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Abstract
The energy-balance-closure problem in eddy-covariance measurements has been known for decades. It
has been thoroughly investigated from different angles, resulting in approaches to reduce but not
completely close the surface energy balance gap. Energy balance transport through secondary
circulations has been identified as a major cause of the remaining energy imbalance, which is not
captured by eddy covariance measurements and can only be measured additionally with great effort.
Several models have already been developed to close the energy balance gap that account for factors
affecting the magnitude of the energy transport by secondary circulations. However, to our knowledge,
there is currently no model that accounts thermal surface heterogeneity and that can predict the transport
of both sensible and latent energy. Using a machine-learning approach, we developed a new model of
energy transport by secondary circulations based on a large data set of idealized large-eddy simulations
covering a wide range of unstable atmospheric conditions and surface-heterogeneity scales. In this paper,
we present the development of the model and its promising test on more realistic large-eddy simulations
and field measurements from the CHEESEHEAD19 project. We further show that it can be applied without
additional measurements and, thus, can retrospectively be applied to other eddy covariance
measurements to model energy transport through secondary circulations. Our work provides a promising
mechanistic energy balance closure approach to 30-minute flux measurements.

1 Introduction
The quantification of energy transport between ecosystems and the atmosphere provides an important
basis for various areas of environmental science. Some examples are operational weather forecasting
and climate modelling (e.g. Arneth et al. 2012; Cuxart et al. 2015; Green et al. 2017), or investigating the
reaction of ecosystems to changing climate conditions (e.g. Cremonese et al. 2017; Fu et al. 2020; Qu et
al. 2016; Reichstein et al. 2007; van Gorsel et al. 2016) to come up with sustainable management
strategies for ecosystems and adapt agriculture (e.g. Bernacchi et al. 2005; Bernacchi et al. 2006; Ceschia
et al. 2010; Graham et al. 2016; O’Dell et al. 2020; Stork and Menzel 2016). For decades, the eddy
covariance (EC) method has been used to quantify energy transport in the atmospheric boundary layer in
terms of sensible and latent heat fluxes at the ecosystem scale as it facilitates the direct measurement of
turbulent energy fluxes without disturbing the investigated ecosystem (Aubinet et al. 2012; Baldocchi
2003; Baldocchi 2014; Foken 2017; Mauder et al. 2007b).

However, the systematic study of measurements at EC stations has shown that the surface-energy
balance (SEB, balance between incoming and outgoing energy at the surface in the form of radiation,
heat fluxes and storage change) is usually not closed, but shows a gap of 10–30%, always in the same
direction (Hendricks-Franssen et al. 2010; Soltani et al. 2018; Stoy et al. 2013). The SEB can therefore be
expressed in simplified form as

Rnet = Ht + λEt + G + I

1
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,

where Rnet is the net radiation, which is defined to be positive during daytime, Ht and λEt are the
sensible and latent turbulent fluxes measured with the EC method, G is the ground heat flux and I is the
remaining SEB gap (Mauder et al. 2020). The terms on the right-hand side of the equation are defined to
be positive when they transport energy away from the surface.

The SEB gap has been the subject of research for a long time and many factors, such as systematic
errors in the measurement of the vertical wind component and humidity (Frank et al. 2013; Goulden et al.
1996; Kochendorfer et al. 2012; Laubach et al. 1994; Mauder 2013; Nakai and Shimoyama 2012), which
are used to calculate heat fluxes, and systematic errors in the measurement of other components of the
SEB, such as radiation and ground heat flux (Foken 2008; Kohsiek et al. 2007; Liebethal et al. 2005), and
the scale mismatch between the footprint of the EC measurement and the radiation measurement
(Schmid 1997) have been studied. Especially for measurement towers above high vegetation, the energy
storage in the air volume and biomass below the measurement instruments also plays a non-negligible
role and should be captured by profile measurements of temperature and humidity (Leuning et al. 2012;
Lindroth et al. 2010; Moderow et al. 2009; Xu et al. 2019). The influences of systematic measurement
errors were minimized or can be accounted for by appropriate measures in the data processing (Mauder
et al. 2006; Mauder and Foken 2006; Twine et al. 2000) but a significant gap in the SEB remains (Mauder
et al. 2006; Mauder et al. 2007c; Mauder et al. 2020).

One reason for the remaining SEB gap could be the fact that the EC method, given typical approaches
and measurement limitations, only captures turbulent transport: the flux is calculated as the covariance
of the vertical wind speed and a scalar of interest (e.g., temperature for the sensible heat flux H or
humidity for the latent heat flux λE) from high-frequency time series. The covariance is based on the
fluctuations around an average over a certain averaging period of typically 30 minutes (Aubinet et al.
1999; Mauder et al. 2020). The averages of the wind speed and scalar of interest are not considered and
any energy transport by structures that contribute to the mean vertical wind speed is neglected (Metzger
and Holmes 2007). The temporal or spatial averaging period used to represent the Reynolds’ average
defines which atmospheric structures ultimately contribute to “turbulent” and which contribute to “non-
turbulent” transport.

After assuming for a long time that energy transport in the atmospheric boundary layer (ABL) is
exclusively turbulent in nature, i.e., that all relevant transport is captured by applying 30-minute averaging
intervals, it has been found that large eddies, also known as secondary circulations (SCs) reach near the
surface (Eder et al. 2015; Patton et al. 2016). SCs contribute to the mean wind speed at typical EC
averaging periods which is why the energy transport by SCs is not considered in EC measurements and
instead contributes to the SEB gap (Foken 2008; Mauder et al. 2020).

Two main types of SCs can be distinguished. The first type are randomly developing large eddies that are
turbulent in nature but so large that they are not considered in the covariance over the averaging period
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and even form over homogeneous surfaces, so called turbulent organized structures (TOSs) (Inagaki et
al. 2006; Kanda et al. 2004). The second type are systematically developing secondary circulations
caused by differential heating from the earth surface and therefore bound in space, so called thermally-
induced mesoscale circulations (TMCs) (Bou-Zeid et al. 2020; Foken 2008; Kenny et al. 2017; Mauder et
al. 2020). Increasing the averaging periods might sample more of the energy transported due to the
randomly organized and quasi-stationary TOSs with longer time scales as they move slowly with the
mean wind within the tower footprint. However, TMCs are spatially bound to surface characteristics
which is why they still contribute to the mean wind even with long averaging periods as they might not be
sampled by fixed-point EC tower measurements. This may explain why in some cases, increasing the
averaging period had no effect on the SEB closure in some cases (Charuchittipan et al. 2014) but
improved the SEB closure, though nod entirely resolved it, in other cases (Finnigan et al. 2003; Mauder et
al. 2006). Furthermore, increasing the averaging period in EC measurements beyond multiple hours will
eventually violate the assumption of stationarity (Mauder et al. 2006; Mauder et al. 2020). Wavelet-based
flux calculation approaches that incorporate longer wavelength turbulent transport have been shown to
improve the SEB gap, also implying a role for SCs in energy transport (Metzger et al. 2013; Xu et al. 2020).

