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Reservoir engineering has become a prominent tool to control quantum systems. Recently, there
have been first experiments applying it to many-body systems, especially with a view to engineer
particle-conserving dissipation for quantum simulations using bosons. In this work, we explore the
dissipative dynamics of these systems in the classical limit. We derive a general equation of motion
capturing the effective nonlinear dissipation introduced by the bath and apply it to the special
case of a Bose-Hubbard model, where it leads to an unconventional type of dissipative nonlinear
Schrödinger equation. Building on that, we study the dynamics of one and two solitons in such a
dissipative classical field theory.

I. INTRODUCTION

Reservoir engineering has been originally conceived in
quantum physics as a generalization of laser cooling and
optical pumping ideas, representing an approach to har-
ness the coupling to a reservoir which would otherwise
just introduce noise and dissipation [1–4]. By now, the
idea of reservoir engineering is already used in a wide
range of platforms, e.g. atoms [5], trapped ions [6–8], op-
tomechanics [9, 10], as well as superconducting circuits
[11–15]. While initially applied to individual quantum
systems, recent interest has focussed on many-body sce-
narios [15–19].

In that context, an important and natural question
to ask is whether the dissipation induced by the reser-
voir can be made to preserve particle number in the sys-
tem. In many of the most relevant platforms for quan-
tum simulation [20, 21], this is nontrivial, since exci-
tations of qubits or bosonic particles like photons and
phonons are naturally destroyed by dissipation. At the
same time, when particle number is conserved interest-
ing complex ground states can be reached, e.g., form-
ing a Bose-Einstein condensate or some highly entangled
state. Theoretical proposals have investigated that issue
in some detail [4, 17, 22–24].

First successful steps have been taken, particularly in
an experiment that demonstrated the cooling of a qubit
chain to a Mott-insulating state [15]. As a result, inter-
esting questions have been raised regarding the kind of
many-body states that can be reached using such an ap-
proach [25, 26]. Nonequilibrium Bose condensation of
photons is another important direction making use of
particle-conserving dissipation [27–29].

When we specialize to a concrete system, we will study
the classical limit of a Bose-Hubbard chain where each
site is coupled via its particle number to a driven and dis-
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Figure 1. (a) The physical scenario of a bosonic system (in
the classical limit) coupled to a driven reservoir, in a particle-
conserving way. (b) Particular illustrative realization consid-
ered in the text, a Bose-Hubbard chain (blue bj) with sites
coupled to driven cavities (orange bosonic modes aj) with
coupling strength χ and to each other with hopping rate J .
See main text for details. (c) Spectrum of a dissipative cav-
ity, where the incoming drive can be up-scattered in frequency
through interaction with the bosonic many-body system, ex-
tracting energy. The detuning ∆ and the dissipation rate κ
determine the properties of this driven reservoir.

sipative cavity (see Fig. 1). This can potentially be imple-
mented using superconducting qubits tunnel-coupled to
each other, simulating the Bose-Hubbard model [30, 31],
provided they are additionally coupled by cross-Kerr in-
teractions to driven microwave resonators forming the
reservoir. There are already works towards particle-
conserving interactions with engineered reservoirs, e.g.,
an experiment showing particle conserving autonomous
cooling of a Bose-Hubbard chain [14] and a recent experi-
ment preparing a Mott insulator in a Bose-Hubbard chain
[15]. Further works in that direction include an exper-
iment showing Bose-Einstein condensation in an optical
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cavity [27] and theory work for parametric coupling to
generate light with a chemical potential [23]. The partic-
ular system we study in the present article has been con-
sidered previously by some of us in the quantum regime,
deriving kinetic equations describing the scattering of
particles by the coupling to the reservoir, see Ref. [24].

Since many of such systems used for quantum simu-
lations aided by reservoir engineering are bosonic in na-
ture, it is a meaningful and interesting question to ask
how they would behave in the classical limit. Suppose
we have particle-number-conserving dissipation, brought
about by reservoir engineering, and acting on a bosonic
many-body system (see Fig. 1): What are the effective
classical equations of motion describing this scenario?
Analyzing those may give us new physical insights that
can then even be relevant for interpreting the original
quantum dynamics. Moreover, in the classical limit of
interacting bosonic systems, we can find collective exci-
tations like solitons. How do those excitations behave in
the presence of particle-number conserving dissipation?
Can we identify how their motion described in terms of
collective variables is modified in the presence of such
unconventional dissipation?

In the present article, we set out to answer these ques-
tions. We will present three main results. First, in Sec. II
we derive a general set of classical effective equations of
motion for any bosonic many-body system coupled to a
driven reservoir in a particle-conserving manner. These
equations are still completely general, in that the Hamil-
tonian of the bosonic system can be arbitrary, but they
already show the shape of the effective dissipation and
allow us to analyze the dependence of the decay rate
on parameters like the detuning between external drive
and reservoir modes. The description found there can
be viewed as a generalization of some formulas known
from laser-cooling, e.g., in cavity optomechanics, to the
case of arbitrary many-body systems, treated in the clas-
sical limit. As a second result, we specialize to a lat-
tice of coupled bosonic modes in Sec. III, and we de-
rive a nonlinear Schrödinger equation in the presence of
particle-conserving dissipation (both on the lattice and
in the continuum limit [Sec. IIIA]). In that equation the
dissipation term is nonlinear, in contrast to the conven-
tional dissipative nonlinear Schrödinger equation, where
linear dissipation is considered. Finally, we apply these
equations to describe the motion of solitons. There, as
a third main result (Sec. III B), we show how the effec-
tive equations of motion for the collective coordinates of
a soliton are modified by the new dissipation terms. We
compare our analytical derivations with numerical simu-
lations. Lastly, we briefly discuss the interaction of two
solitons in Sec. III C and conclude with Sec. IV.

