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ABSTRACT
The Tayler-Spruit dynamo is one of the most promising mechanisms proposed to explain angular momentum transport during
stellar evolution. Its development in proto-neutron stars spun-up by supernova fallback has also been put forward as a scenario to
explain the formation of very magnetized neutron stars called magnetars. Using three-dimensional direct numerical simulations,
we model the proto-neutron star interior as a stably stratified spherical Couette flow with the outer sphere that rotates faster than
the inner one. We report the existence of two subcritical dynamo branches driven by the Tayler instability. They differ by their
equatorial symmetry (dipolar or hemispherical) and the magnetic field scaling, which is in agreement with different theoretical
predictions (by Fuller and Spruit, respectively). The magnetic dipole of the dipolar branch is found to reach intensities compatible
with observational constraints on magnetars.
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1 INTRODUCTION

Magnetars are a class of neutron stars that exhibit magnetic fields
whose dipolar component reaches 1014–1015 G, which makes them
the strongest fields observed in the Universe. Their dissipation are
thought to power a wide variety of emissions like giant flares (Evans
et al. 1980; Hurley et al. 1999, 2005; Svinkin et al. 2021), fast ra-
dio bursts (CHIME/FRB Collaboration et al. 2020; Bochenek et al.
2020), and short chaotic X-ray bursts (Gotz et al. 2006; Coti Ze-
lati et al. 2018, 2021). Combined with a millisecond rotation, they
may produce magnetorotational explosions, which are more energetic
than standard supernovae explosions (Burrows et al. 2007; Dessart
et al. 2008; Takiwaki et al. 2009; Kuroda et al. 2020; Bugli et al.
2020, 2021, 2023; Obergaulinger & Aloy 2020, 2021, 2022). The
origin of these magnetic fields is therefore a crucial question to un-
derstand magnetars and their association to extreme events such as
gamma-ray bursts or fast radio bursts. Two classes of scenarios can be
distinguished for magnetar formation: (i) the merger of a neutron star
binary, which may explain the plateau phase and the extended emis-
sion in X-ray sources associated with short gamma-ray bursts (Met-
zger et al. 2008; Lü & Zhang 2014; Gompertz et al. 2014). These
events are interesting for their multimessenger signature but are ex-
pected to be too rare to be the main formation channel of Galactic
magnetars, (ii) the core-collapse of a massive star, which is confirmed
by the observation of Galactic magnetars associated with supernova
remnants (Vink & Kuiper 2006; Martin et al. 2014; Zhou et al. 2019).
In the latter case, the amplification of the magnetic field may be due
either to the magnetic flux conservation during the collapse of the
iron core of the progenitor star (Ferrario & Wickramasinghe 2006;
Hu & Lou 2009; Schneider et al. 2020) or to a dynamo action in
the newly born proto-magnetar. Indeed, two dynamo mechanisms
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have already been studied by numerical simulations: the convective
dynamo (Thompson & Duncan 1993; Raynaud et al. 2020, 2022;
Masada et al. 2022; White et al. 2022) and the magnetorotational
instability (MRI)-driven dynamo (Obergaulinger et al. 2009; Mösta
et al. 2014; Reboul-Salze et al. 2021, 2022; Guilet et al. 2022).
They have been shown to produce magnetar-like magnetic fields for
millisecond rotation periods of the proto-magnetar, especially for pe-
riods 𝑃 ≲ 10 ms for the convective dynamo (Raynaud et al. 2020,
2022). These scenarios rely on the hypothesis that the rotation of the
proto-magnetar is determined by the rotation of the progenitor core.
However, it is still uncertain whether there are enough fast rotating
progenitor cores to form all the observed magnetars in the Milky
Way, which represent ∼ 10 − 40 % of the Galactic neutron star pop-
ulation (Kouveliotou et al. 1994; Woods & Thompson 2006; Gill &
Heyl 2007; Beniamini et al. 2019).

In Barrère et al. (2022), we developed a new magnetar formation
scenario in which the rapid rotation rate of the proto-magnetar is
not determined by the progenitor core but by the ejected matter that
remains gravitationally bound to the proto-magnetar and eventually
falls back on the proto-magnetar surface ∼ 5 − 10 s after the core-
collapse. Since the accretion is asymmetric, the fallback matter trans-
fers a significant amount of angular momentum to the surface (Chan
et al. 2020; Janka et al. 2022), which makes the surface rotate faster
than the core. In Barrère et al. (2022), we argue that this spin-up trig-
gers the amplification of the magnetic field through the Tayler-Spruit
dynamo mechanism. This dynamo mechanism can be described as a
loop: (i) a poloidal magnetic field is sheared into a toroidal one (Ω–
effect), (ii) the toroidal field becomes Tayler unstable after reaching
a critical value (Tayler 1973; Pitts & Tayler 1985), and (iii) the Tayler
instability regenerates a poloidal field (Fuller et al. 2019; Skoutnev
et al. 2022; Ji et al. 2023).