The contribution of the transport by secondary circulations can be quantified by spatial measurements
using an array of tower measurements or aircraft measurements (Feigenwinter et al. 2008; Mahrt 1998;
Mauder et al. 2008; Paleri et al. 2022b; Steinfeld et al. 2007). However, those measurements are
expensive and cannot be carried out at each EC station or over long periods. Another possibility is to
model the energy transport by secondary circulations based on atmospheric and landscape parameters
that can be gathered for single-tower EC measurements (e.g. Choi et al. 2009; De Roo et al. 2018; Eder et
al. 2014; Huang et al. 2008; Mauder et al. 2021; Panin and Bernhofer 2008).

Systematic studies at multiple EC sites were carried out that found surface heterogeneity (Foken et al.
2010; Mauder et al. 2007a; Morrison et al. 2021; Panin et al. 1998; Panin and Bernhofer 2008), friction
velocity u ∗  (Barr et al. 2006; Hendricks-Franssen et al. 2010; Stoy et al. 2013; Wilson et al. 2002), and
atmospheric stability (Barr et al. 2006; Hendricks-Franssen et al. 2010; Stoy et al. 2006; Stoy et al. 2013)
to be related to the SEB gap. The SEB gap was also studied with large-eddy simulations (LES), which also
found surface heterogeneity (De Roo and Mauder 2018; Zhou et al. 2019), u ∗  (Schalkwijk et al. 2016)

and atmospheric stability (Huang et al. 2008; Zhou et al. 2018) were influencing the SEB gap.

That the SEB gap depends on atmospheric stability follows from the fact that convectively driven eddies
predominate under unstable conditions. Their vertical extent can reach the ABL depth (Maronga and
Raasch 2013; Sühring and Raasch 2013), and their horizontal extent can reach two to three times the
boundary layer depth (Paleri et al. 2022a; Stull 1988). These large eddies are not captured in 30-minute
EC measurements and therefore are considered TOSs. Furthermore, large horizontal wind speeds that are
associated with neutral to stable atmospheric conditions increase the horizontal mixing (Katul 2019;
Schalkwijk et al. 2016), and TOSs are carried along faster with the wind, increasing the likelihood of them
being captured within a typical 30-min measurement period. The thermal surface heterogeneity affects
the SEB gap through its influence on the formation of SCs: different surface properties of the individual
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patches cause the surfaces and also the air above them to heat up to different extents, resulting in the
formation of TMCs in addition to the TOSs that are already randomly formed. The magnitude of the
TMCs depends on the prevalent size and temperature amplitude of the individual surface patches
(Inagaki et al. 2006; Letzel and Raasch 2003; Sühring et al. 2018; Zhou et al. 2019).

Several studies proposed models of the SEB gap based on atmospheric stability and measurement
height (e.g. De Roo et al. 2018; Huang et al. 2008). Recently, a model of the SEB gap including the effect
of thermal surface heterogeneity was published (Wanner et al. 2022b), however, it was only developed to
predict the imbalance in the sensible heat flux. These models all have in common that they model the
entire SEB gap, i.e., the gap between the available energy at the surface and the measured turbulent heat
fluxes.

However, the energy being stored in the air layer and biomass beneath the instruments were identified as
another major contribution to the SEB gap in EC measurements over tall vegetation, as mentioned above.
We hypothesize that the amount of energy supplied to this storage does not depend on the same factors
as the magnitude of the energy transport by secondary circulations. It is possible to measure the energy
storage change in the air by simply adding few sensors below the EC instrumentation (Lindroth et al.
2010; Moderow et al. 2009). This is already implemented by default in some large EC networks like ICOS
(Heiskanen et al. 2022) and provides a more direct way of obtaining the storage change contribution to
the SEB than predicting it by a model. Since storage change is being routinely measured at EC sites and
its effect on the long-term mean SEB is negligible, we propose to measure the storage directly and model
the energy transport by secondary circulations separately.

Considering the mentioned contributions to the SEB gap, we can rewrite Eq. 1 as

Rnet = Ht + λEt + Hnt + λEnt + G + HΔSt ,a + λEΔSt ,a + HΔSt ,b + I

2
,

where Hnt and λEnt are non-turbulent transport of sensible-and latent heat which is missed by EC

measurement, HΔSt ,a and λEΔSt ,a are storage changes of sensible heat in the air volume below the EC
measurement, and HΔSt ,b is the storage change of sensible heat in the biomass. By considering Hnt, 

λEnt, HΔSt ,a, λEΔSt ,a, and HΔSt ,b I becomes smaller. Therefore, to close the energy balance gap
eventually, all known factors contributing to the energy balance must be quantified.

Since the long-term measurement of non-turbulent fluxes at all EC sites is not possible, the objectives of
this study are (1) to develop a model that can predict the transport of sensible and latent heat by SCs
under unstable conditions at the site of an EC station based on as few additional measurements as
possible, (2) to test how well the model predicts the partitioning into sensible and latent energy transport
by secondary circulations in a more realistic LES, and (3) to show how the model can be applied to field
measurements and test if considering the modelled dispersive fluxes results in an SEB closure in EC field
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measurements. The first objective is achieved by further developing an existing model (Wanner et al.
2022b). Following De Roo et al. (2018) it uses the atmospheric stability measure u ∗ /w ∗ , where w ∗  is
the Deardorff velocity, and the measurement height z normalized with the atmospheric boundary-layer
height zi, as well as a thermal surface heterogeneity parameter H (Margairaz et al. 2020b) to predict the

entire energy balance gap. The new model developed in this study additionally considers the gradients of
potential temperature θ to predict the non-turbulent transport of H and mixing ratio q to predict the non-
turbulent transport of λE. We hypothesize that the consideration of these gradients improves the
prediction of energy transport by SCs since they define whether there is any energy to be transported by
secondary circulations. The model is based on a large set of idealized large-eddy simulations introduced
in section 2.1 and also contributes to a better understanding of the partitioning of the SEB gap into
sensible and latent heat as well as non-turbulent fluxes and storage change, respectively.

