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Abstract Measurements of the gravitational constantG are
notoriously difficult. Individual state-of-the-art experiments
have managed to determine the value of G with high pre-
cision: although, when considered collectively, the range in
the measured values of G far exceeds individual uncertain-
ties, suggesting the presence of unaccounted for systematic
effects. Here, we propose a Bayesian framework to account
for the presence of systematic errors in the various mea-
surement of G while proposing a consensus value, follow-
ing two paths: a parametric approach, based on the maxi-
mum entropy principle, and a non-parametric one, the latter
being a very flexible approach not committed to any spe-
cific functional form. With both our methods, we find that
the uncertainty on this fundamental constant, once system-
atics are included, is significantly larger than what quoted
in CODATA 2018. Moreover, the morphology of the non-
parametric distribution hints towards the presence of several
sources of unaccounted for systematics. In light of this, we
recommend a consensus value for the gravitational constant
G = 6.6740+0.0015

−0.0015 × 10−11 m3 kg−1 s−2.

1 Introduction

The Newtonian constant of gravitation, G, is one of the fun-
damental constants of modern physics. It was the first funda-
mental constant to be identified and yet it remains one of the
least well known, with large disagreement between exper-
imental measurements. Over several decades, huge experi-
mental efforts have tried to determine the value of G. Indi-
vidually, these experiments report relative uncertainties that
can be as low as 1.2 × 10−5: however different experiments
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find values of G that can be several standard deviations away
from each other. With such a range in measurement, combin-
ing results into a single best estimate of G is understandably
challenging [1,2].

The current accepted value of G comes from the Com-
mittee on Data for Science and Technology (CODATA).
CODATA periodically provides a set of self-consistent val-
ues of the fundamental constants for use by the scientific
and technological communities. The recommended value
of G from the CODATA 2010 results is 6.67384(80) ×
10−11 m3 kg−1 s−2 [3]. After the addition of three more
experimental results, the CODATA 2014 recommended value
is 6.67408(31)×10−11 m3 kg−1 s−2 [4]. In 2017, a CODATA
Special Adjustment [5] was released with the purpose of
obtaining the best numerical values of the Planck constant h,
the electron mass e, Boltzmann’s constant k, and Avogadro’s
number NA: however, the value of G was not updated.

The most recent CODATA 2018 recommendation for G
comes from [6], where two new experimental results are
included and a correction is made to a previously reported
value. The current recommended value for G is

G = 6.67430(15) × 10−11 m3 kg−1 s−2.

Any experiment is affected by noise; the effect of the noise
is to induce uncertainty on the quantity of interest. The uncer-
tainty can be statistical – the statistical error is the differ-
ence between a value measured in a single experiment and
the value averaged over many experiments – or systematic,
which is the difference between the averaged value and the
true value of the parameter(s) of interest. The main differ-
ence among the two classes of uncertainties is that while the
statistical error causes a random shift with zero mean of the
measured quantity (thus, in principle, the statistical error can
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be averaged out simply by repeating the experiment a very
large number of times), the systematic error for a specific
experiment will shift the expected value away from the true
value of the measured quantity.

The considerable disagreements among different experi-
ments aimed at determining the gravitational constant sug-
gests the presence of an overarching unidentified source of
uncontrolled systematic effects leading to such disparate
results but, to the best of our knowledge, no other work
addresses the presence of systematic errors in a statistical
way.

In this paper, we model systematics within the context of
Bayesian probability theory. In particular, we will introduce
a so-called hierarchical model to infer a probability distri-
bution for the unknown systematic errors. In doing so, we
will explore several different assumptions, each reflecting a
particular choice regarding the nature and magnitude of the
errors. The measurements included in this work are the ones
listed in [6].

The rest of the paper is organised as follows: in Sect. 2 we
briefly review the measurements of G used in this work and
two existing statistical methods to propose a consensus value.
In Sect. 3 we describe the Bayesian hierarchical framework
used to estimate G. In Sect. 4 we present our results and
finally, in Sect. 5, we discuss our findings and conclude with
a recommendation on the value of G.