II. SYSTEM-RESERVOIR COUPLING WITH
PARTICLE CONSERVATION: EFFECTIVE

DISSIPATIVE EQUATION

We start out with a general situation, where a bosonic
quantum many-body system is coupled to a reservoir in a
particle-conserving manner. This will allow us to derive
a formula of wide applicability, describing the effective
dynamics of such a system, without yet specializing to a
particular case. We consider an arbitrary bosonic lattice
model. Each system site is coupled independently to a
driven dissipative reservoir mode âl. Importantly, to en-
sure particle-number conservation, the coupling is of the
density-density type. Thus, the full Hamiltonian is of the
form

Ĥtot = ĤS + ĤB + ℏχ
∑
l

â†l âlb̂
†
l b̂l. (1)

Here, ĤS describes the system containing the b̂l modes,
which we do not need to specify further at this point.
The reservoir modes (âl) and their interaction with the

environment and external drives is contained in ĤB. Ex-
tensions like correlated reservoirs (couplings of site l to

arbitrary â†kâm) or disorder in the reservoir modes would
be fairly straightforward to implement in the formalism
we are going to discuss and do not change the overall
structure. Couplings between system and reservoir, with
strength χ, of the type postulated in Eq. (1) arise nat-
urally as cross-Kerr interactions between optical or mi-
crowave modes.
In this article, our goal is to stay in the classical limit

of large amplitudes, replacing b̂ 7→ b. We will now de-
rive an effective set of classical equations of motion upon
elimination of the reservoir modes. Let us denote the
classical Hamiltonian of the system itself as H, which is
a function of the classical mode amplitudes bl and their
conjugates b∗l . The equation of motion in absence of the
reservoir is obtained from the normal ordered Hamilto-
nian H in general as iḃl = ℏ−1∂H/∂b∗l (see Appendix A
for more details), with the “Wirtinger derivative” [32]
construction, i.e., assuming bl and b

∗
l to be independent

variables for the purposes of the derivative. The constant
ℏ appears in this classical equation only because we chose
to define the classical field amplitudes bl directly as the
limit of the quantum operators (and this retains ℏ as a
conversion factor between energy and frequency). Using
that convenient notation, we can now rewrite the dynam-
ical equation in the form

iℏḃl =
∂HS

∂b∗l
+ ℏχ|al|2bl, (2)

where we denote the temporal derivative using ḃl =
dbl/dt. Likewise, there is the equation of motion of the
driven reservoir mode. Following the standard derivation
for a driven, dissipative mode [33], we find

iȧl = ωlal + iη, (3)
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with ωl = −∆ − iκ/2 + χ|bl|2 the effective frequency of
mode al, η the strength of the external drive, and κ the
energy decay rate. For convenience we have chosen to
work in a frame rotating at the drive frequency ωL of the
reservoir modes and introduced the detuning ∆ = ωL−ωc

between the drive and the frequency ωc of a reservoir
mode . For simplicity we assume ∆, η, and κ to be the
same for every lattice site l.
Due to the dynamics of the system amplitudes bl, the

reservoir mode frequency ωl will become time-dependent,
thus finding the solutions of Eq. (3) is a non-trivial prob-
lem. We can, however, look for perturbative solutions
of the form al = δal − iη/ωl, where we chose the sec-
ond term in analogy to the steady state of the driven
dissipative cavity (for χ = 0) but taking into account
the time-dependent frequency shift of the cavity due
to the interaction with the system. To determine δal,
we first substitute our ansatz for al in the right-hand
side of Eq. (3) , which leads to iȧl = ωlδal. Calculat-
ing explicitly the time derivative of our ansatz leads to

iȧl = −ηω̇l/ω2
l + i ˙(δal). Equating the two obtained ex-

pressions for iȧl allows us to find the approximate expres-
sion δal ≈ −ηω̇l/ω3

l , where we have neglected the term
˙(δal) which is proportional to ω̇2

l /ω
4
l , ω̈l/ω

3
l . This is jus-

tified within the weak-coupling limit, where |ω̇l| ≪ |ωl|2
and |(−∆− iκ/2− ωl)/ωl| ≪ 1. In this form the weak-
coupling limit can be ensured via a large decay rate or
detuning.

Inserting this approximate solution back into the equa-
tion of motion for bl and expanding up to second order
in χ completes the desired elimination of the reservoir.
We note that the expansion in χ introduces no additional
approximations but simply ensures consistency with the
previously employed weak-coupling limit. The result is
the classical effective equation of motion for an arbi-
trary bosonic system coupled to a reservoir in a particle-
conserving manner

iℏḃl =
∂HS

∂b∗l
+ ℏδg|bl|2bl + γIm

[
b∗l
∂HS

∂b∗l

]
bl, (4)

valid in the weak-coupling limit. This is the first main
result of the present work. We used Eq. (2) to get
d|bl|2/dt = 2Im [b∗l ∂H/∂b

∗
l ]. The second term on the

right hand side of Eq. (4) is an effective change of the
nonlinearity induced by the coupling to the reservoir with
strength

δg =
2χ2η2∆

(κ2/4 + ∆2)2
. (5)

Setting ∆ < 0 (red detuned drive) in Eq. (5) leads to an
effective attractive interaction. We have also used an ap-
propriate rotating frame by omitting a trivial static shift
of the harmonic frequency given by ℏχη2/(∆2 + κ2/4)bl
for brevity.

The main effect, which will be the focus of our discus-
sion, is the unusual particle-conserving dissipation rep-
resented by the last term of Eq. (4). To verify that the

latter corresponds to a dissipative term, we consider the
change in the system’s energy given by

ĖS = −γℏ−1
∑
l

(
Im

[
b∗l
∂HS

∂b∗l

])2

, (6)

with

γ = − 4χ2η2∆κ

(∆2 + κ2/4)3
. (7)

As long as γ > 0, Eq. (7) predicts that the energy ES will
decrease, confirming the interpretation of the parameter
γ as a (dimensionless) decay rate.
Dissipation arises in the red-detuned regime, i.e., for

∆ < 0, which yields a positive γ. While ∆ allows one to
control the sign of γ, the strength of γ depends on the
interplay between the drive strength η, the decay rate
κ of the reservoir mode, and the coupling χ to the sys-
tem. We show in Fig. 2 the dependence on the effective
parameters.
Even though we concentrate on classical dynamics,

it is insightful to understand the origin of the decay
mechanism in the original quantum mechanical picture,
where the incoming red-detuned photon is up-scattered
to the higher resonance frequency of the reservoir mode
by absorbing an energy excitation of the bosonic system,
thereby leading to dissipation. At the same time, the
total particle number, N =

∑
l |bl|2 is conserved if HS

conserves N , which can be readily verified by taking the
time derivative of N and employing Eq. (4).
Formulas like Eq. (7) are known from the theory of

laser cooling [34], and its recent implementations , e.g.,
in cavity optomechanics [35]. Indeed there is a direct con-
nection of the particle-conserving coupling studied here
to quadratic optomechanics, where one couples the light
mode to the square of the mechanical displacement [36–
38], albeit now with the mechanical oscillator replaced
by a many-body system.