The second objective is addressed by applying the model to more realistic LES (Section 2.3, Paleri et al.
(submitted)) and field measurements at EC stations (section 2.4) from the CHEESEHEAD19 campaign
(Butterworth et al. 2021). The application to the more realistic LES allows a separate analysis of the
surface balances of sensible and latent heat, which is not possible with field measurements, where only
the total available energy can be used as a reference. The test using the field measurements is intended
to show how practicable the model application is and how well the findings from the LES can be
transferred to the real world.

The development and application of the model are described in section 2. The results are shown in
section 3 and discussed in section 4.

2 Methods

2.1 Set-up of Idealized Large-Eddy Simulations
We used PALM V6, revision 4849 to run a set of idealized simulations. PALM is a parallelized large-eddy
simulation model based on the non-hydrostatic incompressible Boussinesq equations (Maronga et al.
2020; Raasch and Schröter 2001). The sub-grid model is based on the kinetic energy scheme of Deardorff
(1980) which was modified by Moeng and Wyngaard (1988) and Saiki et al. (2000). A fifth-order scheme
(Wicker and Skamarock 2002) was used to discretize the advection terms, and for the time integration, a
third-order Runge–Kutta scheme (Williamson 1980) was used.

In total, we ran 148 simulations with different combinations of geostrophic wind speeds (Ug, 0.5–9.0 m

s− 1), surface patch sizes of sensible (Hs) and latent (λEs) surface fluxes (homogeneous, 200 m, 400 m,
800 m), and Bowen ratios (β) of surface fluxes (0.1–1.3), following the setup used in Margairaz et al.
(2020a) and Wanner et al. (2022b). The randomly assigned surface fluxes follow a Gaussian normal
distribution, where the standard deviation was also varied. Table 6 in Appendix 1 gives an overview over
the individual simulations. The variation in Ug, Hs, and λEs leads to differences in atmospheric stability
and the variation in heterogeneity scales of surface fluxes causes the development different patterns of
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surface temperature (Ts). Examples of the spatial distribution of surface fluxes and resulting surface
temperatures can be found in Fig. 11 (Appendix 1).

Following Margairaz et al. (2020a) and Wanner et al. (2022b), the horizontal grid spacing was 24.5 m and
the vertical grid spacing was 7.8 m. With (x,y,z) = 256×256×256 grid points, this results in a horizontal
domain extent of 6272×6272 m2 and a vertical domain extent of roughly 2000 m. All simulations were
carried out with cyclic horizontal boundary conditions. At the lower boundary, Dirichlet conditions were
used for the wind velocity components, while Monin-Obukhov similarity theory was used to determine the
lower boundary condition for the momentum equations, and Neumann conditions were used for potential
temperature, humidity, pressure and turbulent kinetic energy. The roughness length was set to 0.1 m,
following Margairaz et al. (2020a) and Wanner et al. (2022b).

The initialization profiles were set up following De Roo et al. (2018). The same horizontally homogeneous
initial vertical profiles of potential temperature θ and mixing ratio q were used in all 148 simulations. The
surface temperature was horizontally homogeneous and set to 285 K. A vertical gradient of 3·10− 3 K m− 

1was applied between 40 and 800 m and a vertical gradient of 8·10− 3 K m− 1was applied between 800
and 1000 m, ensuring that the top of the domain lies within an inversion layer and the atmospheric
processes in the boundary layer are not affected by the upper border of the domain. The humidity is set to
1·10− 3 kg kg− 1 at the surface and only between 1000 and 1100 m, a vertical gradient of -1·10− 5 kg kg− 1

m− 1is applied.

The initial profile of horizontal wind speed was homogeneously and vertically constant. The wind speed
varied among the simulations between 0.5–9.0 m s− 1 (Table 6, Appendix 1) and generated a horizontal
pressure gradient in x-direction. A small vertical pressure gradient to counteract destabilizing was
introduced by a vertical subsidence velocity gradient (-4·10− 5s− 1 between 0 and 800 m and − 2·10− 5s− 1

between 8 and 1000 m).

After a 4-hour spin-up period, the output data was collected for a 30-min averaging period representing
typical eddy-covariance averaging periods (Rebmann et al. 2012). The profiles of temperature, humidity,
and horizontal wind speed during the data collection period is shown as an example for two simulations
in Fig. 12, Appendix 1.

2.2 Development of the Dispersive Flux Model

2.2.1 Data Processing
Following the approach of former models, we developed a model using horizontally domain-averaged
values from an idealized set of LESs. The energy transport by SCs can be divided in a horizontal
component, i.e., advection, and a vertical component, i.e., dispersive flux. In a horizontally endless
observation area, the advection component becomes zero and all energy transport by secondary
circulations is combined in the dispersive flux. Since the idealized LESs have cyclic horizontal boundary
conditions, advection becomes zero on the ecosystem scale. Therefore, the horizontally averaged total
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available energy at the surface, i.e., the heat fluxes originating from the surface (⟨Hs⟩, ⟨λEs⟩), is divided
into horizontally averaged non-organized randomly distributed turbulent fluxes (⟨Ht⟩, ⟨λEt⟩), including

the sub-grid-scale contributions (⟨Hsgs⟩, ⟨λEsgs⟩), dispersive fluxes (Hd, λEd), and horizontally
averaged storage change of energy in the underlying air mass (⟨HΔSt⟩, ⟨λEΔSt⟩) as follows:

⟨Hs⟩ + ⟨λEs⟩ = ⟨Ht⟩ + ⟨λEt⟩ + Hd + λEd + ⟨HΔSt⟩ + ⟨λEΔSt⟩

3
.

The 30-min horizontally averaged turbulent sensible heat flux ⟨Ht⟩ was calculated for each grid level up

to z/zi = 0.1 using the 30-min averaged vertical wind speed w and potential temperature θ, the 30-min
averaged temporal covariance of w and θ, and the sub-grid-scale contribution Hsgs, following

⟨Ht⟩(z) = ⟨
−

wθ(z) −
−
w(z)

−
θ(z)⟩cpρ + ⟨Hsgs⟩

4
,

where cp is the specific heat capacity of air and ρ is the air density. The overbars indicate temporal

averaging and the angled brackets denote horizontal averaging over the entire extent of the domain. The
same procedure was used to calculate the horizontally averaged 30-min turbulent latent heat flux ⟨λEt⟩,
however, instead of θ, the mixing ratio q was used:

⟨λEt⟩(z) = ⟨
−

wq(z) −
−
w(z)

−
q(z)⟩λvρ + ⟨λEsgs⟩

5
,

where λv is the latent heat of vaporization.

