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Active bound states arising from transiently nonreciprocal pair interactions
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Static nonreciprocal forces between particles generically drive persistent motion reminiscent of self-
propulsion. Here, we demonstrate that reciprocity-breaking fluctuations about a reciprocal mean coupling
strength are sufficient to generate this behavior in a minimal two-particle model, with the velocity of the ensuing
active bound state being modulated in time according to the nature of these fluctuations. To characterize the
ensuing nonequilibrium dynamics, we derive exact results for the time-dependent center of mass mean-square
displacement and average rate of entropy production for two simple examples of discrete- and continuous-state
fluctuations in one dimension. We find that the resulting dimer can exhibit unbiased persistent motion akin to
that of an active particle, leading to a significantly enhanced effective diffusivity.
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I. INTRODUCTION

Newton’s third law states that microscopic forces respect
action-reaction symmetry; yet many examples of nonrecipro-
cal effective interactions have been identified in living and
reactive systems. These range from classical predator-prey
[1,2] and activator-inhibitor [3] models to interactions medi-
ated by a nonequilibrium medium [4–7]. Nonreciprocity also
arises in systems with asymmetric information flows [8] and
memory effects [9,10].

The breaking of reciprocal symmetry in many-body sys-
tems generates fundamentally nonequilibrium dynamics at
the collective scale [11–15]. Most strikingly, an imbalance
in effective physical forces between particles can drive per-
sistent motion, reminiscent of self-propulsion [13]. Motile
particle clusters [5–7,16–18] and self-propelling droplets [19]
have been experimentally realized in systems with constant
nonreciprocal couplings. Furthermore, the thermodynamic
implications of reciprocity breaking were studied in several
theoretical models [9,13].

In principle, the introduction of temporal fluctuations in
nonreciprocal interactions would provide a mechanism to
control the propulsion speed and direction of the ensuing
dynamical phase. Such fluctuations may, for instance, arise
generically in physical systems through dynamic properties
in the nonequilibrium medium that mediates interactions. Ex-
amples include the concentration of so-called doping agents
in chemically interacting particle systems [7] or of a sur-
factant in an experimental setup of self-propelled liquid
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droplets which allowed for the reversal of the direction of
motion [19]. In recent studies, active motion was shown to
emerge from the application of a time-dependent external
magnetic field on nanoparticle dimers [20] and many mag-
netic microdisks, where effective nonreciprocal interactions
also drive collective motion that inherently breaks chiral
symmetry [21].

Fluctuating reciprocal interactions in many-body systems
lead to nonequilibrium, dissipative structures [22] and dy-
namics [23]. We have previously studied the thermodynamic
implications of these interactions in Ref. [24], where we
obtained analytically the nonzero average rate of entropy
production in a variety of minimal setups. Though static non-
reciprocal couplings have been studied in a similar manner
[9,15], a complete thermodynamically consistent picture for
dynamic, nonreciprocal interactions is key to the analysis of
important reactive, active, and living processes.

Here, we consider a minimal two-particle model of fluc-
tuating nonreciprocal forces. We fix the interactions to be
reciprocal on average; yet we let them break the action-
reaction principle transiently through temporal fluctuations in
the interaction strengths, isolating the impact of reciprocal-
symmetry-breaking fluctuations on the collective dynamics
and thermodynamic properties of the system. We show that
these systems can exhibit collective motion reminiscent of
active particles; thus we refer to the resulting two-particle
dimers as active bound states. For particular choices of the
fluctuations and in the presence of steric repulsion, the ensu-
ing dynamics can be mapped onto those of run-and-tumble
[25–27] and active Ornstein-Uhlenbeck [28,29] particles.

II. MINIMAL TWO-PARTICLE MODEL

A. Langevin dynamics for the active bound states

We consider a pair of Brownian particles in the over-
damped limit with positions x1(t ), x2(t ) ∈ R and diffusivity
Dx. Each particle is confined in a harmonic potential with
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time-dependent stiffness k1,2(t ) generated by the other parti-
cle. The governing equations then take the form

ẋ1 = −k1(x1 − x2) − ∂x1Ur (|x1 − x2|) +
√

2Dxξ1, (1a)

ẋ2 = −k2(x2 − x1) − ∂x2Ur (|x1 − x2|) +
√

2Dxξ2, (1b)

where ξ1,2(t ) are uncorrelated zero-mean, unit-variance Gaus-
sian white noises and Ur (r) is a short-range, reciprocal, purely
repulsive potential. For the time being, we focus on the case
Ur ≡ 0, for which a number of closed-form exact results
can be derived. We will later show that introducing steric
interactions strongly enhances the observed nonequilibrium
behavior. We consider binding potential stiffnesses of the form
ki(t ) = k̄ + κi(t ), where k̄ > 0 is a constant mean stiffness
introduced to ensure that the two particles remain in proximity
of each other and κ1,2(t ) are governed by zero-mean Markov
processes setting the stiffness fluctuations [24,30].

Through a change of variables to the center of mass x =
(x1 + x2)/2 and interparticle displacement y = x1 − x2 coor-
dinates, we can rewrite Eq. (1) as

ẋ(t ) = −1

2
ψ (t )y(t ) + √

Dxξx(t ), (2a)

ẏ(t ) = −(ϕ(t ) + 2k̄)y(t ) +
√

4Dxξy(t ), (2b)

where ξx,y(t ) are again uncorrelated zero-mean unit-variance
Gaussian white noise terms (see details in Appendix A). In
writing Eq. (2), we have also defined the stiffness asymmetry
ψ (t ) = κ1(t ) − κ2(t ) and the total stiffness fluctuations ϕ(t ) =
κ1(t ) + κ2(t ). Note that ψ (t ) �= 0 is the signature of broken re-
ciprocal symmetry and corresponds to the case where Eq. (2a)
for the center of mass can be mapped onto the dynamics of
an overdamped active particle with stochastic self-propulsion
velocity v(t ) = −ψ (t )y(t )/2.

While here we focus for simplicity on the one-dimensional
case, x1,2 ∈ R, the extension to the more physically relevant
case x1,2 ∈ R3 is straightforward due to the central nature of
the effective forces involved. In particular, it only requires the
introduction of an additional degree of freedom describing
the orientation û of the dimer, which undergoes Brownian
motion on the unit sphere (|û| = 1) with diffusivity Du(t ) =
2Dx/y(t )2 which is only dependent on the magnitude of the
interparticle displacement via a change of variables from
Cartesian coordinates to spherical polar coordinates.

