

GgCCNB

ΠχΠχ
(k, τ1, τ2) =

1

|d1|

exp

(
− (κ∗0,NB + κ0,NB))⟨N(k)⟩ −

∞∑
n=2

(κ∗2n,NB + κ2n,NB))|k|2n−1⟨N(k)⟩
)

{
a′(τ1)a

′(τ2)

(a(τ1)a(τ2))2

[ 4∑
c=1

Θc(k, τ1, τ2)

]
− a′(τ1)

a2(τ1)a(τ2)

[ 8∑
c=5

Θc(k, τ1, τ2)

]

− a′(τ2)

a2(τ2)a(τ1)

[ 12∑
c=9

Θc(k, τ1, τ2)

]
+

1

a(τ1)a(τ2)

[ 16∑
c=12

Θc(k, τ1, τ2)

]}
, (3.131)

where the functions Θc(k, τ1, τ2)∀ c = 1, · · · , 16 are defined earlier. Here one can further

show that:

GgCCNB
χχ (k, τ1, τ2)

GgCCDB
χχ (k, τ1, τ2)

=
GgCCNB

∂jχ∂jχ
(k, τ1, τ2)

GgCCDB

∂jχ∂jχ
(k, τ1, τ2)

=
GgCCNB

ΠχΠχ
(k, τ1, τ2)

GgCCDB

ΠχΠχ
(k, τ1, τ2)

= exp

(
2

(
κ0,NB +

iπ

2

)
⟨N(k)⟩

)
= exp(2κ0,DB⟨N(k)⟩), (3.132)

where we have used the fact that, all the forms ofW2n ∀ n = 0, 2, 3,∞ algebra for Dirichlet

and Neumann boundary states are exactly same, but the coefficients for the n = 0 term

is different and others are exactly same. Here particularly n = 1 is not allowed as for our

set up the coefficient of |k| term is trivially zero in the expansion of the κ(k) parameter.

Once we take the equal time case, τ1 = τ2 = τ , it is straighforward to determine the

expressions for the amplitude of the Power Spectrum of the field χ, its spatial derivative

and canonically conjugate momentum from the gCC Neumann boundary states:

GgCCNB
χχ (k, τ1 = τ, τ2 = τ) : = PgCCNB

χχ (k, τ)

=
1

a2(τ)

1

|d1|
exp

(
− (κ∗0,NB + κ0,NB))⟨N(k)⟩

−
∞∑
n=2

(κ∗2n,NB + κ2n,NB))|k|2n−1⟨N(k)⟩
)[ 4∑

c=1

Θc(k, τ)

]
,(3.133)

GgCCNB

∂jχ∂jχ
(k, τ1 = τ, τ2 = τ) : = PgCCNB

∂jχ∂jχ
(k, τ) = −k2 PgCCNB

χχ (k, τ), (3.134)

GgCCNB

ΠχΠχ
(k, τ1 = τ, τ2 = τ) : = PgCCNB

ΠχΠχ
(k, τ) =
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[
(a′(τ))2

a2(τ)
PgCCNB

χχ (k, τ)− exp

(
− (κ∗0,NB + κ0,NB))⟨N(k)⟩

−
∞∑
n=2

(κ∗2n,NB + κ2n,NB))|k|2n−1⟨N(k)⟩
)

{
a′(τ)

(a3(τ)

1

|d1|

( 12∑
c=5

Θc(k, τ)

)
− 1

a2(τ)

1

|d1|

( 16∑
b=13

Θc(k, τ)

)}]
,

(3.135)

which all are cosmologically significant quantities. This will finally give rise to the following

cosmological two-point correlation functions for gCC Neumann boundary states:

NB ⟨gCC|χ(k, τ)χ(k′, τ) |gCC⟩NB = (2π)3δ3(k+ k′)PgCCNB
χχ (k, τ), (3.136)

NB ⟨gCC| (ikχ(k, τ))(ikχ(k
′
, τ)) |gCC⟩NB = (2π)3δ3(k+ k′)PgCCNB

∂jχ∂jχ
(k, τ)

= −(2π)3δ3(k+ k′) k2PgCCNB
χχ (k, τ), (3.137)

NB ⟨gCC|Π(k, τ)Π(k′, τ) |gCC⟩NB = (2π)3δ3(k+ k′)PgCCNB

ΠχΠχ
(k, τ). (3.138)

3.3.3 Two-point functions from Generalised Gibbs Ensemble without squeezing

In this section, we calculate the above two-point correlation functions for the Generalized

Gibbs Ensemble (GGE) [82, 83] after quench. They can be expressed as:

GGGE
χχ (β,x1,x2, τ1, τ2) = ⟨χ̂(x1, τ1)χ̂(x2, τ1)⟩β =

1

Z
Tr

(
exp

(
− βĤ(τ1)

−
∞∑
n=2

κ2n,DB/NB |k|2n−1N̂k

)
χ̂(x1, τ1)χ̂(x2, τ2)

)
,

(3.139)

GGGE
∂iχ∂iχ

(β,x1,x2, τ1, τ2) = ⟨∂jχ̂(x1, τ1)∂jχ̂(x2, τ1)⟩β =
1

Z
Tr

(
exp

(
− βH

−
∞∑
n=2

κ2n,DB/NB |k|2n−1N̂k

)
)∂jχ(x1, τ1)∂jχ(x2, τ2)

)
,

(3.140)

GGGE
ΠχΠχ

(β,x1,x2, τ1, τ2) = ⟨Π̂χ(x1, τ1)Π̂χ(x2, τ1)⟩β =
1

Z
Tr

(
exp(−βH

−
∞∑
n=2

κ2n,DB/NB |k|2n−1N̂k

)
)Πχ(x1, τ1)Πχ(x2, τ2)

)
,

(3.141)
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where, Z is is the thermal partition function which in the present context is given by:

Z = Tr

(
exp(−βĤ(τ1)−

∞∑
n=2

κ2n,DB/NB |k|2n−1N̂k

)
)

)
which can be further represented in terms of the occupation number discrete representation

of the Hamiltonian basis |{Nk}⟩ ∀ k as:

Z =
1

|d1|
exp

(
− i

2

{
d∗2
d∗1
− d2
d1

})
×

∞∑
{Nk}=0 ∀ k

⟨{Nk}| exp(−β Ĥk(τ1))

−
∞∑
n=2

κ2n,DB/NB |k|2n−1N̂k

)
) |{Nk}⟩

=
1

2|d1|
exp

(
− i

2

{
d∗2
d∗1
− d2
d1

})
exp

(
(βEk(τ1))eff

2

)
cosech

(
(βEk(τ1))eff

2

)
,(3.142)

where (βEk(τ1))eff is given by:

(βEk(τ1))eff = βEk(τ1) +
∞∑
n=2

κ2n,DB/NB |k|2n−1, (3.143)

Thus, the expressions for the two-point for the GGE [84, 85] for the field χ, its spatial

derivative and its canonically conjugate momentum as:

GGGE
χχ (β, r, τ1, τ2) =

∫
d3k

(2π)3
[
GGGE
+,χχ (β,k, τ1, τ2) exp(ik.r)

+GGGE
−,χχ (β,k, τ1, τ2) exp(−ik.r)

]
, (3.144)

GGGE
∂iχ∂iχ

(β,k, τ1, τ2) =

∫
d3k

(2π)3
[
GGGE
+,∂iχ∂iχ

(β,k, τ1, τ2) exp(ik.r)

+GGGE
−,∂iχ∂iχ

(β,k, τ1, τ2) exp(−ik.r)
]
, (3.145)

GGGE
ΠχΠχ

(β, r, τ1, τ2) =

∫
d3k

(2π)3

[
GGGE
+,ΠχΠχ

(β,k, τ1, τ2) exp(ik.r)

+GGGE
−,ΠχΠχ

(β,k, τ1, τ2) exp(−ik.r)
]
, (3.146)

where we have defined the spatial separation between the two points x1 and x2 as:

r :≡ x1 − x2. (3.147)

For each of the cases the corresponding thermal propagators in Fourier space are divided

into two parts, one represents the advanced propagator appearing with + symbol and the

other one is the retarded propagator appearing with the − symbol. To understand the
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mathematical structure of each of them let us first write their contributions independently

in the following expressions:

GGGE
+,χχ (β,k, τ1, τ2) =

vout(k, τ1)v
∗
out(−k, τ2)

2a(τ1)a(τ2)
exp

(
(βEk(τ1))eff

2

)
cosech

(
(βEk(τ1))eff

2

)
, (3.148)

GGGE
−,χχ (β,k, τ1, τ2) =

v∗out(−k, τ1)vout(k, τ2)
2a(τ1)a(τ2)

exp

(
− (βEk(τ1))eff

2

)
cosech

(
(βEk(τ1))eff

2

)
, (3.149)

GGGE
+,∂iχ∂iχ

(β,k, τ1, τ2) = −k2 GGGE
+,χχ (β,k, τ1, τ2) , (3.150)

GGGE
−,∂iχ∂iχ

(β,k, τ1, τ2) = −k2 GGGE
−,χχ (β,k, τ1, τ2) , (3.151)

GGGE
+,ΠχΠχ

(β,k, τ1, τ2) =
v′out(k, τ1)v

∗′
out(−k, τ2)

2a(τ1)a(τ2)
exp

(
(βEk(τ1))eff

2

)
cosech

(
(βEk(τ1))eff

2

)
−
GGGE
+,χχ (β,k, τ1, τ2)

a(τ1)a(τ2)
a′(τ1)a

′(τ2), (3.152)

GGGE
−,ΠχΠχ

(β,k, τ1, τ2) =
v∗′out(−k, τ1)v′out(k, τ2)

2a(τ1)a(τ2)
exp

(
− (βEk(τ1))eff

2

)
cosech

(
(βEk(τ1))eff

2

)
−
GGGE
−,χχ (β,k, τ1, τ2)

a(τ1)a(τ2)
a′(τ1)a

′(τ2). (3.153)

All the technical details of the computations of the above mentioned expressions are ex-

plicitly presented in the Appendix.

Now we consider a special case, which is the equal time configuration τ1 = τ2 = τ . In

that case we get the following expressions for the amplitude of the thermal power spectrum

of the field χ, its spatial derivative and its canonically conjugate momentum:

GGGE
+,χχ (β,k, τ, τ) = PGGE

+,χχ (β,k, τ)

=
vout(k, τ)v

∗
out(−k, τ)

2a2(τ)
exp

(
(βEk(τ1))eff

2

)
cosech

(
(βEk(τ1))eff

2

)
, (3.154)

GGGE
−,χχ (β,k, τ, τ) = PGGE

−,χχ (β,k, τ)

=
v∗out(−k, τ)vout(k, τ)

2a2(τ)
exp

(
− (βEk(τ1))eff

2

)
cosech

(
(βEk(τ1))eff

2

)
, (3.155)

GGGE
+,∂iχ∂iχ

(β,k, τ, τ) = PGGE
+,∂iχ∂iχ

(β,k, τ) = −k2 PGGE
+,χχ (β,k, τ) , (3.156)

GGGE
−,∂iχ∂iχ

(β,k, τ, τ) = PGGE
−,∂iχ∂iχ

(β,k, τ) = −k2 PGGE
−,χχ (β,k, τ) , (3.157)

GGGE
+,ΠχΠχ

(β,k, τ, τ) = PGGE
+,ΠχΠχ

(β,k, τ)

=
v′out(k, τ)v

∗′
out(−k, τ)

2a2(τ)
exp

(
(βEk(τ1))eff

2

)
cosech

(
(βEk(τ1))eff

2

)
−
PGGE

+,χχ (β,k, τ)

a2(τ)
a′2(τ), (3.158)

GGGE
−,ΠχΠχ

(β,k, τ, τ) = PGGE
−,ΠχΠχ

(β,k, τ)
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=
v∗′out(−k, τ)v′out(k, τ)

2a2(τ)
exp

(
− (βEk(τ1))eff

2

)
cosech

(
(βEk(τ1))eff

2

)
−
PGGE

−,χχ (β,k, τ)

a2(τ)
a′2(τ). (3.159)

3.4 Quenched two-point correlation functions with squeezing

In this section, we will calculate the correlation functions for states which are not the

ground state but excited states of the initial Hamiltonian. We will first show, that even

if one starts from the excited state of the Hamiltonian before quench, the state after the

quench can be expressed as gCC states. For this purpose, let’s assume we start from a

squeezed state [86–90] instead of the ground state of the pre-quench Hamiltonian. The

language of squeezed states in the context of particle production in cosmology was also

studied earlier in [91]. The two inter-related issues namely particle production and its

relation in the dynamics of the early universe was established using the formalism of

squeezed states. A squeezed state corresponding to the pre-quench Hamiltonian can be

written as:

|ψ, in⟩ = |f⟩ = exp

(
1

2

∫
d3k

(2π)3
f(k)a†in(k)a

†
in(-k)

)
|0, in⟩ . (3.160)

The above state can be written as:

|f⟩ = exp

(
−
∫

d3k

(2π)3
κeff(k)â

†
out(k)aout(-k)

)
|Bd⟩ , (3.161)

where, |Bd⟩ represents the boundary state and can be taken as two different possibil-

ities |D⟩(Dirichlet state) and |N⟩(Neumann state) as already discussed in the previous

subsection. The term κeff is defined as

For Dirichlet State : κeff(k) = −
1

2
log(−γeff(k)), (3.162)

For Neumann State : κeff(k) = −
1

2
log(γeff(k)). (3.163)

In principle, the signature of γeff(k) captures the effect of the boundary state and takes

the negative signature for Dirichlet state and positive signature for the Neumann state.

The quantity γeff depends on the a particular combination of the ratio of the Bogoliubov

coefficients and is given by:

γeff(k) =

(
β∗(k, η) + f(k)α(k, η)

α∗(k, η) + f(k)β(k, η)

)
= exp(iδ(k))

(
γ(k) + f(k) exp(iδ(k))

1 + exp(iδ(k))f(k)γ∗(k)

)
, (3.164)
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where we define the momentum dependent phase factor δ(k) as:

exp(iδ(k)) =
α(k)

α∗(k)
. (3.165)

For a fixed quench time scale η it is expected to have only the momentum dependence in

the γeff .

In this context the function f(k) helps to create an arbitrary squeezed state from the

initial Hamiltonian of the pre-quench phase. The role of f(k) can be further understood

by noting that a particular combination of f(k) along with the operators âin(k) and â
†
in(k)

annihilates the squeezed state:(
ain(k)− f(k)a†in(−k)

)
|f⟩

=

([
α∗(k, η) + f(k)β(k, η)

]
aout(k)−

[
β∗(k, η) + f(k)α(k, η)

]
a†out(−k)

)
|f⟩

= 0. (3.166)

Particularly for a Gaussian squeeze state configuration the functional form of the squeezing

function f(k) is chosen have a Gaussian profile with standard deviation σ = σ0m0, where

σ0 is the proportionality constant. In this case the squeezing function f(k) can be written

as:

f(k) = exp

(
− k2

2σ2

)
. (3.167)

Doing a series expansion of κeff(k), for the specific choice of Gaussian profile of f(k), it

can be very easily verified that the non-vanishing expansion coefficients for the Dirichlet

and Neumann boundary states can be written in a very simplified form, mentioned in

Appendix B.3.

From the analysis the following additional relations between the non-vanishing expan-

sion coefficients before and after squeezing operation are obtained:

κeff0,DB = κ0,DB, (3.168)

κeff0,NB = κ0,NB, (3.169)

κeff4,DB = κeff4,NB = κ4,DB = κ4,NB, (3.170)

κeff6,DB = κeff6,NB = κ6,DB = κ6,NB, (3.171)

κeff7,DB = κeff7,NB ̸= κ7,DB = κ7,NB, (3.172)

κeff8,DB = κeff8,NB = κ8,DB = κ8,NB, (3.173)

κeff9,DB = κeff9,NB ̸= κ9,DB = κ9,NB, (3.174)
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which implies that for some coefficients one can explicitly observe the deviation in the

results before and after squeezing operation for the Gaussian squeezing profile function

f(k). One can explicitly check that the coefficients in which the effect of squeezing is

noticeable, has two contributions, i.e.,

κeff7,DB = κ7,DB +M sq
7,DB = κ7,NB +M sq

7,NB = κeff7,NB, (3.175)

κeff9,DB = κ9,DB +M sq
9,DB = κ9,NB +M sq

9,NB = κeff9,NB, (3.176)

where κ7,DB, κ7,NB and κ9,DB, κ9,NB are appearing from the non-squeezing part and rest

of the contributions M sq
7,DB,M

sq
7,NB and M sq

9,DB,M
sq
9,NB are appearing from the squeezing

contributions, and are given by:

M sq
7,DB =M sq

7,NB =

16(d1d
∗
1 − d2d∗2)2η6 exp(2iπνin)

(1− 2νin)2 (id1 + d2eiπνin)
2 (d∗1e

iπνin + id∗2) (i(d1 + d∗1d
∗
2) + eiπνin(d∗1 + d2))

, (3.177)

M sq
9,DB =M sq

9,NB =

1

(2νin − 1)3σ2 (d∗1e
iπνin + id∗2) (ie

iπνin(d1(d∗1 + 2d2) + d2d∗2)− d1(d1 + d∗2) + d2e2iπνin(d∗1 + d2))
2

×
[
8η6e2iπνin(d1d

∗
1 − d2d∗2)2

(
−i
(
4η2(2νin − 3)σ2(d1 + d∗2) + d1(2νin − 1)

)
−eiπνin

(
4η2(2νin − 3)σ2(d∗1 + d2) + d2(2νin − 1)

)) ]
., (3.178)

Similarly one can explicitly write down all the higher order odd contributions in the series

which capture the effects of squeezing.

3.4.1 Two-point functions from squeezed state

Once we have constructed the in-states in terms of the out-states, we can calculate the

following two-point correlation functions with respect to the ground state:

Gsq
χχ(x1,x2, τ1, τ2) = ⟨f |χ(x1, τ1)χ(x2, τ2) |f⟩ (3.179)

Gsq
∂iχ∂iχ

(x1,x2, τ1, τ2) = ⟨f | ∂iχ(x1, τ1)∂iχ(x2, τ2) |f⟩ (3.180)

Gsq
ΠχΠχ

(x1,x2, τ1, τ2) = ⟨f |Π(x1, τ1)Π(x2, τ2) |f⟩ (3.181)

where, Gsq
χχ(x1,x2, τ1, τ2), G

sq
∂iχ∂iχ

(x1,x2, τ1, τ2) and Gsq
ΠχΠχ

(x1,x2, τ1, τ2) representing the

propagators in this computation. Additionally, we will define the spatial separation be-

tween the two points x1 and x2 as:

r :≡ x1 − x2. (3.182)
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We are also interested in the correlation functions of the field χ, its spatial derivative

and canonically conjugate momenta. This field χ is redefined in terms of classical mode

function by χ = v/a(τ), used during the derivation of the two-point functions.