The dispersive sensible heat flux Hd is calculated as the spatial covariance of 30-min averaged w and θ,
following

Hd(z) = ⟨
−
w

∗ −
θ

∗
⟩(z)cpρ

6
,

with
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⟨
−
w

∗ −
θ

∗
⟩(z) =

1
nx × ny ∑ x

0∑ y
0

−
w(x, y, z) − ⟨

−
w⟩(z)

−
θ(x, y, z) − ⟨

−
θ⟩(z) .

7

Equation 6 shows that Hd is by definition already horizontally averaged. Again, λEd was calculated
similarly, following

λEd(z) = ⟨
−
w

∗ −
q

∗
⟩(z)λvρ

8
,

with

⟨
−
w

∗ −
q

∗
⟩(z) =

1
nx × ny ∑ x

0∑ y
0

−
w(x, y, z) − ⟨

−
w⟩(z)

−
q(x, y, z) − ⟨

−
q⟩(z) .

9

Since the LESs had cyclic boundary conditions and any other flux contributions could be ruled out, the
change of energy stored in the underlying air mass (HΔSt, λEΔSt) was calculated as the residual of the
other contributions to the total available surface flux:

⟨HΔSt⟩ = ⟨Hs⟩ − ⟨Ht⟩ − Hd

10

and

⟨λEΔSt⟩ = ⟨λEs⟩ − ⟨λEt⟩ − λEd

11
.

To model Hd and λEd, we propose variables of atmospheric stability ⟨
−

u ∗ /w ∗ ⟩, the thermal
heterogeneity parameter H, the measurement height zm normalized with the atmospheric boundary layer

height ⟨
−
zi⟩, and the vertical gradients of potential temperature theta ⟨Δ

−
θ⟩ (for Hd) and mixing ratio 

⟨Δ
−
q⟩ (for λEd), respectively, as our driving factors.

( ) ( )

( ) ( )
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We calculate ⟨
−

u ∗ /w ∗ ⟩, for one grid level near the surface based on the 30-min averaged covariances

following

−
u ∗ = (

−
u′w′

res + ⟨
−

u′w′
sgs⟩)

2
+ (

−
v′w′

res + ⟨
−

v′w′
sgs⟩)

2 1/ 4

12
,

where u and v are the horizontal wind speeds in x- and y-direction, and the index res indicates the
covariance resolved by the grid, and

−
w ∗ =

g
−
θ

⟨zi⟩(
−

w′θ ′
res + ⟨

−
w′θ ′

sgs⟩
1/ 3

13
,

where g is the gravitational acceleration (9,81 m s− 2) and zi is determined as the height at which the total
sensible heat flux crosses the zero value prior to reaching the capping inversion.

The thermal heterogeneity parameter was introduced by Margairaz et al. (2020b) as

H =
g

−
Lh

⟨
−

Ug⟩
2

Δ
−
T

⟨
−
Ts⟩

14
,

where ⟨
−
Ts⟩ is the averaged surface temperature, Δ

−
T  is the amplitude of the surface temperature

heterogeneities, calculated following

Δ
−
T = ⟨

−
Ts − ⟨

−
Ts⟩ ⟩

15

( )

( )

| |
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,

and ⟨
−

Ug⟩ is the geostrophic wind speed. The heterogeneity length scale 
−
Lh was calculated following an

approach of Panin and Bernhofer (2008):

We calculated the spatial spectra of 
−
Ts by performing a Fourier transformation along ten transects in the

x- and y-direction of the domain, respectively. Before performing the Fourier transformation, a bell taper
was applied to smooth the edges and thereby reduce leakage (Stull 1988). The length scale that

contributes the most to the variability in 
−
Ts along each transect was identified by the location of the

maximum of the spectrum. By averaging over the predominant length scales derived from each transect

along both directions, we derived the predominant length scale 
−
Lh of the entire domain.

The boundary layer height is directly extracted from the LES output and is defined as the height where 

⟨
−

w′θ ′⟩ becomes negative for the first time from surface.

The vertical gradients ⟨Δ
−
θ⟩ and ⟨Δ

−
q⟩ were calculated following

⟨Δ
−
θ⟩ = ⟨

−
θ⟩(0m) − ⟨

−
θ⟩ 0.5zi

16

and

⟨Δ
−
q⟩ = ⟨

−
q⟩(0m) − ⟨

−
q⟩ 0.5zi

17
.

2.2.2 Model fitting
We used the Random Forest machine-learning model (Breiman 2001) to predict Hd and λEd from 148
idealized LESs that were set up to represent a wide range of boundary conditions with respect to thermal
surface heterogeneity and atmospheric stability (Sect. 2.1). The models were trained separately for Hd

and λEd using ⟨
−

u ∗ /w ∗ ⟩, z/⟨zi⟩, H, and ⟨Δ
−
θ⟩ (only for Hd) or ⟨Δ

−
q⟩ (only for λEd) as predictor

variables. The entire training data is attached as a supplementary file. The modelling was performed in
Python 3.7 using the Random Forest implementation in scikit-learn (Pedregosa et al. 2012) with default
settings and 200 regression tree estimators.

( )

( )
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To evaluate the approach, we use a leave-one simulation-out-cross-validation such that predictors for Hd
and λEd for each simulation have never seen the specific simulation results during training. We calculate

predictor importance based on so called SHapley Additive exPlanations (SHAP) values (Lundberg et al.
2020; Lundberg and Lee 2017) which estimate how much each predictor contributes to the variation of
the predictions. We use the mean absolute SHAP value for each predictor as a metric of variable
importance.

2.3 Testing the Model on the More Realistic
CHEESEHEAD19 LES
To test how well the model of sensible and latent dispersive heat fluxes works, we applied from the model
of dispersive heat fluxes to the realistic large eddy simulations of two days in August (Aug 22–23 2019)
of the CHEESEHEAD19 campaign ( Paleri et al. (submitted)) for which we performed eight ensemble
simulations. These simulations were carried out with PALM v6, revision 21.10-rc.2 and consist of one
parent domain and two 3D child domains, nested recursively within each other.