We study both the dynamics and thermodynamics of
these two-particle bound states. To quantify their collective
dynamics, we derive exact analytical expressions for the time-
dependent mean-square displacement (MSD) of their center
of mass, 〈(x(t ) − x(0))2〉 [hereafter, setting x(0) = 0 by trans-
lational symmetry]. From Eq. (2a), this MSD can be expressed
in terms of the correlator 〈ψ (s)ψ (s′)y(s)y(s′)〉; as shown in
Appendix B 1, the decoupling between the dynamics of y and
ψ allows us to factorize it, and we write

〈x2(t )〉 = Dxt + 1

4

∫ t

0
ds

∫ t

0
ds′ 〈ψ (s)ψ (s′)〉〈y(s)y(s′)〉.

(3)
A long-time effective diffusivity can be extracted by subse-

quently computing Deff = limt→∞〈x2(t )〉/(2t ).

B. Steady-state entropy production rate

The presence of nonreciprocal and fluctuating interactions
drives our two-particle bound states out of equilibrium; to
quantify this nonequilibrium behavior, we compute the en-
tropy production rate at the level of Eq. (2). We generically
expect three contributions, respectively stemming from (i) the
dynamics of the center of mass, (ii) the dynamics of the inter-
particle displacement, and (iii) the stochastic dynamics of the
stiffness fluctuations, should they not satisfy detailed balance.

Formally, we write the entropy production rate as the
Kullback-Leibler divergence per unit time of the ensemble
of forward (x, y, ϕ, ψ ) trajectories and their time-reversed
counterparts,

lim
t→∞ Ṡi = lim

τ→∞
1

τ

〈
ln

PF [x, y, ϕ, ψ]

PR[x, y, ϕ, ψ]

〉
, (4)

with PF and PR denoting corresponding path probability
densities, while τ is the path duration. By straightforward
manipulation of the joint path probabilities we now write

PF,R[x, y, ϕ, ψ] = PF,R[y, ϕ, ψ]PF,R[x|y, ϕ, ψ]

= PF,R[y, ϕ]PF,R[ψ |y, ϕ]PF,R[x|y, ψ], (5)

where in the second equality we have used that x is inde-
pendent of ϕ by Eq. (2a). We further assume, as is the case
in all models studied here, that ψ is independent of y and
ϕ, whereby PF,R[ψ |y, ϕ] = PF,R[ψ]. Substituting back into
Eq. (4) for the entropy production rate and writing logarithms
of products as sums, we arrive by linearity of expectation at

lim
t→∞ Ṡi = lim

τ→∞
1

τ

〈
ln

PF [ψ]

PR[ψ]

〉
+ lim

τ→∞
1

τ

〈
ln

PF [y, ϕ]

PR[y, ϕ]

〉

+ lim
τ→∞

1

τ

〈
ln

PF [x|y, ψ]

PR[x|y, ψ]

〉
. (6)

In all models studied here, we only consider stiffness
fluctuations ψ generated by equilibrium processes, satisfying
time-reversal symmetry, and thus the first term in the above
equation vanishes.

The second term corresponds to the entropy production of
the marginal dynamics (y, ϕ); the dynamics of the interparticle
displacement y(t ) can be mapped onto those of a single Brow-
nian particle subject to diffusion in a stochastically evolving
potential, U (y, t ) = (ϕ(t ) + 2k̄)y2/2, a case which we previ-
ously studied in Ref. [24], from which expressions for this
term can be read off. This contribution to the entropy produc-
tion is denoted Ṡ(y)

i .
Finally, the center of mass moves following a drift-

diffusion process with a time-dependent drift v(t ) =
−ψ (t )y(t )/2 and diffusivity Dx/2; this contribution to the
entropy production rate thus takes the form limt→∞ Ṡ(x)

i =
2〈v2(t )〉/Dx [31]. To show this, we start from the last term
in Eq. (6) and express the conditional path probabilities for
the x dynamics as governed by the Langevin equation (2a) in
the Onsager-Machlup path integral formalism

PF [x|y, ψ] ∝ exp

[
− 1

2Dx

∫ τ

0
dt

(
ẋ + yψ

2

)2
]
, (7a)

PR[x|y, ψ] ∝ exp

[
− 1

2Dx

∫ τ

0
dt

(
ẋ − yψ

2

)2
]
, (7b)
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where stochastic integrals are to be interpreted in the
Stratonovich midpoint convention. Substituting into the last
term in Eq. (6), we thus have

lim
τ→∞

1

τ

〈
ln

PF [x|y, ψ]

PR[x|y, ψ]

〉
= − lim

τ→∞
1

τDx

∫ τ

0
dt〈ẋ(t )ψ (t )y(t )〉

= 〈ψ2y2〉
2Dx

. (8)

Using Eq. (8) and the assumption that the ψ dynamics are
equilibrium, we conclude from Eq. (6) that the total rate of
entropy production can then be written as [24,32]

lim
t→∞ Ṡi = lim

t→∞

(
Ṡ(x)

i + Ṡ(y)
i

)
= 〈ψ2y2〉

2Dx
+ lim

t→∞ Ṡ(y)
i . (9)

In what follows, we consider two examples of specific
prescriptions for the governing stochastic dynamics of the
stiffness fluctuations κ1,2(t ) and show that transiently non-
reciprocal pair interactions lead to persistent motion of the
center of mass x(t ), akin to that of an active particle. For the
sake of clarity, we will use in what follows the notation •(cont)

and •(disc) to distinguish between the total steady-state entropy
production rates and the effective diffusivities calculated for
continuous and discrete stiffness fluctuations, respectively.

III. CONTINUOUS FLUCTUATIONS IN THE
INTERACTION POTENTIALS

Suppose that the two stiffness fluctuations follow cor-
related zero-mean Ornstein-Uhlenbeck (OU) processes with
rate μ and diffusivity Dκ ,

κ̇i = −μκi +
√

2Dκ η̄i(t ), i ∈ {1, 2}, (10)

where η̄1,2(t ) are zero-mean white noises satisfying

〈η̄i(t )η̄ j (t
′)〉 = Ci jδ(t − t ′), with C =

(
1 θ

θ 1

)
, (11)

where C is the symmetric covariance matrix and θ ∈ [−1, 1]
quantifies how correlated the stiffness fluctuations are.

The governing equations for the stiffness asymmetry ψ (t )
and total stiffness fluctuations ϕ(t ) then take the form

ψ̇ (t ) = −μψ (t ) +
√

4Dκ (1 − θ )ηψ (t ), (12a)

ϕ̇(t ) = −μϕ(t ) +
√

4Dκ (1 + θ )ηϕ (t ), (12b)

where ηψ,ϕ (t ) are now uncorrelated, zero-mean unit-variance
Gaussian white noise terms (see Appendix B). In each of
the two limits θ = ±1, one of the noise terms disappears.
For all θ > −1, the interparticle displacement behaves as a
Brownian particle in a confining potential with a stiffness that
itself follows an Ornstein-Uhlenbeck process with mean 2k̄
and variance 2Dκ (1 + θ )/μ.