2 Measurements of the gravitational constant

The analysis presented in this paper makes use of 16 exper-
imental results dating from 1982 to 2018. Here we briefly
review the methods used in each of the 16 experiments. For a
comprehensive and detailed review of the measurements of
G, we refer the interested reader to [1] or [2].

Following the approach taken by Cavendish in 1797-1798,
the majority of experiments listed in [6] involve precision
measurements of a torsion balance. Free deflection was used
in BIPM-01 and BIPM-14 [7,8] as well as electrostatic com-
pensation (see below). Time-of-swing experiments (NIST-
82, TR&D-97, LANL-97, HUST-05, HUST-09, UCI-14 and
HUSTT-18) instead measure the change in oscillation period
of the torsion balance with different source mass positioning
[9–16]. A third variation on the torsion balance uses elec-
trostatic compensation (BIPM-01, MSL-03 and BIPM-14)
[7,8,17]. The gravitational torque on the test masses is bal-
anced by an electrostatic torque so that they do not rotate. For
UWash-00 and HUSTA-18, the torsion balance is rotated on
a turntable and feedback is used to change the rotation rate
so that the fibre twist is minimised and the angular accel-
eration of the turntable is equal to the gravitational angular
acceleration of the balance [16,18].

Fig. 1 Histogram of σ -levels for all the possible pairs of experiments
included in [6]. Assuming a threshold of 3σ for a pair of measurements
to be in agreement with each other, 41 pairs out of 120 fall beyond this
threshold

Four experiments listed in [6] do not use a torsion bal-
ance method. UWup-02 uses a microwave Fabry-Perot inter-
ferometer whose resonance frequency is influenced by the
placement of source masses behind each of the reflectors
[19]. Similarly, JILA-18 uses a laser Fabry-Perot interfer-
ometer to measure the spacing between the test masses of a
double pendulum as the positions of source masses around it
are changed [20,21]. UZur-06 uses a beam balance to weigh
test masses in the presence of movable source masses [22].
LENS-14 uses atom interferometry to measure how a source
mass influences the atom’s acceleration [23,24].

[6] reports the value of G and one-sigma uncertainties σ

for each experiment. The range of the measured values is ≈
0.0037×10−11 m3 kg−1 s−2: however, the largest individual
one-sigma uncertainty is 0.00099×10−11 m3 kg−1 s−2, from
LENS-14. On the other hand, other measurements report
uncertainties as small as ≈ 0.00008 × 10−11 m3 kg−1 s−2

(HUST-18).
Most importantly, individual observations are often incon-

sistent with others within their stated measurement uncertain-
ties. If we assume that measurements are inconsistent above
the 3σ level, we find that 34% of all the possible pairs of
experiments are inconsistent among themselves (see Fig. 1).

Recommending a single value from this variety of mea-
surements is understandably difficult.

2.1 Existing statistical frameworks

This is not the first work that tries to reconcile the plethora of
different values for G into a single, recommended value. Most
of the previous effort, however, is devoted to the identification
of potential sources of discrepancy among different experi-
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ments, ranging from systematic errors in the measurement
apparatuses to the potential presence of an unknown oscilla-
tory factor affecting the measurement process over time or
accounting for inaccuracies in Newtonian theory [25,26].

Among the few works that tries to address the discrepancy
among different experiments from a statistical point of view,
we outline here two existing frameworks to propose a con-
sensus value for G. The first is the one used by [6], whereas
the second is introduced in [27]. Neither of them, however,
proposes a framework to account for systematic errors. Here,
we briefly review these techniques and in Sect. 3 we present
a new statistical method to account for the presence of sys-
tematics in the consensus value.

2.1.1 Tiesinga et al.: least-squares procedure

The value proposed in [6], as well as the ones from previ-
ous CODATA recommendations, is obtained using a least-
squares procedure. In particular, according to [2], having n
different measurements y = {y1, . . . , yn} of an unknown
quantity ȳ with covariance matrix C, minimising the quan-
tity

χ2 = (y − ȳ)C−1(y − ȳ)T (1)

with respect to ȳ leads to the variance-weighted mean of the
measurement and its uncertainty.