The two-point correlators can be expressed as:

Gsq
χχ(r; τ1, τ2) =

∫
d3k

(2π)3
⟨f |χin(k, τ1)χ

∗
in(k, τ2) |f⟩ exp(ik.r)

=

∫
d3k

(2π)3
Gsqχχ(k, τ1, τ2) exp(ik.r), (3.183)

Gsq
∂iχ∂iχ

(r; τ1, τ2) =

∫
d3k

(2π)3
⟨f | ∂jχ(k, τ1)∂jχ∗(k, τ2) |f⟩ exp(ik.r)

=

∫
d3k

(2π)3
Gsq∂jχ∂jχ(k, τ1, τ2) exp(ik.r), (3.184)

Gsq
ΠχΠχ

(r; τ1, τ2) =

∫
d3k

(2π)3
⟨f |Πχ(k, τ1)Π

∗
χ(k, τ2) |f⟩ exp(ik.r)

=

∫
d3k

(2π)3
GsqΠχΠχ

(k, τ1, τ2) exp(ik.r), (3.185)

where Gsqχχ(k, τ1, τ2), G
sq
∂jχ∂jχ

(k, τ1, τ2) and GsqΠχΠχ
(k, τ1, τ2) representing the Fourier trans-

form of the real space Green’s functions, as mentioned before. From the present compu-

tation we get the following expressions for the Fourier transform of the real space Green’s

functions:

Gsqχχ(k, τ1, τ2) =
1

a(τ1)a(τ2)

1

|d1|

[ 4∑
b=1

∆sq
b (k, τ1, τ2)

]
, (3.186)

Gsq∂jχ∂jχ(k, τ1, τ2) =
1

a(τ1)a(τ2)

1

|d1|

[
−k2

4∑
b=1

∆sq
b (k, τ1, τ2)

]
, (3.187)

GsqΠχΠχ
(k, τ1, τ2) =

1

|d1|

[
a′(τ1)a

′(τ2)

(a(τ1))2(a(τ2))2

( 4∑
b=1

∆sq
b (k, τ1, τ2)

)
(3.188)

− a′(τ1)

(a(τ1))2(a(τ2))

( 8∑
b=5

∆sq
b (k, τ1, τ2)

)

− a′(τ2)

(a(τ1))(a(τ2))2

( 12∑
b=9

∆sq
b (k, τ1, τ2)

)

+
1

a(τ1)a(τ2)

( 16∑
b=13

∆sq
b (k, τ1, τ2)

)]
. (3.189)

Here we have introduced new symbols ∆sq
i (k, τ1, τ2) ∀ i = 1, · · · , 16 which are used in the
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above mentioned expressions for propagators, and are explicitly defined in the Appendix

B.3.

Once we take the equal time case, τ1 = τ2 = τ , the amplitude of the Power Spectrum of

the field χ, its spatial derivative and canonically conjugate momentum can be determined:

Gsqχχ(k, τ1 = τ, τ2 = τ) : = Psq
χχ(k, τ) =

1

a2(τ)

1

|d1|

[ 4∑
b=1

∆sq
b (k, τ)

]
, (3.190)

Gsq∂jχ∂jχ(k, τ1 = τ, τ2 = τ) : = Psq
∂jχ∂jχ

(k, τ) = −k2 Psq
χχ(k, τ), (3.191)

GsqΠχΠχ
(k, τ1 = τ, τ2 = τ) : = Psq

ΠχΠχ
(k, τ) =

[
(a′(τ))2

a2(τ)
Psq

χχ(k, τ)

− a′(τ)

(a3(τ)

1

|d1|

( 12∑
b=5

∆sq
b (k, τ)

)
+

1

a2(τ)

1

|d1|

( 16∑
b=13

∆sq
b (k, τ)

)]
,

(3.192)

all cosmologically significant quantities. This will finally give rise to the following cosmo-

logical two-point correlation function:

⟨f |χ(k, τ)χ(k′, τ) |f⟩ = (2π)3δ3(k+ k′)Psq
χχ(k, τ), (3.193)

⟨f |)(ikχ(k, τ))(ikχ(k′
, τ)) |f⟩ = (2π)3δ3(k+ k′)Psq

∂jχ∂jχ
(k, τ)

= −(2π)3δ3(k+ k′) k2Psq
χχ(k, τ), (3.194)

⟨f |Π(k, τ)Π(k′, τ) |f⟩ = (2π)3δ3(k+ k′)Psq
ΠχΠχ

(k, τ). (3.195)

3.4.2 Two-point functions from squeezed gCC states

In this section, we focus on calculating the two-point correlation function for the

squeezed gCC state:

GgCC
χχ,sq(x1,x2, τ1, τ2) = ⟨gCCsq| χ̂(x1, τ1)χ̂(x2, τ2) |gCCsq⟩ , (3.196)

GgCC
∂iχ∂iχ,sq

(x1,x2, τ1, τ2) = ⟨gCCsq| ˆ∂iχ(x1, τ1) ˆ∂iχ(x2, τ2) |gCCsq⟩ , (3.197)

GgCC
ΠχΠχ,sq

(x1,x2, τ1, τ2) = ⟨gCCsq| Π̂(x1, τ1)Π̂(x2, τ2) |gCCsq⟩ , (3.198)

where we use two types of gCC states, the |ψgCCsq⟩DB
Dirichlet boundary state and

|ψgCCsq⟩NB
Neumann boundary states, respectively.

The two-point correlators in terms of the Dirichlet boundary states can be expressed

as:

GgCCDB
χχ,sq (r; τ1, τ2) =

∫
d3k

(2π)3
DB ⟨gCCsq| χ̂in(k, τ1)χ̂

∗
in(k, τ2) |gCCsq⟩DB exp(ik.r)
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=
1

|d1|

∫
d3k

(2π)3
exp

(
− (κ∗eff0,DB + κeff0,DB)W0 −

∞∑
n=2

(κ∗effn,DB + κeffn,DB)Wn

)
⟨D| χ̂in(k, τ1)χ̂

∗
in(k, τ2) |D⟩ exp(ik.r)

=

∫
d3k

(2π)3
GgCCDB
χχ,sq (k, τ1, τ2) exp(ik.r), (3.199)

GgCCDB

∂jχ∂jχ,sq
(r; τ1, τ2) =

∫
d3k

(2π)3
DB ⟨gCC| ∂jχ̂in(k, τ1)∂jχ̂

∗
in(k, τ2) |gCC⟩DB exp(ik.r)

=
1

|d1|

∫
d3k

(2π)3
exp

(
− (κ∗eff0,DB + κeff0,DB)W0 −

∞∑
n=2

(κ∗effn,DB + κeffn,DB)Wn

)
⟨D| ∂jχ̂in(k, τ1)∂̂jχ

∗
in(k, τ2) |D⟩ exp(ik.r)

=

∫
d3k

(2π)3
GgCCDB

∂jχ∂jχ,sq
(k, τ1, τ2) exp(ik.r), (3.200)

GgCCDB

ΠχΠχ,sq
(r; τ1, τ2) =

∫
d3k

(2π)3
DB ⟨gCC| Π̂χ(k, τ1)Π̂

∗
χ(k, τ2) |gCC⟩DB exp(ik.r)

=
1

|d1|

∫
d3k

(2π)3
exp

(
− (κ∗eff0,DB + κeff0,DB)W0 −

∞∑
n=2

(κ∗effn,DB + κeffn,DB)Wn

)
⟨D| Π̂χ(k, τ1)Π̂

∗
χ(k, τ2) |D⟩ exp(ik.r)

=

∫
d3k

(2π)3
GgCCDB

ΠχΠχ,sq
(k, τ1, τ2) exp(ik.r), (3.201)

where GgCCDB
χχ,sq (k, τ1, τ2), GgCCDB

∂jχ∂jχ,sq
(k, τ1, τ2) and GgCCDB

ΠχΠχ,sq
(k, τ1, τ2) represent the Fourier

transform of the real space Green’s functions calculated between the Dirichlet bound-

ary squeezed gCC states formed after quench. The state |D⟩ is the Dirichlet boundary

state which was defined earlier.

Now we can express the Fourier transform of the Green’s functions GgCCDB
χχ,sq (k, τ1, τ2),

GgCCDB

∂jχ∂jχ,sq
(k, τ1, τ2) and GgCCDB

ΠχΠχ,sq
(k, τ1, τ2) in terms of the out vacuum state and hence the

outgoing solutions represented by the following expressions:

GgCCDB
χχ,sq (k, τ1, τ2) = exp

(
−

∞∑
n=7,9,11,···

(M sq∗
n,DB +M sq

n,DB)|k|
n−1⟨N(k)⟩

)
GgCCDB
χχ (k, τ1, τ2), (3.202)

GgCCDB

∂jχ∂jχ,sq
(k, τ1, τ2) = −k2GgCCDB

χχ,sq (k, τ1, τ2), (3.203)

GgCCDB

ΠχΠχ,sq
(k, τ1, τ2) = exp

(
−

∞∑
n=7,9,11,···

(M sq∗
n,DB +M sq

n,DB)|k|
n−1⟨N(k)⟩

)
GgCCDB

ΠχΠχ
(k, τ1, τ2),(3.204)

where the functions M sq
n,DB∀ n = 7, 9 · · · have been defined earlier.

Once we take the equal time case, τ1 = τ2 = τ , it is easy to determine the expressions for

the amplitude of the Power Spectrum of the field χ, its spatial derivative and canonically
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conjugate momentum from the squeezed gCC Dirichlet boundary states:

GgCCDB
χχ,sq (k, τ1 = τ, τ2 = τ) : = PgCCDB

χχ,sq (k, τ)

= exp

(
−

∞∑
n=7,9,11,···

(M sq∗
n,DB +M sq

n,DB)|k|
n−1⟨N(k)⟩

)
PgCCDB

χχ (k, τ),

(3.205)

GgCCDB

∂jχ∂jχ,sq
(k, τ1 = τ, τ2 = τ) : = PgCCDB

∂jχ∂jχ,sq
(k, τ) = −k2 PgCCDB

χχ,sq (k, τ), (3.206)

GgCCDB

ΠχΠχ,sq
(k, τ1 = τ, τ2 = τ) : = PgCCDB

ΠχΠχ,sq
(k, τ)

= exp

(
−

∞∑
n=7,9,11,···

(M sq∗
n,DB +M sq

n,DB)|k|
n−1⟨N(k)⟩

)
PgCCDB

ΠχΠχ
(k, τ),

(3.207)

which are cosmologically significant quantities. This will finally give rise to the follow-

ing cosmological two-point correlation function for the squeezed gCC Dirichlet boundary

states:

DB ⟨gCCsq|χ(k, τ)χ(k′, τ) |gCCsq⟩DB = (2π)3δ3(k+ k′)PgCCDB
χχ,sq (k, τ), (3.208)

DB ⟨gCCsq| (ikχ(k, τ))(ikχ(k
′
, τ)) |gCCsq⟩DB = (2π)3δ3(k+ k′)PgCCDB

∂jχ∂jχ,sq
(k, τ)

= −(2π)3δ3(k+ k′) k2PgCCDB
χχ,sq (k, τ), (3.209)

DB ⟨gCCsq|Π(k, τ)Π(k′, τ) |gCCsq⟩DB = (2π)3δ3(k+ k′)PgCCDB

ΠχΠχ,sq
(k, τ). (3.210)

Similarly, the two-point correlators in terms of the Neumann boundary states can be

expressed as:

GgCCNB
χχ,sq (r; τ1, τ2) =

∫
d3k

(2π)3
NB ⟨gCCsq| χ̂in(k, τ1)χ̂

∗
in(k, τ2) |gCCsq⟩NB exp(ik.r)

=
1

|d1|

∫
d3k

(2π)3
exp

(
− (κeff∗0,NB + κeff0,NB)W0 −

∞∑
n=2

(κeff∗n,NB + κeffn,NB)Wn

)
⟨N | χ̂in(k, τ1)χ̂

∗
in(k, τ2) |N⟩ exp(ik.r)

=

∫
d3k

(2π)3
GgCCNB
χχ,sq (k, τ1, τ2) exp(ik.r), (3.211)

GgCCNB

∂jχ∂jχ,sq
(r; τ1, τ2) =

∫
d3k

(2π)3
NB ⟨gCCsq| ∂jχ̂in(k, τ1)∂jχ̂

∗
in(k, τ2) |gCCsq⟩NB exp(ik.r)

=
1

|d1|

∫
d3k

(2π)3
exp

(
− (κeff∗0,NB + κeff0,NB)W0 −

∞∑
n=2

(κeff∗n,NB + κeffn,NB)Wn

)
⟨N | ∂jχ̂in(k, τ1)∂̂jχ

∗
in(k, τ2) |N⟩ exp(ik.r)
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=

∫
d3k

(2π)3
GgCCNB

∂jχ∂jχ,sq
(k, τ1, τ2) exp(ik.r),

GgCCNB

ΠχΠχ,sq
(r; τ1, τ2) =

∫
d3k

(2π)3
NB ⟨gCCsq| Π̂χ(k, τ1)Π̂

∗
χ(k, τ2) |gCCsq⟩NB exp(ik.r)

=
1

|d1|

∫
d3k

(2π)3
exp

(
− (κeff∗0,NB + κeff0,NB)W0 −

∞∑
n=2

(κeff∗n,NB + κeffn,NB)Wn

)
⟨N | Π̂χ(k, τ1)Π̂

∗
χ(k, τ2) |N⟩ exp(ik.r)

=

∫
d3k

(2π)3
GgCCNB

ΠχΠχ,sq
(k, τ1, τ2) exp(ik.r),

where GgCCNB
χχ,sq (k, τ1, τ2), GgCCNB

∂jχ∂jχ,sq
(k, τ1, τ2) and GgCCNB

ΠχΠχ,sq
(k, τ1, τ2) represent the Fourier

transform of the real space Green’s functions calculated between the squeezed gCC Neu-

mann boundary state formed after quench. The state |N⟩ is a Neumann boundary state,

defined earlier.

Now we can express the Fourier transform of the Green’s functions GgCCNB
χχ,sq (k, τ1, τ2),

GgCCNB

∂jχ∂jχ,sq
(k, τ1, τ2) and GgCCNB

ΠχΠχ,sq
(k, τ1, τ2) in terms of the out vacuum state and hence the

outgoing solutions represented by the following expressions:

GgCCNB
χχ,sq (k, τ1, τ2) = exp

(
−

∞∑
n=7,9,11,···

(M sq∗
n,NB +M sq

n,NB)|k|
n−1⟨N(k)⟩

)
GgCCNB
χχ (k, τ1, τ2), (3.212)

GgCCNB

∂jχ∂jχ,sq
(k, τ1, τ2) = −k2GgCCNB

χχ,sq (k, τ1, τ2), (3.213)

GgCCNB

ΠχΠχ
(k, τ1, τ2) = exp

(
−

∞∑
n=7,9,11,···

(M sq∗
n,NB +M sq

n,NB)|k|
n−1⟨N(k)⟩

)
GgCCNB

ΠχΠχ
(k, τ1, τ2),(3.214)

where the functions M sq
n,DB∀ n = 7, 9 · · · have already been defined earlier.

Once again in the equal time case, τ1 = τ2 = τ , it is strightforward to determine the

expressions for the amplitude of the Power Spectrum of the field χ, its spatial derivative

and canonically conjugate momentum from the gCC Neumann boundary states:

GgCCNB
χχ,sq (k, τ1 = τ, τ2 = τ) : = PgCCNB

χχ,sq (k, τ)

= exp

(
−

∞∑
n=7,9,11,···

(M sq∗
n,NB +M sq

n,NB)|k|
n−1⟨N(k)⟩

)
PgCCNB

χχ (k, τ),

(3.215)

GgCCNB

∂jχ∂jχ,sq
(k, τ1 = τ, τ2 = τ) : = PgCCNB

∂jχ∂jχ,sq
(k, τ) = −k2 PgCCNB

χχ,sq (k, τ), (3.216)

GgCCNB

ΠχΠχ,sq
(k, τ1 = τ, τ2 = τ) : = PgCCNB

ΠχΠχ,sq
(k, τ)

= exp

(
−

∞∑
n=7,9,11,···

(M sq∗
n,NB +M sq

n,NB)|k|
n−1⟨N(k)⟩

)
PgCCNB

ΠχΠχ
(k, τ).
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(3.217)

These are cosmologically significant quantities. This will finally give rise to the following

cosmological two-point correlation function for gCC Neumann boundary states:

NB ⟨gCCsq|χ(k, τ)χ(k′, τ) |gCCsq⟩NB = (2π)3δ3(k+ k′)PgCCNB
χχ,sq (k, τ), (3.218)

NB ⟨gCCsq| (ikχ(k, τ))(ikχ(k
′
, τ)) |gCCsq⟩NB = (2π)3δ3(k+ k′)PgCCNB

∂jχ∂jχ,sq
(k, τ)

= −(2π)3δ3(k+ k′) k2PgCCNB
χχ,sq (k, τ),(3.219)

NB ⟨gCCsq|Π(k, τ)Π(k′, τ) |gCCsq⟩NB = (2π)3δ3(k+ k′)PgCCNB

ΠχΠχ,sq
(k, τ). (3.220)

3.4.3 Two-point functions from Generalised Gibbs Ensemble with squeezing

In this section, we calculate the above two-point correlation functions for the Generalized

Gibbs Ensemble (GGE) [82, 83] after quench. They can be expressed as:

GGGE
χχ,sq(β,x1,x2, τ1, τ2) = ⟨χ̂(x1, τ1)χ̂(x2, τ1)⟩β =

1

Z
Tr

(
exp

(
− βĤ(τ1)

−
∞∑
n=2

κsq2n,DB/NB |k|
2n−1N̂k

)
χ̂(x1, τ1)χ̂(x2, τ2)

)
,

(3.221)

GGGE
∂iχ∂iχ,sq

(β,x1,x2, τ1, τ2) = ⟨∂jχ̂(x1, τ1)∂jχ̂(x2, τ1)⟩β =
1

Z
Tr

(
exp

(
− βH

−
∞∑
n=2

κsq2n,DB/NB |k|
2n−1N̂k

)
)∂jχ(x1, τ1)∂jχ(x2, τ2)

)
,

(3.222)

GGGE
ΠχΠχ,sq(β,x1,x2, τ1, τ2) = ⟨Π̂χ(x1, τ1)Π̂χ(x2, τ1)⟩β =

1

Z
Tr

(
exp(−βH

−
∞∑
n=2

κsq2n,DB/NB |k|
2n−1N̂k

)
)Πχ(x1, τ1)Πχ(x2, τ2)

)
,

(3.223)

where, Z is is the thermal partition function which in the present context is given by:

Z = Tr

(
exp(−βĤ(τ1)−

∞∑
n=2

κsq2n,DB/NB |k|
2n−1N̂k

)
)

)
which can be further represented in terms of the occupation number discrete representation
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of the Hamiltonian basis |{Nk}⟩ ∀ k as:

Z =
1

|d1|
exp

(
− i

2

{
d∗2
d∗1
− d2
d1

})
×

∞∑
{Nk}=0 ∀ k

⟨{Nk}| exp(−β Ĥk(τ1))

−
∞∑
n=2

κsq2n,DB/NB |k|
2n−1N̂k

)
) |{Nk}⟩

=
1

2|d1|
exp

(
− i

2

{
d∗2
d∗1
− d2
d1

})
exp

(
(βEk(τ1))eff,sq

2

)
cosech

(
(βEk(τ1))eff,sq

2

)
,(3.224)

where (βEk(τ1))eff is given by:

(βEk(τ1))eff,sq = βEk(τ1) +
∞∑
n=2

κsq2n,DB/NB |k|
2n−1, (3.225)

Thus, the expressions for the two-point for the GGE [84, 85] for the field χ, its spatial

derivative and its canonically conjugate momentum as:

GGGE
χχ,sq(β, r, τ1, τ2) =

∫
d3k

(2π)3
[
GGGE
+,χχ,sq (β,k, τ1, τ2) exp(ik.r)

+GGGE
−,χχ,sq (β,k, τ1, τ2) exp(−ik.r)

]
, (3.226)

GGGE
∂iχ∂iχ,sq

(β,k, τ1, τ2) =

∫
d3k

(2π)3
[
GGGE
+,∂iχ∂iχ,sq

(β,k, τ1, τ2) exp(ik.r)

+GGGE
−,∂iχ∂iχ,sq

(β,k, τ1, τ2) exp(−ik.r)
]
, (3.227)

GGGE
ΠχΠχ,sq(β, r, τ1, τ2) =

∫
d3k

(2π)3

[
GGGE
+,ΠχΠχ,sq (β,k, τ1, τ2) exp(ik.r)

+GGGE
−,ΠχΠχ,sq (β,k, τ1, τ2) exp(−ik.r)

]
, (3.228)

where we have defined the spatial separation between the two points x1 and x2 as:

r :≡ x1 − x2. (3.229)

For each of the cases the corresponding thermal propagators in Fourier space are divided

into two parts, one represents the advanced propagator appearing with + symbol and the

other one is the retarded propagator appearing with the − symbol. To understand the

mathematical structure of each of them let us first write their contributions independently

in the following expressions:

GGGE
+,χχ,sq (β,k, τ1, τ2) =

vout(k, τ1)v
∗
out(−k, τ2)

2a(τ1)a(τ2)
exp

(
(βEk(τ1))eff,sq

2

)
cosech

(
(βEk(τ1))eff,sq

2

)
,

(3.230)
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GGGE
−,χχ,sq (β,k, τ1, τ2) =

v∗out(−k, τ1)vout(k, τ2)
2a(τ1)a(τ2)

exp

(
− (βEk(τ1))eff,sq

2

)
cosech

(
(βEk(τ1))eff,sq

2

)
,

(3.231)

GGGE
+,∂iχ∂iχ,sq

(β,k, τ1, τ2) = −k2 GGGE
+,χχ,sq (β,k, τ1, τ2) , (3.232)

GGGE
−,∂iχ∂iχ,sq

(β,k, τ1, τ2) = −k2 GGGE
−,χχ,sq (β,k, τ1, τ2) , (3.233)

GGGE
+,ΠχΠχ,sq (β,k, τ1, τ2) =

v′out(k, τ1)v
∗′
out(−k, τ2)

2a(τ1)a(τ2)
exp

(
(βEk(τ1))eff,sq

2

)
cosech

(
(βEk(τ1))eff,sq

2

)
−
GGGE
+,χχ (β,k, τ1, τ2)

a(τ1)a(τ2)
a′(τ1)a

′(τ2),

(3.234)

GGGE
−,ΠχΠχ,sq (β,k, τ1, τ2) =

v∗′out(−k, τ1)v′out(k, τ2)
2a(τ1)a(τ2)

exp

(
− (βEk(τ1))eff,sq

2

)
cosech

(
(βEk(τ1))eff,sq

2

)
−
GGGE
−,χχ,sq (β,k, τ1, τ2)

a(τ1)a(τ2)
a′(τ1)a

′(τ2).

(3.235)

Now we consider a special case, which is the equal time configuration τ1 = τ2 = τ . In

that case we get the following expressions for the amplitude of the thermal power spectrum

of the field χ, its spatial derivative and its canonically conjugate momentum:

GGGE
+,χχ,sq (β,k, τ1 = τ, τ2 = τ) = PGGE

+,χχ,sq (β,k, τ)

=
vout(k, τ)v

∗
out(−k, τ)

2a2(τ)
exp

(
(βEk(τ1))eff,sq

2

)
cosech

(
(βEk(τ1))eff,sq

2

)
,

(3.236)

GGGE
−,χχ,sq (β,k, τ1 = τ, τ2 = τ) = PGGE

−,χχ,sq (β,k, τ)

=
v∗out(−k, τ)vout(k, τ)

2a2(τ)
exp

(
− (βEk(τ1))eff,sq

2

)
cosech

(
(βEk(τ1))eff,sq

2

)
,

(3.237)

GGGE
+,∂iχ∂iχ,sq

(β,k, τ1 = τ, τ2 = τ) = PGGE
+,∂iχ∂iχ,sq

(β,k, τ) = −k2 PGGE
+,χχ,sq (β,k, τ) ,

(3.238)

GGGE
−,∂iχ∂iχ,sq

(β,k, τ1 = τ, τ2 = τ) = PGGE
−,∂iχ∂iχ,sq

(β,k, τ) = −k2 PGGE
−,χχ,sq (β,k, τ) ,

(3.239)

GGGE
+,ΠχΠχ,sq (β,k, τ1 = τ, τ2 = τ) = PGGE

+,ΠχΠχ,sq (β,k, τ)

=
v′out(k, τ)v

∗′
out(−k, τ)

2a2(τ)
exp

(
(βEk(τ1))eff,sq

2

)
cosech

(
(βEk(τ1))eff,sq

2

)
−
PGGE

+,χχ,sq (β,k, τ)

a2(τ)
a′2(τ),

(3.240)
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GGGE
−,ΠχΠχ,sq (β,k, τ1 = τ, τ2 = τ) = PGGE

−,ΠχΠχ,sq (β,k, τ)

=
v∗′out(−k, τ)v′out(k, τ)

2a2(τ)
exp

(
− (βEk(τ1))eff,sq

2

)
cosech

(
(βEk(τ1))eff,sq

2

)
−
PGGE

−,χχ,sq (β,k, τ)

a2(τ)
a′2(τ).

(3.241)

4 Numerical results

In this section, we study the behavior of the physically important power spectrum of

the two-point correlators of different quantum states calculated in the Fourier transformed

space. We plot the power spectrum with respect to the modes and it is expected that

from our analysis these power spectrum and their associated signatures can be probed via

various cosmological observational datasets. In each plot, we have incorporated the infor-

mation regarding the three different choices of the initial conditions, which are appearing

in terms of the Bunch Davies, α and Mota Allen vacua. We also have covered a large range

of momentum modes to study the behavior of the obtained power spectra in small and

large cosmological scales. Additionally it is important to note that, during performing the

numerical analysis we have used the full solution involving the Hankel functions for each of

the pre quench, post quench and GGE cases. Though we have used the full mathematical

structure of Hankel functions it is important to note that for cosmological estimations and

to confront with observational probes only the super horizon modes are physically rele-

vant. Once the sub horizon modes generated due to having quantum fluctuations, in this

specific work due to having Quantum Brownian Motion leaves the horizon it freezes and

give rise to the correct observationally consistent amplitude of the power spectrum. For

this reason it is immediately expected that solutions obtained by considering the full math-

ematical structure of Hankel functions in the three consecutive phases (pre quench, post

quench and GGE) will be completely consistent with the analytically obtained asymptotic

solutions within the probed wave number window k ∼ O(10−9 − 102)Mpc−1 ∗. Beyond

this mentioned probed window it might happen that the full Hankel function solutions

and asymptotic solutions † of the scalar modes in the previously mentioned consecutive

∗Here look at ref. [92–94] where the discussions regarding the outcomes obtained from the full Hankel
function solutions and the asymptotic solutions and their comparison have been studied. Using the analysis
performed in the work [92–94] we have previously inferred at the strong conclusion that the wave number
window upto which the full Hankel function solutions and the asymptotic solutions match is known as the
slow-roll region where the linear approximations and associated truncations of the perturbation theory
holds good perfectly in the corresponding cosmological scales. The exactly similar situation is appearing
in the present context of discussion as well.

†Here it is important to note to write down the analytical results we have separately used the asymp-
totic solutions in the super horizon scale and sub horizon scale. It immediately confuse the readers that
probably our asymptotic expansion is not at all valid at the horizon crossing point. This notion is not at
all true. To write down the total solution we have matched the scalar modes at the horizon crossing point
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phases differ from each other. However, that region where the deviations are growing with

the wave number turning out to be .a non-linear regime where the all the approximations

of the cosmological perturbation theory completely breaks and the a-causal physics try

to dominate in the modes. This is the region where the large scale structure formation

in the late time scale completely described by the non-linearly evolved density contrast

within the framework of EFTofLSS. See refs.[95, 96] on this issue. Apart from this if we

account the non-linearities along with non-Gaussianities within the framework of Primor-

dial Black Hole (PBH) formation then also we need to take care of the full solution in

terms of the Hankel function rather the asymptotic solution mentioned in this paper. See

ref. [97–100] for more details on these aspects. To compute the cosmological two point

correlation functions and estimate the associated power spectrum out of this computation

we need the information from the super horizon scale and such spectrum should match

with the sub horizon quantum fluctuations at the horizon crossing point. For this purpose

if we at least have the asymptotic solution of the scalar modes in the sub horizon region

(−kτ → ∞ → −kτ ≫ 1), super horizon region (−kτ → 0 → −kτ ≪ 1) ∗ and at the

horizon crossing matching point (−kτ = 1) then one can able to give a complete correct

estimate of the amplitude of the spectrum in all cosmological scales. Most importantly the

super horizon and sub horizon results has to match at the horizon crossing boundary. As

an immediate consequence, at the pivot scale when horizon crossing matching condition is

implemented the correct observationally consistent amplitude can be estimated from the

present computation performed in this paper.

• In Fig. 4.1, the behavior of the power spectrum corresponding to the correlator G0
χχ

in the Fourier transformed space has been studied with respect to the mode functions
†. The difference in the effect of the choice of initial vacuum state can be very easily

as well, which we have not explicitly mentioned before clearly. Once we have this information using the
result at the sub horizon region, horizon crossing and super horizon region we have constructed the final
analytical expression for the mode function. Because of this specific reason if we compute the cosmological
correlation function utilizing these analytical expressions for the modes it will capture the information of
the three consecutive regions, sub-horizon, horizon crossing and super horizon together. Most importantly
if we explicitly evaluate the correlation function separately using sub horizon and super horizon region
information then it is always matching at the boundary which is the horizon crossing point. This clari-
fication needs to be given to avoid any further confusion regarding the correctness and utilization of the
analytically computed modes and its cosmological impacts in this paper. though for the completeness it is
important to further note that during performing the numerical computations we have used the full Hankel
function solution of the modes which again captures the information of these mentioned three regions in
the mathematical structure of the solution.

∗Here it is important to note that, to correctly implement the super horizon limit τ → 0 is not the
accurate condition. It has to be described by the limiting condition −kτ → 0. Now here if we fix the
conformal time scale τ = −3Mpc then to satisfy this condition one has to choose the wave number value
small. This will helps us to correctly estimate the amplitude of the power spectrum in the super horizon
scale.

†In this paper for the numerical estimation purpose and to obtain the plots we have fixed the unit of
the conformal time scales, τ and η as Mpc. This further helps us to make the quantity | − kτ | and | − kη|
dimensionless throughout the analysis performed in this paper. Because of such choice the wave number
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Figure 4.1: Behavior of the power spectrum of the correlator Gχχ for the ground state
with respect to the comoving wave number/scale k.

Figure 4.2: Behavior of the power spectrum of the correlator G∂jχ∂jχ for the ground state
with respect to the comoving wave number/scale k.

is measured in the units of Mpc−1.
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Figure 4.3: Behavior of the power spectrum of the correlator GΠχΠχ for the ground state
with respect to the comoving wave number/scale k.

realized by seeing the behavior of the power spectrum for the lower modes. Three

distinct lines are observed for the lower modes which suggest that the choice of

initial vacuum has a non-trivial effect on the power spectrum. The amplitude of the

correlator is the lowest for the Bunch Davies vacuum. However, the amplitude for

the alpha and the Mota Allen vacua cross over, as can be clearly seen from the inset

of Fig. 4.1. From higher modes, it is extremely difficult to capture the role of the

initial vacuum state in the power spectrum, due to the overlapping of the curves

in that region. However, it should be noted that the overlap behavior of the power

spectrum is independent of the choice of initial vacuum and more or less follows an

identical pattern for all the vacuum states. From this plot, it is also observed that

upto a certain range of the mode k the obtained spectra grows almost linearly. After

crossing the value k ∼ 1.20 Mpc−1 rapid oscillations with small amplitude can be

observed, though the slope of the growth of the spectra in this region is higher than

the previous one. From the present observational probes (Planck 2018 data [101])

the amplitude of the scalar modes from the power spectrum has to lie within the

range:

Ps = (2.975± 0.056)× 10−9 at 68%CL (Planck 2018 data→ observed). (4.1)
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From this plot, we have found that the amplitude of the spectrum exactly matches

with the observed value within the range of the comoving scale 10−3 Mpc−1 ≤ k ≤
0.2 Mpc−1, which is a satisfactory finding of our analysis. We have found from our

theory the amplitude of the power spectrum at the pivot scale k∗ ∼ 0.02Mpc−1 is:

P0
χχ(k∗ ∼ 0.02Mpc−1) ∼ 2.95× 10−9 (estimated), (4.2)

where the CMB Planck observation takes place. Here all the modes crosses the

horizon and goes to the sub horizon region for which we can clearly observe that the

condition, −k∗τ ≪ 1 is explicitly satisfied. Outcomes of the quantum fluctuations

of modes becomes observationally only relevant when actually we have −kτ ≤ 1.

From our analysis we have found that within a specific range of the wave number,

k ∼ O(10−3 − 0.33)Mpc−1 the condition −kτ ≤ 1 is explicitly satisfied and we have

obtained a observationally consistent value of the amplitude of the power spectrum

lie within the following window:

P0
χχ(k ∼ O(10−3 − 0.33)Mpc−1) ∼ O(2.91− 2.96)× 10−9 (estimated). (4.3)

• In Fig. 4.2, the behavior of the power spectrum corresponding to the correlator

G0
∂jχ∂jχ

in the Fourier transformed space has been studied with respect to the co-

moving scale k. The overall behavior of the power spectrum is almost identical to

the behavior of the correlator G0
χχ. However, the amplitude in the entire mode range

is very small as compared to the power spectrum obtained for the G0
χχ correlator. In

the higher mode region, a difference in the behavior can also be observed. Though

both the power spectrum exhibit a rising behavior in the higher mode region, the

rate of increase for the G0
∂jχ∂jχ

correlator is appreciably less than that of the G0
χχ

correlator which is again a new finding from our analysis. In the observational probes

this type of two-point correlator and their associated power spectrum is not actually

analyzed. But since we know the connection between this particular type of power

spectrum with the previously derived one, it is expected to have smaller amplitude

in this context. From the observational perspective it is expected that in near future,

with the development of statistical accuracy in the CL, it may possible to directly

probe this type of power spectrum.

• The behavior of the power spectrum corresponding to the correlator G0
ΠχΠχ

in the

Fourier transformed space has been plotted with respect to the mode functions in

Fig. 4.3. We observe a behavior which is almost identical to the behavior shown by

the power spectrum corresponding to the G0
χχ correlator in the entire mode region.

We have found that the corresponding amplitude of the power spectrum from the

momentum two-point correlators are larger compared to the two types of spectra

studied above. In the observational probes this type of two-point correlator and its
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associated power spectrum is not actually analyzed till date. However, it is expected

to get signatures from two-point momentum correlator in future observational probes.

• From the Fig. 4.1, Fig. 4.2 and Fig. 4.3 it is clearly observed that with increasing

wave number gives increasing amplitude of the power spectrum for the scalar modes.

Consequently one can immediately think that we have obtained a blue tilted power

spectrum which is valid in all the wave numbers. However this specific notion of

interpretation regarding the blue tiltedness of the power spectrum is not correct. Let

us clarify in detail why this notion is not correct. To understand this specific feature

we need to start with the CMB pivot scale k∗ ∼ 0.02Mpc−1, where the Planck obser-

vation takes places and provides statistically significant estimates from observation.

If we found the spectral tilt evaluated at this particular momentum scale is greater

than unity then we can conclude that at CMB observation we get inconsistent result

because that will correspond to the blue tilted value. From our model at the pivot

scale the spectral tilt from the obtained power spectrum is estimated as:

n0
χχ =

[
1 +

(
d lnP0

χχ

d ln k

)
k∗∼0.02Mpc−1

]
∼ 0.966 (estimated). (4.4)

From our analysis we have also found that within a specific range of the wave number,

k ∼ O(10−3 − 0.33)Mpc−1 the condition −kτ ≤ 1 is explicitly satisfied and within

this range the spectral tilt from the obtained power spectrum is estimated as:

n0
χχ =

[
1 +

(
d lnP0

χχ

d ln k

)
k∼O(10−3−0.33)Mpc−1

]
∼ O(0.961− 0.969) (estimated). (4.5)

Form CMB Planck 2018 the measured value of the spectral tilt is given by:

ns = 0.9649± 0.0042 at 68%CL (Planck 2018 data→ observed). (4.6)

Which means the estimated value of the spectral tilt from our model is perfectly

consistent with CMB Planck 2018 observed data and shows that one can accom-

modate red tilt at the CMB pivot scale k∗ ∼ 0.02Mpc−1 as well as in the preferred

window k ∼ O(10−3−0.33)Mpc−1 where the quantum fluctuations are entered in the

super horizon region after crossing the horizon from the sub horizon region. From

this discussion its now clear that though there is an increment visible in the pri-

mordial power spectrum but at the pivot scale and within a very small window of

wave number one can still accommodate red tilted feature. It might happen that

beyond the mentioned window of the wave number the spectral tilt show blue tilted

feature and largely vary with the wave numbers. This outcome looks very surpris-

ing. However, there lies a deep physical meaning which we now properly interpret.