The Tayler-Spruit dynamo was first modelled by Spruit (2002) to
explain the angular momentum transport in stellar radiative zones.
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Figure 1. Left: Bifurcation diagram of the time and volume averaged Elsasser number (and root mean square magnetic field) versus the Rossby number.
Distinct dynamo branches are represented: dipolar (red), quadrupolar (mauve), hemispherical (green), and kinematic (black) whose respective thresholds are
𝑅𝑜𝑐

D ∼ 0.19, 𝑅𝑜𝑐
Q ∼ 0.7, 𝑅𝑜𝑐

H ∼ 0.37, and 𝑅𝑜𝑐
W ∼ 0.62. The hydrodynamic instability is triggered for 𝑅𝑜𝑐

hyd > 0.177. Dark green circles are stationary
hemispherical dynamos and light green ones display parity modulations. Black crosses indicate failed dynamos, empty circles metastable solutions. Arrows
attached to circles indicate the initial condition of the associated simulation. The black half empty circle specifies that the solution was found to be metastable in
a simulation and stable in another. The error bars indicate the standard deviation. Right: snapshots of the magnetic field lines and surface radial fields associated
to the different main dynamo branches at 𝑅𝑜 = 0.75: dipolar (top), hemispherical (middle), and kinematic (bottom).

Fuller et al. (2019) provided a revised description, which tackles the
previous critics of Spruit’s model (see Denissenkov & Pinsonneault
2007; Zahn et al. 2007). A main difference between both descriptions
resides in the saturation mechanism of the dynamo. Spruit (2002)
supposes that magnetic energy in the large-scale magnetic field is
damped via a turbulent cascade at a rate equal to the growth rate
of the Tayler instability, whereas Fuller et al. (2019) rather expect
the magnetic energy to cascade from the scale of the instability
(and not the large-scale magnetic field) to small scales. This yields
distinct magnetic energy damping rates and so different scalings for
the saturated magnetic field. Their analytical results are now often
included in stellar evolution codes (see e.g. Eggenberger et al. 2005;
Cantiello et al. 2014; Eggenberger et al. 2019b,a; den Hartogh et al.
2020; Bonanno et al. 2020; Griffiths et al. 2022). Though this dynamo
has long been debated in direct numerical simulations (Braithwaite
2006; Zahn et al. 2007), Petitdemange et al. (2023) recently reported a
dynamo solution sharing many characteristics with the Tayler-Spruit
model. Their numerical simulations modelled a stellar radiative zone,
where the shear is negative, that is, the rotation rate decreases in
the radial direction. In this Letter, we demonstrate that the Tayler
instability can sustain different dynamo branches in the presence of
positive shear, which gives strong support to the magnetar formation
scenario of Barrère et al. (2022).

2 NUMERICAL SETUP

We perform three-dimensional (3D) direct numerical simulations
of a stably stratified and electrically conducting Boussinesq fluid
with the pseudo-spectral code MagIC (Wicht 2002; Gastine &
Wicht 2012; Schaeffer 2013). The fluid has a constant density
𝜌 = 3.8 × 1014 g cm−3 (which corresponds to a proto-neutron star
mass of 𝑀 = 1.4 M⊙) and evolves between two concentric spheres

of radius 𝑟𝑖 = 3 km and 𝑟𝑜 = 12 km, rotating at the angular fre-
quencies Ω𝑖 and Ω𝑜 = 2𝜋 × 100 rad s−1, respectively. The im-
posed differential rotation is characterized by the Rossby number
𝑅𝑜 ≡ 1 − Ω𝑖/Ω𝑜 > 0, which is varied between 0.125 and 1.2. This
spherical Taylor-Couette configuration with positive shear prevents
the development of the MRI and allows us to study the system in a
statistically steady state. We impose no-slip and insulating boundary
conditions at the inner and outer spheres. In all the simulations, we
keep fixed the other dimensionless control parameters: the shell as-
pect ratio 𝜒 ≡ 𝑟𝑖/𝑟𝑜 = 0.25, the thermal and magnetic Prandtl num-
bers 𝑃𝑟 ≡ 𝜈/𝜅 = 0.1 and 𝑃𝑚 ≡ 𝜈/𝜂 = 1, respectively, the Ekman
number 𝐸 ≡ 𝜈/(𝑑2Ω𝑜) = 10−5, and the ratio of the Brunt-Väisälä
to the outer angular frequency 𝑁/Ω𝑜 = 0.1. The coefficients 𝜈, 𝜅, 𝜂,
and 𝑑 ≡ 𝑟𝑜 − 𝑟𝑖 are respectively the kinematic viscosity, the thermal
diffusivity, the resistivity, and the shell width. As discussed in Sec.
1.3. in the Supplemental Materials, the values of the dimensionless
parameters are chosen for numerical convenience because realistic
parameters of proto-neutron star interiors are out of reach with the
current computing power. The magnetic energy is measured by the
Elsasser number Λ ≡ 𝐵2

rms/(4𝜋𝜌𝜂Ω𝑜). The simulations are initial-
ized either from a nearby saturated state, or with a weak (Λ = 10−4) or
a strong (Λ = 10) toroidal axisymmetric field with a given equatorial
symmetry ; it can be either dipolar (i.e. equatorially symmetric1 with
𝑙 = 2, 𝑚 = 0) or quadrupolar (i.e. anti-symmetric with 𝑙 = 1, 𝑚 = 0).
We define a turbulent resistive time 𝜏𝜂 =