The extent and resolution of the domains is shown in Table 1. The parent domain has a large extent to
ensure that turbulence can properly develop and adapt to the surface conditions. The first child domain
(C1) covers the surroundings of the CHEESEHEAD19 area with a moderate resolution. The smallest child
domain (C2) has a very high resolution to enable the investigation at field-measurement heights and
covers the locations of the EC stations that were deployed during the CHEESEHEAD19 campaign. The
child domains are shown in Fig. 1.

The realistic simulations were carried out with lateral and top boundary conditions informed by the
National Centers for Environmental Prediction (NCEP) High Resolution Rapid Refresh data assimilation
product (Horel and Blaylock 2017) over the study domain and coupled to a land-surface model (LSM)
and plant-canopy model (PCM) informed by field-campaign observations and the WISCLAND2 dataset
(Wisconsin Department of Natural Resources 2016). Paleri et al. (submitted) gives a detailed description
of the model setup and comparisons with field measurements.

Similar to the idealized simulation, ⟨
−
zi⟩ is directly extracted from the C2 LES output and is defined as the

height where 
−

w′θ ′ becomes negative for the first time. ⟨
−

Ug⟩ was extracted as the horizontal wind speed

at 1.1 ⟨
−
zi⟩ in the C2 domain. The predominant landcover types in the C2 domain are forests, resulting in a

domain-averaged canopy height of ⟨zc⟩ = 22.08 m and a displacement height of ⟨zd⟩ = 15.46 m. We

considered different measurement heights zmup to 60 m above zc but periods for which z/⟨
−
zi⟩> 0.1

where discarded because the model was developed to predict dispersive fluxes in the inertial surface

layer, only. When calculating z/⟨
−
zi⟩, the displacement height ⟨zd⟩ was taken into account, with 
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z = zm − ⟨zd⟩ and ⟨
−
zi⟩ = ⟨

−
zi⟩0

− ⟨zd⟩, where ⟨
−
zi⟩0

 refers to the boundary-layer height relative to the

bottom of the domain.

Since the active surface is not located at the lower boundary of the domain in areas with high vegetation,
we defined the surface in the realistic simulations to be located at the canopy top level in all areas where
the PCM was used, and at the lower boundary of the domain in all areas where no PCM was used. This

definition of surface is used for ⟨
−

u ∗ /w ∗ ⟩ and 
−
T s, and the surface fluxes.

Again, ⟨
−

u ∗ /w ∗ ⟩ were calculated following Eq. 12–13 and averaged over the entire horizontal extent of
the C2 domain. The surface temperature was extracted from the true surface temperature output in all

non-forested areas where only the LSM but not the PCM was deployed. In the forested areas, 
−
T s was

extracted from the tree-dimensional output of potential air temperature at the top of the canopy,
assuming that the leaf surface temperature equals the air temperature. Based on this combined surface

temperature map, Δ
−
T , ⟨

−
T s⟩ and 

−
Lh were calculated over a 12.5×12.5 m2 model extent. The latter was

calculated using the same approach as for determining 
−
Lh in the idealized simulations used to develop

the models which is described in section 3.2. H was then calculated for the entire horizontal extent of the
C2 domain similar to the calculation of dispersive fluxes in the idealized LES following Eq. 14.

To calculate the vertical gradients ⟨Δ
−
θ⟩ and ⟨Δ

−
q⟩, ⟨

−
θ⟩ and ⟨

−
q⟩ were extracted from the C1 output at

0.5 ⟨
−
zi⟩ and at the second grid layer. The C1 domain was used to calculate the vertical gradients because

the vertical extent of the C2 domain is too small to include 0.5 ⟨
−
zi⟩ under strongly unstable conditions. 

⟨Δ
−
θ⟩ and ⟨Δ

−
q⟩ where then calculated following Eq. 16–17.

To compare the true dispersive heat fluxes to the predicted dispersive heat fluxes, we estimated the true

dispersive heat fluxes by calculating Hd,LES and λEd,LES as spatial covariances of 
−
w, 

−
θ, and 

−
q  over

the entire horizontal extent of the C2 domain for each measurement level following Eq. 6–9.
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Table 1
Grid resolution and domain extents for the realistic

CHEESEHEAD LES.

  Domain extent (km) Grid spacing (m)

  lx ly lz dx dy dz

parent 48.60 51.84 5.00 90.0 90.0 12.0

C1 27.00 30.24 2.49 30.0 30.0 12.0

C2 12.00 12.00 0.24 6.0 6.0 4.0

2.4 Testing the Model on CHEESEHEAD19 Field
Measurements
To test the model on real field measurements, the model was furthermore applied to the eddy-covariance
measurements at 16 of the 17 stations from the CHEESEHEAD19 campaign. An overview of the stations
is given in Table 2. Station NW4 was excluded from the analysis because it is expected to be strongly
influenced by topography due to its location on a steep lake shore, rendering it unsuitable for this
analysis as topography effects are not considered in the model of dispersive fluxes. The campaign took
place from late June until early October 2019 on a 10×10 km2 area surrounding the nearly 400 m tall
AmeriFlux tower USPFa located in northern Wisconsin, USA (45.9459, -90.2723) (Desai et al. 2022). The
tower is surrounded by a nearly flat landscape that is mainly covered by a mix of deciduous and
coniferous forests, swamplands, and waterbodies. The locations of the 16 eddy-covariance stations are
shown in Fig. 1 and the respective measurement heights and landcover characteristics are shown in
Table 2. A detailed description of the measurement campaign, including additional measurements can be
found in (Butterworth et al. 2021).

Fluxes of sensible (Ht) and latent heat (λEt) were calculated for 30-minute intervals using detrended 20
Hz measurements of temperature, water vapor, and vertical wind speed. For the Ht calculation, the dry air

temperature was calculated from the sonic temperature after correction for the effect of water vapor on
the speed of sound (Schotanus et al. 1983). For the λEt calculation, the water vapor measurements were
corrected for density effects (Webb et al. 1980). Vertical wind speed was extracted from the raw 3-
dimensional wind vector after a double rotation coordinate rotation.

To apply the model to field measurements, additional information is needed, as single-tower
measurements do not provide information on boundary-layer height, geostrophic wind speed, thermal
surface heterogeneity or vertical gradients of potential temperature and mixing ratio. The
CHEESEHEAD19 dataset provides a unique opportunity to test this model, because it provides a lot of the
needed additional information. However, to show that the application to other eddy-covariance
measurements is possible, as well, we used no additional information acquired during the
CHEESEHEAD19 campaign and only utilized the dense tower network as a test bed for the dispersive flux
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model in field settings. Instead, ERA5 reanalysis data and satellite-based land-surface temperature maps
were used to inform the dispersive flux model.