This method, however, relies on a fundamental assump-
tion: the provided uncertainties have to be statistical in nature
rather than systematic. This procedure weights the different
measurements according to their precision, trusting more the
measurements with the smallest associated error, which is
reasonable under the assumption that all the measurements
are in agreement with the same true value.

In presence of systematic errors, however, there is no rea-
son to believe that the most precise measurement is also the
most accurate. As stated above, the presence of systematic
errors shifts the expected value of the affected measurement:
thus, the line of reasoning in which we favour the measure-
ment obtained with a very precise experiment might end up
being biased.

2.1.2 Merkatas et al.: shades of dark uncertainty

This work [27] suggests that the uncertainty associated with
each of the different measurements of the gravitational con-
stant does not account for all the statistical uncertainty and
that there could be several different latent sources of statisti-
cal uncertainty.

The idea is that different experiments are affected by these
shades of dark uncertainty and that the same source can
be shared among different experiments, providing random
amounts of additional statistical uncertainty. They propose
a Bayesian framework to infer the magnitude of these addi-

tional uncertainties required to reach consensus among mea-
surements and then propose a value for G. Their work, how-
ever, does not consider the possibility of systematic errors
being present.

This approach, in our view, makes sense while grouping
experiments that are correlated in some sense (e.g. using the
same methodology or being performed by the same people):
this way, there is room to believe that uncertainties in similar
experiments could have been similarly underestimated.

3 Bayesian hierarchical analysis

In this section we propose a method to combine different
measurements of G by employing a hierarchical framework
based on Bayesian inference as a way of marginalising over
the unknown systematic effects.

Let us begin by defining the value of the gravitational
constant as G; we wish to determine G given the ensemble
of N experiments D = {D1, . . . , DN } and a model H .

The whole idea of setting up an experiment, given the pres-
ence of a different systematic error in every measurement, can
be represented as follows: every experiment, in presence of
systematics, will measure an experiment value Gi , which is
not the true value of the constant of gravitation G. This value
is a realisation of a stochastic process governing the source
of systematic errors, being drawn from p(G|θ):

Gi ∼ p(G|θ). (2)

θ , here, represents the parameters of our model for the dis-
tribution of systematic errors.

Each individual experiment i , in turn, will result in a prob-
ability distribution for its own Gi . Hierarchically combining
different measurements, therefore, allows us to characterise
the probability distribution of systematic errors. This distri-
bution, at the same time, acts as a probability distribution
for G, characterising the probability of deviating from the
unknown true value: therefore, at the end of this work, we
will recommend a value for G based on this probability den-
sity.

The application of this population study-like approach is
possible thanks to the independence of all the systematic
errors at play1 under the assumption that, although two dif-
ferent experiments may share the same source of systematics
(e.g. using the same experimental setup), the magnitude of
the systematic is different for each of them.

1 For most of the measurements included in this work, this is a safe
assumption. Three pairs of these experiments, however, are correlated
(see caption of Table XXIX in [6]). Given the fact that these corre-
lations are low, with the highest correlation coefficient being r (NIST-
82,NANL-97) = 0.351, we opted to neglect these correlations.
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The probability distribution p(G|θ) is determined by its
functional form and by a set of parameters θ . If one wants to
reconstruct the systematic error distribution – which means
assuming a functional form for p(G|θ) and inferring its
parameters θ – and therefore give a probability distribution
for G, the data to use in such inference are the experiment
valuesG = {G1, . . .GN }. Unfortunately, due to the presence
of statistical uncertainty, these values are unknown, since the
Gi s are the values that would be measured by experiments
in absence of statistical error: every experiment, implicitly,
gives a probability distribution for this quantity while report-
ing a value with an associated error. Having at hand only the
N posterior distributions D provided by our experiments, we
need to combine the experiment outcomesD in a hierarchical
fashion.