(
𝜋𝑟𝑜/ℓ̄

)2 /𝜂 ∼ 0.2𝑑2/𝜂,
where ℓ̄ = 10 is the typical value of the average harmonic degree of
the time-averaged magnetic energy spectrum. In the following, we
will term a solution metastable when a steady state is sustained for a
time interval Δ𝑡 > 0.3𝜏𝜂 ,and stable for Δ𝑡 ⩾ 𝜏𝜂 (up to 5.7𝜏𝜂 for the
simulation at 𝑅𝑜 = 0.2).

1 For the choice of these definitions, see Gubbins & Zhang (1993).
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3 RESULTS

We find in our set of simulations several dynamo branches rep-
resented by different colours in the bifurcation diagram shown in
Fig. 1. When the differential rotation is low, the flow can not amplify
a weak magnetic field (black crosses), but when 𝑅𝑜 > 𝑅𝑜𝑐W ∼ 0.62,
the magnetic field grows exponentially to reach a metastable or a
stable saturated dynamo state (black dots). This kinematic dynamo is
driven by an hydrodynamic instability of the Stewartson layer whose
threshold is 𝑅𝑜𝑐hyd ∼ 0.175 (dashed vertical black line), which is in
agreement with Hollerbach (2003). When 𝑅𝑜 ≳ 0.8, the kinematic
growth is followed by a non-linear growth and the system transitions
directly to another branch with a larger magnetic energy (green cir-
cles). Restarting from a nearby saturated solution or a strong toroidal
field with quadrupolar symmetry (mauve dashed arrows), we find
that the stability of this branch extends to Rossby number as low
as 𝑅𝑜𝑐H ∼ 0.37 < 𝑅𝑜𝑐W, which indicates that this dynamo is sub-
critical. By starting from a strong toroidal field with dipolar sym-
metry, we observe that this subcritical branch is in bistability with
another one which presents even stronger saturated magnetic fields
𝐵rms ∈ [

4 × 1014, 1.1 × 1015] G (red circles). This branch is also
subcritical since it can be maintained for Rossby numbers as low as
𝑅𝑜 > 𝑅𝑜𝑐D ∼ 0.19. Moreover, the two subcritical branches do not
only differ by their magnetic field strength but also by their equa-
torial symmetry, as seen in the 3D snapshots and the surface maps
of the magnetic field in Fig. 1. Indeed, the magnetic field shows
a dipolar symmetry on the stronger dynamo branch, whereas it is
hemispherical on the weaker one. The latter can be interpreted as
the superposition of modes with opposite equatorial symmetry (Gal-
let & Pétrélis 2009), which is consistent with the fact that we do
find quadrupolar solutions (mauve circles in Fig. 1). These are only
metastable for 𝑅𝑜 > 𝑅𝑜𝑐Q ∼ 0.7 and transition to a stable dipolar
or hemispherical solution. Finally, we note that the hemispherical
dynamos with 𝑅𝑜 ≳ 0.8 (light green circles in Figs 1 and 2) display
parity modulations (i.e. the solution evolves between hemispheri-
cal, dipole, and quadrupole symmetric states). This behaviour is
reminiscent of the so-called Type 1 modulation identified in other
dynamo setups (Knobloch et al. 1998; Raynaud & Tobias 2016) and
likely results from the coupling of modes with opposite parity as the
equatorial symmetry breaking of the flow increases at larger Rossby
numbers.

The difference between the three dynamo branches is also clear
in Fig. 2, where we see that the hemispherical branch saturates be-
low the equipartition, with an energy ratio increasing with 𝑅𝑜 from
∼ 0.014 up to ∼ 0.56. By contrast, the dynamos of the dipolar branch
are in a super-equipartition state (𝐸𝑏/𝐸𝑘 > 1) and follow the mag-
netostrophic scaling 𝐸𝑏/𝐸𝑘 ∝ 𝑅𝑜−1 characteristic of the Coriolis-
Lorenz force balance (Roberts & Soward 1972; Dormy 2016; Aubert
et al. 2017; Dormy et al. 2018; Augustson et al. 2019; Seshasayanan
& Gallet 2019; Raynaud et al. 2020; Schwaiger et al. 2019). This
is also confirmed by force balance spectra shown in Fig. S1 in the
Supplemental Materials.