The dynamics for ϕ and ψ are independent, which im-
plies that 〈ψ2y2〉 = 〈ψ2〉〈y2〉 factorizes in the second term of
Eq. (9). Both contributions to the entropy production rate thus
can be written in terms of the variance of the interparticle
displacement, assuming that the latter is finite; the first is ob-
tained by the results of Ref. [24], while the second is deduced

FIG. 1. MSD and entropy production rate for correlated con-
tinuous fluctuations. (a) MSD for the active bound states as given
by Eq. (16), where we observe transient ballistic scaling implying
persistent motion and an effective diffusion coefficient larger than
that of an isolated particle. Here, Dκ = 5 and Dx = k̄ = μ = 1.

(b) Rate of entropy production for the active bound state, made up
of two contributions as identified in Eq. (13), for k̄ = 5, Dx = 1,
and Dκ = μ = 10. Symbols are from numerical simulations (see
Appendix F for details), and solid lines are evaluated using Eqs. (13)
and (14).

from the knowledge of the correlator for ψ :

lim
t→∞ Ṡ(cont)

i (t ) = k̄μ

2Dx

(
〈y2〉 − Dx

k̄

)
+ Dκ (1 − θ )

Dxμ
〈y2〉.

(13)
Again, we note that there is no direct contribution from the
switching dynamics as ϕ and ψ are governed by equilibrium
processes. We show in Appendix B 2 that

〈y2(t )〉 = 4Dx

∫ t

−∞
dt ′ exp

[
−4

(
k̄ − 2Dκ (1 + θ )

μ2

)
(t − t ′)

+8Dκ (1 + θ )

μ3
(e−μ(t−t ′ ) − 1)

]
, (14)

which remains finite only if 2Dκ (1 + θ ) < k̄μ2, in which case
Eq. (13) can be computed exactly [see Fig. 1(b)]. Consistently
with the second law of thermodynamics, k̄〈y2〉 � Dx [24].
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A. Maximally nonreciprocal fluctuations

We now consider the limit θ = −1, which maximizes how
nonreciprocal the interaction fluctuations can be, generating
the most interesting joint dynamics. Here, the total stiffness
ϕ(t ) → 0 in a deterministic manner and the dynamics of both
y(t ) and ψ (t ) reduce to independent, equilibrium diffusive
processes in an external potential. The drift term for the center
of mass x(t ) is the product of these two equilibrium processes
[29,33].

The stationary probability distribution for the prod-
uct ω = ψy can be evaluated formally as Pω(ω) =∫∞
−∞ dω′Pψ (ω/ω′)Py(ω′)/|ω′|, where Pψ and Py denote the

Boltzmann steady-state probability densities of the corre-
sponding (equilibrium) processes. We can then derive an
expression for the stationary distribution for the drift Pv (v =
−ω/2) through a transformation of probability density func-
tions. It reads

Pv

(
v = −ψy

2

)
= 1

π

√
k̄μ

DxDκ

K0

⎡
⎣
√

k̄μ

DxDκ

|v|
⎤
⎦ (15)

with K0 being the modified Bessel function of the second kind.
In the present limit, the MSD for the center of mass x(t )

is easily calculated as the two-time correlators for ψ (t ) and
y(t ) are those of an equilibrium OU process. Using Eq. (3),
we obtain

〈x2(t )〉 = Dxt + 2DκDx

μk̄(μ+2k̄)2

[
e−(μ+2k̄)|t | − 1+(μ + 2k̄)t

]
,

(16)

which exhibits the diffusive-ballistic-diffusive scaling char-
acteristic of active particles [33], as shown in Fig. 1(a).
Comparing the form of this MSD to that of a general active
particle [33,34], which we derive in Appendix E, we identify
an effective self-propulsion speed v0 ≡ (DκDx/μk̄)1/2, persis-
tence time τp ≡ (μ + 2k̄)−1, and bare diffusivity D ≡ Dx/2.
At short timescales, t � τp, the center of mass follows a dif-
fusive motion with diffusion coefficient Dx. At long times, the
dimer exhibits diffusive motion characterized by the long-time
effective diffusion coefficient

D(cont)
eff = lim

t→∞
〈x2(t )〉

2t
= Dx

2

[
1 + 2Dκ

μk̄
(
μ + 2k̄

)
]
, (17)

which is strictly larger than the bare center of mass transla-
tional diffusivity, Dx/2, when Dκ > 0, i.e., in the presence of
fluctuations. For sufficiently strong fluctuations, specifically
2Dκ > μk̄(μ + 2k̄), this effective diffusivity can strikingly
exceed that of a single particle. This is in stark contrast with
the classical 1/N scaling for the diffusivity of N identical
Langevin processes interacting by equilibrium pair interac-
tions and thus represents a genuinely nonequilibrium feature
of the present model. Below, we show numerically that this
result holds in the presence of repulsive interactions.

To quantify these nonequilibrium dynamics, we evaluate
the rate of entropy production from Eq. (13). For θ = −1,
we note that the variance of the interparticle displacement
satisfies 〈y2〉 = Dx/k̄, such that the only nonzero contribution
to the entropy production rate comes from the center of mass

dynamics x(t ). Using Eq. (13), we write this as

lim
t→∞ Ṡ(cont)

i (t )
∣∣∣
θ=−1

= 2Dκ

k̄μ
. (18)

This result can also be obtained via the familiar relation
Ṡi = v2

0/D for an active particle [31], with effective self-
propulsion speed v0 and diffusivity D as defined below
Eq. (16), highlighting the thermodynamic (as well as dy-
namic) correspondence between active bound states and active
particles. Furthermore, the increase in the effective diffusion
coefficient identified in Eq. (17) can be written in terms of
the ratio in Eq. (18), confirming that this enhancement is a
genuinely nonequilibrium feature of the model.

B. Maximally reciprocal fluctuations

We now briefly discuss the limit θ = 1, in which case
the interactions are always reciprocal [since ψ (t ) → 0 ex-
ponentially after initialization], but the fluctuations in the
coupling strength alone are sufficient to drive the system out
of equilibrium [24,35,36]. Under these conditions, the center
of mass x(t ) is diffusive, and its dynamics decouple from that
of the interparticle displacement y(t ), which itself behaves
as a Brownian particle in a fluctuating potential, Utot (y, t ) =
(2k̄ + ϕ(t ))y2/2.