Apart from the CMB pivot scale non-causal physics play significant role due to hav-
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ing significant violation of slow-roll dynamics for which we can’t probe the physical

outcomes of the any other wave numbers directly though CMB observations. There

are many examples in cosmology where beyond the pivot scale wave number due to

having dominance of the non-causal phenomena it might happen that the spectral

tilt deviates largely from the red tilted behaviour. These are:

– Production of Primordial Black Holes (PBHs) [102–108] in presence of ultra

slow-roll phase.

– Thermal interaction in warm inflationary model [109–113].

In all of these mentioned works the authors have explicitly shown with detailed anal-

ysis that at the pivot scale red tilted features of the primordial power spectrum can

be easily accommodated and once we go beyond this scale features largely deviates

from red tiltedness.

Let us now give the explanation of the increasing behaviour of the primordial power

spectrum with wave number as appearing in Fig. 4.1, Fig. 4.2 and Fig. 4.3. In

the present framework where we are studying the fate of the quantum fluctuations

can accommodate both the mentioned features of PBHs production through ultra

slow-roll and thermal interaction as appearing in the context of warm inflation. The

framework that we have constructed with the help of open quantum field theoretic

set up is based on the fact that the system is non-adiabatically interacting with the

thermal environment, which is identified as a thermal bath. In all of these plots

the power spectrum is computed with the help of a quantum vacuum state (i.e.

pre-quench state) where such thermal interactions with the environment play very

significant role. Before applying the quantum quench the open quantum system we

are dealing with in the present context goes immediately to the out-of-equilibrium

regime once the thermal interaction via Quantum Brownian Motion is activated in

the weak coupling non-Markovian regime. Due to having the mentioned out-of-

equilibrium feature the amplitude of the computed correlations evaluated using the

pre-quench quantum states show growth due to having violation of slow-roll dynamics

beyond a certain window of the wave number. This type of feature is very common

in the context of a system driven by out-of-equilibrium response which is frequently

appearing in the related contexts [114–116].

• In Fig. 4.4, we have plotted the behavior of the power spectrum corresponding to

the correlator Gsq
χχ for the squeezed state. We observe three distinctive behavior

in the three comoving scale regions. For the lower mode region, we observe rapid

fluctuations in the power spectrum with the amplitude being the largest for the

Bunch-Davies vacuum case. A decreasing behavior is also observed for the lower mode

region. In the intermediate mode region, the decreasing behavior is continued with
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Figure 4.4: Behavior of the power spectrum of the correlator Gχχ for the squeezed state
with respect to the comoving wave number/scale k.

Figure 4.5: Behavior of the power spectrum of the correlator G∂jχ∂jχ for the squeezed
state with respect to the comoving wave number/scale k.

65



Figure 4.6: Behavior of the power spectrum of the correlator GΠχΠχ for the ground state
with respect to the comoving wave number/scale k.

the rate of decrease being significantly larger than the lower mode region. However,

the point worth mentioning is the fact that the amplitude for the Bunch-Davies case

becomes lowest in this region. The higher mode region however, shows a slowly rising

behavior, with the contribution from the different vacuum being almost identical, as

evident from the overlapping curves. From the present observational probes (Planck

2018 data [101]) the amplitude of the scalar modes from the power spectrum has

to lie within the range (2.975± 0.056) × 10−10 at 68% CL. From this plot, we have

found that the amplitude of the spectrum exactly matches with the observed value

within the range of the comoving scale 0.01 Mpc−1 ≤ k ≤ 0.3 Mpc−1, which is a

satisfactory finding of our analysis. We have found from our theory the amplitude

of the power spectrum at the pivot scale k∗ ∼ 0.02Mpc−1 is:

Psq
χχ(k∗ ∼ 0.02Mpc−1) ∼ 2.96× 10−9 (estimated), (4.7)

where the CMB Planck observation takes place. Here all the modes crosses the

horizon and goes to the sub horizon region for which we can clearly observe that the

condition, −k∗τ ≪ 1 is explicitly satisfied. Outcomes of the quantum fluctuations

of modes becomes observationally only relevant when actually we have −kτ ≤ 1.

From our analysis we have found that within a specific very small range of the wave

number, k ∼ O(0.01− 0.33)Mpc−1 the condition −kτ ≤ 1 is explicitly satisfied and
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we have obtained a observationally consistent value of the amplitude of the power

spectrum lie within the following window:

Psq
χχ(k ∼ O(0.01− 0.33)Mpc−1) ∼ O(2.92− 2.97)× 10−9 (estimated). (4.8)

• In Fig. 4.5, we have plotted the behavior of the power spectrum corresponding to

the correlator Gsq
∂jχ∂jχ

for the squeezed state. The behavior of the power spectrum

in the intermediate and the higher modes are nearly similar to the previous case.

However, a difference exists in the lower mode region. Whereas in the previous case,

we observed decreasing behavior for the lower modes, the power spectrum exhibits an

increasing behavior in this case. The peculiar behavior for the Bunch-Davies case as

was seen in the earlier case, also persists in this power spectrum. In the observational

probes this type of two-point correlator and their associated spectrum has not been

analyzed yet. It is expected to have smaller amplitude in this context, which may be

tested in near future with the development of statistical accuracy in the CL.

• In Fig. 4.6, we have plotted the behavior of the power spectrum corresponding to

the correlator GΠχΠχ for the squeezed state. We observe the behavior the power

spectrum to be identical to that shown for the correlator Gχχ.

• From the Fig. 4.4, Fig. 4.5 and Fig. 4.6 it is clearly observed that with increasing wave

number gives initially decreasing and then very small increment in the amplitude of

the power spectrum for the scalar modes. To understand this specific feature we need

to start with the CMB pivot scale k∗ ∼ 0.02Mpc−1, where the Planck observation

takes places and provides statistically significant estimates from observation. From

our model at the pivot scale the spectral tilt from the obtained power spectrum is

estimated as:

nsq
χχ =

[
1 +

(
d lnPsq

χχ

d ln k

)
k∗∼0.02Mpc−1

]
∼ 0.964 (estimated). (4.9)

From our analysis we have also found that within a specific range of the wave number,

k ∼ O(0.01 − 0.33)Mpc−1 the condition −kτ ≤ 1 is explicitly satisfied and within

this range the spectral tilt from the obtained power spectrum is estimated as:

nsq
χχ =

[
1 +

(
d lnPsq

χχ

d ln k

)
k∼O(0.01−0.33)Mpc−1

]
∼ O(0.963− 0.967) (estimated).(4.10)

Form CMB Planck 2018 the measured value of the spectral tilt is ns = 0.9649±0.0042
at 68% CL. Which means the estimated value of the spectral tilt from our model

is perfectly consistent with CMB Planck 2018 observed data and shows that one

can accommodate red tilt at the CMB pivot scale k∗ ∼ 0.02Mpc−1 as well as in
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the preferred window k ∼ O(0.01− 0.33)Mpc−1 where the quantum fluctuations are

entered in the super horizon region after crossing the horizon from the sub horizon

region. Here now we will describe in detail the specific reason of decrement in the

corresponding power spectra. Just like the previously discussed plots where the

increment is prominent here also apart from the pivot scale as well as the mentioned

very tiny window of the wave number non-causal physics play significant role due

to having significant violation of slow-roll dynamics for which we can’t probe the

physical outcomes of the any other wave numbers directly though CMB observations.

Let us now give the explanation of the decreasing behaviour of the primordial power

spectrum with wave number as appearing in Fig. 4.4, Fig. 4.5 and Fig. 4.6. All of

these spectrum are plotted when the contribution from the sudden quantum me-

chanical quench is switched on. For this reason the vacuum state is shifted to a

new squeezed state which describes the post quench dynamics. Such new quantum

states triggers the phenomena of achieving effective thermalization, which further

helps us to implement thermal equilibrium for this open quantum field theory set

up under consideration. Due to the activation of sudden quench protocol the bath

degrees of freedom starts dissipating and effects of noise is getting sub-dominant.

In this description, such dissipation time scale gives the appropriate measure of the

thermalization time scale for this effective equilibriation process. Without having

any quench protocol such time scale is effectively infinite and activation of sudden

quench actually triggers the equilibriation process, which makes the underlying time

scale finite. The similar type of phenomena one can observe for the PBHs produc-

tion mechanism where after the ultra slow-roll when the modes tried enter in a new

slow-roll like phase a prominent decrement can be found in the corresponding power

spectrum. Similarly for all the models of warm inflation due to having thermal

dissipation one can observe such decrement in the power spectrum.

• In Fig. 4.7(a) and Fig. 4.7(b) the behavior of the power spectrum corresponding to

the correlator Gχχ for the gCC and the squeezed gCC states with respect to the

comoving scale has been shown, respectively. We observe that the gCC state both

with and without squeezing show a similar decreasing behavior in the lower and the

intermediate regions, though the rate of decrease may not be identical in both the

cases. However, strikingly different behavior can be observed for the higher modes.

Whereas for the gCC state without squeezing, the power spectrum diverges to posi-

tive infinity for all the vacua, the same divergence to positive infinity is also observed

for the case without squeezing but only for the α vacua case. The power spectrum

for the Bunch-Davies and the Mota Allen vacua diverges to the negative infinity at a

higher mode. In this case since the underlying structure of the vacuum state changes

for gCC the behaviour of power spectrum is very non-standard. From the behaviour
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(a)

(b)

Figure 4.7: Behavior of the power spectrum of the correlator Gχχ for the gCC and the
squeezed gCC state respectively obtained after quench with respect to the comoving wave
number/scale k.
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(a)

(b)

Figure 4.8: Behavior of the power spectrum of the correlator G∂jχ∂jχ for the gCC and
the squeezed gCC state respectively obtained after quench with respect to the comoving
wave number/scale k.
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(a)

(b)

Figure 4.9: Behavior of the power spectrum of the correlator GΠχΠχ for the gCC and the
squeezed gCC state respectively obtained after quench with respect to the comoving wave
number/scale k.
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one can observe a fall and then a sharp increment with respect to wave number.

From the non-standard behaviour it is again obvious that due to having the shifted

vacuum states which is prepared due to the sudden trigger from quantum quench the

system initially show strong dissipative feature for which the system-bath interaction

is decreasing. As a consequence upto certain wave number the information of the

noise degrees of freedom is extremely sub-dominant compared the systems response.

After crossing a certain wave number the spectrum increases very sharply as the out-

of-equilibrium effects start dominating again due to having this non-standard gCC

vacuum state. This similar type of behaviour one can observe within the framework

of random matrix theory where the correlations show increment. See refs. [114, 116]

for more details on this issue. In the present content dominance of the noise degrees

of freedom is directly related to the underlying physical phenomena of Quantum

Brownian Motion which has a indirect connection with random interaction between

the system-bath for the open quantum system under consideration. Till date in CMB

observations such features are not detected yet. However, it is expected in near future

observation can able to detect such impacts with high statistical accuracy.

• In Fig. 4.8(a) and Fig. 4.8(b), the behavior of the power spectrum corresponding to

the correlator G∂jχ∂jχ for the gCC and the squeezed gCC states with respect to the

modes has been shown, respectively. In contrast to the previous case, we observe that

the gCC state both with and without squeezing shows a similar increasing behavior

in the lower and the intermediate region, though the rate of increase may not be

identical in both the cases. The divergence behavior at the higher modes however

remains identical to the previous case. In the observational probes this type of two-

point correlators and their associated spectra have not been actually analyzed yet.

Though it is expected to have smaller amplitudes, it may be tested in the near future

with the development of statistical accuracy in the CL.

• In Fig. 4.9(a) and Fig. 4.9(b), the behavior of the power spectrum corresponding

to the correlator GΠχΠχ for the gCC and the squeezed gCC states with respect to

the modes has been shown, respectively. The behavior of the power spectrum in the

entire mode region is identical to that for the correlator Gχχ. The divergence pattern

at the higher mode region is also similar in behavior.

• In Fig. 4.10(a), we have plotted the advanced part of the power spectrum correspond-

ing to the Generalised Gibbs ensemble correlator GGGE
χχ calculated for states without

squeezing at a low value of β. We observe that for lower modes the amplitude of

the power spectrum shows a gradual increasing behavior. In the intermediate mode

range however the amplitude of the power spectrum saturates followed by a sharp

decresing nature at the higher mode range.
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(a)

(b)

Figure 4.10: Behavior of the power spectrum corresponding to the advanced part of the
correlator GGGE

χχ with respect to the comoving wave number/scale k at higher and lower
temperatures.
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(a)

(b)

Figure 4.11: Behavior of the power spectrum corresponding to the retarded part of the
correlator GGGE

χχ with respect to the comoving wave number/scale k at higher and lower
temperatures.
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• In Fig. 4.10(b), we have plotted the advanced part of the power spectrum corre-

sponding to the Generalised Gibbs ensemble correlator GGGE
χχ calculated for states

without squeezing at a high value of β. The behavior of the power spectrum is al-

most identical to the one we observe for the low beta case. However, the most crucial

difference is that the amplitude in this case is negligible as compared to the low beta

case.

• In Fig. 4.11(a), we have plotted the retarded part of the power spectrum correspond-

ing to the Generalised Gibbs ensemble correlator GGGE
χχ calculated for post-quench

state without squeezing at a low value of β. We observe that for lower modes, the

amplitude of the power spectrum is constant. In the intermediate range the ampli-

tude shows a gradual decreasing behavior followed by an overall increasing feature

in the higher mode range. Also, the dependence of the amplitude on the choice of

the intial vacuum condition is visible only in the intermediate mode range.

• In Fig. 4.11(b), we have plotted the retarded part of the power spectrum correspond-

ing to the Generalised Gibbs ensemble correlator GGGE
χχ calculated for post-quench

state without squeezing at a high value of β. We observe that for lower and inter-

mediate modes, the amplitude of the power spectrum shows a decreasing behavior

which is widely different from what we observe in the low β case. The behavior in

the higher mode region is identical to what we observed in the low β case. Also,

the dependence of the amplitude on the choice of the intial vacuum condition is visi-

ble throughout the lower and intermediate mode region, which is also an interesting

difference from the low β case. It is also worth mentioning that the amplitude of

the retarded part takes almost similar values for high and low β, whereas for the

advanced part the amplitude is almost negligible for the high β as compared to low

β.

• In Fig. 4.12(a), we have plotted the advanced part of the power spectrum corre-

sponding to the Generalised Gibbs ensemble correlator GGGE
∂iχ∂iχ

calculated for states

without squeezing at a low value of β. We observe that for lower and intermediate

modes, the power spectrum shows a strictly increasing behavior. However, it shows

a sharp and abrupt decrease in the power spectrum for higher modes.

• In Fig. 4.12(b), we have plotted the advanced part of the power spectrum correspond-

ing to the Generalised Gibbs ensemble correlator GGGE
∂iχ∂iχ

calculated for states without

squeezing at a high value of β. We observe that for lower modes, the behavior of the

power spectrum shows a gradual increase. The rate of increase in the intermediate

mode region is very less making the increasing nature very slow. However, the sharp

fall in the higher mode region is observed in this case as well. Also, a key difference is

observed in the lower modes region for the lower and higher β case. The dependence
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(a)

(b)

Figure 4.12: Behavior of the power spectrum corresponding to the advanced part of the
correlator GGGE

∂iχ∂iχ
with respect to the comoving wave number/scale k at higher and lower

temperatures.
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(a)

(b)

Figure 4.13: Behavior of the power spectrum corresponding to the retarded part of the
correlator GGGE

∂iχ∂iχ
with respect to the comoving wave number/scale k at higher and lower

temperatures.
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of the power spectrum on the initial conditions is clearly visible in the higher β case

whereas the curves overlap in the lower β case. Similar to the advanced part of the

GGGE
χχ correlator, the amplitude of the power spectrum for the low β case is almost

negligible compared to the high β case.

• In Fig. 4.13(a), we have plotted the retarded part of the power spectrum correspond-

ing to the Generalised Gibbs ensemble correlator GGGE
∂iχ∂iχ

calculated for states without

squeezing at a low value of β. We observe an overall increasing behavior for the en-

tire lower mode region followed by a peculiar decreasing and then increasing nature

of the spectrum in the intermediate mode region followed by an overall increasing

behavior again at the higher mode region.

• In Fig. 4.13(b), we have plotted the retarded part of the power spectrum correspond-

ing to the Generalised Gibbs ensemble correlator GGGE
∂iχ∂iχ

calculated for states without

squeezing at a high value of β. The overall behavior and the amplitude is almost

identical to the low β case. However, the inlets of the plots clearly show that the

initial increase in the power spectrum occurs upto a large value of k for high β.

• In Fig. 4.14(a), we have plotted the advanced part of the power spectrum correspond-

ing to the Generalised Gibbs ensemble correlator GGGE
ΠχΠχ

calculated for states without

squeezing at a low value of β. We observe that for lower modes the power spectrum

shows a strictly increasing behavior. The amplitude of the power spectrum in the

intermediate modes is almost constant and the curves corresponding to the different

initial conditions overlap. However, a sharp and abrupt fall in the power spectrum

is observed for higher modes.

• In Fig. 4.14(b), we have plotted the advanced part of the power spectrum corre-

sponding to the Generalised Gibbs ensemble correlator GGGE
ΠχΠχ

calculated for states

without squeezing at a high value of β. The overall behavior of the power spectrum is

almost identical is identical to the low β case apart from the fact that the amplitude

of the power spectrum in this case is negligible compared to the low β case.

• In Fig. 4.15(a), we have plotted the retarded part of the power spectrum correspond-

ing to the Generalised Gibbs ensemble correlator GGGE
ΠχΠχ

calculated for states without

squeezing at a low value of β. It is observed that the power spectrum shows a satura-

tion in its value for the lower mode region. This is followed by a decreasing behavior

in the intermediate mode region. Clear distinction between the curves corresponding

to different initial conditions is also visible in the intermediate mode region. In the

higher mode region an overall increasing behavior of the power spectrum is observed.

• In Fig. 4.15(b), we have plotted the retarded part of the power spectrum correspond-

ing to the Generalised Gibbs ensemble correlator GGGE
ΠχΠχ

calculated for states without
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(a)

(b)

Figure 4.14: Behavior of the power spectrum corresponding to the advanced part of the
correlator GGGE

ΠχΠχ
with respect to the comoving wave number/scale k at higher and lower

temperatures.
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(a)

(b)

Figure 4.15: Behavior of the power spectrum corresponding to the retarded part of the
correlator GGGE

ΠχΠχ
with respect to the comoving wave number/scale k at higher and lower

temperatures.
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squeezing at a high value of β. The power spectrum in the lower mode region shows

a smooth decreasing behavior. This is followed by a saturation for a small range of k

and then a sudden fall in the intermediate mode region. The behavior of the higher

mode region is identical to the low β case.