Both subcritical dynamos show magnetic fields concentrated along
the rotation axis, which differs significantly from the subcritical so-
lutions found with a negative shear by (Petitdemange et al. 2023) ;
this is also strikingly different from the magnetic field generated on
the equatorial plane by the kinematic dynamo (see 3D snapshots of
Fig. 1). This suggests that the dipolar and hemispherical dynamos
are driven by a different mechanism. We argue that they are driven
by the Tayler instability according to the following arguments. First,
the axisymmetric toroidal magnetic component is clearly dominant
since it contains 53 − 88 % of the total magnetic energy. Second, the

Figure 2. Time-averaged ratio of the magnetic energy to the kinetic energy
densities as a function of the Rossby number. The error bars indicate the
standard deviation.

Figure 3. Snapshots of the azimuthal slices of the angular velocity (left)
and the magnetic field along the cylindrical radius 𝑠 ≡ 𝑟 sin 𝜃 (right) of the
dipolar dynamo at 𝑅𝑜 = 0.75.

simulations show a poloidal magnetic field with a dominant 𝑚 = 1
mode (see Supplemental Materials Figs S2 and S3), which is the most
unstable mode of the Tayler instability (Zahn et al. 2007; Ma & Fuller
2019). In the azimuthal cut of the magnetic field component 𝐵𝑠 in
Fig. 3„the Tayler mode also appears clearly close to the poles, where
it is expected to develop for a toroidal field generated by the shearing
of a poloidal field (see Supplemental Materials Fig. S4). This is also
consistent with the 3D snapshots of the dipolar and hemispherical
branches in Fig. 1 where the toroidal magnetic field seems prone to
a kink instability. Third, as in Petitdemange et al. (2023), the sys-
tem bifurcates from the kinematic to the hemispherical branch in the
vicinity of the threshold of the Tayler instability (Spruit 1999, 2002)

Λ𝑐
𝜙 ≡

𝐵𝑐
𝜙

2

4𝜋𝜌𝜂Ω𝑜
∼ 𝜒

1 − 𝜒

𝑁

Ω𝑜

√︂
𝑃𝑟

𝐸
∼ 3.3 . (1)

Indeed, if we focus on the stable and metastable kinematic solutions
found at 𝑅𝑜 = 0.75, we see in Fig. 4 that the local maximum of
the toroidal axisymmetric field is in both cases close to the critical
value above which it is expected to become unstable. The bifurcation
from the kinematic toward the hemispherical branch that is observed
for the metastable solution appears hence as the result of turbulent
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Figure 4. Time series of the maximum along the cylindrical radius 𝑠 of
the axisymmetric toroidal magnetic energy measured locally at 𝑧 = 0.45𝑟𝑜 ,
for stable (black) and metastable (green) kinematic dynamos at 𝑅𝑜 = 0.75.
The dashed red line indicates the analytical threshold of the Tayler instability
(equation 1). Dark lines show a running average and dotted green lines around
𝑡 ∼ 20 s indicate missing data.

fluctuations departing far enough above the threshold of the Tayler
instability.

Finally, we compare our numerical results to the theoretical pre-
dictions regarding the saturation of the Tayler-Spruit dynamo. Note
that these predictions assume the scale separation 𝜔𝐴 ≪ Ω𝑜 ≪ 𝑁 ,

where the Alfvén frequency is defined by 𝜔𝐴 ≡ 𝐵𝜙/
√︃

4𝜋𝜌𝑟2
𝑜 ∼

12.1
(
𝐵𝜙/1015 G

)
Hz. Our numerical models assume 𝑁/Ω𝑜 = 0.1

to limit the computational costs, whereas for a typical PNS spun up
by fallback to a period of 1 − 10 ms we expect 𝑁/Ω𝑜 ∼ 1 − 10. On
the other hand, the achieved magnetic field follows the right scale
separation with 𝜔𝐴/Ω𝑜 ≲ 0.02, which is expected to determine
the saturation mechanism of the Tayler instability (Ji et al. 2023).
Figure 5 displays the axisymmetric toroidal and poloidal magnetic
fields (top), the dipole field (middle) and the Maxwell torque (bot-
tom) as a function of an effective shear rate 𝑞 measured locally
in the saturated state of the dynamo (see Supplemental Materials
Fig. S5). For the dipolar branch (red), we find that the power laws
𝐵𝑚=0

tor ∝ 𝑞0.36±0.05 and 𝐵𝑚=0
pol ∝ 𝑞0.62±0.07 fit the saturated magnetic

field, while we find 𝐵𝑠𝐵𝜙 ∝ 𝑞1.0±0.02 or 𝐵𝑚=0
𝑠 𝐵𝑚=0

𝜙 ∝ 𝑞1.1±0.04,
depending on whether we take into account non-axisymmetric con-
tributions to compute the Maxwell torque 𝑇M. The scaling exponents
are thus in good agreement with the theoretical predictions of Fuller
et al. (2019) 𝐵𝑚=0