Within the Bayesian framework and under the assumption
of a functional form for the systematic error distribution,2 the
inference is completely described by the posterior distribu-
tion for θ :

p(θ |D, H) = p(D|θ, H)p(θ |H)

p(D|H)
, (3)

where p(θ |H) is the prior probability distribution for θ ,
describing our a priori expectation for its value. The like-
lihood function p(D|θ, H) is known only conditioned on the
knowledge of G. Marginalising over this quantity, we get

p(θ |D, H) = p(θ |H)
∫
p(D|θ,G, H)p(G|θ, H)dG

p(D|H)
. (4)

Here p(G|θ, H) represents the systematic error distribution.
Under the assumption of statistical independence of each
experiment, can be factorised into the product of probabili-
ties:

p(G|θ, H) =
N∏

i

p(Gi |θ, H). (5)

The denominator p(D|H) is the so-called evidence, which is
given by the integral over all the parameters characterising
the statistical model induced by the hypothesis H .

3.1 Likelihood function

The likelihood function p(D|θ,G, H) describes, in fact, the
likelihood of observing the available data given a specific
value for the parameters that we want to infer. Making use,
once again, of the assumption of statistical independence of
each experiment and of the fact that each Di is independent
of G j for j �= i , the likelihood factorises into the product of

2 This assumption is included in the hypothesis H .

individual likelihoods:

p(D|θ,G, H) =
N∏

i

p(Di |Gi , H). (6)

Once the experiment value of G, Gi , is known, the poste-
rior distribution for each experiment does not depend on the
values of the parameters θ , since these describes only the sys-
tematic error distribution: this is a consequence of the fact
that systematic errors cannot be removed or accounted for a
posteriori.

Every experiment implicitly gives a posterior distribution
for Gi , hence p(Gi |Di , H): making use of the Bayes’ theo-
rem, we get

p(D|θ,G, H) =
N∏

i

p(Gi |Di , H)p(Di |H)

p(Gi |H)
. (7)

p(Gi |H) is the prior on each Gi , which we take uniform
between Gmin = 6.668 × 10−11 m3 kg−1 s−2 and Gmax =
6.678 × 10−11 m3 kg−1 s−2, and p(Di |H) is the evidence
for the single experiment outcome.

Our framework needs to include a functional form for
these N posterior distributions. Given that the only infor-
mation we have available are the central value Ĝi and the
uncertainty σi around it – therefore Di = {Ĝi , σi } – follow-
ing the Maximum Entropy Principle (MEP) [28] we assume
a Gaussian distribution.3 Under this assumption, the likeli-
hood for each measurement reads

p(Gi |Di , H) ∝ exp

⎡

⎣−1

2

(
Gi − Ĝi

σi

)2
⎤

⎦ . (8)

3.2 Systematic effects modelling

In order to reconstruct the probability distribution p(G|θ),
we need to assume a model for this distribution. Here, we
propose two different models, based on different assump-
tions.

3.2.1 Maximum entropy principle: Gaussian distribution

We model the effect of the unknown systematic errors as
follows: since we consider only the dispersion of systematics,
we once again appeal to the MEP to choose the probability
distribution p(G|θ). Given that we want to give an expected
value and an uncertainty for G, the distribution is taken to be
a Gaussian distribution with mean Ĝ and unknown standard
deviation �, therefore θ = {Ĝ, �}.

3 The MEP states that the probability distribution that maximise the
information entropy making use of the least amount of information
or, in some late sense, the most conservative choice knowing only the
expected value and the variance is the Gaussian distribution.
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Under this assumption, we can write:

p(Gi |θ, H) = exp

⎡

⎣−1

2

(
Gi − Ĝ

�

)2
⎤

⎦ . (9)

The assumption of a Gaussian distribution both for
p(Gi |Di ) and p(Gi |θ) is particularly useful, since it is pos-
sible to marginalise over Gi analytically. In fact, making use
of the fact that the integrals are independent,

N∏

i

∫
N (Gi |Ĝ, σi )N (Gi |Ĝ, �)dGi

=
N∏

i

N
(

Ĝi

∣
∣
∣
∣Ĝ,

√
σ 2
i + �2

)

, (10)

where we denoted with N (·|μ, σ) the Gaussian distribution.
The prior p(θ |H) is composed by the prior on Ĝ, which

we take uniform between Gmin and Gmax, and the prior on �.
We will consider several possible choices for this distribution,
following some of the prescriptions discussed in [29]:

• UN: a uniform distribution for �. Using this prior proba-
bility distribution means assuming that we have no infor-
mation at all regarding the value of the systematic error;