The boundary layer height, the gradients of 
−
θ  and 

−
q , and 

−
Ugused to calculate the thermal heterogeneity

parameter were extracted from the hourly ERA5 reanalysis data (Hersbach et al. 2023a, b). The boundary
layer height can be directly extracted from the single-level reanalysis data (Hersbach et al. 2023b). To

derive 
−

Ug, the horizontal wind speed at pressure levels (Hersbach et al. 2023a) was calculated from the 
−
u - and 

−
v -component of the wind vector at each pressure level. The height above ground of each pressure

level was derived using the barometric formula. Finally, 
−

Ug was derived as the wind speed at 1.1 times
the boundary layer top by linearly interpolating between the adjacent model output levels. To calculate

the gradients of 
−
θ  and 

−
q , the potential temperature and the mixing ratio were derived from the pressure

level output and the single level output. At 0.5 zi, 
−
θ  was calculated from the absolute air temperature and

the pressure and 
−
q  was calculated from the specific humidity provided by the pressure level output.

Again, the height above the ground of each pressure level was calculated using the barometric formula

and linear interpolation was applied to derive theta and q at 0.5 
−
zi. For the near-surface value, we used

the 2 m dewpoint temperature and absolute air temperature, as well as the surface pressure provided by

the single-layer ERA5 output to calculate 
−
θ  and 

−
q . The vertical gradients were then calculated as 

Δ
−
θ =

−
θ(2m) −

−
θ 0.5

−
zi  and Δ

−
q =

−
q(2m) −

−
q 0.5

−
zi , respectively.

Even though ⟨
−

u ∗ /w ∗ ⟩ can be calculated from the high-frequency data provided by eddy-covariance

measurements, it is not necessarily representative of a larger area surrounding the measurement.

Furthermore, ⟨
−

u ∗ /w ∗ ⟩ are defined as near-surface values making the calculation of ⟨
−

u ∗ /w ∗ ⟩ from

measurements at roughly 30 m above the ground not ideal. Therefore, ⟨
−

u ∗ /w ∗ ⟩ was also extracted

from the ERA5 reanalysis data. While 
−

u ∗  could be directly extracted from the ERA5 reanalysis data, 
−

w ∗
was calculated from the sensible surface-heat flux, boundary-layer height, 2 m air temperature and
surface pressure provided in the ERA5 single-level output following Eq. 13.

To calculate the thermal heterogeneity parameter, the predominant length scale of thermal surface
heterogeneities as well as the amplitude of the surface temperature need to be known which are not
available from the ERA5 reanalysis data. Surface temperature maps with a 50 m spatial resolution and 1
hr temporal resolution generated from satellite data (Desai et al. 2021) were used to calculate the same.

( ) ( )
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For each EC station, we selected a 10×10 km2 area surrounding the tower location and then followed the

approach of Panin and Bernhofer (2008) described in section 3.2 to derive 
−
Lh. Δ

−
T  and ⟨

−
T s⟩ were also

calculated from the same maps. Since the land-surface temperature maps had a temporal resolution of

60 minutes, the resulting 
−
Lh, ⟨

−
T s⟩, and Δ

−
T  were linearly interpolated to 30-min values.

Table 2
Overview of the 16 CHEESEHEAD19 EC stations used for testing the application of the model on field

measurements, including canopy heights (zc , field), measurement heights (zm,field), and displacement
heights (zd, field), and vegetation types. The last two columns show number of 30-minute measurement

periods for which all necessary data is available and Ht ≥ 10 W m−2 (nmeas) and the percentage of 30-
minute measurement periods for which all predictor variables lie within the model limits (nmeas ,ML).

tower ID zc , field (m) zm,field (m) zd, field (m) vegetation type nmeas nmeas ,ML (%)

NW1 25.0 32.0 17.5 pine 827 1.09

NW2 3.0 12.0 2.1 aspen 543 0.00

NW3 0.3 3.0 0.2 tussock 1319 0.00

NE1 33.2 32.0 23.2 pine 991 0.91

NE2 19.2 32.0 13.4 pine 1113 1.17

NE3 18.3 32.0 12.8 hardwood 668 1.65

NE4 18.3 32.0 12.8 maple 1110 0.99

SW1 24.4 32.0 17.1 aspen 838 1.07

SW2 19.2 25.0 13.4 aspen 765 1.31

SW3 15.0 32.0 10.5 hardwood 467 0.43

SW4 25.9 32.0 18.1 hardwood 713 0.42

SE2 24.4 32.0 17.1 hardwood 433 0.69

SE3 14.3 32.0 10.0 Aspen 582 2.23

SE4 0.3 3.0 0.2 tussock 1455 0.00

SE5 3.1 12.0 2.2 aspen 439 0.00

SE6 21.6 32.0 15.1 pine 1001 1.50

3 Results

3.1 Model Based on Domain-Averaged Values
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Figure 2a-b shows the results of the cross-validation of the models for sensible (Fig. 2a) and latent
(Fig. 2b) dispersive heat fluxes based on domain-averaged values. The training and test data were
shuffled in such a way that Hd and λEd for each simulation were predicted by the model trained by the
output of all other simulations. The predicted dispersive heat fluxes are compared to the true dispersive
heat fluxes computed from the LES output following Eq. 6–9. There is a strong correlation between the
modelled sensible dispersive heat flux Hd,predicted and the true dispersive sensible heat flux Hd,LES,

with R2 = 0.947, which is shown in Fig. 2a. For the latent heat flux, the agreement between modelled (
λEd,predicted) and true (λEd,LES) dispersive fluxes is weaker, with R2 = 0.753.

Figure 2c-d shows the relative importance of predicting variables in the models of dispersive heat fluxes.
The most important predicting variables for Hd,predicted (Fig. 2c) are the heterogeneity parameter H and

the atmospheric stability parameter ⟨
−

u ∗ /w ∗ ⟩. The normalized measurement height z/⟨
−
zi⟩ and the

vertical gradient of potential temperature ⟨
−

Δθ⟩ are less important but not negligible.

For λEd,predicted, the most important predicting variable is, again, the heterogeneity parameter H.

However, the importance of the atmospheric stability parameter ⟨
−

u ∗ /w ∗ ⟩ is much lower. The

importance of the normalized measurement height z/⟨
−
zi⟩ and the vertical gradient of mixing ratio ⟨

−
Δq⟩

in predicting λEd,predicted compared to H is, again, lower but not negligible.