tor ∝ 𝑞1/3, 𝐵𝑚=0
pol ∝ 𝑞2/3 and 𝑇M ∝ 𝑞 (red dotted

lines in Fig. 5). Contrary to their prediction, however, our torque is
not dominated by the axisymmetric magnetic field, which may be
related to their assumption of a stronger stratification. Interestingly,
the hemispherical branch (green) does not follow the same scalings:
for 𝑞 ≥ 0.2, we find 𝐵𝑚=0

tor ∝ 𝑞2.1±0.31 and 𝐵𝑚=0
pol ∝ 𝑞2.0±0.28 for the

magnetic field, and 𝐵𝑠𝐵𝜙 ∝ 𝑞2.7±0.40 or 𝐵𝑚=0
𝑠 𝐵𝑚=0

𝜙 ∝ 𝑞3.8±0.70

for the Maxwell torque. These results globally support Spruit’s pre-
dictions (Spruit 2002) 𝐵𝑚=0

tor ∝ 𝑞, 𝐵𝑚=0
pol ∝ 𝑞2 and 𝑇M ∝ 𝑞3 (green

dotted lines)2. If we focus on the dipole field, we find the following

2 In the case of the toroidal magnetic field, the power law index from the fit

Figure 5. Root mean square (RMS) toroidal and poloidal axisymmetric mag-
netic fields (top), RMS magnetic dipole (middle), and RMS magnetic torque
(bottom) as a function of the time-averaged shear rate measured in the steady
state, for the dipolar (red) and hemispherical (green) dynamo branches. Dot-
ted lines shows the best fits obtained with Fuller’s (red) and Spruit’s (green)
theoretical scaling laws, respectively.

power laws: 𝐵dip ∝ 𝑞0.66±0.03 and 𝐵dip ∝ 𝑞1.1±0.4, for the dipolar
and hemispherical branches, respectively. The dipole field on the
strong branch therefore follows the same scaling as the axisymmetric
poloidal field and is only ∼ 33% weaker.

4 CONCLUSIONS

To conclude, we show that the Tayler-Spruit dynamo also exists in
the presence of positive shear. We demonstrate for the first time
the existence of two subcritical branches of this dynamo with dis-
tinct equatorial symmetries, dipolar and hemispherical. Moreover,
the former follows Fuller’s theoretical predictions, while the latter
is in overall agreement with Spruit’s model. Compared to the study
of Petitdemange et al. (2023) that use a negative shear, our results
present a similar dynamical structure, with a bifurcation diagram

is in slight tension with the theoretical prediction. However, this tension is
not very significant: it is driven mainly by a single data point and disappears
if we change the threshold from 𝑞 > 0.2 to 𝑞 > 0.25 to exclude the model
Ro0.5as with 𝑞 = 0.2.
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characterized by a bistability between kinematic and subcritical dy-
namo solutions. The magnetic field of their Tayler-Spruit dynamo
is, however, different since it is characterized by a smaller scale
structure localized near the inner boundary in the equatorial plane,
and induces a torque scaling according to Spruit’s prediction. Our
study shows a magnetic field geometry concentrated near the pole in
agreement with the expectation of the Tayler-Spruit dynamo and a
more complex physics, with the existence of two different branches
that can not be captured by a single scaling law. Extended parameter
studies will be needed to further assess the impact of the resistivity
and the stratification on this dynamo instability and better constrain
its astrophysical implications.

Our results are of particular importance for stellar evolution mod-
els by confirming the existence of the Tayler-Spruit dynamo and by
deepening our physical understanding of its complex dynamics. They
also give strong support to the new magnetar formation scenario pro-
posed by Barrère et al. (2022), which relies on the development of a
Tayler-instability driven dynamo in the presence of a positive shear.
We validate the assumption that the magnetic dipole is a significant
fraction of the poloidal magnetic field and follows the same scal-
ing. Extrapolating our results for the dipolar branch to 𝑞 ∼ 1 as
expected in Barrère et al. (2022), we obtain a magnetic dipole inten-
sity of ∼ 3.2 × 1014 G and an even stronger axisymmetric toroidal
field of ∼ 2.1 × 1015 G. These orders of magnitude are similar to
those found in Barrère et al. (2022) for the same rotation period of
𝑃𝑜 ≡ 2𝜋/Ω𝑜 = 10 ms, and fall right in the magnetar range (Olausen
& Kaspi 2014).
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In these Supplemental Materials, we present in more details our
setup and provide further analyses of the dynamo simulations (force
balance, time-averaged spectra, instability criterion, shear rate).