• In Fig. 4.16(a), we have plotted the advanced part of the power spectrum corre-

sponding to the Generalised Gibbs ensemble correlator GGGE
χχ calculated for states

with squeezing at a low value of β. We observe that for lower modes the power

spectrum slowly increases for a short range of k after which it attains a saturation

in its value. However, after a certain k, the power spectrum shows an abrupt fall in

its value. The amplitude of the power spectrum is very high for the entire range of

the k.

• In Fig. 4.16(b), we have plotted the advanced part of the power spectrum corre-

sponding to the Generalised Gibbs ensemble correlator GGGE
χχ calculated for states

with squeezing at a high value of β. The behavior of the power spectrum in this

case is widely different from the one observed for the low β case. At lower values

of k the power spectrum increases at a very fast rate. The saturation value in the

intermedimate mode region is observed in this case as well. However, the sharp fall

in the higher k values that was observed in the previous case does not happen in this

scenario.

• In Fig. 4.17(a), we have plotted the retarded part of the power spectrum correspond-

ing to the Generalised Gibbs ensemble correlator GGGE
χχ calculated for states with

squeezing at a low value of β. The behavior of the power spectrum in this case is

widely different from the advanced part. For very lower values of k the spectrum

shows a slightly decreasing behavior. It remains saturated for a very large range of

k. However after a certain value of k at a relatively large value, the power spectrum

falls abruptly.

• In Fig. 4.17(b), we have plotted the retarded part of the power spectrum correspond-

ing to the Generalised Gibbs ensemble correlator GGGE
χχ calculated for states with

squeezing at a high value of β. In this case the initial decreasing behavior occurs for

a very large range of k. The intermediate saturation region is observed in this case

as well. However, the saturation range of k is much smaller in this case. At large

values of k some random fluctuations after a decreasing nature is observed.

• In Fig. 4.18(a), we have plotted the advanced part of the power spectrum corre-

sponding to the Generalised Gibbs ensemble correlator GGGE
∂iχ∂iχ

calculated for states

with squeezing at a low value of β. The behavior of the correlator at low β is widely
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(a)

(b)

Figure 4.16: Behavior of the power spectrum corresponding to the advanced part of the
correlator GGGE

χχ with respect to the comoving wave number/scale k at higher and lower
temperatures in presence of squeezing.
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(a)

(b)

Figure 4.17: Behavior of the power spectrum corresponding to the retarded part of the
correlator GGGE

ΠχΠχ
with respect to the comoving wave number/scale k at higher and lower

temperatures in presence of squeezing.
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(a)

(b)

Figure 4.18: Behavior of the power spectrum corresponding to the advanced part of the
correlator GGGE

∂iχ∂iχ
with respect to the comoving wave number/scale k at higher and lower

temperatures in the presence of squeezing.
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(a)

(b)

Figure 4.19: Behavior of the power spectrum corresponding to the retarded part of the
correlator GGGE

∂iχ∂iχ
with respect to the comoving wave number/scale k at higher and lower

temperatures in presence of squeezing.
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different from the behavior of the corresponding part of the GGGE
χχ correlator. We

observe that the power spectrum monotonically increases for a very large range of k.

The curves corresponding to different initial conditions also overlap in this region.

However, after a certain characteristic value of k, the power spectrum falls a little

and then exhibits an oscillatory feature with decreasing amplitude.

• In Fig. 4.18(b), we have plotted the advanced part of the power spectrum corre-

sponding to the Generalised Gibbs ensemble correlator GGGE
∂iχ∂iχ

calculated for states

with squeezing at a high value of β. The behavior of the power spectrum in the

low beta case is however identical to the corresponding part of the GGGE
χχ correlator.

Even the amplitude of the power spectrum in different ranges of k is similar to the

analogous part of the GGGE
χχ correlator at low β.

• In Fig. 4.19(a), we have plotted the retarded part of the power spectrum correspond-

ing to the Generalised Gibbs ensemble correlator GGGE
∂iχ∂iχ

calculated for states with

squeezing at a low value of β. It is observed that the behavior of the power spectrum

is pretty similar to what we observe for the advanced part. The only difference that

we observe is in the amplitude of the power spectrum. The amplitude in this case is

one order less than the advanced part.

• In Fig. 4.19(b), we have plotted the retarded part of the power spectrum correspond-

ing to the Generalised Gibbs ensemble correlator GGGE
∂iχ∂iχ

calculated for states with

squeezing at a high value of β. It is observed that the behavior of the power spectrum

in this case is pretty similar to what we observe for the low β case.

• In Fig. 4.20(a), we have plotted the advanced part of the power spectrum correspond-

ing to the Generalised Gibbs ensemble correlator GGGE
ΠχΠχ

calculated for states with

squeezing at a low value of β. The behavior of the power spectrum of this correlator

is exactly identical to the GGGE
χχ correlator. This identical nature is observed in the

entire range of k.

• In Fig. 4.20(b), we have plotted the advanced part of the power spectrum corre-

sponding to the Generalised Gibbs ensemble correlator GGGE
ΠχΠχ

calculated for states

with squeezing at a high value of β. The behavior at high β is also identical to the

corresponding part of the GGGE
χχ correlator. The fast increase for lower values of k

followed by saturation in the power spectrum at intermediate and large values of k

occur in this case as well.

• In Fig. 4.21(a), we have plotted the retarded part of the power spectrum correspond-

ing to the Generalised Gibbs ensemble correlator GGGE
ΠχΠχ

calculated for states with

squeezing at a low value of β. Again the behavior of the correlator is identical to

the corresponding part of the GGGE
χχ correlator. In this case too the initial decrease
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(a)

(b)

Figure 4.20: Behavior of the power spectrum corresponding to the advanced part of the
correlator GGGE

ΠχΠχ
with respect to the comoving wave number/scale k at higher and lower

temperatures in the presence of squeezing.
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(a)

(b)

Figure 4.21: Behavior of the power spectrum corresponding to the retarded part of the
correlator GGGE

ΠχΠχ
with respect to the comoving wave number/scale k at higher and lower

temperatures in presence of squeezing.
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of the power spectrum for a small range of k followed by the saturation for a large

range of k is observed. Moreover, the sudden fall that was observed after a certain

value of k for GGGE
χχ correlator is also observed in this case. Though the behavior of

the spectrum remains same the overall amplitude is one order small than the GGGE
χχ

correlator.

• In Fig. 4.21(b), we have retarded the advanced part of the power spectrum corre-

sponding to the Generalised Gibbs ensemble correlator GGGE
ΠχΠχ

calculated for states

with squeezing at a high value of β. The feature shown by the correlator exactly

matches the one showed by the corresponding part of the GGGE
χχ correlator. The

smooth decrease for a large range of k followed by the fluctuations at large k’s is

observed in this case too. Here also, the amplitude seems to be one order less in

magnitude than its corresponding GGGE
χχ correlator.

5 Conclusions

The concluding remarks of our analysis are as follows:

• We have developed the curved space generalization of quantum field theoretic version

of the well known Caldeira-Leggett model consisting of two interacting scalar fields to

describe the phenomena of Quantum Brownian Motion. In this construction, we have

path integrated one scalar field from the two interacting scalar field theory and have

constructed the Euclidean partition function and the corresponding effective action

for one scalar field. In this derivation, all the contributions from the interaction and

the free part of the other field will be absorbed in the effective coupling parameter and

consequently in the effective mass term of the scalar field in this effective description.

• In this construction, we have treated the gravitational sector classically and the

interacting scalar fields quantum mechanically. For this reason during computing

the effective action and partition function for one scalar field we have treated gravity

as the background. Consequently, the result obtained in this construction is a semi-

classical result. However, the path integral over the metric can also be done if we treat

this quantum mechanically by following perturbative quantum gravity description.

In this paper, we have restricted our analysis in the semi-classical regime and have

not studied any quantum gravity description of the presented framework.

• Next we derive the results for conformally flat de Sitter space-time solution and

used the phenomena of quantum quench as a special trick to study the two-point

quantum correlation functions from the effective scalar field, its spatial derivative and
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its associated canonically conjugate effective field momentum. Particularly in this

context, the phenomena of quantum quench is used to deal with the conformal time-

dependent effective mass which we have obtained as an outcome of the previously

mentioned semi-classical construction of partition function and the effective action

for one scalar field in the de Sitter background geometry.

• We have chosen the sudden quench mass protocol using which we compute the classi-

cal solutions of the effective field in the Fourier transformed space, which is identified

as the mode functions before and after the quench operation. In the technical de-

scription, the solutions obtained before and after quench are known as the incoming

and outgoing modes. This further enabled us to compute the expressions for the

two Bogoliubov coefficients which actually connect the solutions before and after the

point of quench operation. However, it is important to note that the present compu-

tational methodology can be implemented for other time-dependent effective mass

protocols and depending on the specific profile one can expect to get different types

of solutions for the incoming modes, outgoing modes and for the two Bogoliubov

coefficients which allow expressing one solution in terms of the other.

• From our study we found that irrespective of the initial starting state before the point

of quench, the state of the system could be written in terms of some conserved charges

of W∞ algebra, i.e., in the gCC form. This obtained result further implies that in

the late time scale the subsystem that we are considering thermalizes. The above

fact was true even if one doesn’t take the ground state of the initial Hamiltonian

as the starting state. Most significantly, the results that we have established for

the thermalization within the framework of de Sitter background geometry was not

explicitly studied before. Also these obtained results can be further extended to study

various early universe cosmological phenomena, particle production, reheating, etc.,

where it is needed to thermalize a system from out-of-equilibrium.

• We found that the conserved charges of W∞ algebra describing the gCC state post

quench was dependent on the choice of the quantum initial conditions for de Sitter

background.

• Additionally, we have studied the consequences within the context of a thermal GGE

ensemble where we found that the results for the two-point quantum correlations are

explicitly dependent on the factor β, which is the inverse equilibrium temperature

of the GGE ensemble after thermalization. This is another evidence of the system

attaining thermalization at the late time scale.

• We also extend the computation for finding the two-point quantum correlation func-

tions from a Gaussian squeezed state and for a squeezed gCC state in this paper and

found that the results are different from the results obtained without squeezing.
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• We verify that an assumption of a non-Gaussian squeezed state as the starting wave

function does not give any significant difference in the conserved charges of W∞

algebra and hence the structure of the gCC state describing the post-quench phase

is almost identical with the gCC state obtained by assuming Gaussian squeezed

state. This is nicely consistent with ref. [117], in which the author found that the

non-Gaussian perturbations of the most dangerous type are practically absent.

The future prospects of the present work are as follows:

• The present work has been done by considering a specific instantaneous quench

protocol. One can extend the present analysis by considering various other quench

protocols in curved space-time.

• Another extension of the present work would be to try and consider non-quadratic

interactions between the two scalar fields. Though an exact approach may not be

possible in that case, but one can always resort to perturbative approaches while

dealing with such non-quadratic interaction terms.

• A similar kind of study can be done by taking fermionic fields in the background of

De-Sitter space instead of the scalar ones and we intend to do it in upcoming days.

• As already clear from the present analysis, the introduction of the curved background

plays a tremendous role in constructing the gCC states for the post quench phase.

One can extend the current work not only for different quench profiles but for different

background space-times, probably in AdS space also.

• The system considered in this paper is a highly realistic one and can be a very useful

model of many physical systems. One can thus think of studying chaos by computing

OTOC’s [79, 118–120], circuit complexity [121–133] and krylov complexity [134, 135]

for such systems. These have attracted significant interest in recent times.
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A Charges of W∞ algebra for different quantum initial conditions

A.1 Expression for the coefficients of γ(k)

The specific choices for quantum initial conditions are fixed by choosing the following set

of constants appearing in the incoming solution:

Bunch−Davies vacuum : d1 = 1, d2 = 0, (A.1)

α vacua : d1 = coshα, d2 = sinhα, (A.2)

Motta−Allen vacua : d1 = coshα, d2 = exp(iγ) sinhα. (A.3)

The various non-vanishing coefficients of γ(k) can be computed as:

γ0 = −
id1 + d2 exp(iπνin)

id∗2 + d∗1 exp(iπνin)
, (A.4)

γ4 = −
2(d1d

∗
1 − d2d∗2) exp(iπνin)η3(5 + 2νin)

3((id∗2 + d∗1 exp(iπνin))
2(−1 + 2νin))

, (A.5)

γ6 =
2(d1d

∗
1 − d2d∗2) exp(iπνin)η5(−29 + 4νin(4 + νin))

5((id∗2 + d∗1 exp(iπνin))
2(1− 2νin)2)

. (A.6)

In the next three subsections we mention the results for the above mentioned three different

choices of the quantum initial conditions.

A.1.1 Expressions for the Bunch Davies vacuum

For Bunch Davies vacuum we have the following results:

γ0 = exp

(
− iπ

(
νin +

1

2

))
, (A.7)

γ4 = −2

3
exp(−iπνin)η3

(
5 + 2νin
−1 + 2νin

)
, (A.8)

γ6 =
2

5
exp(−iπνin)η5

(
−29 + 4νin(4 + νin)

(1− 2νin)2

)
. (A.9)

A.1.2 Expressions for the α vacua

For α vacua we have the following results:

γ0 =
exp(iπνin) sinhα− i coshα
exp(iπνin) coshα + i sinhα

, (A.10)

γ4 = −2

3

exp(iπνin)η
3(5 + 2νin)

(coshα exp(iπνin) + i sinhα)2(−1 + 2νin)
, (A.11)

γ6 =
2

5

exp(iπνin)η
5(−29 + 4νin(4 + νin))

(coshα exp(iπνin) + i sinhα)2(1− 2νin)2
. (A.12)
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A.1.3 Expressions for the Mota-Allen vacua

For Mota-Allen vacua we have the following results:

γ0 =
exp(i(γ + πνin)) sinhα− i coshα

exp(iπνin) coshα + i exp(−iγ) sinhα
, (A.13)

γ4 = −2

3

exp(iπνin)η
3(5 + 2νin)

(exp(iπνin) coshα + i exp(−iγ) sinhα)2(−1 + 2νin)
, (A.14)

γ6 =
2

5

exp(iπνin)η
5(−29 + 4νin(4 + νin))

(exp(iπνin) coshα + i exp(−iγ) sinhα)2(1− 2νin)2
. (A.15)

A.2 Expression for the coefficients of κ(k) for ground state

The non-vanishing coefficients of the κ(k) expansion for arbitrary quantum initial condi-

tions, which are representing the non-vanishing charges of theW∞ algebra can be calculated

for Dirichlet and Neumann boundary state as:

κ0,DB = −1

2
log

[
d1 − id2 exp(iπνin)
d∗2 − id∗1 exp(iπνin)

]
, (A.16)

κ0,NB = −1

2

{
log

[
d1 − id2 exp(iπνin)
d∗2 − id∗1 exp(iπνin)

]
+ iπ

}
, (A.17)

κ4,DB = κ4,NB = − (d1d
∗
1 − d2d∗2) exp(iπνin))η3(5 + 2νin)

3(d∗2 − id∗1 exp(iπνin))(d1 − id2 exp(iπνin))(−1 + 2νin))
, (A.18)

κ6,DB = κ6,NB =
(d1d

∗
1 − d2d∗2) exp(iπνin)η5(−29 + 4νin(4 + νin))

5(id∗2 + d∗1 exp(iπνin)(id1 + d2 exp(iπνin))(1− 2νin)2)
. (A.19)

κ7,DB = κ7,NB =
1

9(1− 2νin)2 (d1 − id2 exp(iπνin))2 (d∗2 − id∗1 exp(iπνin))
2[

η6 exp(iπνin)(d1d
∗
1 − d2d∗2)

(
− 72 exp(iπνin)(d1d

∗
1 − d2d∗2)

+i(d1d
∗
2 + d∗1d2 exp(2iπνin)(4νin(νin + 5)− 47)

)]
(A.20)

κ8,DB = κ8,NB = −(d1d
∗
1 − d2d∗2)η7 exp(iπνin) (2νin (4ν2in + 22νin − 81) + 125)

7(2νin − 1)3 (id1 + d2 exp(iπνin)) (d∗1 exp(iπνin) + id∗2)
(A.21)

κ9,DB = κ9,NB =
1

15(2νin − 1)3 (id1 + d2 exp(iπνin))
2 (d∗1 exp(iπνin) + id∗2)

2[
2(d1d

∗
1 − d2d∗2)η8 exp(iπνin)

(
120 exp(iπνin)(2νin − 3)(d1d

∗
1 − d2d∗2)− id1d∗2(8ν3in

+52ν2in − 218νin + 215)− id∗1d2 exp(2iπνin)(8ν3in + 52ν2in − 218νin + 215)

)]
(A.22)

In the next three subsections we mention the results for the previously mentioned three

different choices of the quantum initial conditions. Here we are computing the expressions
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for the Dirichlet boundary states from which one can also derive the expressions for the

Neumann boundary states using the above mentioned connecting relationships. For com-

putational simplicity we will further drop the superscript DB in the further computations.