III. MICROSCOPIC MODEL: THE
ANHARMONIC CHAIN

To derive the dynamical consequences of Eq. (4), we
will in the following invoke a specific illustrative exam-
ple, namely a chain of anharmonic bosonic modes, cor-
responding to the classical limit of the Bose-Hubbard
chain. This will already produce very rich behaviour
which we are able to analyze both numerically and semi-
analytically.
The classical system Hamiltonian for this chain is

Hchain/ℏ = −
∑
l

J(b∗l+1bl + c.c.) +
α

2
b∗l bl(b

∗
l bl − 1), (8)

where J is the hopping amplitude between the sites of
the chain and α denotes the anharmonicity (negative for
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attractive interactions). Such a chain can describe vari-
ous systems: Bosonic cold atoms in a 1D lattice with a
Hubbard interaction, coupled superconducting transmon
qubits (with α < 0 in that case), as well as coupled op-
tical cavities with a Kerr interaction inside the cavities.
As we will explore in some detail below, its continuum
limit can give rise to solitonic solutions. Without loss of
generality we assume J to be positive in Eq. (8) [39]

A. Nonlinear Schrödinger Equation with
Particle-Conserving Dissipation

We now focus on the 1D anharmonic chain described
by Eq. (8). To obtain an equation describing the effective
dynamics of the system, we use Eq. (4) withHS = Hchain.
This yields an effective nonlinear Schrödinger equation on
a lattice, which includes particle-conserving dissipation
(in contrast to the nonlinear Schrödinger equation with
linear loss [40]):

iḃn =g|bn|2bn − J (bn−1 − 2bn + bn+1)

− JγIm [b∗n (bn−1 − 2bn + bn+1)] bn,
(9)

where γ is given by Eq. (7), g = α + δg is the renor-
malized coupling strength of the nonlinearity due to the
reservoir [see Eq. (5)], and n = 1, . . . , L labels the lattice
sites. In the following, we consider periodic boundary
conditions, i.e., bj = bj+L (j ∈ Z). In our analytic deriva-
tion we further consider open boundary conditions where
b0 = bL+1 = 0. An alternative derivation of Eq. (9) is
presented in Appendix B where we start from the general
exact solution.

Within the effective dynamics, the amount of relevant
parameters is reduced from formerly six to three, with
J setting the overall frequency scale and the dimension-
less parameters (g/J, γ) determining the qualitative be-
haviour (see also Fig. 3 for an illustration on how differ-
ent microscopic parameters can lead to the same effective
dynamics).

For large arrays (L ≫ 1) and assuming that the lat-
tice spacing δx = 1 is smaller than typical wavelengths,
i.e., the solution varies slowly on the scale of the lat-
tice spacing, it is possible to consider the continuum
limit of Eq. (9). To this end, we introduce the con-
tinuous function Ψ(x, t) with x ∈ [0, L], which obeys
Ψ(x = n, t) = bn(t) for n = 1, . . . , L. To obtain the
continuous limit of Eq. (9), we replace the finite differ-
ence [Ψ(x+ δx)− 2Ψ(x) + Ψ(x− δx)]/δx2 by the second
order derivative of Ψ(x) with respect to the position x
∂2Ψ/∂x2. This yields the particle-conserving dissipative
nonlinear Schrödinger equation (PCDNSE):

iΨ̇ = g|Ψ|2Ψ− J
∂2Ψ

∂x2
− JγIm

(
Ψ∗ ∂

2Ψ

∂x2

)
Ψ, (10)

with the parameters γ [see Eq. (7)], g, and J defined
above [see Eqs. (7) and (9)]. Particle conservation here
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Figure 2. Effective parameters as defined in Eqs. (5) and (7)
as functions of the detuning: The correction of the effective
onsite interaction δg (black solid) as well as the dissipation
parameter γ (dashed gray). The dissipation parameter is pos-
itive in the red detuned domain (∆ < 0) and changes sign in
the blue detuned domain (∆ > 0). Both the correction of the
onsite interaction, as well as the dissipation parameter scale
with the second order of the bath interaction but have differ-
ent limiting behaviour at large detuning ∆.

implies that
∫
dx |Ψ|2 (x, t) = N is constant (see Ap-

pendix C). Equation (10) constitutes the second main
result of our work. It will form the basis for our analy-
sis in the remainder of this work, deriving the physical
consequences of particle-conserving dissipation for this
paradigmatic 1D model.

Since the nonlinear Schrödinger equation without dis-
sipation is known to harbour solitons, we investigate their
dynamics in the presence of particle-conserving dissipa-
tion. For this purpose, the sign of the dissipation parame-
ter γ, which is positive (negative) for red (blue) detuning,
is of the utmost importance [see Eq. (7)]. We show in the
following that in the red-detuned regime, wave packets
in the form of soliton solutions can be stabilized and de-
accelerated. In contrast to the red-detuned regime, they
are accelerated in the blue-detuned regime and any per-
turbations away from stable solutions can be amplified,
leading to wave packets that can break up into several
parts. In the following we mainly focus on the dynamics
in the red-detuned regime.

To verify the validity of Eq. (10) we simulate both
the original equations describing the classical dynamics
of a discrete lattice of bosonic modes coupled to driven
cavities [see Eqs. (2), (3) and for the Hamiltonian (8)
as well as Appendix B] and the continuum particle-
conserving dissipative nonlinear Schrödinger equation
given by Eq. (10). We compare the resulting dynamics
for several different parameter choices.

As an initial condition we choose a stable soliton, that
will be introduced in more detail in Sec. III B. We set up
the simulation such that the extent of the soliton is some
fraction of the total chain length L, and we keep this
fraction constant while we vary L in order to discuss the
deviations from the continuum limit (which is attained
perfectly when L→ ∞).
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In Fig. 3 we compare the dynamics of the dis-
crete model before eliminating the reservoir modes [see
Eqs. (2), (3) and (8) as well as Eqs. (B2) and (B3) for
further details] with the PCDNSE. We plot the solu-
tions for different array lengths L [see Fig. 3(a)] and dif-
ferent reservoir parameters [see Fig. 3(b)]. Our results
show that for long arrays, L ≫ 1, and within the weak-
coupling limit both dynamics are in good agreement. Due
to the intensity-intensity coupling to the reservoir the
site occupation needs to be accounted for in the effective
coupling strength such that the weak-coupling limit cor-
responds to having χbmax

2 ≪ |i∆+ κ/2| and χJbmax
2 ≪

|i∆+ κ/2|2, where we have defined bmax = maxl |bl|. We
note that bmax can be related to the occupation of the
soliton divided by the width of the soliton. As it can be
observed in Fig. 3(b) if the weak coupling conditions are
not fulfilled, the discrete and continuous solutions do not
agree anymore because integrating out the cavities is no
longer justified.

As anticipated, the continuum approximation becomes
worse for solitons that (initially) extend only over a few
sites, e.g., about 10 sites for L = 400. However, even in
this case the continuum equation already agrees reason-
ably well with the site occupations of its discrete counter-
part [see Fig. 3(a)]. We stress that within the continuum
and weak-coupling limits different parameters that pro-
duce the same effective nonlinear coupling strength g and
decay rate γ lead to equivalent dynamics. For this rea-
son, we focus in the following on a better understanding
of the dynamics of the continuum equation [see Eq. (10)].