• JF: a uniform distribution over log �. This is the so-
called Jeffreys’ prior, corresponding to the assumption
that we have no information about the value of the order
of magnitude of �. A change of variable shows that the
probability density function for � is proportional to 1/�,
hence reflecting the expectation that the systematic errors
are small;

• IG: an Inverse Gamma distribution

p(�|α, β) = βα

�(α)
�−(α+1) exp

[

− β

�2

]

, (11)

where α > 0 and β > 0 are called the shape and scale
parameters that determine the morphology of the Inverse
Gamma distribution, and �(α) is the complete Gamma
function. We infer α and β from the experimental values,
assigning uniform priors between 0 and 100. The Inverse
Gamma distribution is conjugate to the Gaussian distri-
bution. This guarantees that the posterior on � is still an
Inverse gamma distribution.

3.2.2 Non-parametric reconstruction: (H)DPGMM

The second model we use is (H)DPGMM, a non-parametric
model introduced in [30]. In what follows, we will give a brief
overview of the model, referring the interested reader to the
relevant papers for more details. Bayesian non-parametric
methods are powerful tools that allow us to perform an infer-
ence without committing to any specific model prescrip-

tion. This results in an extreme flexibility when it comes
to modelling unknown distributions: all the information that
is encoded in the inferred distribution is extracted from the
data themselves.

In particular, this model relies on the Dirichlet pro-
cess Gaussian mixture model [31] or DPGMM, an infinite
weighted sum of Gaussian distributions with a Dirichlet pro-
cess [32] as prior distribution on weights, to approximate the
unknown probability distribution:

p(x) ≈
∞∑

i

wiN (x |μi , σi ). (12)

The standard DPGMM is used to reconstruct an outer prob-
ability distribution when samples x = {x1, . . . , xN } from the
unknown distribution p(x) are available. This is not always
the case: there are situations, like the mass function inference
described in [30], in which we do not have direct access to
samples, but rather we have N sets of inner samples drawn
from the N posterior distributions (inner distributions) for
each sample xi .

To infer the outer distribution having at hand only the
N sets of inner posterior samples, one needs to specify a
model for both the outer distribution and for the N inner
posterior distributions: (H)DPGMM models both the inner
and the outer distributions as DPGMM, linking them in a
hierarchical fashion.

This is a very similar situation to the one we are addressing
in this paper. p(G) is the outer distribution and p(Gi |Di ) are
the N posterior distributions we want to use to infer p(G).
In general, in order to apply (H)DPGMM, we would need
to approximate p(Gi |Di ) with a weighted sum of Gaussian
distributions: however, we can interpret the likelihood (8) as
a DPGMM with a single component with wi = 1, whereas
every other Gaussian component has w j = 0, and use it as a
very simple non-parametric reconstruction.

In this case, the parameter vector θ = {w,μ, σ } is com-
posed of a vector of relative weights, a vector of means and
a vector of standard deviations. The length of these vectors
is, a priori, not limited.

The outcome of such a model, applied to the problem we
are dealing with, is a phenomenological distribution for the
gravitational constant G.

3.3 Inference

We proceed now to specify how the parameters θ for each
hypothesis are inferred.

The expression for the posterior distribution, under the
MEP hypothesis, becomes

p(θ |D, H) ∝ p(θ |H)

N∏

i

N
(

Ĝi

∣
∣
∣
∣Ĝ,

√
σ 2
i + �2

)

. (13)
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Fig. 2 Median posterior distribution for G under the models presented
in this paper. For the (H)DPGMM reconstruction, the solid blue line
represents the median and the shaded regions indicates the 68% (dark
turquoise) and 90% (light turquoise) credible regions for the posterior
on G. As a comparison, we report the experimental values and their
standard error (orange symbols), as well as the [6] (CODATA 2018)
recommended value (blue symbol) and our most probable value for G
and 68% and 90% (conservative) credible intervals for (H)DPGMM

For each of the three different prior prescriptions for � (UN,
JF and IG), we generate samples from Eq. (13) using a nested
sampling algorithm [33], CPNest [34].

For the non-parametric hypothesis, (H)DPGMM, we
explore the posterior distribution drawing different realisa-
tions for p(G) using figaro, a Gibbs sampler presented in
[35].