In other words, y(t ) is subject to the action of a har-
monic confining potential with a stiffness that itself follows
an Ornstein-Uhlenbeck process with stiffness μ and mean 2k̄.
The thermodynamics of this model were previously studied in
Ref. [24]: The average rate of entropy production has only one
nonzero contribution,

lim
t→∞ Ṡ(cont)

i (t )
∣∣∣
θ=1

= lim
t→∞ Ṡ(y)

i (t ) = μk̄

2Dx

(
〈y2〉 − Dx

k̄

)
, (19)

which can be evaluated using Eq. (14) for the variance of the
interparticle displacement. Notably, it vanishes as Dκ → 0,
i.e., in the absence of fluctuations, while it diverges as Dκ →
k̄μ2/4Dκ .

IV. DISCRETE FLUCTUATIONS IN INTERACTION
POTENTIALS

We now turn to the case of discrete stiffness fluctuations.
We let κ1,2(t ) ∈ {−κ0,+κ0} be correlated symmetric tele-
graph processes [37]; the symmetric nature of the Markov
jump process ensures that 〈κ1,2(t )〉 = 0 and, hence, that pair
interactions remain on average reciprocal maintaining the par-
ticles in a bound state. The joint probability mass function
P(t ) = (P++(t ), P+−(t ), P−−(t ), P−+(t )) is generically gov-
erned by

d

dt
P = M · P, (20)

in which the position-independent Markov matrix M captur-
ing the stochastic dynamics of the stiffnesses reads

M(χ ) = λ[(1 − χ )Mmono + χMbi] (21)
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with transition rate λ > 0, correlation parameter χ ∈ [0, 1],
and transition rate matrices defined as

Mmono =

⎡
⎢⎢⎣

−2 1 0 1
1 −2 1 0
0 1 −2 1
1 0 1 −2

⎤
⎥⎥⎦,

Mbi =

⎡
⎢⎢⎣

−1 0 1 0
0 −1 0 1
1 0 −1 0
0 1 0 −1

⎤
⎥⎥⎦. (22)

The limit χ = 0 leads to bipartite dynamics, where each
switching event causes a transition between reciprocal and
nonreciprocal interaction. In contrast, χ = 1 corresponds to
maximally correlated switching dynamics, such that switch-
ing events are always synchronized and the (non)reciprocity
of the dynamics is conserved by the fluctuations. While a
study of the ensuing dynamics in the general case is of great
interest, we consider here the limiting case χ = 1 only, such
that M = λMbi. In this limit, the fluctuations of ϕ and ψ are
uncorrelated.

A. Maximally nonreciprocal fluctuations

Similarly to what was done for the continuous case, we
further focus on the case where fluctuations are maximally
nonreciprocal. Let κ1(0) = −κ2(0) ≡ κ0 at initialization, such
that |ψ (t )| = 2κ0 and ϕ(t ) = 0. The synchrony condition χ =
1 imposes that the total stiffness ϕ(t ) remains zero while the
sign of the stiffness asymmetry ψ (t ) switches with symmetric
Poisson rate λ, a telegraph process, leading to nonrecipro-
cal force fluctuations at all times (see details of allowed
transitions for the Markov jump process in Appendix C).
The dynamics of y(t ) are exactly those of a diffusive parti-
cle in the potential U (y) = k̄y2. We note that 〈ψ (s)ψ (s′)〉 =
4κ2

0 e−2λ|s−s′ |, while 〈y(s)y(s′)〉 = (Dx/k̄)e−2k̄|s−s′ | is simply
the propagator for an Ornstein-Uhlenbeck process [37]. As
shown in Appendix C, we conclude that the full MSD then
takes the form

〈x2(t )〉 = Dxt + Dxκ
2
0

2k̄(λ + k̄)2

[
e−2(λ+k̄)t − 1 + 2(λ + k̄)t

]
(23)

[see Fig. 2(a)], which again can be mapped to the MSD of
an active particle with effective self-propulsion speed v0 ≡
κ0(Dx/k̄)1/2, persistence time τp ≡ (2(λ + k̄))−1, and bare
diffusivity D ≡ Dx/2 [33,34]. Finally, the long-time effective
diffusion coefficient reads

D(disc)
eff = Dx

2

(
1 + κ2

0

k̄(λ + k̄)

)
, (24)

which is strictly larger than the bare center of mass
translational diffusivity. Remarkably, for sufficiently slow
fluctuations, specifically λ < k̄(κ2

0 /k̄2 − 1), this effective dif-
fusivity can exceed that of a single particle as we saw for the
case of continuous fluctuations [see Fig. 2(a)].

As the dynamics for y(t ) is at equilibrium, the only nonzero
contribution to the entropy production comes from the spon-
taneous drift of the center of mass. In the present case, the
dynamics of ψ (t ) and y(t ) are again entirely decoupled im-

FIG. 2. MSD and entropy production rate for synchronized dis-
crete fluctuations. (a) MSD for the active bound states as given by
Eq. (23) again displaying transient ballistic scaling and enhanced
diffusion. Here, κ0 = 5 and Dx = k̄ = λ = 1. (b) Rate of entropy
production for the active bound state where we have fixed Dx = 1.
Symbols are measured from numerical simulations, and solid lines
are the results of Eq. (25).

plying that 〈ψ2y2〉 = 〈ψ2〉〈y2〉. We can evaluate 〈ψ2〉 = 4κ2
0 ,

〈y2〉 = Dx/k̄ [37] and using Eq. (9) write the full entropy
production rate as

lim
t→∞ Ṡ(disc)

i (t ) = 2κ2
0

k̄
. (25)

The independence of Eq. (25) from the switching rate λ is
demonstrated numerically in Fig. 2(b). Similarly to Eq. (18),
this result can also be obtained by direct substitution of the
effective self-propulsion speed v0 and bare diffusivity D as
defined below Eq. (23) into the familiar formula for the en-
tropy production of an active particle Ṡi = v2

0/D [31]. As
for the continuous fluctuations above, the rescaled effective
diffusion coefficient can be written in terms of this entropy
production rate. This shows that our mapping to active bound
states can be done at the level of the dynamics (mean-square
displacement) or thermodynamics (entropy production rate).