B. Variational Ansatz

Employing the PCDNSE allows us to use (semi-
)analytic methods. In particular we use a variational
approach to describe the dynamics of collective coordi-
nates [40–43], here applied to obtain the dynamics of a
single soliton. We consider the ansatz

Ψ̄(x, t) = exp
(
i
{
[x− x0(t)] v(t) + [x− x0(t)]

2
d(t)

+ φ(t)
})
ψ(t) sech

[
x− x0(t)

w(t)

]
, (11)

with the collective coordinates given by the amplitude
ψ(t), the center position x0(t), the velocity v(t), the
width w(t), as well as a parameter quantifying the
(quadratic) phase dispersion d(t) and the global phase
φ(t). A straightforward calculation (see Appendix D)
yields the equations of motion for the collective coordi-

0.18 0.20 0.22 0.24
0.0

0.4

0.8

1.2

|b n
|2 ,

|Ψ
|2

(a) PCDNSE
L= 800
L= 400
L= 200

0.18 0.20 0.22 0.24
0.0

0.4

0.8

1.2

n/L

|b n
|2 ,

|Ψ
|2

(b) η= 10 J
κ= 0.1 J
∆= −1 J
∆= −2 J0.07 0.13

0

1
t = 0

Figure 3. Comparison of the PCDNSE [Eq. (10)] and the
discrete equations of motion including the reservoir dynam-
ics, see Eqs. (2) and (3). In panel (a) we compare simu-
lations for different array lengths to the PCDNSE and in
(b) different cavity parameters leading to the same effective
evolution. Only when the continuum limit or weak-coupling
limit are not satisfied (small L or ∆ = −2 J , respectively) the
discrete dynamics are in disagreement with the dynamics of
the PCDNSE. Unless otherwise specified (see legend) we use
L = 800, κ = J,∆ = −0.1J, η = J and χ, α such that we get
the effective parameters g = −0.1 J, γ = 0.05. The distribu-
tions are taken after an evolution for Jt = 50(L/400)2 of an
initial stable soliton [see inset of (b)] with height ψ(0) = 1
and velocity v(0) ≈ 0.48. The PCDNSE uses a length of
L = 400. For the evolution according to the Langevin EOM,
we assume that the cavities are initially in their unperturbed
steady state η/(κ/2− i∆).

nates (EOMs):

ẋ0(t) = 2Jv(t), (12)

v̇(t) = − 8Jγψ2(t)v(t)

15w2(t)
, (13)

ψ̇(t) = − 2Jψ(t)d(t), (14)

ẇ(t) = 4Jd(t)w(t), (15)

ḋ(t) = − 8Jγψ2(t)d(t)

15w2(t)
− 4Jd2(t) +

4J

π2w4(t)

+
2gψ2(t)

π2w2(t)
, (16)

φ̇(t) =
2π2Jγψ2(t)d(t)

45
+

2Jγψ2(t)d(t)

3
+ Jv2(t)

− 2J

3w2(t)
− 5gψ2(t)

6
. (17)

The effects due to reservoir engineering emerge from all
the terms proportional to γ. When setting γ = 0, we can
verify that these equations coincide with those found in
the literature for soliton dynamics [40].
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As a first step in our analysis, we determine the non-
trivial stable soliton using Eqs. (12)-(17). To find the
properties of the stable soliton, we impose both the width
and the amplitude to remain stationary: ẇ(t) = ψ̇(t) = 0.
This condition implies that the dispersion vanishes, i.e.,

d(0) = ḋ(t) = 4J
π2w4(t) +

2gψ2(t)
π2w2(t) = 0. This immediately

leads to a relation between width and amplitude of the
stable soliton given by

ψ2(t) = − 2J

gw2(t)
, (18)

and imposes the quadratic phase dispersion to be zero,
d(t) = 0. The initial conditions of the remaining param-
eters v(t = 0), x0(t = 0), φ(t = 0) can be chosen indepen-
dently.

It can be shown that both the width and amplitude of
the stable soliton are time-independent. To this end, we
use that the particle number,

N =

∫
dx |Ψ|2 (x, t) = 2ψ2w, (19)

is conserved. Substituting Eq. (18) into Eq. (19) and
solving for w leads to the width of the stable soliton:

wSS = − 4J

gN
. (20)

The time-independent amplitude can be obtained by sub-
stituting Eq. (20) into Eq. (19) and solving for ψ, which
yields

ψSS =

√
N

2wSS
=

√
− g

2J

N

2
. (21)

We can also derive the shape of the stable soliton us-
ing the ansatz postulated in Eq. (11); this would consist
in minimizing the energy of the unperturbed nonlinear
Schrödinger equation for a fixed particle number

E =

∫
dx

[
J |∂Ψ

∂x
|
2

+
g

2
|Ψ|4

]
=2Jψ2v2w +

2π2Jψ2d2w3

3
+

2Jψ2

3w
+

2ψ4gw

3
.

(22)

In the attractive regime, i.e., g < 0, the last term of
Eq. (22) related to the onsite interaction is negative and,
thus, competes with the remaining positive terms allow-
ing for a stable soliton. Furthermore, Eq. (22) reveals
the dependence of the energy of the stable soliton on the
collective variables, which demonstrates that it is pos-
sible to change the energy of the stable soliton without
breaking it apart by changing its shape (amplitude ψ and
width w) or reducing the dispersion d and or velocity v.
As we show below, this can be achieved by leveraging
the coupling to the engineered reservoir. By substitut-
ing w = N/2ψ2 [Eq. (19)] into the energy Eq. (22) we
find that the kinetic energy term of the group velocity v

is independent of the soliton shape (determined by ψ).
Minimizing Eq. (22) with respect to ψ and d for attrac-
tive onsite interaction (g < 0) at fixed N and v leads to
d = 0, and Eqs. (20) and (21). The particular shape of
the soliton [Eqs. (20) and (21)] arises due to the com-
petition between part of the hopping term and the on-
site interaction, in particular the third and last terms of
Eq. (22), respectively.
The energy of the stable soliton is given by

ESS = Jv2N − N3g2

48J
. (23)

The first term of Eq. (23) is the kinetic energy which
depends quadratically on the velocity v. The second term
corresponds to a potential energy that depends on the
particle numberN as well as the system parameters g and
J . The energy of the stable soliton [see Eq. (23)] is linked
to the evolution of the global phase via dESS/dN = vẋ0−
φ̇ [see Eqs. (24) and (26)].