A.2.1 Expressions for the Bunch Davies vacuum

For Bunch Davies vacuum we have the following results:

κ0 = −iπ
2

(
1

2
− νin

)
(A.23)

κ4 = − i
3
η3
(

5 + 2νin
−1 + 2νin

)
(A.24)

κ6 = − i
5
η5
(
−29 + 4νin(4 + νin)

(1− 2νin)2

)
(A.25)

κ7 =
8η6

(1− 2νin)2
(A.26)

κ8 =
i

7
η7
(
(2νin (4ν

2
in + 22νin − 81) + 125)

(2νin − 1)3

)
(A.27)

κ9 =
16η8(3− 2νin)

(2νin − 1)3
(A.28)

A.2.2 Expressions for the α vacua

For α vacua we have the following results:

κ0 = −1

2
log

(
exp(iπνin) sinh(α) + i cosh(α)

exp(iπνin) cosh(α) + i sinh(α)

)
, (A.29)

κ4 = −1

3

exp(iπνin)η
3(5 + 2νin)

(sinhα− i coshα exp(iπνin))(coshα− i sinhα exp(iπνin))(−1 + 2νin)
, (A.30)

κ6 =
1

5

exp(iπνin)η
5(−29 + 4νin(4 + νin))

(i sinhα + coshα exp(iπνin))(i coshα + sinhα exp(iπνin))(1− 2νin)2
, (A.31)

κ7 =
exp(iπνin)η

6 (i (1 + exp(2iπνin)) (4νin(νin + 5)− 47) sinh(2α)− 144 exp(iπνin))

18(1− 2νin)2 (exp(iπνin) cosh(α) + i sinh(α))2 (exp(iπνin) sinh(α) + i cosh(α))2
(A.32)

κ8 = − η7 exp(iπνin) (8ν
3
in + 44ν2in − 162νin + 125)

7(2νin − 1)3 (exp(iπνin) cosh(α) + i sinh(α)) (exp(iπνin) sinh(α) + i cosh(α))
, (A.33)

κ9 =
1

15(2νin − 1)3(sinh(2α) sin(πνin) + cosh(2α))2

‘×
[
η8 exp(−iπνin)

(
i (1 + exp(2iπνin))

(
8ν3in + 52ν2in − 218νin + 215

)
sinh(2α)

‘ − 240 exp(iπν)(2ν − 3))

]
. (A.34)
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A.2.3 Expressions for the Mota-Allen vacua

For Mota-Allen vacua we have the following results:

κ0 = −1

2
log

(
coshα− i exp(i(πνin + γ)) sinhα

exp(−iγ) sinhα− i exp(iπνin) coshα

)
, (A.35)

κ4 =
1

3

exp(iπνin)η
3(5 + 2νin)

(exp(−iγ) sinhα− i coshα exp(iπνin))(coshα− i sinhα exp(i(πνin + γ)))(−1 + 2νin)
, (A.36)

κ6 =
1

5

exp(iπνin)η
5(−29 + 4νin(4 + νin))

(i exp(−iγ)) sinhα + coshα exp(iπνin))(i coshα + sinhα exp(i(πνin + γ)))(1− 2νin)2
, (A.37)

κ7 =
1

18(1− 2ν)2 (cosh(α) exp(i(γ + πνin)) + i sinh(α))2 (sinh(α) exp(i(γ + πνin)) + i cosh(α))2
,

×
[
exp(i(γ + πνin))η

6

(
i(4ν(νin + 5)− 47) sinh(2α)

(
1 + exp(2i(γ + πνin))

)
−144 exp(i(γ + πνin))

)]
(A.38)

κ8 =
− exp(i(γ + πνin))η

7 (2νin (4ν
2
in + 22νin − 81) + 125)

7(2νin − 1)3 (cosh(α) exp(i(γ + πνin)) + i sinh(α)) (sinh(α) exp(i(γ + πνin)) + i cosh(α))
, (A.39)

κ9 =
1

15(2νin − 1)3 (cosh(α) exp(i(γ + πνin)) + i sinh(α))2 (sinh(α) exp(i(γ + πνin)) + i cosh(α))2

×
[
η8 exp(i(γ + πνin))(240(2νin − 3) exp(i(γ + πνin))

−i(8ν3in + 52ν2in − 218νin + 215) sinh(2α)(1 + exp(2i(γ + πνin))))

]
. (A.40)

A.3 Expression for the coefficients of κ(k) for squeezed states

Doing a series expansion of κeff (k), for the specific choice of Gaussian f(k), it can be very

easily verified that the non-vanishing expansion coefficients for the Dirichlet and Neumann

boundary states can be written in the following form:

κeff0,DB = −1

2
log

[
d1 − id2 exp(iπνin)
d∗2 − id∗1 exp(iπνin)

]
(A.41)

κeff0,NB = −1

2

{
log

[
d1 − id2 exp(iπνin)
d∗2 − id∗1 exp(iπνin)

]
+ iπ

}
(A.42)

κeff4,DB = κeff4,NB = − (d1d
∗
1 − d2d∗2) exp(iπνin))η3(5 + 2νin)

3(d∗2 − id∗1 exp(iπνin))(d1 − id2 exp(iπνin))(−1 + 2νin))
(A.43)

κeff6,DB = κeff6,NB =
(d1d

∗
1 − d2d∗2) exp(iπνin)η5(−29 + 4νin(4 + νin))

5(id∗2 + d∗1 exp(iπνin)(id1 + d2 exp(iπνin))(1− 2νin)2)
(A.44)

κeff7,DB = κeff7,NB

=
1

9(d∗2 − id∗1 exp(iπνin))2(id1 + d2 exp(iπνin))2(d1 + d∗2 − i(d∗1 + d2) exp(iπνin))(1− 2νin)2
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[
exp(iπνin)η

6

(
id1d

∗
2(d1 + d∗2)(−d1d∗1 + d2d

∗
2)(−47 + 4νin(5 + νin)) + d∗1d2(d

∗
1 + d2)

(−d1d∗1 + d2d
∗
2)) exp(3iπνin)(−47 + 4νin(5 + νin)) +

(
(d1d

∗
1 − d2d∗2)(72d21d∗1 − d1d∗2(2νin + 5)2

(d∗1 + d2) + 72d2d
∗2
2

)
+ d∗1d2 exp(3iπνin)(4νin(νin + 5)− 47)(d∗1 + d2)(d2d

∗
2 − d1d∗1)

+id1d
∗
2(4νin(νin + 5)− 47)(d1 + d∗2)(d2d

∗
2 − d1d∗1) + ie2iπνin(d1d

∗
1 − d2d∗2)(

d1d
∗
1(72d

∗
1 − d2(2νin + 5)2 + d2d

∗
2(72d2 − d∗1(2νin + 5)2)

))]
(A.45)

κeff8,DB = κeff8,NB −
(d1d

∗
1 − d2d∗2) exp(iπνin)η7(125 + 2νin(−81 + 22νin + 4ν2in))

7(id∗2 + d∗1 exp(iπνin))(id1 + d2 exp(iπνin))(−1 + 2νin)3

κeff9,DB = κeff9,NB

=
1

15(2νin − 1)3σ2

(
id1 + d2eiπνin

)2(
d∗2 − id∗1eiπνin

)2(
d1 − ieiπνin(d∗1 + d2) + d∗2

)2

×
[
2η6eiπνin(d1d

∗
1 − d2d∗2)

(
d31η

2σ2

(
id∗2

(
8ν3in + 52ν2in − 218νin + 215

)
− 120d∗1e

iπνin(2νin − 3)

)
+d21

(
2d∗2e

iπνin

(
η2σ2

(
8ν3in(d

∗
1 + d2) + 52ν2in(d

∗
1 + d2)− 2νin(109d

∗
1 + 49d2) + 215d∗1 + 35d2

)
+30d∗1(2νin − 1)

)
− id∗1e2iπνin

(
60d∗1(2νin − 1)− d2η2

(
8ν3in + 52ν2in + 262νin − 505

)
σ2

)
+2id∗

2

2 η
2

(
8ν3in + 52ν2in − 218νin + 215

)
σ2

)
+ d1

(
2d2e

iπνin

(
d∗22 + d∗21 e

2iπνin

)
(
η2
(
8ν3in + 52ν2in − 218νin + 215

)
σ2 − 60νin + 30

)
+ d22η

2e2iπνinσ2

(
2d∗1e

iπνin(
8ν3in + 52ν2in − 98νin + 35

)
− id∗2

(
8ν3in + 52ν2in + 262νin − 505

))
+ η2σ2

(
d∗2 − id∗1eiπνin

)2

(
120d∗1e

iπνin(2νin − 3) + id∗2

(
8ν3in + 52ν2in − 218νin + 215

)))
+d2e

iπνin

(
id∗22 e

iπν

(
d∗1η

2

(
8ν3in + 52ν2in + 262νin − 505

)
σ2 + 60d2(2νin − 1)

)
+2d∗2e

2iπνin

(
η2σ2(d∗1 + d2)

(
d∗1

(
8ν3in + 52ν2in − 98νin + 35

)
+ 60d2(3− 2νin)

)
+30d∗1d2(2νin − 1)

)
− id∗1η2e3iπνin

(
8ν3in + 52ν2in − 218νin + 215

)
σ2(d∗1 + d2)

2

+120d∗32 η
2(3− 2νin)σ

2

))]
(A.46)
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In the next three subsections we mention the results for the previously mentioned three

different choices of the quantum initial conditions. Here we are computing the expressions

for the Dirichlet boundary states from which one can also derive the expressions for the

Neumann boundary states using the above mentioned connecting relationships. For com-

putational simplicity we will further drop the superscript DB in the further computations.

A.3.1 Expressions for the Bunch Davies vacuum

For Bunch Davies vacuum we have the following results:

κeff0 = κ0 = −
iπ

2

(
1

2
− ν
)

(A.47)

κeff4 = κ4 = −
i

3
η3
(

5 + 2ν

−1 + 2ν

)
(A.48)

κeff6 = κ6 = −
i

5
η5
(
−29 + 4ν(4 + ν)

(1− 2ν)2

)
(A.49)

κeff7 ̸= κ7 = −
8η6 (exp(iπν)− i)

(exp(iπν) + i) (1− 2ν)2
(A.50)

κeff8 = κ8 =
i

7
η7
(
(2ν (4ν2 + 22ν − 81) + 125)

(2ν − 1)3

)
(A.51)

κeff9 ̸= κ9 =
8η6 exp(iπν) (4η2(2ν − 3)σ2 cos(πν) + i(2ν − 1))

(exp(iπν) + i)2 (2ν − 1)3σ2
(A.52)

A.3.2 Expressions for the α vacua

For α vacua we have the following results:

κeff0 = κ0 = −
1

2
log

(
exp(iπνin) sinh(α) + i cosh(α)

exp(iπνin) cosh(α) + i sinh(α)

)
, (A.53)

κeff4 = κ4 = −
1

3

exp(iπνin)η
3(5 + 2νin)

(sinhα− i coshα exp(iπνin))(coshα− i sinhα exp(iπνin))(−1 + 2ν)
, (A.54)

κeff6 = κ6 =
1

5

exp(iπνin)η
5(−29 + 4νin(4 + νin))

(i sinhα + coshα exp(iπνin))(i coshα + sinhα exp(iπνin))(1− 2νin)2
, (A.55)

κeff7 ̸= κ7 =
1

18(eiπνin + i)(1− 2νin)2(eiπνin cosh(α) + i sinh(α))2(eiπνin sinh(α) + i cosh(α))2[
η6eiπνin(eiπνin − i)(i(−4ν2in + e2iπνin(4ν2in + 20νin − 47)− 20νin + 2ieiπνin(2νin + 5)2

+47) sinh(2α) + 144eiπνin cosh(2α))

]
, (A.56)

κeff8 = κ8 = −
η7 exp(iπνin) (8ν

3
in + 44ν2in − 162νin + 125)

7(2νin − 1)3 (exp(iπνin) cosh(α) + i sinh(α)) (exp(iπνin) sinh(α) + i cosh(α))
, (A.57)
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κeff9 ̸= κ9 =
1

15 (eiπν + i)2 (2νin − 1)3σ2 (eiπνin cosh(α) + i sinh(α))2 (eiπνin sinh(α) + i cosh(α))2[
4η6e−2α+3iπνin(sinh(2α)(e2αη2σ2((8ν3in + 52ν2in − 218νin + 215) sin(πνin) + (2νin + 5)

(4νin(νin + 4)− 29)) cos(πνin)− 30i(2νin − 1) sin(πνin)) + 30 cosh(2α)(−4e2αη2(2νin − 3)

σ2 cos(πνin)− 2iνin + i))

]
. (A.58)

A.3.3 Expressions for the Mota-Allen vacua

For Mota-Allen vacua we have the following results:

κeff0 = κ0 = −
1

2
log

(
coshα− i exp(iπ(νin + γ)) sinhα

exp(−iγ) sinhα− i exp(iπνin) coshα

)
, (A.59)

κeff4 = κ4 =
1

3
exp(iπνin)η

3(5 + 2νin)

×
[
(exp(−iγ) sinhα− i coshα exp(iπνin))(coshα− i sinhαeiπ(νin+γ)(−1 + 2νin)

]−1

, (A.60)

κeff6 = κ6 =
1

5
exp(iπνin)η

5(−29 + 4νin(4 + νin))

×
[
i(exp(−iγ) sinhα + coshα exp(iπνin))(i coshα + sinhαei(πνin+γ)(1− 2νin)

2

]−1

, (A.61)

κeff7 ̸= κ7 (A.62)

=
(−ieiπνin (eiγ sinh(α) + cosh(α)) + e−iγ sinh(α) + cosh(α))

−1

9(1− 2νin)2 (e−iγ sinh(α)− ieiπνin cosh(α))2 (sinh(α)ei(γ+πνin) + i cosh(α))
2[

η6eiπνin(eiπνin(−(2νin + 5)2e−iγ sinhα coshα(eiγ sinh(α) + cosh(α)) + 72e−iγ sinh3 α

+72 cosh3 α) + ie2iπνin(−(2νin + 5)2eiγ sinhα cosh2 α− (2νin + 5)2 sinh2(α) coshα

+72eiγ sinh3 α + 72 cosh3 α)

+(−i)(4νin(νin + 5)− 47)e−2iγ sinh(α) coshα(eiγ coshα + sinhα)

−(4νin(νin + 5)− 47) sinhα coshαeiγ+3iπνin(eiγ sinhα + coshα))

]
, (A.63)

κeff8 = κ8 = −
(
exp(i(γ + πνin))η

7
(
2νin

(
4ν2in + 22νin − 81

)
+ 125

))
(A.64)

×
(
7(2νin − 1)3

(
cosh(α)ei(γ+πνin) + i sinh(α)

) (
sinh(α)ei(γ+πνin) + i cosh(α)

))−1

,

κeff9 ̸= κ9

=
1

15(2νin − 1)3σ2 (e−iγ sinh(α)− ieiπνin cosh(α))2 (sinh(α)eiγ+iπνin + i cosh(α))2
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× 1

(−ieiπνin (eiγ sinh(α) + cosh(α)) + e−iγ sinh(α) + cosh(α))2[
2η6eiπνin(η2σ2 cosh3(α)(i(8ν3in + 52ν2in − 218νin + 215)e−iγ sinh(α)

−120eiπνin(2νin − 3) cosh(α)) + cosh(α)(2 sinh(α)eiγ+iπνin(η2(8ν3in + 52ν2in − 218νin + 215)σ2

−60νin + 30)(e−2iγ sinh2(α) + e2iπνin cosh2(α)) + η2σ2 sinh2(α)e2iγ+2iπνin(2eiπνin(8ν3in

+52ν2in − 98νin + 35) cosh(α)− i(8ν3in + 52ν2in + 262νin − 505)e−iγ sinh(α))

−η2σ2e−3iγ(cosh(α)eiγ+iπνin + i sinh(α))2(i(8ν3in + 52ν2in − 218νin + 215) sinh(α)

+120(2νin − 3) cosh(α)eiγ+iπνin))

+ cosh2(α)(2iη2(8ν3in + 52ν2in − 218νin + 215)σ2e−2iγ sinh2(α)

+2 sinh(α)e−iγ+iπνin(η2σ2((8ν3in + 52ν2in − 98νin + 35)eiγ sinh(α)

+(8ν3in + 52ν2in − 218νin + 215) cosh(α)) + 30(2νin − 1) cosh(α))

−ie2iπνin cosh(α)(60(2νin − 1) cosh(α)

−η2(8ν3in + 52ν2in + 262νin − 505)σ2eiγ sinh(α)))

+i sinh3(α)e−iγ+2iπνin(η2(8ν3in + 52ν2in + 262νin − 505)σ2 cosh(α)

+60(2νin − 1)eiγ sinh(α))

+2e3iπνin sinh2(α)(η2σ2(eiγ sinh(α) + cosh(α))((8ν3 + 52ν2in − 98νin + 35)

cosh(α) + 60(3− 2νin)e
iγ sinh(α)) + 15(2νin − 1)eiγ sinh(2α))

−iη2(8ν3in + 52ν2in − 218νin + 215)

σ2 sinh(α) cosh(α)eiγ+4iπνin(eiγ sinh(α) + cosh(α))2

+120η2(3− 2νin)σ
2 sinh4(α)e−2iγ+iπνin)

]
(A.65)

A.4 Consistency relations

In this appendix, we re-derive the relations between the various coefficients of γ and κ for

the different choices of quantum initial conditions as discussed earlier in the text portion.

For the sudden mass quench profile, the relationship between the various coefficients of

κ(k) and γ(k) can be expressed as:

κ4,DB = κ4,NB =
i

2

(
id∗2 + d∗1 exp(iπνin)

d1 − id2 exp(iπνin)

)
γ4 =

1

2

(
d1 + id2 exp(iπνin)

d1 − id2 exp(iπνin)

)
γ4
γ0

(A.66)

κ6,DB = κ6,NB =
1

2

(
id∗2 + d∗1 exp(iπνin)

id1 + d2 exp(iπνin)

)
γ6 =

1

2

(
−id1 + d2 exp(iπνin)

id1 + d2 exp(iπνin)

)
γ6
γ0

(A.67)

In the next three subsections we mention the results for the previously mentioned three

different choices of the quantum initial conditions. Here we are computing the expressions

for the Dirichlet boundary states from which one can also derive the expressions for the

Neumann boundary states using the above mentioned connecting relationships. For com-
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putational simplicity we will further drop the superscript DB in the further computations.