1 SET UP

1.1 Governing equations

We model the proto-neutron star differential rotation as a spherical,
stably stratified Couette flow. In the reference frame rotating with the
surface at the angular velocity 𝛀𝑜 = Ω𝑜𝒆𝑧 , the Boussinesq MHD
equations read

∇ · v = 0 , (1)

𝐷𝑡v = − 1
𝜌
∇𝑝′ − 2Ω𝑜e𝑧 × v + 𝛼𝑔𝑇 ′e𝑟 + 1

4𝜋𝜌
(∇ × B) × B + 𝜈Δv ,

(2)
𝐷𝑡𝑇

′ = 𝜅Δ𝑇 ′ , (3)
𝜕𝑡B = ∇ × (u × B) + 𝜂ΔB , (4)

∇ · B = 0 , (5)

where v is the velocity field, B is the magnetic field, 𝑝′ is the pressure
perturbation, 𝑇 ′ is the super-adiabatic temperature, 𝜌 is the uniform
density, 𝑔 = 𝑔𝑜𝑟/𝑟𝑜 is the gravitation field, and 𝛼 ≡ 𝜌−1 (𝜕𝑇 𝜌)𝑝 is
the thermal expansion coefficient. e𝑧 and e𝑟 are the unit vectors of
the axial and the spherical radial directions, respectively. We apply
no-slip, electrically insulating, and fixed temperature boundary con-
ditions on both shells. In the above equations, we assume that the
viscosity 𝜈, the thermal diffusivity 𝜅 and the magnetic diffusivity 𝜂
are constant. Apart from the magnetic diffusivity which relates to the
electrical conductivity of electrons, the physical interpretation of the
other transport coefficients can lead to different estimates, depending
on whether neutrinos are considered or not to be the main source of
diffusive processes.

1.2 Transport coefficients

In our magnetar formation scenario, the fallback occurs seconds to
minutes after the PNS formation. As discussed in Barrère et al. (2022,
Sect. 4.3.), at this stage of the PNS evolution, the diffusive processes
are either microscopic or driven by neutrinos depending on whether
the length scale 𝑙 considered is smaller or larger than the neutrino
mean free path (Thompson & Duncan 1993, Eq. 11)

𝑙𝑛 ∼ 4 × 104
(

𝜌

1014 g cm−3

)−1/3 (
𝑇

5 MeV

)−3
cm . (6)

If the length scale satisfies 𝑙 > 𝑙𝑛, then the viscosity and the thermal
diffusivity are driven by neutrinos. Using the scalings of Guilet et al.
(2015, Eq. 10) and Thompson & Duncan (1993, Eq. 7), we obtain
the following orders of magnitude

𝜈𝑛 ∼ 2 × 106
(

𝜌

4 × 1014 g cm−3

)−2 (
𝑇

5 MeV

)2
cm2 s−1 , (7)

𝜅𝑛 ∼ 4 × 1010
(

𝜌

4 × 1014 g cm−3

)−2/3 (
𝑇

5 MeV

)−1
cm2 s−1 . (8)

If the length scale satisfies 𝑙 < 𝑙𝑛, it is relevant to use a micro-
scopic viscosity such as the shear viscosity due to neutron-neutron
scattering (Cutler & Lindblom 1987, Eq. 14)

𝜈𝑠 ∼ 0.2
(

𝜌

4 × 1014 g cm−3

)5/4 (
𝑇

5 MeV

)−2
cm2 s−1 . (9)

To determine the thermal diffusivity, we use the calculation of Lee
(1950, Eqs. 48–54) for degenerate relativistic electrons

𝜅𝑠 =
𝜆

𝜌𝑐𝑝
=

8𝜋2𝑐𝑇

3𝜌𝑐𝑝

(
3𝜋2𝜌𝑌𝑒
𝑚𝑝

)1/3 (
𝑘𝐵
𝑒

)2 1
4𝜋𝛼 lnΛ

, (10)

where 𝜆 is the thermal conductivity, 𝑐𝑝 is the specific heat at constant
pressure, 𝑌𝑒 is the electronic fraction, and 𝑐 is the speed of light in
the vacuum. The constants 𝑘𝐵, 𝑒, 𝑚𝑝 , and 𝛼 ≡ 𝑒2/(ℏ𝑐) are the
Boltzman constant, the electric charge, the proton mass, and the
fine structure constant, respectively, and lnΛ ∼ 1 is the Coulomb
logarithm. By using the formula of the specific heat for noninteracting
gas of semidegenerate nucleons of Thompson & Duncan (1993)

𝜌𝑐𝑝 =
( 𝜋
3

)2/3 (
𝑘𝐵
ℏ

)2
[ 𝑓 (𝑌𝑒)]−1 𝜌1/3𝑚2/3

𝑝 𝑇 , (11)

where 𝑓 (𝑌𝑒) ≡
[
(1 − 𝑌𝑒)1/3 + 𝑌1/3

𝑒

]−1
, Eq. (10) simplifies in

𝜅𝑠 = 2𝜋
𝑐

𝑚𝑝𝛼 lnΛ

(
ℏ
𝑒

)2
[ 𝑓 (𝑌𝑒)] 𝑌1/3

𝑒 (12)

∼ 30
(
𝑌𝑒
0.2

)1/3
cm2 s−1 . (13)

Assuming that the Wiedemann-Franz law computed by Kelly
(1973, Eq. 15) for degenerate, relativistic electrons holds, the thermal
diffusity 𝜅𝑠 and magnetic diffusivity 𝜂 are related by

𝜅𝑠 =
10𝜋3

3
𝑇

𝜌𝑐𝑝

(
𝑘𝐵
𝑒

)2 𝑐2

4𝜋𝜂
. (14)
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2 Barrère et al.