1. Dissipative dynamics of the stable soliton

With these considerations in place we begin by study-
ing the dynamics of a stable soliton. Solitons in Bose-
Hubbard-type models have been discussed in the quan-
tum domain [44, 45] without the particle-conserving dis-
sipation we consider here. Because the PCDNSE con-
serves the particle number but dissipates the energy, the
dynamics need to change the velocity to influence the
energy as it can be seen from Eq. (23). This can be sim-
ply understood using the EOMs [see Eqs. (12)-(17)] for
a stable soliton

ẋ0(t) = 2Jv(t), (24)

v̇(t) = −ΓJv(t), (25)

φ̇(t) = Jv2(t) +
g2N2

16J
, (26)

with the (dimensionless) velocity damping rate given by

Γ = γ
−g3
J3

N4

240
. (27)

Note that the velocity damping rate of the stable soliton
depends on the ratio g/J because this fraction deter-
mines the particular shape of the stable soliton, i.e., the
amplitude ψ and width w [see Eq. (13)].
Since we need an attractive interaction (g < 0) to get

a stable soliton, we conclude that the velocity damping
rate Γ is positive when the original effective damping pa-
rameter γ is also positive, i.e., when ∆ < 0 (red-detuned
regime). Therefore, the main insight these equations pro-
vide is that the velocity v of the soliton is damped at a
rate of ΓJ for ∆ < 0. This highlights that with the
particle-conserving coupling to the engineered reservoir
it is indeed possible to de-accelerate and eventually even
freeze the motion of a stable soliton while conserving its
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shape. On the other hand when ∆ > 0, one can observe
instead exponential acceleration.

We show this behavior in Fig. 4 where we compare the
relative (de-)acceleration of the soliton v̇/vJ as function
of the damping rate Γ as predicted by the variational
ansatz to a numeric simulation of the PCDNSE. We sim-
ulate numerically the evolution up to Jt = 4 and then
extract the soliton coordinates using a least squares fit
to the ansatz given in Eq. (11). We then estimate v̇/J
using the finite difference [v(Jt) − v(0)]/Jt. We stress
that while in the fully displayed red-detuned domain the
numerical results agree nicely with the predicted linear
dependence on the damping rate Γ, in the blue-detuned
regime there is a sudden increase of the deviation from
the predicted linear dependence (leftmost purple square
in Fig. 4). We attribute this deviation to the amplifica-
tion of a small departure from the stable soliton, which
is possible in the blue-detuned domain [see Eq. (16)].

In the simulation numerical errors can lead to a small
deviation from the stable soliton which can result in a
non-vanishing dispersion d ̸= 0 that then gets amplified
for γ < 0 [see Eq. (16)]. We verified this by reducing the
absolute and relative tolerances of the simulation and
thereby the potential deviation from the stable soliton,
resulting in final numerical values for the anti-damping
rate in agreement with the variational calculation (see
purple star in Fig. 4). Due to the amplification, even
small deviations from the stable soliton can eventually
lead to a break-up of the soliton. As (external) pertur-
bation can also occur in the real world, the blue-detuned
regime needs to be treated with great care if the goal is
to prepare stable solitons.

2. Shape stabilization

In contrast to the shape breakdown in the blue-
detuned regime, which we discussed above, the red-
detuned domain supports the stabilization of solitons
when they start off with a small deviation from the stable
shape. We now analyze this behaviour in some more de-
tail. Since the EOMs conserve the particle number, the
initial deviation from a stable soliton can be quantified
by the initial phase dispersion d(0) and initial relative
difference in amplitude δ = ψ(0)/ψSS − 1. For simplic-
ity we focus on the second type of deviations here, i.e.,
deviations in the initial amplitude.

To study the phenomenon of soliton stabilization, we
need to consider the long-time limit of the evolution.
While this can be done efficiently using the variational
approach, we must make sure that we are not in a regime
where small amplitude deviations from the stable soliton
characterized by δ result in the wave packet breaking up
into multiple components. To identify the regime of va-
lidity, we employ a hybrid approach: We first calculate
a short-time evolution using the computationally more
expensive PCDNSE to ensure the stability of the soliton.
If the soliton retains the correct shape, we then use the

0.0 0.5 1.0 1.5 2.0 2.5

0.0

-0.5

-1.0

-1.5

-2.0

-2.5

v

v̇
v

v̇

Γ = −γN4g3/240J3 [10−3]

v̇
/
v
J
[1
0−

3
]

Variation
g = −0.01J
g = −0.1J

10−7

10−4

10−1

Figure 4. Velocity damping rate as a function of gγψ4(0). We
see good agreement between the variational approach and nu-
merical results of the particle conserving dissipative nonlinear
Schrödinger equation (PCDNSE). The deviation at the small-
est value is due to the soliton breaking up in the simulation,
underlined by the datapoint given by the star where the rel-
ative and absolut tolerances where decreased to 10−13 and
10−12 respectively from 10−8 for both.The inset shows that
the deviation |δ(Jt = 4)| = |ψ2(Jt = 4)/ψ2(0) − 1| (pen-
tagons, diamonds) as well as d(Jt = 4) (triangles) from the
stable soliton stays small for the evolution. The PCDNSE
simulation is for a stable soliton with ψ(0) = 1, x(0) = L/8,
v(0) ≈ 0.49, and L = 600 and for a duration Jt = 4.

collective coordinates to estimate the long time evolution.
We illustrate and justify this approach in Fig. 5 where

we compare the PCDNSE and variational approach.
Based on the short-time evolution of ψ(t) in Fig. 5(a),
one can identify that the soliton breaks up into multiple
wave packets for δ = 0.3 within the PCDNSE. Thus, we
conclude that the variational approach is not suited in
this case.
For the remaining values of δ = −0.1, 0.01 we addition-

ally compare the dynamics on a short time scale (after a
previous long evolution) in panel (b) and verify that the
PCDNSE solitons still agree with the spatial form of the
general soliton ansatz (11) in panel (c). Both underline
the validity of the hybrid approach.

In Fig. 5(d) we plot the maximal deviation of the soli-
ton amplitude from the steady state value within a times-
pan of duration 5×104/J to confirm that for red-detuned
dynamics the solitons converge to a state where the veloc-
ity v and dispersion d tend to zero, while the amplitude
ψ(t) and width w(t) tend to the values associated to a
stable soliton, i.e., ψSS and wSS [see Eqs. (20) and (21)].
Even for the smaller |δ| values, the PCDNSE simu-

lation and the collective coordinates approach also de-
viate due to higher order dispersion terms that are not
accounted for in our collective coordinate ansatz. Be-
cause the higher order dispersion terms do not influence
the (modulus square) shape they can be incorporated in
the variational approach to improve the collective coordi-
nates to higher order in future work. The simulations in
Fig. 5 furthermore suggest that the ansatz we employed
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Figure 5. Shape stabilization of ill prepared solitons. The maximal amplitude of the PCDNSE (dashed lines) is compared to
the prediction of the collective coordinates (solid lines) in (a),(b) for the different deviations δ = ψ(0)/ψSS − 1 [see legend in
(c)]. While for δ = −0.1, 0.01 both solutions oscillate around the steady state amplitude, for δ = 0.3 the soliton shape breaks
down and this oscillation is visible in neither solution. Therefore, we investigate the dynamics for long times for the smaller
δ = −0.1, 0.01 (b)–(d). Panel (b) shows the the continued oscillation around the steady state amplitude after a prolonged
evolution time of Jt = 2× 106 and (c) displays the modulo square distribution after this evolution. To quantify the long time
dynamics we compare the envelope of the deviation of the maximal amplitude ψ(t) deviation from the steady state amplitude
ψSS on a long timescale in these cases (d). To this end, we calculate the envelope as the maximal deviation within a time-window
of length 5 × 104. The relaxation process is sketched in the inset of (d). We use g = −0.1J , N = 1, γ = 0.1, L = 10wSS, and
only deviate from the stable soliton via δ ̸= 0 (i.e. d = 0).