B. Maximally reciprocal fluctuations

We now briefly discuss the case of fluctuating reciprocal
couplings, whereby we let κ1(0) = κ2(0) = κ0 at initializa-
tion. This choice of initial condition leads to a vanishing
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stiffness asymmetry ψ (t ) = 0 at all times, while the total
stiffness ϕ(t ) ∈ {−2κ0, 2κ0} is now governed by a telegraph
process with Poisson switching rate λ. The center of mass dy-
namics are here purely diffusive with ẋ(t ) = √

Dxξx, leading
trivially to a MSD 〈x2(t )〉 = Dxt , whereas the displacement
dynamics are identical to those of a Brownian particle in an
intermittent harmonic potential Utot (y, ϕ) = (2k̄ + ϕ(t ))y2/2.
Existence of the second moment of the interparticle displace-
ment requires κ2

0 < k̄2 + λk̄/2 [35,36].
To obtain an explicit form for the entropy production in this

case, we can use the result of Ref. [24], whence

lim
t→∞ Ṡ(disc)

i (t ) = 2κ2
0 λ

2
(
k̄2 − κ2

0

) + λk̄
, (26)

which vanishes as κ0 → 0 and diverges as κ0 →
√

k̄2 + λk̄/2.

V. EFFECT OF STERIC REPULSION

So far, we have ignored the role of steric repulsion; while
this allowed us to derive exact analytical results, we now
reintroduce a nonvanishing purely repulsive potential Ur �= 0
in Eq. (1). While the equation governing the center of mass
dynamics is unaffected by this change, Eq. (2b) for the inter-
particle displacement acquires an additional term

ẏ(t ) = −(ϕ(t ) + 2k̄)y(t ) − 2∂yUr (y) +
√

4Dxξy(t ). (27)

Intuitively, since Ur should penalize particles overlapping,
we expect the bound state to be characterized by a finite
interparticle displacement, commensurate with the particle
diameter. If we further assume that the fluctuations in y are
small, then y(t ) ≈

√
〈y2〉 is approximately constant and ψ (t )

is left to be the sole term responsible for fluctuations in the
self-propulsion contribution to the center of mass dynamics
in Eq. (2a). Remarkably, when ψ (t ) is an OU process, such
as in Eq. (12b), the ensuing dynamics of the bound state are
then akin to those of an active Ornstein-Uhlenbeck particle
(AOUP). Similarly, when ψ (t ) is governed by a telegraph
process, which is exactly the case which leads to Eq. (23), the
dynamics match those of a run-and-tumble particle (RTP).

To study numerically the effect that steric repulsion has
on our results, we choose a Weeks-Chandler-Anderson po-
tential for Ur (r), capped at rc = 21/6 to give the particles a
well-defined diameter (see Refs. [38,39] and Appendix F).
Strikingly, the MSDs exhibit a significantly increased long-
time diffusion coefficient for the case of nonreciprocal
fluctuations, as can be seen in Fig. 3. The average rate of
entropy production remains qualitatively unchanged by the
introduction of steric repulsion showing the characteristic
monotonic increase already seen in Fig. 2 (see Appendix D),
albeit at an overall level which is is approximately one order
of magnitude higher. We rationalize this by arguing that, by
keeping the two particles apart, repulsion leads to much larger
average forces coming from the harmonic potential, driving
more persistent motion and hence higher dissipation in the
present model.

FIG. 3. Steric repulsion enhances persistent motion. We com-
pare our results on the dimer’s dynamics above to simulations
which include a repulsive force between the two particles through
a Weeks-Chandler-Anderson potential. For both (a) continuous and
(b) discrete fluctuations, this additional interaction leads to a signif-
icantly enhanced effective diffusion coefficient. Parameters are the
same as in Figs. 1(a) and 2(a).

VI. DISCUSSION AND CONCLUSION

We have demonstrated that reciprocal-symmetry-breaking
fluctuations about a reciprocal mean attractive coupling are
sufficient to generate two-particle bound states whose center
of mass motion can be mapped onto that of a motile active
particle, Eq. (2a). For specific choices of the fluctuations and
in the presence of steric repulsion, one-dimensional active
Ornstein-Uhlenbeck as well as run-and-tumble dynamics are
approximately recapitulated. We characterize the dissipative
nature of these active bound states by computing the av-
erage rate of entropy production, Eq. (9). Remarkably, for
sufficiently strong nonreciprocal fluctuations, the long-time
effective diffusion is observed to exceed that of a single
particle, Eqs. (17) and (24), which represents a genuinely
nonequilibrium feature of our model.

Fluctuations in the degree of reciprocity of pair interactions
arise naturally in a number of physical circumstances, e.g.,
through mediation by a nonequilibrium medium [4–8], in the
presence of memory [10], or from perception within a finite
vision cone [18,40]. In fact, in macroscopic active systems,
nonreciprocity is arguably the norm rather than the exception.

Fluctuating nonreciprocal interactions have been realized
in two-body systems in recent studies on nanoparticles [20]
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and magnetic microdisks [21] subjected to random and oscil-
lating external fields, respectively. In both cases, the resulting
pair interactions lead to persistent motion as predicted in the
theory above. Another promising candidate for realizing the
dynamics studied here could be size-dependent interactions
between droplets exchanging mass through inverse Ostwald
ripening dynamics [3]. In general, the strength of interactions
through a medium depends on the perimeter of a droplet,
which is a dynamic quantity due to thermal fluctuations driv-
ing constant rebalancing of the Laplace pressure.
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APPENDIX A: CHANGE OF FRAME OF REFERENCE

It is instructive to consider the dynamics of this two-
particle system in an alternative frame of reference by defining
the center of mass x = (x1 + x2)/2 and interparticle displace-
ment y = x1 − x2 coordinates. From Eq. (1), we can derive
governing equations for the dynamics of these two variables:

ẋ(t ) = − 1
2 (κ1 − κ2)y(t ) +

√
Dx/2(ξ1(t ) + ξ2(t )), (A1a)

ẏ(t ) = −(κ1 + κ2 + 2k̄)y(t ) +
√

2Dx(ξ1(t ) − ξ2(t )). (A1b)

The noise terms can be rewritten succinctly each as a single
Gaussian white noise term. Indeed, we define the noise terms

ξx(t ) = 1
2 (ξ1(t ) + ξ2(t )), (A2a)

ξy(t ) = 1
2 (ξ1(t ) − ξ2(t )), (A2b)

where we include the prefactors of 1/2 such that both ξx and
ξy have zero mean and unit variance, while also remaining
independent:

〈ξx(t )〉 = 1
2 (〈ξ1(t )〉 + 〈ξ2(t )〉) = 0, (A3a)

〈ξy(t )〉 = 1
2 (〈ξ1(t )〉 − 〈ξ2(t )〉) = 0, (A3b)

〈ξx(t )ξx(t ′)〉 = 1
2 (〈ξ1(t )ξ1(t ′)〉 + 〈ξ2(t )ξ2(t ′)〉)

= δ(t − t ′), (A3c)

〈ξy(t )ξy(t ′)〉 = 1
2 (〈ξ1(t )ξ1(t ′)〉 + 〈ξ2(t )ξ2(t ′)〉)

= δ(t − t ′). (A3d)

We define the stiffness asymmetry ψ (t ) = κ1(t ) − κ2(t ) and
the total stiffness fluctuations ϕ(t ) = κ1(t ) + κ2(t ), where we
remark that ψ (t ) �= 0 is the signature of broken reciprocal
symmetry at time t .