Therefore, the magnetic diffusitivity scales like

𝜂 = 2 × 10−5
(

𝜌

4 × 1014 g cm−3

)−1/3 (
𝑌𝑒
0.2

)−1/3
cm2 s−1 . (15)

1.3 Parameter regime

The above calculations enable us to estimate the different dimension-
less numbers characterising the PNS fluid interior at evolution stage
we are interested in. For the thermal and magnetic Prandtl numbers,
we have

𝑃𝑟 ≡ 𝜈

𝜅
∼

{
5 × 10−5 with 𝜈 = 𝜈𝑛, 𝜅 = 𝜅𝑛

7 × 10−3 with 𝜈 = 𝜈𝑠 , 𝜅 = 𝜅𝑠
, (16)

and

𝑃𝑚 ≡ 𝜈

𝜂
∼

{
1011 with 𝜈 = 𝜈𝑛

104 with 𝜈 = 𝜈𝑠
. (17)

The Ekman number can be estimated as:

𝐸 ≡ 𝜈

𝑟2Ω
∼

{
2 × 10−9 with 𝜈 = 𝜈𝑛

2 × 10−16 with 𝜈 = 𝜈𝑠
, (18)

with 𝑟 = 12 km and Ω = 200𝜋 rad s−1. Finally, the stratification of
the PNS interior can be characterised by the Brunt-Väisälä frequency

𝑁 ≡
√√√
− 𝑔

𝜌

(
𝜕𝜌

𝜕𝑆

����
𝑃,𝑌𝑒

𝑑𝑆

𝑑𝑟
+ 𝜕𝜌

𝜕𝑌𝑒

����
𝑃,𝑆

𝑑𝑌𝑒
𝑑𝑟

)
∼ 4 × 103 s−1 , (19)

where 𝑆 is the entropy. The above order of magnitude for𝑁 is based on
the 1D core-collapse supernova simulations from Hüdepohl (2014,
Chap. 5).

In all cases, these parameters are far beyond the reach of any
modern supercomputer. To limit the computational time needed to
complete our parameter study, we considered the following values
𝑃𝑟 = 0.1, 𝑃𝑚 = 1, 𝐸 = 10−5 and 𝑁/Ω𝑜 = 0.1. We leave for future
work the study of the dependence on the diffusivity coefficients and
strength of stratification.

1.4 Numerical methods

To satisfy the solenoidal conditions (1) and (5), the velocity and
magnetic fields are decomposed in poloidal and toroidal components
(Mie representation),

𝜌u = ∇ × (∇ ×𝑊e𝑟 ) + ∇ × 𝑍e𝑟 , (20)
B = ∇ × (∇ × 𝑏e𝑟 ) + ∇ × 𝑎 𝑗e𝑟 , (21)

where W and Z (𝑏 and 𝑎 𝑗 ) are the poloidal and toroidal potentials for
the velocity (magnetic) field. The whole system of equations is then
solved in spherical coordinates by expanding the scalar potentials
in Chebyshev polynomials in the radial direction, and in spherical
harmonic functions in the angular directions. We refer the reader to
the MagIC online documentation1 for an exhaustive presentation of
the numerical techniques (see also Wicht 2002; Gastine & Wicht
2012; Schaeffer 2013).

1 https://magic-sph.github.io

1.5 Output parameters

We first characterize our models by computing the time average of
the kinetic and magnetic energy densities (after filtering out any
initial transient). The latter is expressed in terms of the Elsasser
number Λ ≡ 𝐵2

rms/(4𝜋𝜌𝜂Ω𝑜) and used to compute different rms
estimates of the magnetic field. In addition to the total field, we
distinguish the poloidal and toroidal fields based on the Mie repre-
sentation (Sect. 1.4), while the dipole field refers to the 𝑙 = 1 poloidal
component.

2 SUPPLEMENTAL OUTPUTS

2.1 Force balance

Fig. S1 shows a spectrum of the rms forces in the saturated state of
the two Tayler-Spruit dynamo branches, following the formalism of
Aubert et al. (2017); Schwaiger et al. (2019). The dipolar dynamo
saturates due to a balance between the Lorentz force (red line) and the
ageostrophic Coriolis force (dashed green line) at all scales (spectrum
on the left in Fig. S1). This confirms the magnetostrophic balance we
deduced from Fig. 2 in the Letter. For the hemispherical dynamo, the
same balance is found at small scales (ℓ ≳ 20), but at large scales the
inertial force is strong enough to be in balance with the ageostrophic
Coriolis force and the Lorentz force.