still gives an estimate for the timescale of the relaxation
as well as the qualitative dynamics of the relaxation.

The relevance of the hybrid approach becomes evident
in the blue-detuned regime even in the case where the
initial soliton is stable; in this regime a slight perturba-
tion from the stable soliton solution can be amplified and
lead to a break up of the wavefunction as we discussed
in the previous section.

Additionally, the blue-detuned regime reveals the main
drawback of the variational approach employed here, i.e.,
the complete breakdown of the solution as soon as the
space spanned by the ansatz is insufficient to describe
the dynamics. However, we want to stress again the
great simplification that is possible as long as the so-
lutions stays within this solution space, i.e. replacing the
non-linear partial differential equation (10) with a set of
ordinary differential equations (12)–(17). This enabled
our analytic results like the derivation of the velocity
damping rate for a stable soliton [see Eqs. (24)–(26) and
Fig. 4].

We emphasize that the breakdown of the collective-
coordinates approach is a problem inherent to taking the
highly restricted ansatz given by Eq. (D1), and is not due
to the particular application to the model of this article;
this is particularly visible as the approach works better
for bigger γ (for fixed g/J).
Combining the insights gained above for the red-

detuned domain, regarding the velocity damping and
shape stabilization, as well as the separate finding that
large deviations lead to a break up of the wavepacket, we
suspect that the eventual steady states for the break up
scenario can be described by several spatially separated
stable solitons.

C. Two Solitons

After investigating single solitons in great detail in the
previous section we want to use these insights now to
investigate the collision of two solitons. To this end,
we investigate the effect of the interaction by compar-
ing the evolution of a single traveling soliton using the
solution obtained using the collective coordinates to the
evolution of two solitons propagating in opposite direc-
tions, evolved (numerically) using the PCDNSE [using
Eq. (22)]. In particular, we calculate the total energy
numerically and compare it to the energy of a single soli-
ton, calculated analytically according to the collective
coordinates ansatz [see Eqs. (23) and (25)].

We display this in Fig. 6 where we see that initially, i.e.,
before the interference begins (see inset), the prediction
agrees with the expectation of two separate solitons, i.e.,
the energy of the two solitons is twice the energy of the
single soliton. During the evolution, when the solitons
collide, the (unperturbed) energy of the two solitons can
even increase temporarily. We ascribe this behaviour to
interaction terms that go beyond the unperturbed sin-
gle soliton [see Eq. (22)]. However, it is apparent that
during the soliton collision energy is being dissipated be-
yond what would be expected for separated solitons. We
attribute this to the increase of the variation of the dis-
sipation term ∝ Im

(
Ψ∗ ∂Ψ

∂x2

)
Ψ as the solitons interfere

with each other.

As a consequence, in a system of many solitons, en-
ergy is predominantly dissipated whenever two solitons
collide. Beyond that, there is the usual velocity-damping
for each individual soliton, already discussed above.
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Figure 6. Influence of the dissipative dynamics due to the in-
teraction of two stable solitons. The figure depicts the energy
of the two solitons compared to the single soliton solution as a
function of time during the interaction for different γ (see leg-
end). The inset shows |Ψ(x, t)|2 for γ = 10−2 where the values
range from 0 (dark) to ≈ 3.62 (light). We use g = −0.1J and
the initial solitons have ψ(0) = 1 (N ≈ 9), and |v(0)| ≈ 0.5
with opposite signs and are placed 5w(0) apart on a space of
size 20w(0). The figure shows that the interaction of the two
solitons can enhance the energy dissipation.

IV. CONCLUSION

In this article we have analyzed the behaviour of a
bosonic many-body system subject to particle-conserving
dissipation, treated in the classical limit. Particle-
conserving dissipation is important in modern bosonic
quantum simulators for platforms such as photonic sys-
tems that can be employed to simulate the interesting
physical scenario of particle-conserving equilibration dy-
namics when subject to an engineered reservoir of this
manner. The results for the classical limit obtained here
will provide a guide to understanding such experiments
in the limit of large amplitudes. We have derived a gen-
eral equation of motion describing the effective dissipa-
tion. We have then applied it to the special case of a
Bose-Hubbard chain, where we have obtained a partic-
ular new version of a dissipative nonlinear Schrödinger
equation.

We used numerics and a collective coordinate approach
to study the behaviour of solitons in such a scenario and
showed how reservoir engineering can relax solitons to a
stable shape as well as accelerate and de-accelarate mov-
ing solitons. Lastly we briefly investigated the interac-
tion of two solitons, where we found that extra energy is
dissipated during the collision of solitons.

Further works could build upon these insights to study
the breakup of wave packets into soliton trains and the
interactions of multiple solitons as well as their long-term
behaviour, all in the presence of particle-conserving dis-
sipation. The behaviour of a 2D bosonic field coupled to
this kind of dissipation remains completely unexplored
territory as well.
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Appendix A: Classical dynamics using the Wirtinger
derivative

Considering a normal-ordered many-body Hamiltonian

ĤS of bosonic modes b̂l (l = 1, . . . , L), the Heisenberg
equations of motions can be expressed by

i
˙̂
bl =

1

ℏ
[b̂l, ĤS] =

1

ℏ
∑
n,m

Ânm [b̂l, (b̂
†
l )
n] b̂ml

=
1

ℏ
∑
n,m

Ânmn(b̂
†
l )
n−1b̂ml , (A1)

where Ânm is made up by normal ordered operators of all

modes but b̂l. If we now go to the classical limit b̂l → bl
we find the dynamics of the classical amplitudes bl

iḃl =
1

ℏ
∑
n,m

Anmn(b̂
∗
l )
n−1b̂ml

=
1

ℏ
∑
n,m

Anm
∂(b̂∗l )

n

∂b∗l
b̂ml =

1

ℏ
∂HS

∂b∗l
, (A2)

where O = Anm, HS, corresponds to the classical version

of Ô with the replacement b̂
(†)
n → b

(∗)
n for all modes n and

using the “Wirtinger derivative” ∂/∂b∗l [32].