Figure 3 shows the relative contribution of the domain-averaged storage and the dispersive fluxes
predicted by the model based on domain-averaged values to the SEB gap. The gap between the surface
fluxes, i.e., the total available energy, and the turbulent fluxes is on average 15.0 ± 6.4% for the sensible
heat and 9.6 ± 4.9% for the latent heat.

With 7.7 ± 3.3% of ⟨Hs⟩, ⟨HΔSt⟩ contributes to more than 50% to the gap in the sensible heat fluxes. The

contribution of Hd,predicted is slightly smaller with 7.2 ± 4.4% of ⟨Hs⟩. ⟨Ht⟩, ⟨HΔSt⟩ and Hd,predicted
sum up to 100.0 ± 1.3% of ⟨Hs⟩, indicating that the application of the model leads to a good closure of
the gap in the sensible heat flux and the inclusion of the predicted dispersive heat flux leads to a
significant reduction of the scatter.

In the latent heat flux, the partitioning between ⟨λEΔSt⟩ and λEd,predicted is different. ⟨λEΔSt⟩ has a

smaller share in the flux gap (2.3 ± 1.2% of ⟨λEs⟩) than the predicted dispersive flux (8.0 ± 6.4% of ⟨λEs⟩
). Thus, the dispersive flux share of the surface flux is larger in the latent heat flux than in the sensible
heat flux, although the total gap is smaller in the latent heat flux compared to the sensible heat flux. In
sum, ⟨λEt⟩, ⟨λEΔSt⟩ and λEd,predicted equal 100.7 ± 5.0% of ⟨λEΔSt⟩, resulting in a good closure of

the gap in the latent heat fluxes on average. However, the addition of λEd,predicted does not cause a
reduction of the scatter.
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Table 3 shows that the Bowen ratio (β), i.e., the partitioning between sensible and latent heat, is smaller in

the turbulent flux compared to the surface flux. The Bowen ratio of the true dispersive flux β Fd,LES

calculated directly from the LES output is larger than the Bowen ratio of turbulent heat fluxes β ⟨Ft⟩ .

The Bowen ratio of the storage change β ⟨FΔSt⟩  is much larger than the Bowen ratio of the other

fluxes.

Table 3
Absolute values of the flux contributions and Bowen ratios (β) show the different partitioning into

sensible and latent heat in the surface fluxes (⟨Fs⟩), turbulent fluxes (⟨Ft⟩), change in energy storage
(⟨FΔSt⟩), as well as true (Fd) and predicted (Fdpredicted) dispersive heat fluxes.

  ⟨Fs⟩ ⟨Ft⟩ ⟨FΔSt⟩ Fd,LES Fdpredicted

H (W m− 2) 198.6 ± 83.7 169.6 ± 74.1 15.1 ± 9.2 13.9 ± 10.2 13.9 ± 10.2

λE (W m− 2) 450.0 ± 144.3 407.6 ± 134.4 10.5 ± 6.9 31.9 ± 21.7 31.9 ± 21.7

ß (%) 0.441 ± 0.0 0.416 ± 0.228 1.441 ± 1.294 0.435 ± 0.436 0.427 ± 0.402

3.3 Model Application to More Realistic CHEESEHEAD19
LES
To test the performance of the model based on domain-averaged values on more realistic scenarios, it
was applied to the simulations of two days of the CHEESEHEAD19 campaign. The final model uses the
output of all 148 idealized LESs as training data, which is attached as a supplementary file, together with
an example dataset and a python code to apply the model. For this analysis, only 30-minute observations
where ⟨Hs⟩ ≥ 10 W m−2 were considered to ensure the model was only applied to unstable conditions.

Due to issues with the data output, five 30-minute intervals had to be discarded, additionally.

Figure 4 shows the behaviour of predictor variables over the remaining 30-min intervals of the two days
simulation time. The majority of predictor variables encountered in the CHEESEHEAD19 LES lies within
the range of predictor variables from the idealized LES that were used to train the model. However, since
the models of sensible and latent dispersive heat fluxes cannot be extrapolated, they provide unreliable
values for measurements for which the predictors lie outside the range of training data. Therefore, all 30-
minute intervals where one of the predictors lies outside the range of model training data where

discarded. This affected 18% of the available data, mostly due to small z/⟨
−
zi⟩ as shown in Fig. 4.

Figure 5 shows the comparison of the modelled dispersive heat fluxes (Hd,mod and λEd,mod) with the
dispersive heat fluxes directly calculated from the LES output as the spatial covariance (Hd,LES and 

λEd,LES). The model clearly overestimates Hd,LES by 18.2% on average and slightly overestimates 

( )
( )

( )
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λEd,LES by 5.8%. Table 4 shows that in the CHEESEHEAD19 LES, the Bowen ratios of the surface 

β ⟨Fs⟩  and turbulent β ⟨Ft⟩  heat fluxes are nearly similar whereas the Bowen ratio in the dispersive

heat fluxes β ⟨Fd,LES⟩  is considerably lower. The stronger overestimation of Hd leads to a higher

Bowen ratio in the modelled dispersive heat fluxes β ⟨Fd,mod⟩  compared to β ⟨Fd,LES⟩ , which is

closer to β ⟨Fs⟩  and ⟨Ft⟩ . The sum of the modelled sensible and latent dispersive heat fluxes

overestimates the sum of sensible and latent heat fluxes directly calculated from the LES output by 9.4%
which is shown in Fig. 6.

Table 4
Bowen ratios (β) show the different partitioning into sensible and latent
heat in the domain-averaged surface fluxes (⟨Fs⟩), turbulent fluxes (⟨Ft⟩
), and true (Fd,LES) dispersive heat fluxes directly calculated from the

LES output, as well as modelled (Fdmod
) dispersive heat fluxes.

  ⟨Fs⟩ ⟨Ft⟩ Fd,LES Fd,mod

ß 0.669 ± 0.129 0.647 ± 0.115 0.461 ± 0.176 0.541 ± 0.221

3.4 Model Application to CHEESEHEAD Field
Measurements
The model was also tested on the CHEESEHEAD19 field measurements carried out at 16 eddy-covariance
stations over a period of roughly three months. For this analysis, only 30-minute observations where Ht
≥ 10 W m−2 and Rnet > 0 W m− 2 were considered to ensure the model was only applied to unstable
conditions. For quality assurance, observations with unrealistically high turbulent heat fluxes of (
Ht + λEt) > 1.5 Rnet and observations with (Ht + λEt + HΔSt + λEΔSt) < 0.5 (Rnet − G) were

discarded. While the latter case would be physically possible, it would result in the SEB gap being larger
than the sum of the measured atmospheric heat fluxes and storage changes. In this case, the uncertainty
is so high that the data should be rejected rather than corrected.