A.4.1 Expressions for the Bunch Davies vacuum

For Bunch Davies vacuum we have the following results:

κ4 =
1

2

(
γ4
γ0

)
(A.68)

κ6 = −1

2

(
γ6
γ0

)
(A.69)

A.4.2 Expressions for the α vacua

For α vacua we have the following results:

κ4 =
1

2

(
coshα + i sinhα exp(iπνin)

i coshα + sinhα exp(iπνin)

)(
γ4
γ0

)
(A.70)

κ6 =
1

2

(
−i coshα + sinhα exp(iπνin)

coshα− i sinhα exp(iπνin)

)(
γ6
γ0

)
(A.71)

A.4.3 Expressions for the Mota-Allen vacua

For Mota-Allen vacua we have the following results:

κ4 =
1

2

(
coshα + sinhα exp(iπ(νin + 1/2) + γ)

coshα− sinhα exp(iπ(νin + 1/2) + γ)

)(
γ4
γ0

)
(A.72)

κ6 =
1

2

(
exp(−iπ/2) coshα + sinhα exp(i(πνin + γ)

exp(iπ/2) coshα + sinhα exp(i(πνin + γ))

)(
γ6
γ0

)
(A.73)

B Definition of the Symbols appearing in the two-point correlators

B.1 Symbols appearing in the correlators of the ground state

Here we have defined the symbols ∆i(k, τ1, τ2) ∀ i = 1, · · · , 16 that appeared in the corre-

lators calculated for the ground state:

∆1(k, τ1, τ2) = |α(k)|2vout(k, τ1)v∗out(k, τ2) (B.1)

∆2(k, τ1, τ2) = α(k)β∗(k)vout(k, τ1)vout(−k, τ2) (B.2)

∆3(k, τ1, τ2) = α∗(k)β(k)v∗out(−k, τ1)v∗out(k, τ2) (B.3)

∆4(k, τ1, τ2) = |β(k)|2v∗out(k, τ1)vout(−k, τ2) (B.4)

∆5(k, τ1, τ2) = |α(k)|2vout(k, τ1)v′∗out(k, τ2) (B.5)

∆6(k, τ1, τ2) = α(k)β∗(k)vout(k, τ1)v
′
out(−k, τ2) (B.6)

∆7(k, τ1, τ2) = α∗(k)β(k)v∗out(−k, τ1)v′∗out(k, τ2) (B.7)

∆8(k, τ1, τ2) = |β(k)|2v∗out(k, τ1)v′out(−k, τ2) (B.8)
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∆9(k, τ1, τ2) = |α(k)|2v′out(k, τ1)v∗out(k, τ2) (B.9)

∆10(k, τ1, τ2) = α(k)β∗(k)v′out(k, τ1)vout(−k, τ2) (B.10)

∆11(k, τ1, τ2) = α∗(k)β(k)v′∗out(−k, τ1)v∗out(k, τ2) (B.11)

∆12(k, τ1, τ2) = |β(k)|2v′∗out(k, τ1)vout(−k, τ2) (B.12)

∆13(k, τ1, τ2) = |α(k)|2v′out(k, τ1)v′∗out(k, τ2) (B.13)

∆14(k, τ1, τ2) = α(k)β∗(k)v′out(k, τ1)v
′
out(−k, τ2) (B.14)

∆15(k, τ1, τ2) = α∗(k)β(k)v′∗out(−k, τ1)v′∗out(k, τ2) (B.15)

∆16(k, τ1, τ2) = |β(k)|2v′∗out(k, τ1)v′out(−k, τ2) (B.16)

and vin and vout are the fluctuation solutions before and after the quench point respectively

and α and β are Bogoliubov coefficients which encodes the quench protocol in the form of

the asymptotic expansion of the Hankel functions. The Bogoliubov coefficients could be

written entirely in terms of γ(k) as follows:

|α(k)|2 =
1

1− |γ(k)|2
, (B.17)

|β(k)|2 =
|γ(k)|2

1− |γ(k)|2
, (B.18)

α(k)β∗(k) =
|γ(k)|

1− |γ(k)|2
, (B.19)

α∗(k)β(k) =
|γ∗(k)|

1− |γ(k)|2
(B.20)

B.2 Symbols appearing in the correlators of the gCC state

The symbols Θi(k, τ1, τ2) ∀ i = 1, · · · , 16 appearing in the correlators of the gCC states

are given by:

Θ1(k, τ1, τ2) = vout(k, τ1)v
∗
out(k, τ2) (B.21)

Θ2(k, τ1, τ2) = vout(k, τ1)vout(−k, τ2) (B.22)

Θ3(k, τ1, τ2) = v∗out(−k, τ1)v∗out(k, τ2) (B.23)

Θ4(k, τ1, τ2) = v∗out(k, τ1)vout(−k, τ2) (B.24)

Θ5(k, τ1, τ2) = vout(k, τ1)v
′∗
out(k, τ2) (B.25)

Θ6(k, τ1, τ2) = vout(k, τ1)v
′
out(−k, τ2) (B.26)

Θ7(k, τ1, τ2) = v∗out(−k, τ1)v′∗out(k, τ2) (B.27)

Θ8(k, τ1, τ2) = v∗out(k, τ1)v
′
out(−k, τ2) (B.28)

Θ9(k, τ1, τ2) = v′out(k, τ1)v
∗
out(k, τ2) (B.29)

Θ10(k, τ1, τ2) = v′out(k, τ1)vout(−k, τ2) (B.30)
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Θ11(k, τ1, τ2) = v′∗out(−k, τ1)v∗out(k, τ2) (B.31)

Θ12(k, τ1, τ2) = v′∗out(k, τ1)vout(−k, τ2) (B.32)

Θ13(k, τ1, τ2) = v′out(k, τ1)v
′∗
out(k, τ2) (B.33)

Θ14(k, τ1, τ2) = v′out(k, τ1)v
′
out(−k, τ2) (B.34)

Θ15(k, τ1, τ2) = v′∗out(−k, τ1)v′∗out(k, τ2) (B.35)

Θ16(k, τ1, τ2) = v′∗out(k, τ1)v
′
out(−k, τ2) (B.36)

and vin and vout are the fluctuation solutions before and after the quench point respectively.

B.3 Symbols for squeezed state

Here we have introduced new symbols ∆sq
i (k, τ1, τ2) ∀ i = 1, · · · , 16 which are used in the

above mentioned expressions for propagators and given by:

∆sq
1 (k, τ1, τ2) =

|αeff(k)|2

|α(k)|2
∆1(k, τ1, τ2) (B.37)

∆sq
2 (k, τ1, τ2) =

αeff(k)β
∗
eff(k)

α(k)β∗(k)
∆2(k, τ1, τ2) (B.38)

∆sq
3 (k, τ1, τ2) =

α∗
eff(k)βeff(k)

α∗(k)β(k)
∆3(k, τ1, τ2) (B.39)

∆sq
4 (k, τ1, τ2) =

|βeff(k)|2

|β(k)|2
∆4(k, τ1, τ2) (B.40)

∆sq
5 (k, τ1, τ2) =

|αeff(k)|2

|α(k)|2
∆5(k, τ1, τ2) (B.41)

∆sq
6 (k, τ1, τ2) =

αeff(k)β
∗
eff(k)

α(k)β∗(k)
∆6(k, τ1, τ2) (B.42)

∆sq
7 (k, τ1, τ2) =

α∗
eff(k)βeff(k)

α∗(k)β(k)
∆7(k, τ1, τ2) (B.43)

∆sq
8 (k, τ1, τ2) =

|βeff(k)|2

|β(k)|2
∆8(k, τ1, τ2) (B.44)

∆sq
9 (k, τ1, τ2) =

|αeff(k)|2

|α(k)|2
∆9(k, τ1, τ2) (B.45)

∆sq
10(k, τ1, τ2) =

αeff(k)β
∗
eff(k)

α(k)β∗(k)
∆10(k, τ1, τ2) (B.46)

∆sq
11(k, τ1, τ2) =

α∗
eff(k)βeff(k)

α∗(k)β(k)
∆11(k, τ1, τ2) (B.47)

∆sq
12(k, τ1, τ2) =

|βeff(k)|2

|β(k)|2
∆12(k, τ1, τ2) (B.48)

∆sq
13(k, τ1, τ2) =

|αeff(k)|2

|α(k)|2
∆13(k, τ1, τ2) (B.49)
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∆sq
14(k, τ1, τ2) =

αeff(k)β
∗
eff(k)

α(k)β∗(k)
∆14(k, τ1, τ2) (B.50)

∆sq
15(k, τ1, τ2) =

α∗
eff(k)βeff(k)

α∗(k)β(k)
∆15(k, τ1, τ2) (B.51)

∆sq
16(k, τ1, τ2) =

|βeff(k)|2

|β(k)|2
∆16(k, τ1, τ2) (B.52)

and vin and vout are the fluctuation solutions before and after the quench point respectively

and α and β are Bogoliubov coefficients which encodes the quench protocol in the form of

the asymptotic expansion of the Hankel functions. These Bogoliubov coefficients could be

written entirely in terms of γeff(k) as follows:

|αeff(k)|2 =
1

1− |γeff(k)|2
, (B.53)

|βeff(k)|2 =
|γeff(k)|2

1− |γeff(k)|2
, (B.54)

αeff(k)β
∗
eff(k) =

|γeff(k)|
1− |γeff(k)|2

, (B.55)

α∗
eff(k)βeff(k) =

|γ∗eff(k)|
1− |γeff(k)|2

(B.56)

C Quantization of Hamiltonian in occupation number representation

Now in the quantum description the corresponding quantized normal ordered Hamiltonian

operator can be written as:

Ĥ(τ) =
∞∑

{Nk}=0 ∀ k

Ĥk(τ), (C.1)

where in the occupation number representation of the Hamiltonian one can write:

Ĥk(τ) = N̂k Ek(τ) where N̂k = a†out(−k)aout(k). (C.2)

Here Ek(τ) is the dispersion relation which is defined in the present context as:

Ek(τ) =
[
|Πout(k, τ)|2 + ω2

out(k, τ)|vout(k, τ)|2
]
. (C.3)

Hence in the occupation number representation we have:

⟨{Nk}| Ĥk(τ) |{Nk}⟩ = NkEk(τ). (C.4)
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D Derivation for thermal partition function for GGE ensemble

First of all we derive the expression for the thermal partition function Z for GGE ensemble.

For this purpose we start with the following definition:

Z(τ1) = Tr

(
exp(−βĤ(τ1)−

∞∑
n=2

κ2n,DB/NB|k|2n−1 ˆN(k))

)
=

∫
dΨout out ⟨Ψ| exp(−βĤ(τ1))−

∞∑
n=2

κ2n,DB/NB|k|2n−1 ˆN(k) |Ψ⟩out , (D.1)

where we have translated the trace operation in terms of an outgoing quantum state

after quench in continuous representation of wave function. But technically computation

of this result is very cumbersome in terms of a thermal state. For this reason the above

mentioned expression can be further represented in terms of the occupation number discrete

representation of the Hamiltonian basis |{Nk}⟩ ∀ k as:

Z(τ1) =
1

|d1|
exp

(
− i

2

{
d∗2
d∗1
− d2
d1

})
︸ ︷︷ ︸

This factor is the outcome of arbitrary quantum vacuum

×
∞∑

{Nk}=0 ∀ k

⟨{Nk}| exp(−β Ĥk(τ1))−
∞∑
n=2

κ2n,DB/NB|k|2n−1 ˆN(k)) |{Nk}⟩ ,

=
1

|d1|
exp

(
− i

2

{
d∗2
d∗1
− d2
d1

})
×

∞∑
{Nk}=0 ∀ k

exp(−βEk(τ1))Nk −
∞∑
n=2

κ2n,DB/NB|k|2n−1N(k)),

=
1

|d1|
exp

(
− i

2

{
d∗2
d∗1
− d2
d1

}) (
exp(βEk(τ1))eff

exp(βEk(τ1))eff − 1

)
,

=
1

2|d1|
exp

(
− i

2

{
d∗2
d∗1
− d2
d1

})
exp

(
(βEk(τ1))eff

2

)
cosech

(
(βEk(τ1))eff

2

)
(D.2)

where Ek(τ1) is the cosmological dispersion relation, which is given by:

Ek(τ1) =
[
|Πout(k, τ1)|2 + ω2

out(k, τ1)|vout(k, τ1)|2
]
, (D.3)

having the frequency ωout of the outgoing modes after the quench operation is given by

the following expression:

ω2
out(k, τ1) =

(
k2 − 2

τ 21

)
where τ1 = τ + η (D.4)

where, in the above mentioned notation η represents the time scale where the quantum

quench operation have been performed. Further translating the dispersion relation in terms
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of the χ field we get the following expression:

Ek(τ1) = a2(τ1) [E
χ
k (τ1) +H(τ1) O

χ
k (τ1)] where H(τ1) =

(
a′(τ1)

a(τ1)

)
, (D.5)

where the energy dispersion relation in terms of the field χ and the new contribution Oχ
k (τ1)

can be expressed as:

Eχ
k (τ1) =

[
|Πχ(k, τ1)|2 + ω2

χ(k, τ1)|χ(k, τ1)|2
]
, (D.6)

Oχ
k (τ1) = [Πχ(−k, τ1)χ(k, τ1) + Πχ(k, τ1)χ(−k, τ1)] . (D.7)

Here the new effective frequency ωχ after the quench operation for the outgoing field can

be written as:

ω2
χ(k, τ1) = ω2

out(k, τ1) +H2(τ1) where H(τ1) =
(
a′(τ1)

a(τ1)

)
. (D.8)

E Subsystem thermalization from gCC to GGE

Now our aim is to explicitly establish the statement of subsystem thermalization from a

gCC state to thermal GGE ensemble. and the equivalence between them. The derived

results in this section is new in the sense that we have done the computation for the 1 + 3

dimension de Sitter curved space-time and can be used these results further to interpret

various unknown physical concepts including the thermalization phenomena in the context

of early universe cosmology.

For the post-quench gCC type of quantum states constructed in this paper using the

Dirichlet and Neumann boundary states within the perturbative regime of the expansion

coefficients of the W∞ conserved charges, the reduced density matrix of a region A, which
can be obtained by performing a partial trace operation on a region B and treated to be

the complement of the region A can be asymptotically approaches to a GGE, which is

technically demonstrated as:

For Dirichlet boundary state :

TrB

[
exp(−iHτ) |ψ(κn)⟩ ⟨ψ(κn)| exp(iHτ)

]
= TrB

[
exp(−iHτ) exp

(
−
∫

d3k

(2π)3
κ(k)N̂(k)

)
|D⟩ ⟨D| exp

(
−
∫

d3k

(2π)3
κ(k)N̂(k)

)
exp(iHτ)

]
τ → 0−−−−→

TrB

[
1

Z(τ)
exp

(
−
∫

d3k

(2π)3
4κ(k)N̂(k)

)]
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= TrB

[
ρGGE(β, 4κn,DB)

]
where ρGGE(β, 4κn,DB) =

1

Z(τ)
exp

(
−βH − 4

∑
n

κn,DBWn

)
,

(E.1)

and

For Neumann boundary state :

TrB

[
exp(−iHτ) |ψ(κn)⟩ ⟨ψ(κn)| exp(iHτ)

]
= TrB

[
exp(−iHτ) exp

(∫
d3k

(2π)3
κ(k)N̂(k)

)
|N⟩ ⟨N | exp

(∫
d3k

(2π)3
κ(k)N̂(k)

)
exp(iHτ)

]
τ → 0−−−−→

TrB

[
1

Z(τ)
exp

(∫
d3k

(2π)3
4κ(k)N̂(k)

)]
= TrB

[
ρGGE(β, 4κn,NB)

]
where ρGGE(β, 4κn,NB) =

1

Z(τ)
exp

(
−βH − 4

∑
n

κn,NBWn

)
,

(E.2)

Here it is important to note that all the quantum operators of the W∞ algebra in the

present context can be expressed as:

Wn = |k|n−1 ˆN(k) where ˆN(k) = a†out(k)aout(k). (E.3)

This further implies the ensemble average of the conserved charges of W∞ algebra for gCC

and GGE turn out to be exactly same because of subsystem thermalization, i.e.

⟨Wn⟩gCC = ⟨Wn⟩GGE. (E.4)

It can be explicitly verified that in the present prescription the following statement is true:

⟨N(k)⟩gCC = |β(k)|2 = |γ(k)|2

1− |γ(k)|2
, (E.5)

⟨N(k)⟩GGE =
1

exp(4κ(k))− 1
, (E.6)

⟨N(k)⟩gCC = ⟨N(k)⟩GGE, (E.7)

where all the quantities are evaluated at a fixed value of conformal time η where the quench

operation is performed. For simplicity we have dropped the η dependence in the above

expressions. But remind ourself it is important to note that all functions of k would be

actually representing functions of (k, η) in this context.
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F Derivation for thermal Green’s functions for GGE ensemble without

squeezing in Fourier space

The thermal Green’s functions for the GGE ensemble for the field χ, its spatial derivative

and its canonically conjugate momentum can be expressed as:

GGGE
χχ (β, r, τ1, τ2) =

∫
d3k

(2π)3
[
GGGE
+,χχ (β,k, τ1, τ2) exp(ik.r)

+GGGE
−,χχ (β,k, τ1, τ2) exp(−ik.r)

]
, (F.1)

GGGE
∂iχ∂iχ

(β,k, τ1, τ2) =

∫
d3k

(2π)3
[
GGGE
+,∂iχ∂iχ

(β,k, τ1, τ2) exp(ik.r)

+GGGE
−,∂iχ∂iχ

(β,k, τ1, τ2) exp(−ik.r)
]
, (F.2)

GGGE
ΠχΠχ

(β, r, τ1, τ2) =

∫
d3k

(2π)3

[
GGGE
+,ΠχΠχ

(β,k, τ1, τ2) exp(ik.r)

+GGGE
−,ΠχΠχ

(β,k, τ1, τ2) exp(−ik.r)
]
, (F.3)

where we define, r :≡ x1 − x2.

For each of the cases the corresponding thermal propagators in Fourier space are divided

into two parts, one of them represents the advanced propagator which are appearing with

+ symbol and the other one is the retarded propagator which are appearing with the −
symbol. In the occupation number representation for the Hamiltonian we get:

GGGE
+,χχ (β,k, τ1, τ2) =

1

Z(τ1)

vout(k, τ1)v
∗
out(−k, τ2)

a(τ1)a(τ2)

1

|d1|
exp

(
− i

2

{
d∗2
d∗1
− d2
d1

})
×

∞∑
{Nk}=0 ∀ k

⟨{Nk}| exp(−β Ĥk(τ1)−
∞∑
n=2

κ2n,DB/NB|k|2n−1))

aout(k)a
†
out(−k) |{Nk}⟩

=
1

Z(τ1)

vout(k, τ1)v
∗
out(−k, τ2)

a(τ1)a(τ2)

1

|d1|
exp

(
− i

2

{
d∗2
d∗1
− d2
d1

})
×

∞∑
{Nk}=0 ∀ k

(Nk + 1) exp(−(βEk(τ1)))effNk)

=
1

Z(τ1)

vout(k, τ1)v
∗
out(−k, τ2)

a(τ1)a(τ2)

1

|d1|
exp

(
− i

2

{
d∗2
d∗1
− d2
d1

})
× exp (2(βEk(τ1))eff)

(exp ((βEk(τ1))eff)− 1)2

=
vout(k, τ1)v

∗
out(−k, τ2)

a(τ1)a(τ2)
× exp (2(βEk(τ1))eff)

(exp ((βEk(τ1))eff)− 1)2
×
(

exp ((βEk(τ1))eff)

(exp ((βEk(τ1))eff)− 1)

)−1
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=
vout(k, τ1)v

∗
out(−k, τ2)

2a(τ1)a(τ2)
exp

(
(βEk(τ1))eff

2

)
cosech

(
(βEk(τ1))eff

2

)
, (F.4)

and

GGGE
−,χχ (β,k, τ1, τ2) =

1

Z(τ1)

v∗out(−k, τ1)vout(k, τ2)
a(τ1)a(τ2)

1

|d1|
exp

(
− i

2

{
d∗2
d∗1
− d2
d1

})
×

∞∑
{Nk}=0 ∀ k

⟨{Nk}| exp(−β Ĥk(τ1)−
∞∑
n=2

κ2n,DB/NB|k|2n−1)) (F.5)

a†out(−k)aout(k) |{Nk}⟩

=
1

Z(τ1)

v∗out(−k, τ1)vout(k, τ2)
a(τ1)a(τ2)

1

|d1|
exp

(
− i

2

{
d∗2
d∗1
− d2
d1

})
×

∞∑
{Nk}=0 ∀ k

Nk exp(−(βEk(τ1))effNk)

=
1

Z(τ1)

v∗out(−k, τ1)vout(k, τ2)
a(τ1)a(τ2)