Appendix B: Integrating out the cavity

In this appendix we present an alternative derivation
of the effective dissipative dynamics specialized to the
anharmonic chain. The full Hamiltonian (in the frame
rotating with the bare frequency of the anharmonic sites
and omitting the modes of the environment only inter-
acting with the bath modes âi) is given by:

Ĥsys+bath = ℏ
L∑
i=1

[
− J

(
b̂†i+1b̂i + b̂†i b̂i+1

)
+
α

2
b̂†i b̂i(b̂

†
i b̂i − 1) (B1)

+ χâ†i âib̂
†
i b̂i − ωc

(
â†i âi +

1

2

)]
with the anihilation operators of the sites b̂i as well as
the cavities âi, the anharmonicity of the sites α, the hop-
ping rate J , the cavity frequency ωc, and the interaction
strength χ.
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Following the standard derivation for driven dissipative
cavities (see [33] for a review) and considering the regime
where the quantum fluctuations are negligible compared
to the classical amplitudes we find the equations of mo-
tion of the classical amplitudes An and Bn:

Ȧn =i∆An + η − κ

2
An − iχ|Bn|2An, (B2)

Ḃn =− iχ|An|2Bn − iα|Bn|2Bn + iJ (Bn−1 +Bn+1) ,
(B3)

with the detuning ∆ = ωL − ωc between the cavity and
the drive. The terms proportional to the drive rate η
and the decay rate κ arise due to integrating out the en-
vironment following the standard procedure for a driven

dissipative cavity (with an interaction between the envi-
ronmental modes ê(ω) with frequency ω and the cavity
of the form ê(ω)â† + h.c.. We note that in our notation
all constants apart from ∆, α are positive.
First we note that only the hopping term leads to a

change in the site occupation

d |Bn|2
dt

= iJ (Bn−1 +Bn+1)B
∗
n +H.c. (B4)

which fulfills |(d/dt) |Bn| (t)|2 ≤ J |Bmax(t)|2 with the
maximal amplitude of the chain Bmax(t) = maxn |Bn(t)|.
For a stable soliton we can relate Bmax(t) = ψ(t) =√
N/2wSS, i.e. the square root of a density given by

the number of excitations in the soliton devided by the
width of the soliton.

Taking the ansatz

An(t) =
η

−i∆+ κ/2
+ exp

[
(i∆− κ/2)t− iχ

∫ t

0

|Bn(t′)|2 dt′
]
δAn(t) (B5)

leads to

˙δAn = iχ
η

i∆− κ/2
|Bn(t)|2 exp

[
(κ/2− i∆)t+ iχ

∫ t

0

|Bn(t′)|2 dt′
]
. (B6)

Using d
dt exp

[
iχ

∫ t
0
|Bn(t′)|2 dt′

]
= iχ |Bn(t)|2 exp

[
+iχ

∫ t
0
|Bn(t′)|2 dt′

]
we find

˙δAn =
η

i∆− κ/2
exp [(κ/2− i∆)t]

{
d

dt
exp

[
iχ

∫ t

0

|Bn(t′)|2 dt′
]}

, (B7)

such that we can integrate both sides of the equation to find

δAn(t) =
η

i∆− κ/2

{
exp

[
(κ/2− i∆)t+ iχ

∫ t

0

|Bn(t′)|2 dt′
]
− 1

}
+ η

∫ t

0

exp [(κ/2− i∆)t′′] exp

[
iχ

∫ t′′

0

|Bn(t′)|2 dt′
]
dt′′.

(B8)

Where we approximate the integral
∫ t
0
eg(τ)dτ with g(τ) = (κ/2− i∆)τ + iχ

∫ τ
0
|Bn(t′)|2 dt′, therefore we first consider

the magnitude of the derivatives |ġ(t)| ≥ |κ/2| and |g̈(t)| < χJ |Bmax|2 because g̈(t) = iχd|Bn|2
dt . We use d

dt
eg(t)

ġ(t) =

eg(t) − g̈(t)
ġ2(t)e

g(t) and integrate by parts

∫ t

0

eg(τ)dτ =

[
eg(τ)

ġ(τ)

]t
0

+

∫ t

0

g̈(τ)

ġ2(τ)
eg(τ)dτ, (B9)

where we can again integrate by parts the second term∫ t

0

g̈(τ)

ġ2(τ)
eg(τ)dτ =

[
g̈(τ)

ġ3(τ)
eg(t)

]t
0

−
∫ t

0

( ...
g (τ)

ġ3(τ)
− 2

g̈2(τ)

ġ4(τ)

)
eg(τ)dτ, (B10)

combined leading us to ∫ t

0

eg(τ)dτ =

[
eg(τ)

ġ(τ)
+

g̈(τ)

ġ3(τ)
eg(τ)

]t
0

+O
[( ...

g (t)

ġ5(t)
+

g̈(t)

ġ4(t)

)
eg(t)

]
. (B11)
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To get the correct order of these terms we consider

1

ġ(t)
=

1

κ/2− i∆+ iχ |Bn|2 (t)
=

1

κ/2− i∆
− iχ |Bn|2 (t)

(κ/2− i∆)2
+O

[
χ2 |Bn|4 (t)
(κ/2− i∆)3

]
, (B12)

and

g̈(t)

ġ3(t)
= iχ

d |Bn|2
dt

{
1

(κ/2− i∆)3
+O

[
χ |Bn|2 (t)
(κ/2− i∆)4

]}
. (B13)

Therefore, we can approximate the second integral in (B8) if χ|Bmax|2 ≪ |i∆+ κ/2| and χJ |Bmax|2 ≪ |i∆+ κ/2|2
(i.e. in the weak coupling limit)

exp

[
(i∆− κ/2)t− iχ

∫ t

0

|Bn(t′)|2 dt′
]
δAn(t) =

η

i∆− κ/2

{
1− exp

[
(i∆− κ/2)t− iχ

∫ t

0

|Bn(t′)|2 dt′
]}

+ η

[
1

κ/2− i∆
− iχ |Bn|2 (t)

(κ/2− i∆)2
+ iχ

d |Bn|2
dt

1

(κ/2− i∆)3

]
.