2.2 Time-averaged spectra

A wide range of modes ℓ are present in the typical spectra of a dipolar
Tayler-Spruit dynamo of Fig. S2. The magnetic spectrum shows the
presence of a significant large-scale axisymmetric poloidal field. The
even (odd) degrees ℓ dominate in the poloidal (toroidal) axisymmetric
magnetic spectra, which confirms the dipolar equatorial symmetry
at large scales.

The non-axisymmetric modes triggered differ depending on
whether the dynamo is Tayler-instability driven, as seen in Figures S2
and S3. As expected for the Tayler-Spruit dynamo, the dominating
mode is the axisymmetric toroidal magnetic field, but we also ob-
serve a dominant 𝑚 = 1 mode in the poloidal magnetic energy, which
is a signature of the Tayler instability. By contrast, we see that a wider
range of orders𝑚 ∈ [1, 5] are present in the poloidal magnetic energy
of the kinematic dynamo.

2.3 Geometrical criterion for Tayler instability

Tayler (1973) showed that any axisymmetric toroidal field is unsta-
ble to adiabatic perturbations in ideal MHD (i.e. 𝜈 = 𝜂 = 0) in a
non-rotating stratified fluid and worked out the necessary and suffi-
cient conditions for magnetic instability (now referred to as Tayler
instability). In spherical coordinates, they read (Goossens & Tayler
1980)

𝑐𝑚=0 ≡
𝐵2
𝜙

2𝜋𝑟2 sin2 𝜃

(
cos2 𝜃 − sin 𝜃 cos 𝜃𝜕𝜃 log 𝐵𝜙

)
< 0 , (22)

for axisymmetric perturbations, and

𝑐𝑚≠0 ≡
𝐵2
𝜙

4𝜋𝑟2 sin2 𝜃

(
𝑚2 − 2 cos2 𝜃 − 2 sin 𝜃 cos 𝜃𝜕𝜃 log 𝐵𝜙

)
< 0 ,

(23)

for non-axisymmetric perturbations. Since the 𝑚 = 1 mode is the
most unstable (which is consistent with our simulations), we display

MNRAS 000, 1–7 (2023)
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Figure S1. Time-averaged rms force spectra for the dipolar (left) and hemispherical (right) dynamos at 𝑅𝑜 = 0.75. The rms forces are averaged over the whole
computational domain without excluding boundary layers.

Figure S2. Time averaged kinetic (top) and magnetic (bottom) energy density spectra of the dipolar Tayler-Spruit dynamo at 𝑅𝑜 = 0.75.

in Fig. S4 the sign of the 𝑐𝑚=1 coefficient superimposed with the
magnetic field for a dipolar and an hemispherical dynamo. We see
that in both cases the perturbed magnetic mainly develops inside
the tangent cylinder, which globally matches with the areas that are
expected to be unstable to the Tayler instability (𝑐𝑚=1 < 0). This
is therefore an additional indication of the presence of the Tayler
instability in our simulations.

2.4 Measure of the shear rate

The differential rotation is characterized by a dimensionless shear
rate 𝑞 = 𝑟𝜕𝑟 lnΩ. We define an effective shear rate based on the
time average of the rotation profile in the saturated state. Since it
is approximately cylindrical (see Fig. 3), we measure Ω locally at a
given height 𝑧 = 0.45𝑟𝑜 and consider its variation as a function of the

MNRAS 000, 1–7 (2023)
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Figure S3. Time averaged 𝑚-spectra of the magnetic energy density for the hemispherical Tayler-Spruit dynamo at 𝑅𝑜 = 0.85 (left) and the kinematic dynamo
at 𝑅𝑜 = 0.75 (right).

Figure S4. Snapshots of the meridional slices of 𝐵𝑠 in the runs Ro0.75w and Ro0.75s. The hatched areas correspond to the regions where the fluid is stable to
𝑚 = 1 perturbations (𝑐𝑚=1 > 0).

cylindrical radius 𝑠 (see Fig. S5). This allows us to avoid the Ekman
layers, which form around the inner shell. In most of the simulations,
the shear is found in a broad region centred on the tangent cylinder,
especially in 𝑠 ∈ [0.1, 0.5] 𝑟𝑜. We therefore measure the average
slope of the profile in this interval (see Fig. S5):

𝑞 ≡ logΩ(𝑠 = 0.5𝑟𝑜) − logΩ(𝑠 = 0.1𝑟𝑜)
log 0.5𝑟𝑜 − log 0.1𝑟𝑜

(24)

3 LIST OF MODELS

Tables 1 and 2 summarize the key parameters of the simulations
carried out in this study.

MNRAS 000, 1–7 (2023)
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Figure S5. Rotation profile Ω(𝑠) at 𝑧 = 0.45𝑟𝑜 in the simulation Ro0.75s. The green region 𝑠 ∈ [0.1, 0.5] 𝑟𝑜 is the zone where we measure the effective shear
rate 𝑞 (slope of the blue dashed line). In this example, 𝑞 ∼ 0.06. The vertical red line indicates the position of the tangent cylinder.
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