1

|d1|
exp

(
− i

2

{
d∗2
d∗1
− d2
d1

})
× exp(βEk(τ1))eff

(exp (βEk(τ1))eff − 1)2

=
v∗out(−k, τ1)vout(k, τ2)

a(τ1)a(τ2)

× exp(βEk(τ1))eff

(exp (βEk(τ1))eff − 1)2
×
(

exp ((βEk(τ1))eff)

(exp ((βEk(τ1))eff)− 1)

)−1

=
v∗out(−k, τ1)vout(k, τ2)

2a(τ1)a(τ2)
exp

(
− (βEk(τ1))eff

2

)
cosech

(
(βEk(τ1))eff

2

)
, (F.6)

By following the same steps one can further show the following results in the present

context:

GGGE
+,∂iχ∂iχ

(β,k, τ1, τ2) = −k2 GGGE
+,χχ (β,k, τ1, τ2) , (F.7)

GGGE
−,∂iχ∂iχ

(β,k, τ1, τ2) = −k2 GGGE
−,χχ (β,k, τ1, τ2) , (F.8)

GGGE
+,ΠχΠχ

(β,k, τ1, τ2) =
v′out(k, τ1)v

∗′
out(−k, τ2)

2a(τ1)a(τ2)
exp

(
(βEk(τ1))eff

2

)
cosech

(
(βEk(τ1))eff

2

)
−
GGGE
+,χχ (β,k, τ1, τ2)

a(τ1)a(τ2)
a′(τ1)a

′(τ2), (F.9)

GGGE
−,ΠχΠχ

(β,k, τ1, τ2) =
v∗′out(−k, τ1)v′out(k, τ2)

2a(τ1)a(τ2)
exp

(
− (βEk(τ1))eff

2

)
cosech

(
(βEk(τ1))eff

2

)
−
GGGE
−,χχ (β,k, τ1, τ2)

a(τ1)a(τ2)
a′(τ1)a

′(τ2). (F.10)
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G Derivation for thermal Green’s functions for GGE ensemble with

squeezing in Fourier space

The thermal Green’s functions for the GGE ensemble for the field χ, its spatial derivative

and its canonically conjugate momentum can be expressed as:

GGGE
χχ,sq(β, r, τ1, τ2) =

∫
d3k

(2π)3
[
GGGE
+,χχ,sq (β,k, τ1, τ2) exp(ik.r)

+GGGE
−,χχ,sq (β,k, τ1, τ2) exp(−ik.r)

]
, (G.1)

GGGE
∂iχ∂iχ,sq

(β,k, τ1, τ2) =

∫
d3k

(2π)3
[
GGGE
+,∂iχ∂iχ,sq

(β,k, τ1, τ2) exp(ik.r)

+GGGE
−,∂iχ∂iχ,sq

(β,k, τ1, τ2) exp(−ik.r)
]
, (G.2)

GGGE
ΠχΠχ,sq(β, r, τ1, τ2) =

∫
d3k

(2π)3

[
GGGE
+,ΠχΠχ,sq (β,k, τ1, τ2) exp(ik.r)

+GGGE
−,ΠχΠχ,sq (β,k, τ1, τ2) exp(−ik.r)

]
, (G.3)

where we define, r :≡ x1 − x2.

For each of the cases the corresponding thermal propagators in Fourier space are divided

into two parts, one of them represents the advanced propagator which are appearing with

+ symbol and the other one is the retarded propagator which are appearing with the −
symbol. In the occupation number representation for the Hamiltonian we get:

GGGE
+,χχ,sq (β,k, τ1, τ2) =

1

Z(τ1)

vout(k, τ1)v
∗
out(−k, τ2)

a(τ1)a(τ2)

1

|d1|
exp

(
− i

2

{
d∗2
d∗1
− d2
d1

})
×

∞∑
{Nk}=0 ∀ k

⟨{Nk}| exp(−β Ĥk(τ1)−
∞∑
n=2

κsq2n,DB/NB|k|
2n−1))

aout(k)a
†
out(−k) |{Nk}⟩

=
1

Z(τ1)

vout(k, τ1)v
∗
out(−k, τ2)

a(τ1)a(τ2)

1

|d1|
exp

(
− i

2

{
d∗2
d∗1
− d2
d1

})
×

∞∑
{Nk}=0 ∀ k

(Nk + 1) exp(−(βEk(τ1)))eff,sqNk)

=
1

Z(τ1)

vout(k, τ1)v
∗
out(−k, τ2)

a(τ1)a(τ2)

1

|d1|
exp

(
− i

2

{
d∗2
d∗1
− d2
d1

})
× exp (2(βEk(τ1))eff,sq)

(exp ((βEk(τ1))eff,sq)− 1)2

=
vout(k, τ1)v

∗
out(−k, τ2)

a(τ1)a(τ2)
× exp (2(βEk(τ1))eff,sq)

(exp ((βEk(τ1))eff,sq)− 1)2
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×
(

exp ((βEk(τ1))eff,sq)

(exp ((βEk(τ1))eff,sq)− 1)

)−1

=
vout(k, τ1)v

∗
out(−k, τ2)

2a(τ1)a(τ2)
exp

(
(βEk(τ1))eff,sq

2

)
cosech

(
(βEk(τ1))eff,sq

2

)
, (G.4)

and

GGGE
−,χχ,sq (β,k, τ1, τ2) =

1

Z(τ1)

v∗out(−k, τ1)vout(k, τ2)
a(τ1)a(τ2)

1

|d1|
exp

(
− i

2

{
d∗2
d∗1
− d2
d1

})
×

∞∑
{Nk}=0 ∀ k

⟨{Nk}| exp(−β Ĥk(τ1)−
∞∑
n=2

κ2n,DB/NB|k|2n−1)) (G.5)

a†out(−k)aout(k) |{Nk}⟩

=
1

Z(τ1)

v∗out(−k, τ1)vout(k, τ2)
a(τ1)a(τ2)

1

|d1|
exp

(
− i

2

{
d∗2
d∗1
− d2
d1

})
×

∞∑
{Nk}=0 ∀ k

Nk exp(−(βEk(τ1))eff,sqNk)

=
1

Z(τ1)

v∗out(−k, τ1)vout(k, τ2)
a(τ1)a(τ2)

1

|d1|
exp

(
− i

2

{
d∗2
d∗1
− d2
d1

})
× exp(βEk(τ1))eff,sq(

exp (βEk(τ1))eff,sq − 1
)2

=
v∗out(−k, τ1)vout(k, τ2)

a(τ1)a(τ2)

× exp(βEk(τ1))eff

(exp (βEk(τ1))eff − 1)2
×
(

exp ((βEk(τ1))eff)

(exp ((βEk(τ1))eff)− 1)

)−1

=
v∗out(−k, τ1)vout(k, τ2)

2a(τ1)a(τ2)
exp

(
− (βEk(τ1))eff

2

)
cosech

(
(βEk(τ1))eff

2

)
, (G.6)

By following the same steps one can further show the following results in the present

context:

GGGE
+,∂iχ∂iχ,sq

(β,k, τ1, τ2) = −k2 GGGE
+,χχ,sq (β,k, τ1, τ2) , (G.7)

GGGE
−,∂iχ∂iχ,sq

(β,k, τ1, τ2) = −k2 GGGE
−,χχ,sq (β,k, τ1, τ2) , (G.8)

GGGE
+,ΠχΠχ,sq (β,k, τ1, τ2) =

v′out(k, τ1)v
∗′
out(−k, τ2)

2a(τ1)a(τ2)
exp

(
(βEk(τ1))eff,sq

2

)
cosech

(
(βEk(τ1))eff,sq

2

)
−
GGGE
+,χχ,sq (β,k, τ1, τ2)

a(τ1)a(τ2)
a′(τ1)a

′(τ2), (G.9)

GGGE
−,ΠχΠχ,sq (β,k, τ1, τ2) =

v∗′out(−k, τ1)v′out(k, τ2)
2a(τ1)a(τ2)

exp

(
− (βEk(τ1))eff,sq

2

)
cosech

(
(βEk(τ1))eff,sq

2

)
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−
GGGE
−,χχ,sq (β,k, τ1, τ2)

a(τ1)a(τ2)
a′(τ1)a

′(τ2). (G.10)

H From Schrödinger scattering problem in Quantum Mechanics to

Particle Production in de Sitter Space

Initially, we have stated with a two interacting scalar field theory describing Quantum

Brownian motion by following the quantum field theoretic generalization of the Caldeira-

Leggett Model. Further performing the Euclidean path integration over one scalar field we

have derived an effective theory of the other scalar field. Now for the conformally flat de

Sitter background we have shown that in the Fourier space the Klein Gordon field equation

for the modes of survived field after path integration can be written as:[
d2

dτ 2
+
(
k2 +m2

eff(τ)
)]
v(k, τ) = 0 where m2

eff(τ) =
1

τ 2

(
m2(τ)

H2
− 2

)
. (H.1)

The analogous problem in quantum mechanics is to solve a Schrödinger scattering problem

in one dimension inside an electrical conduction wire in presence of an impurity potential,

which is described by ∗: [
d2

dx2
+ (E − V (x))

]
ψ
(√

E, x
)
= 0. (H.2)

Here V (x) is the impurity potential which mimics the role of negative of the effective

conformal time-dependent mass protocol used in the quenched Quantum Brownian Motion

problem. By replacing the time coordinate τ with x one can write down the following form

of the impurity potential in the one dimensional Schrödinger problem:

V (x) =
1

x2
(2− U(x)) , (H.3)

where the quantum mechanical quench protocol in one dimension quantum mechanical

problem in the present context is described by:

U(x) = U0Θ(−x) =


U0 Before quench : x < x0;

0 After quench : x ≥ x0.

. (H.4)

Here x0 is identified to be point where the quench operation is performed.

Also it is important to note that, the wave function ψ
(√

E, x
)

in one dimensional

Schrödinger problem mimics the role of the mode function as appearing in the particle

∗Here we have assumed ℏ = 1 and 2m = 1 in the Schrödinger equation.

112



Figure H.1: The impurity potential profile.

Figure H.2: Quantum mechanical quench profile.

production problem in de Sitter space. Finally the energy E in the Schrödinger problem

mimics the role of k2 in Fourier space in the particle production problem in de Sitter space.

In this description the solutions for the Schrödinger equation before and after quench

can be written as:

Before quench : ψin

(√
E, x

)
=
√
x
[
C1 H

(1)
1
2

√
9−4U0

(√
Ex
)
+ C2 H

(2)
1
2

√
9−4U0

(√
Ex
)]
, (H.5)
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After quench : ψout

(√
E, x

)
=

√
2

π
√
E

[
C3

(
sin
(√

Ex
)

√
Ex

− cos
(√

Ex
))

−C4

(
cos
(√

Ex
)

√
Ex

+ sin
(√

Ex
))]

. (H.6)

Here ψin(x) and ψout(x) are the representative solutions of the Schrödinger equation before

and after quench respectively. Also, C1, C2 and C3, C4 are the arbitrary integration

constants which are fixed by the appropriate choice of the boundary conditions, which are

the continuity of the in and out solutions and it derivatives at the point of quench x0. This

helps us to write C3, C4 in terms of C1, C2. Additionally it is important to note that,

to serve this purpose instead of using the actual solution one need to use the asymptotic

solutions of the Schrödinger equation before and after quench at x → −∞ and x → ∞
respectively.

In this construction one can actually write down the total asymptotic solution (x →
±∞) of the Schrödinger equation by the following expression:

ψ
(√

E, x
)
= C1 fin

(√
E, x

)
+ C2 f

∗
in

(√
E, x

)
= C3 fout

(√
E, x

)
+ C4 f

∗
out

(√
E, x

)
.

(H.7)

Here fin

(√
E, x

)
and fout

(√
E, x

)
are the combined asymptotic solutions at x → ±∞

for the actual solutions obtained in the previous page.

Here it is important to note that, incoming and the outgoing solutions before and after

quench can be expressed in terms of each other via the following relations:

fin

(√
E, x

)
= α

(√
E, x0

)
fout

(√
E, x

)
+ β

(√
E, x0

)
f ∗
out

(√
E, x

)
, (H.8)

fout

(√
E, x

)
= α∗

(√
E, x0

)
fin

(√
E, x

)
− β

(√
E, x0

)
f ∗
in

(√
E, x

)
. (H.9)

Consequently, the general solution for the field equation can be written as:

ψ
(√

E, x
)
= ain

(√
E
)
fin

(√
E, x

)
+ a†in

(√
E
)
f ∗
in

(√
E, x

)
= aout

(√
E
)
fout

(√
E, x

)
+ a†out

(√
E
)
f ∗
out

(√
E, x

)
, (H.10)

which satisfy the following reality constraint:

ψ∗
(√

E, x
)
= ψ

(√
E, x

)
. (H.11)
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Using these above mentioned equations one can explicitly show that:

ain

(√
E
)
= α∗

(√
E, x0

)
aout

(√
E
)
− β∗

(√
E, x0

)
a†out

(√
E
)
, (H.12)

aout

(√
E
)
= α∗

(√
E, x0

)
ain

(√
E
)
+ β∗

(√
E, x0

)
a†in

(√
E
)
. (H.13)

Here the Bogolyubov coefficients at the point of quench x0, are calculated using the fol-

lowing equations:

α
(√

E, x0

)
=

1

2i

dfout
(√

E, x
)

dx
f ∗
in

(√
E, x

)
− fout

(√
E, x

) df ∗
in

(√
E, x

)
dx


x0

, (H.14)

β∗
(√

E, x0

)
=

1

2i

dfout
(√

E, x
)

dx
fin

(√
E, x

)
− fout

(√
E, x

) dfin (√E, x)
dx


x0

. (H.15)

In this context, one can explicitly show that the incoming coefficients C1, C2 and the

outgoing coefficients C3, C4 are related via the following matrix equation:C3

C4

 =

 α
(√

E, x0

)
β
(√

E, x0

)
β∗
(√

E, x0

)
α∗
(√

E, x0

)
︸ ︷︷ ︸

Transfer Matrix

C1

C2

 (H.16)

which finally leads to the following constraint:∣∣∣α(√E, x0)∣∣∣2 − ∣∣∣β (√E, x0)∣∣∣2 = 1. (H.17)

Now, for the scattering problem one can define the reflection and transmission coefficients

for the wave travelling from left to right as:

r =
C2

C1

= −
β∗
(√

E, x0

)
α∗
(√

E, x0

) , (H.18)

t =
C3

C1

= α
(√

E, x0

)
+ β

(√
E, x0

)
r =

(
α
(√

E, x0

)
−

∣∣∣β (√E, x0)∣∣∣2
α∗
(√

E, x0

) ), (H.19)

which finally implies the following conservation equation:

|r|2 + |t|2 = 1. (H.20)
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Similarly, for the scattering problem one can define the reflection and transmission coeffi-

cients for the wave travelling from right to left as:

r′ =
C3

C4

=
β
(√

E, x0

)
α∗
(√

E, x0

) , (H.21)

t′ =
C2

C4

=
1

α∗
(√

E, x0

) , (H.22)

which further implies:

|r| = |r′|, t

t′
=

(
1

|t′|2
+
rr′

t′2

)
. (H.23)

Finally, for this scattering problem the transfer matrix can be written in terms of the

reflection and transmission coefficients as:

 α
(√

E, x0

)
β
(√

E, x0

)
β∗
(√

E, x0

)
α∗
(√

E, x0

)
︸ ︷︷ ︸

Transfer Matrix

=


t− rr′

t′
r′

t′

− r
t′

1

t′

 . (H.24)

After getting the expression for the reflection coefficient after quench one can further

expand it around
√
E = 0, which gives:

r′ =
∞∑
n=0

rn E
n
2 , (H.25)

which is exactly analogous to the expansion of the factor γ, which we have computed in

the main subject content of the paper.

I Determining coefficients for outgoing modes in terms of full solu-

tions

We first consider the case of instantaneous quench where the mass of the field suddenly falls

of to 0 at a particular conformal time denoted by η in this case. The incoming solutions

before the point of quench is denoted by:

vin(τ) =
√
−kτ [d1H

(1)
νin

(−kτ) + d2H
(2)
νin

(−kτ)]. (I.1)
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The derivatives of the above solution can be calculated as:

v′in(τ) =
1

2
√
−kτ

[
2d1kτ H

(1)
νin−1(−kτ) + d1(−1 + 2νin) H

(1)
νin

(−kτ)

+2d2kτ H
(2)
νin−1(−kτ) + d2(−1 + 2νin)H

(2)
νin

(−kτ)
]
. (I.2)

The outgoing solution after the quench point is given by

vout(τ) =
√
−k(τ + η)

[
d3 H

(1)
3
2

(−k(τ + η)) + d4 H
(2)
3
2

(−k(τ + η))

]
. (I.3)

The derivatives of the outgoing solution is calculated as:

v′out(τ) =
1√

−kτ + η

(
d3k(τ + η)H

(1)
1
2

(−k(τ + η)) + d3H
(1)
3
2

(−k(τ + η))

+ d4(k(τ + η))H 1
2
(−k(τ + η)) + d4H

(2)
3
2

(−k(τ + η))

)
.

Generally out of the four arbitrary constants, two can be fixed by the initial choice of

vacuum state. Hence, expressing any two arbitrary constants in terms of the other two is

quite natural. We proceed by expressing the constants appearing in the outgoing solutions

in terms of the constants of the incoming solution. These fixing is carried out by using

the continuity of the solutions and its first derivatives at the point of quench. Thus the

arbitrary constants d3 and d4 expressed in terms of d1 and d2 can be written as

d3 =
iπ

8
√
2

(
d1H

(1)
νin

(−kη) {−4kηH(2)
1
2

(−2kη) + (−3 + 2νin)H
(2)
3
2

(−2kη)}

+ 2kτH
(2)
3
2

(−2kη){d1H(1)
νin−1(−kη) + d2H

(2)
νin−1(−kη)}

+ d2{−4kτH(2)
1
2

(−2kη) + (−3 + 2νin)H
(2)
3
2

(−2kη)}H(2)
ν (−kη)

)
(I.4)

d4 =
iπ

8
√
2

(
4kηH

(2)
1
2

(−2kη){d1H(1)
νin

(−kη) + d2H
(2)
νin

(−kη)}+H
(1)
3
2

(−2kη)

{−2d1kηH(1)
νin−1(−kη) + d1(3− 2νin)H

(1)
νin

(−kη)− 2d2kηH
(2)
νin−1(−kη)

+ (3− 2νin)H
(2)
νin

(−kη)}
)

(I.5)

Though in this article we have not used the analytical computations from the full solution

of the mode equation as computing the two-point correlators and preparing the post quench

states are extremely time consuming and sometimes impossible to simplify. For this reason

we have used the asymptotic solution which combines the effect at τ → −∞ and τ → 0

to serve the purpose.
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