(B14)

Inserting this into (B5) and neglecting exponentially decaying terms we find

An(t) ≃
η

κ/2− i∆

{
1− iχ

κ/2− i∆

[
|Bn|2 −

d|Bn|2
dt

κ/2− i∆

]}
. (B15)

Which we can square and approximate to the first order within the weak coupling approximation

|An(t)|2 ≃ η2

κ2/4 + ∆2

{
1 + 2χ

[
∆

κ2/4 + ∆2
|Bn|2 −

∆κ

(κ2/4 + ∆2)2
d |Bn|2
dt

]}
. (B16)

Inserting this result into Eq. (B3) leads us to

Ḃn = −iχ η2

κ2/4 + ∆2

{
1 + 2χ

[
∆

κ2/4 + ∆2
|Bn|2 −

∆κ

(κ2/4 + ∆2)2
d |Bn|2
dt

]}
Bn − iα|Bn|2Bn + iJ (Bn−1 +Bn+1)

(B17)

Using the approximation in Eq. (B16) and changing into a rotating frame with bn(t) = eiχη
2/(∆2+κ2/4)te−i2JtBn(t),

we calculate

ḃn =

(
iχ

η2

κ2/4 + ∆2
− 2iJ

)
bn + eiχη

2/(∆2+κ2/4)teiπne−i2JtḂn

=− iγ/2
d |bn|2
dt

bn − ig|bn|2bn + iJ (bn−1 − 2bn + bn+1)

(B18)

with the effective self-interaction g = α + 2χ2η2∆
(κ2/4+∆2)2 and the decay rate γJ = − 4χ2η2∆κ

(κ2/4+∆2)3 J . Finally we use the

equation itself to calculate

d|bn|2
dt

=b∗nḃn + bnḃ∗n = b∗n

[
−iγ d |bn|

2

dt
bn − ig|bn|2bn + iJ (bn−1 − 2bn + bn+1)

]

+ bn

[
iγ
d |bn|2
dt

b∗n + ig|bn|2b∗n − iJ
(
b∗n−1 − 2b∗n + b∗n+1

)]
= −2JIm [b∗n (bn−1 − 2bn + bn+1)] ,

(B19)

which results in Eq. (9) of the main text, i.e.

iḃn = g|bn|2bn − J (bn−1 − 2bn + bn+1)− JγIm [b∗n (bn−1 − 2bn + bn+1)] bn. (B20)

Appendix C: Particle Conserving NLSE

In this appendix we provide the short proof that
the particle conserving dissipative nonlinear Schrödinger

Eq. (10) conserves the particle number. We can show
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this by evaluating

d

dt

∫
dx |Ψ|2 (x, t) =

∫
dx

d

dt
|Ψ|2 (x, t)

=− J

∫
dxIm

(
Ψ∗ ∂

2Ψ

∂x2

)
=− JIm

[
Ψ∗ ∂Ψ

∂x

]L
0

= 0,

(C1)

where we used that we can add a real number inside the
imaginary part to solve the integral, and that Ψ needs
to either vanish at the boundaries (for open boundary
conditions) or Ψ(0) = Ψ(L) for periodic boundary condi-

tions. Therefore we demonstrated that the particle num-
ber N =

∫
dx |Ψ|2 (x, t) is constant.

Appendix D: Variational Ansatz

In this appendix we provide the necessary details to un-
derstand the derivation of the equations of motion for the
collective coordinates. Without any coupling to the envi-
ronment (γ = χ = 0) the particle conserving dissipative
nonlinear Schrödinger Eq. (10) becomes the standard
unperturbed nonlinear Schrödinger equation which sup-
ports soliton solutions. With this motivation we study
the evolution of a generalized soltion ansatz

Ψ̄(t) = ψ(t) exp
{
i [x− x0(t)] v(t) + i [x− x0(t)]

2
d(t) + iφ(t)

}
sech

[
x− x0(t)

w(t)

]
(D1)

within a variational approximation where the time-
dependent parameters are called collective coordinates
[41, 42]. This approach was also employed to study
soliton solutions in different generalized non-linear
Schrödinger equations in recent works [40, 43].

Within this approach we first calculate the con-
servative Lagrangian for the unperturbed nonlinear
Schrödinger equation

L̄ =

∫ ∞

−∞

[
J |∂Ψ̄
∂x

|
2

+
g

2
|Ψ̄|4 + i

2

(
Ψ̄∗ ∂Ψ̄

∂t
− Ψ̄

∂Ψ̄∗

∂t

)]
dx,

(D2)
and then we find the dynamics of the parameters of Ψ̄,
i.e. p = ψ, x0, d, v, φ, w, using the perturbed variation
approach. The resulting equation of motion are

d

dt

∂L̄

∂ṗ
− ∂L̄

∂p
= 2ℜ

∫ ∞

−∞
P̄ ∂Ψ̄

∗

∂p
dx, (D3)

with P̄ = −JγIm
(
Ψ̄∗ ∂2Ψ̄

∂x2

)
(the non-conservative term of

the particle conserving dissipative nonlinear Schrödinger

Eq.). Evaluating the integrals of the right hand side com-
bined with some algebra leads to the equations of motion
of the main text (12)–(17).

Appendix E: Simulation Details

All numerics are calculated using [46]. In Fig. 3 we
use the Tsit5 algorithm and relative (absolut) tolerance
10−8 (10−8) for the PCDNSE to achieve fast convergence
for the large lattice (4001 points) simulating the contin-
uous space. The Langevin equations of motion have a
much smaller lattice but are more prone to numerical is-
sues, therefore we use a Vern9 algorithm with a relative
tolerance of 10−12. In Fig. 4 (apart from one data point)
use the same simulation setup used as Fig. 3. In Fig. 5 we
use the same simulation setup for the PCDNSE as Fig. 3.
For the collective coordinates we use a Tsit5 with rela-
tive (absolute) tolerance 10−10 (10−8). In Fig. 6 we use
the simulation setup of Fig. 3 but a relative tolerance of
10−10.
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[20] A. A. Houck, H. E. Türeci, and J. Koch, On-chip quan-
tum simulation with superconducting circuits, Nat. Phys.
8, 292 (2012).

[21] E. Altman, K. R. Brown, G. Carleo, L. D. Carr, E. Dem-
ler, C. Chin, B. DeMarco, S. E. Economou, M. A. Eriks-
son, K.-M. C. Fu, et al., Quantum simulators: Archi-
tectures and opportunities, PRX Quantum 2, 017003
(2021).

[22] M. Weitz, J. Klaers, and F. Vewinger, Optomechanical
generation of a photonic Bose-Einstein condensate, Phys.
Rev. A 88, 045601 (2013).

[23] M. Hafezi, P. Adhikari, and J. M. Taylor, Chemical po-
tential for light by parametric coupling, Phys. Rev. B 92,
174305 (2015).

[24] H. Ribeiro and F. Marquardt, Kinetics of many-body
reservoir engineering, Phys. Rev. Res. 2, 033231 (2020).

[25] O. Scarlatella, A. A. Clerk, and M. Schirò, On the stabil-
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