4 Results

We summarise here our findings for each of the systematic
error models considered in this work.

Posterior distributions for G under the UN, JF, IG and
(H)DPGMM hypothesis are shown in Fig. 2.

The shape of the non-parametric distribution for G is very
different from the shape of the simple Gaussian distribution
assumed under the MEP hypothesis: in fact, three different
modes are clearly distinguishable. We retain this fact as qual-
itative evidence of the presence of uncontrolled systematics.

In the following, we summarise the main findings for the
proposed models by discussing the inferred posterior distri-
bution, reporting median and 68% credible interval from the
median posterior:

• UN: G = 6.6739(10) × 10−11 m3 kg−1 s−2;
• JF: G = 6.6739(9) × 10−11 m3 kg−1 s−2;
• IG: G = 6.6739(10) × 10−11 m3 kg−1 s−2.

Concerning (H)DPGMM, the median posterior distribution
for G under this hypothesis gives median and 68% credible

interval

G = 6.6740+0.0007
−0.0009 × 10−11 m3 kg−1 s−2,

and median and 90% credible interval

G = 6.6740+0.0015
−0.0015 × 10−11 m3 kg−1 s−2.

The presence of three different modes in the non-parametric
reconstruction could hint towards the interpretation of fami-
lies of systematic effects, similar to the founding idea of [27]:
before commenting on this, however, we want to make clear
that an extensive discussion of the systematics that might
affect the individual experiments is well beyond our area of
expertise. Therefore, the following discussion must be taken
as heuristic and driven by statistical considerations only:
before claiming that two or more experiments are affected
by the same, or at least similar, systematics, it is necessary a
dedicated study on the potential sources of such systematic
errors.

These three modes might suggest that at least three (or
two, if we assume that one of these modes is free of system-
atics) different effects are at play. While it is not possible to
tell which (if any) of the three modes is unaffected by system-
atics, we note that the rightmost mode contains two measure-
ments only, BIPM-01 and BIPM-14. These two experiments
share both the same methodology and the same group, mak-
ing plausible (not likely) for their results to be affected by the
same source of systematics.4

An alternative – but incorrect – interpretation of these
results might be to use the mean parameter of the Gaus-
sian distribution Ĝ from the MEP model as the true value
of the gravitational constant G. The inferred value is Ĝ =
6.6739±0.0003×10−11 m3 kg−1 s−2, estimated via Monte
Carlo sampling. This value is similar to the method and result
presented in [27], in which the authors address the same issue
by proposing an additional, latent source of uncertainty.

Interpreting this quantity, which we report for complete-
ness, as the true value for the gravitational constant, in this
framework, is conceptually incorrect: Ĝ is a parameter of the
posterior distribution for G. For a Gaussian distribution, the
median coincides with the mean parameter: the uncertainty
on the inferred mean parameter is, however, in general much
smaller than the variance of the distribution, leading to an
underestimation of the uncertainty on G.

5 Conclusions

In this paper, we proposed two different models to reconstruct
the probability distribution p(G) assuming the presence of

4 For intellectual honesty, we note that it might also be possible to
suggest, making use of the same line of reasoning, that these two are
the only experiments unaffected by systematics.
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systematic effects. We found that, although the numerical
values for the gravitational constant are very similar among
the two models, the functional form reconstructed by the non-
parametric one is morphologically different from the Gaus-
sian distribution that arises from the MEP hypothesis.

This suggests that the systematic effects at work behind the
experiments we considered are not under control: although
some of these measurements are extremely precise, they are
not very accurate. Therefore, further studies are required
both to understand the systematics that affect these experi-
ments and to pinpoint the value of the gravitational constant.
Such studies are already taking place, as described in [36]
and references therein or in [37].

In light of our investigations, we find that the latest
CODATA recommended value is heavily underestimating the
actual uncertainty on G. Hence, although this is not the pur-
pose of this paper, we think that the best value to adopt for
G is the most conservative we find under the most general
assumptions, the one from the (H)DPGMM model:

G = 6.6740+0.0015
−0.0015 × 10−11 m3 kg−1 s−2.
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