In all, this leads us to rewriting Eq. (1) in the new frame of
reference as

ẋ(t ) = − 1
2ψ (t )y(t ) + √

Dxξx(t ), (A4a)

ẏ(t ) = −(ϕ(t ) + 2k̄)y(t ) +
√

4Dxξy(t ). (A4b)

APPENDIX B: CONTINUOUS STIFFNESS FLUCTUATIONS

1. Full derivation of the time-dependent MSD

In this Appendix, we give the full derivation for the MSD
for the case where the spatial dynamics are given by Eqs. (2)
and the stiffness fluctuations κi(t ) are correlated Ornstein-
Uhlenbeck processes with rate μ and diffusivity Dκ ,

κ̇i(t ) = −μκi(t ) +
√

2Dκ η̄i(t ), i ∈ {1, 2}, (B1)

with η̄1,2(t ) taken to be zero-mean white noises satisfying

〈η̄i(t )η̄ j (t
′)〉 = Ci jδ(t − t ′), with C =

(
1 θ

θ 1

)
. (B2)

As above, C denotes the symmetric covariance, and θ ∈
[−1, 1] quantifies how correlated the stiffness fluctuations are.
The stiffness asymmetry ψ (t ) = κ1(t ) − κ2(t ) and the total
stiffness fluctuations ϕ(t ) = κ1(t ) + κ2(t ) are then governed
by

ψ̇ (t ) = −μψ (t ) +
√

4Dκ (1 − θ )ηψ (t ), (B3a)

ϕ̇(t ) = −μϕ(t ) +
√

4Dκ (1 + θ )ηϕ (t ) (B3b)

with 〈ηi(t )η j (t ′)〉 = δi jδ(t − t ′).
Consider the dynamics for y in the limit where θ = −1.

The governing equations take the form

ẋ(t ) = −ψ (t )y(t )/2 + √
Dxξx(t ), (B4a)

ẏ(t ) = −2k̄y(t ) +
√

4Dxξy(t ), (B4b)

ψ̇ (t ) = −μψ (t ) +
√

8Dκηψ (t ) (B4c)

with ϕ(t ) = 0 provided the right initial conditions. Integrating
in time, we derive the solution

y(t ) = y0e−2k̄t +
√

4Dx

∫ t

0
ds ξy(s)e−2k̄(t−s). (B5)

Taking an average over the noise, we see that 〈y(t )〉 = y0e−2k̄t .
To evaluate the mean-square displacement of the center of
mass, 〈(x(t ) − x0)2〉, we set x0 = 0 and write

〈x2(t )〉 =
〈 ∫ t

0
ds

(
− 1

2
ψ (s)y(s) + √

Dxξx(s)

)

×
∫ t

0
ds′

(
− 1

2
ψ (s′)y(s′) + √

Dxξx(s′)
)〉

leading to

〈x2(t )〉 =
∫ t

0
ds

∫ t

0
ds′ 1

4
〈ψ (s)ψ (s′)y(s)y(s′)〉 + Dxδ(s − s′).

(B6)
As y and ψ are independent, we can write
〈ψ (s)ψ (s′)y(s)y(s′)〉 = 〈ψ (s)ψ (s′)〉〈y(s)y(s′)〉. We are thus
left with computing the two correlators.

Next, we derive an analytic expression for the time-
correlation function 〈y(t )y(t ′)〉, working at steady state. To do
this, we set t ′ > t and consider a second correlation function

Cy(t, t ′) =
〈
(y(t ) − 〈y(t )〉)(y(t ′) − 〈y(t ′)〉)

〉
, (B7)

which we can write as

Cy(t, t ′) = 4Dx

〈 ∫ t

0
dsξy(s)e−2k̄(t−s)

∫ t ′

0
ds′ξy(s′)e−2k̄(t ′−s′ )

〉
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leading to

Cy(t, t ′) = 4Dx

∫ t

0
ds

∫ t ′

0
ds′e−2k̄(t+t ′−s−s′ )〈ξy(s)ξy(s′)〉

= Dx

k̄

[
e−2k̄(t ′−t ) − e−2k̄(t+t ′ )]. (B8)

From Eqs. (B7) and (B8), we obtain an analytic expression for
the time-correlation function 〈y(t )y(t ′)〉 as desired:

〈y(t )y(t ′)〉 =
[

y2
0 − Dx

k̄

]
e−2k̄(t+t ′ ) + Dx

k̄
e−2k̄|t−t ′|, (B9)

where we have relaxed the condition that t ′ > t . Following the
same procedure, we also derive an expression for 〈ψ (t )ψ (t ′)〉:

〈ψ (t )ψ (t ′)〉 =
[
ψ2

0 − 4Dκ

μ

]
e−μ(t+t ′ ) + 4Dκ

μ
e−μ|t−t ′|.

(B10)
Given these two correlators, we can now obtain an exact

expression for the MSD of the center of mass of the dimer

〈x2(t )〉 = Dxt + 2DκDx

μk̄(μ + 2k̄)2

[
(μ + 2k̄)t + e−(μ+2k̄)t − 1

]
.

(B11)
Finally, we conclude that the effective diffusion coefficient
reads

D(cont)
eff = lim

t→∞
〈x2(t )〉

2t
= Dx

2

[
1 + 2Dκ

μk̄(μ + 2k̄)

]
. (B12)

2. Variance in particle position for an OU2

The position y of an overdamped Brownian particle trapped
in a harmonic potential whose stiffness fluctuates about its
mean value 2k̄ > 0 in the manner of a Ornstein-Uhlenbeck
(OU) process is governed by the following stochastic process:

∂t y(t ) = −(2k̄ + ϕ(t ))y(t ) +
√

4Dxηy(t ), (B13a)

∂tϕ(t ) = −μϕ(t ) +
√

4(1 + θ )Dκηϕ (t ), (B13b)

where the additive noises satisfy 〈ηi(t )η j (t ′)〉 = δi jδ(t − t ′).
We dub this stochastic process the OU 2 process.

The formal solution for y is given by

y(t ) =
√

4Dx

∫ t

−∞
dt ′ ηy(t ′)e−2k̄(t−t ′ )−∫ t

t ′ dt ′′ϕ(t ′′ ). (B14)

We square this equation and then average over noise realiza-
tions to obtain an expression for the variance:

〈y2(t )〉 = 4Dx
∫ t
−∞ dt ′ ∫ t

−∞ dτ ′e−2k̄(t−t ′ )−2k̄(t−τ ′ )

×〈
ηy(t ′)ηy(τ ′) e− ∫ t

t ′ dt ′′ϕ(t ′′ )−∫ t
τ ′ dτ ′′ϕ(τ ′′ )

〉
,

which leads to

〈y2(t )〉 = 4Dx

∫ t

−∞
dt ′ e−4k̄(t−t ′ )

〈
e−2

∫ t
t ′ dt ′′ϕ(t ′′ )

〉
, (B15)

where we used that〈
ηy(t ′)ηy(τ ′) e− ∫ t

t ′ dt ′′ϕ(t ′′ )−∫ t
τ ′ dτ ′′ϕ(τ ′′ )

〉
= δ(t ′ − τ ′)

〈
e− ∫ t

t ′ dt ′′ ϕ(t ′′ )−∫ t
τ ′ dτ ′′ ϕ(τ ′′ )

〉
since η and ϕ are uncorrelated and thus the expectation fac-
torizes. We now use a standard identity between the moment
generating function of the random variable −2

∫ t
t ′ dt ′′ ϕ(t ′′)

and the exponential of the corresponding cumulant generating
function, which in this case gives〈

exp

[
− 2

∫ t

t ′
dt ′′ϕ(t ′′)

]〉

= exp
∞∑

m=1

1

m!

〈(
−2

∫ t

t ′
dt ′′ ϕ(t ′′)

)m〉
c

, (B16)

where 〈·〉c denotes a cumulant or connected correlation. Since
ϕ(t ) is a zero-mean OU process, at steady state all cumulants
except the second vanish. The latter reads

〈ϕ(t1)ϕ(t2)〉c = 8(1 + θ )Dκ

μ
e−μ|t1−t2|. (B17)

Thus 〈
exp

[
−2

∫ t

t ′
dt ′′ϕ(t ′′)

]〉
= exp

(
8(1 + θ )Dκ

μ

∫ t

t ′
dt ′′

∫ t

t ′
dτ ′′e−μ|t ′′−τ ′′|

)

= exp

(
8(1 + θ )Dκ

μ

1

μ2
(μ(t − t ′) − 1 + e−μ(t−t ′ ))

)

= exp

(
8(1 + θ )Dκ

μ2
(t − t ′)

)
exp

(
8(1 + θ )Dκ

μ3
(−1 + e−μ(t−t ′ ) )

)
. (B18)

Going back to Eq. (B15), our expression for the variance reduces to

〈y2(t )〉 = 4Dx exp

[
−8(1 + θ )Dκ

μ3

] ∫ t

−∞
dt ′ exp

[
−
(

4k̄ − 8(1 + θ )Dκ

μ2

)
(t − t ′)

]
exp

[
8(1 + θ )Dκ

μ3
e−μ(t−t ′ )

]
, (B19)

which constitutes the key result of this section. The inte-
gral in the expression above has a divergent contribution as

t ′ → −∞ when the exponent of the first term in the integrand
changes sign. In other words, a necessary and sufficient con-
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FIG. 4. Allowed transitions for the Markov jump process con-
trolling the stiffness asymmetry ψ (t ) and total stiffness fluctuation
ϕ(t ) in the case of discrete fluctuations in the coupling strength.
Here, λ denotes the switching rate, while χ ∈ [0, 1] is a correlation
parameter controlling the degree of synchronization of the single
potential switching events.

dition for the existence of the second moment [〈y2(t )〉 < ∞]
is

k̄ >
2(1 + θ )Dκ

μ2
. (B20)

The main result Eq. (B19) can be integrated numerically to ob-
tain the steady-state variance (in the limit t → ∞) and hence
the average rate of entropy production in the two-particle
system.

APPENDIX C: FULL DERIVATION OF THE
TIME-DEPENDENT MSD FOR DISCRETE STIFFNESS

FLUCTUATIONS

Here, we give a full derivation of the time-dependent MSD
calculated for the case of synchronized (χ = 1) discrete fluc-
tuations in the main text. The accessible transitions for the
Markov processes governing the fluctuations of ϕ and ψ are
shown in Fig. 4. We know that the MSD takes the same
general form in the two-particle minimal model considered:

〈x2(t )〉 = Dxt + 1

4

∫ t

0
ds

∫ t

0
ds′ 〈ψ (s)ψ (s′)〉〈y(s)y(s′)〉.

(C1)
Therefore we are required to derive expressions for the two

correlators. The stiffness asymmetry ψ (t ) is a telegraph pro-
cess acting on {−2κ0, 2κ0}; thus we can write the correlator as

〈ψ (s)ψ (s′)〉 = 〈ψ2〉e−2λ|s′−s| = 4κ2
0 e−2λ|s′−s|, (C2)

where 〈ψ2〉 = 4κ2
0 is the variance of ψ . In the absence of a re-

pulsive potential, Ur = 0, the dynamics for y(t ) are governed
by an (equilibrium) Ornstein-Uhlenbeck process, and using
Eq. (B9), we write the MSD as

〈x2(t )〉 = Dxt + Dxκ
2
0

k̄

∫ t

0
ds

∫ t

0
ds′e−2(λ+k̄)|s′−s|. (C3)

FIG. 5. Entropy production rate when Ur �= 0 for continuous
fluctuations. We here use a repulsive potential of Weeks-Chandler-
Anderson form. While the functional dependence on the correlation
coefficient θ remains similar, the magnitude of all contributions is
significantly larger. This agrees with the more persistent motion that
we observe in Fig. 3 in the main text.

Finally, we use the fact that, for any constant A0 > 0,∫ t

0
ds

∫ t

0
ds′e−A0|s′−s| = 2

A2
0

[
A0t + e−A0|t | − 1

]
(C4)

to derive the final result

〈x2(t )〉 = Dxt + Dxκ
2
0

2k̄(λ + k̄)2

[
2(λ + k̄)t + e−2(λ+k̄)|t | − 1

]
,

(C5)
which satisfies the usual diffusive-ballistic-diffusive scal-
ing observed with active particles. Indeed, at very short
timescales, t � (2(λ + k̄))−1, the center of mass follows a
diffusive motion with diffusion coefficient Dx/2. When t ≈
(2(λ + k̄))−1, the two-particle system displays ballistic mo-
tion, with 〈x2(t )〉 = Dxt + (Dxk2

0/k̄)t2 and hence 〈x2(t )〉 ∝ t2.
At large times, the effective diffusion coefficient reads

D(disc)
eff = Dx

2

(
1 + κ2

0

k̄(λ + k̄)

)
. (C6)

APPENDIX D: EFFECT OF A REPULSIVE POTENTIAL ON
THE RATE OF ENTROPY PRODUCTION

In this Appendix, we present numerical results for the
entropy production rate in the two-particle system for the
case where a repulsive potential is present between the two
particles. We have defined the repulsive potential to be of
Weeks-Chandler-Anderson form:

Ur (r) =
{

4ε[(σ/r)12 − (σ/r)6] + ε, r < rc

0, r � rc
(D1)

with rc = 21/6σ , to give the particles a well-defined diameter.
For the sake of simplicity, we here set ε = 1/48 and σ = 1.

In Fig. 5, we see the effect for the continuous fluctuations.
The linear scaling of the two contributions with the correlation
coefficient θ persists, but the overall level of entropy produc-
tion is approximately one order of magnitude higher. We argue
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FIG. 6. Entropy production rate when Ur �= 0 for discrete fluc-
tuations. (a) For an initialization which sets ψ = 0 in the presence
of nonzero Ur . We observe a similar functional dependence on the
fluctuation strength κ0 as in Fig. 2, but the overall amount of entropy
produced is significantly larger, as was observed in the continuous
case. In (b), the same trend is observed for the initialization which
sets ϕ = 0.

that this is because the particle separation that is enforced by
Ur leads to greater forces stemming from the contribution of
the harmonic potentials. These larger forces inevitably lead
to the potentials performing more nonequilibrium work, thus
enhancing the entropy production.

In Fig. 6, we study the case of discrete fluctuations and
observe a similar trend. Notably, the entropy production rate
is independent of the switching rate λ for ϕ = 0 as in the case
Ur = 0 (see Fig. 2). This is due to the fact that the dissipation
only depends on the square of the velocity, and so the sign
switch, which is controlled by λ, does not factor in. The
same is observed for a classic one-dimensional, symmetric
run-and-tumble particle, where the entropy production rate is
independent of the Poissonian tumbling rate [31].

APPENDIX E: COMPARISON OF RESULTS TO MSDs OF A
GENERIC ACTIVE PARTICLE

Here we rederive a classic result for the mean-square dis-
placement (MSD) of a generic self-propelling particle in one

dimension (1D) and then compare the structure of the full
expression with the corresponding analytic forms derived for
the two examples in the main text.

Consider a self-propelled particle in 1D with the equa-
tion of motion

ẋ = v(t ) +
√

2Dxη(t ), (E1)

where η(t ) is a zero-mean, unit-variance Gaussian white noise
term and v(t ) is a generic self-propulsion force. The MSD of
the particle position can then be derived as

〈x2(t )〉 =
〈( ∫ t

0
ds[v(s) +

√
2Dη(s)]

)

×
(∫ t

0
ds′[v(s′) +

√
2Dη(s′)]

)〉

=
∫ t

0
ds

∫ t

0
ds′〈v(s)v(s′)〉 + 2Dδ(s − s′). (E2)

To evaluate the leftover integrals, we require an analytic form
for the time correlation of the self-propulsion velocity. To
make progress, we assume that the governing process for the
self-propulsion force is time-translation invariant and that the
decay of the correlation function is given or well approxi-
mated by an exponential, taking the form

〈v(s)v(s′)〉 = v2
0e−|s−s′ |/τp, (E3)

where we have defined the typical self-propulsion speed as

v0 =
√

〈v2(s)〉 (E4)

(which is independent of s) and τp is the persistence time. We
note that this form for the correlator is exact for both AOUP
and RTP dynamics, where the governing processes for the
self-propulsion force are Ornstein-Uhlenbeck and telegraph
processes, respectively. It would also capture the dynamics
of an active Brownian particle if we were working in higher
dimensions (so the diffusion of the self-propulsion direction
could be suitable defined). After substituting this expression
for the correlator, we evaluate the integrals to derive the fol-
lowing result for the time-dependent MSD of a self-propelling
particle:

MSD(τ ) = 2Dτ + 2v2
0τ

2
p

[
τ

τp
+ e−τ/τp − 1

]
, (E5)

with characteristic speed v0, persistence time τp, and bare
diffusivity D [33,34].

We use this general form to identify these three features
of our active bound state dynamics. In the case of continuous
stiffness fluctuations, we identify an effective self-propulsion
speed v0 = (DκDx/μk̄)1/2, persistence time τp = (μ + 2k̄)−1,
and bare diffusivity Dx/2. For the case of discrete fluctu-
ations, we identify the characteristic self-propulsion speed
v0 ≡ κ0(Dx/k̄)1/2, persistence time τp ≡ (2(λ + k̄))−1, and
bare diffusivity D ≡ Dx/2.

APPENDIX F: DETAILS OF THE NUMERICAL ANALYSIS

We simulate the Langevin equations in the center-of-
mass–interparticle-displacement frame of reference using a
stochastic Runge-Kutta method in 1D [39]. We run the solver
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for different random number seeds for 103 time units, only
recording data after the first 20% of the simulations so as to
let the dynamics reach a steady state.

We measure the entropy production along each trajectory
by calculating the heat dissipated at each step in the dynamics
of the center of mass x(t ) and the interparticle displacement
y(t ). This is given by the change in the variable multiplied
by the effective (deterministic) force exerted on the variable
at each time step, evaluated in the Stratonovich convention
for stochastic dynamics. For x(t ), the force is exactly the
drift term identified in the main text: v(t ) = −ψ (t )y(t )/2.
Between t and t + dt , we employ the Stratonovich conven-
tion for time discretization [31], which implies that the heat
dissipated δQ is calculated as

δQ([t, t + dt )) = v(t ) + v(t + dt )

2
[x(t + dt ) − x(t )]. (F1)

We sum together all the contributions to measure the total
heat dissipated along the trajectory. To recover the entropy

production rate, we define the total change in entropy as
δSi = δQ/T , where T is the effective temperature for the
process. For the center of mass, we have T = Dx/2, which
comes from the governing Langevin equation for x(t ). Finally,
the rate of entropy production is the change in entropy over
the total length (in time) of the trajectory. We use the same
method to calculate the entropy production from the interpar-
ticle displacement dynamics and show good agreement in all
cases with our analytic results.

We measure the MSD for the center of mass 〈(x(t ) −
x(0))2〉 by recording x(t ) every 10−3 time units. We then let
dt be a multiple of 10−3 that is less than the total simulation
time Ttraj and evaluate the average value of (x(t + dt ) − x(t ))2

for all t ∈ [0, Ttraj − dt] such that t is also a multiple of 10−3.
The effective diffusion coefficient is then given by

Deff = lim
t→∞

〈(x(t ) − x(0))2〉
2t

. (F2)
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