Figure 7 shows that not all conditions encountered in the field measurements were represented in the
training dataset from the idealized LES. While H values observed in the CHEESEHEAD19 surface

temperature maps are covered quite well by the training data, the range of ⟨
−

u ∗ /w ∗ ⟩ and also ⟨
−

Δq⟩ is

wider in the field measurements compared to the idealized LES. Again, smaller z/⟨
−
zi⟩ values occur in the

field data due to larger ⟨
−
zi⟩ values in the ERA5 reanalysis data and lower measurement heights in the

field. The vertical gradients of ⟨
−
θ⟩ observed in the ERA5 reanalysis data were typically much larger than

( ) ( )
( )

( ) ( )
( ) ( )
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the values used to train the model. The percentage of CHEESEHEAD19 predictor variables that fall into
the limits of the training data for each predictor variable is shown in Table 5. After considering all
predictor variables, almost 95% of the CHEESEHEAD19 measurements were discarded before applying
the model to the measurements.

Table 5
Percentage of CHEESEHEAD19 field measurements that fall into

the range of the predictor variables used to train the model.

  ⟨
−

u ∗ /w ∗ ⟩
H z/zi ⟨

−
Δθ⟩ ⟨

−
Δq⟩

total

% 45.27 99.62 37.60 27.60 67.20 5.08

In the field measurements, the total sensible and latent heat fluxes at the surface are not known.
Therefore, it is only possible to compare the sum of measured and latent heat fluxes to the available
energy at the surface (Rnet– G). In Fig. 8, the storage change of sensible and latent heat in the air
between the surface and the instruments (HΔSt + λE

ΔSt
) is subtracted from the available energy at the

surface. The remaining energy is transported to the atmosphere and should therefore equal the sum of
turbulent and dispersive fluxes. Figure 8a compares the measured turbulent fluxes against this remaining
energy and shows a large gap of 23.8% in the energy flux towards the atmosphere. In Fig. 8b, the
modelled dispersive fluxes are added to the measured turbulent fluxes, reducing the SEB gap to 18.6%.

Even though we do not know the actual breakdown of total available energy (Rnet − G) into sensible and

latent heat, we can consider the contributions of each energy balance component shown in Fig. 9. The
turbulent fluxes measured at the EC stations make up 27.48 ± 11.38% (Ht) and 47.54 ± 18.33% (λEt) of
the total available energy at the surface, resulting in a Bowen ratio of 0.602 ± 0.458. The storage change
accounts for 2.58 ± 3.85% (HΔSt) and nearly 0% (λEΔSt). The modelled dispersive fluxes account for

1.55 ± 1.10% (Hd,mod) and 5.62 ± 4.76% (λEd,mod) of the total available energy. The Bowen ratio of the
dispersive fluxes is 0.283 ± 0.245, which is considerably lower than the Bowen ratio observed in the
turbulent flux measurements.

4 Discussion

4.1 The Model of Energy Transport by Secondary
Circulations
Instead of modelling the entire energy imbalance as it was proposed by former models to close the
energy balance gap (De Roo et al. 2018; Huang et al. 2008; Wanner et al. 2022b) we decided to predict
only the contribution of energy transport by SCs. The storage change in the air layer below the
measurement altitude is possible to measure through vertical profiles of θ and q, which is a more direct
way to quantify it than modelling it. The storage change in the biomass is more difficult to determine by
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measurements. If the storage change cannot be measured or older measurements are to be corrected for
which no storage change measurements are available, it must still be modelled to to achieve SEB closure
on a 30min measurement basis. However, it is unlikely that the storage change depends on the same
parameters as the energy transport through SCs, so these two aspects should be considered separately.
Furthermore, even for observation periods longer than one day, the contribution of the storage change to
the SEB gap becomes very small and can therefore be neglected if SEB closure is to be achieved only for
longer time scales.

The cross-validation of the model for Hd (Fig. 2a) and λEd (Fig. 2b) show that the correlation between
predicted dispersive fluxes and true dispersive fluxes in the LES is very high for H but considerably lower
for λE. We investigated whether the particularly large underestimates and overestimates of λEd are

linked to particularly high or low values of individual input variables. However, the values were always in
the range of the input variables that achieved a suitable prediction of λEd, true. The large deviations are
probably the result of a factor influencing λEd that is not considered by the model.

One possible reason why Hd prediction performs better than λEd prediction is that the atmospheric

stability, represented by ⟨
−

u ∗ /w ∗ ⟩, is directly linked to the magnitude of SCs and the magnitude of the
sensible heat flux. A negative vertical gradient of θ leads to convective conditions under which the
development of secondary circulations is favoured (De Roo et al. 2018; Huang et al. 2008; Wanner et al.
2022b) and also means that warmer air is available near the surface and can be transported upwards by
those SCs.

The vertical moisture gradient, on the other hand, is not directly related to atmospheric stability but rather
to the ratio between latent surface heat flux and dry air entrainment. For example, over vegetated, non-
water-limited surfaces, the surface is typically a source of moisture, but this might be counterbalanced by

dry air entrainment at the boundary-layer top, resulting in different ⟨
−

Δq⟩. If lapse-rate stratification causes

the formation of SCs but ⟨
−

Δq⟩ = 0, the movement of air masses will not contribute to the transport of
moisture. Including entrainment as a predictor variable could therefore potentially improve the model,
especially for λEd.

This phenomenon is illustrated by the importance of input variables for predicting Hd and λEd shown in

Fig. 2c-d, where ⟨
−

u ∗ /w ∗ ⟩ and H have the strongest predictive power for Hd, but in comparison, the

predictive power of ⟨
−

u ∗ /w ∗ ⟩ for λEd is much lower. H is also the most important predictive variable

for λEd. The normalized measurement height z/⟨
−
zi⟩ has an intermediate predictive power in both cases,

which is due to increasing fraction of energy transport by SCs within the surface layers with increasing
height.
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The rather high scatter in the correlation of λEd,predicted and λEd, true does not have a negative effect
if the total fluxes are considered (Fig. 2b). The standard deviation of the corrected fluxes (
λEt + λEΔSt + λEd,predicted) remains almost unchanged compared to the standard deviation of the

uncorrected turbulent fluxes. For the sensible heat flux (Fig. 2a), the correction even provides a significant
improvement, as the standard deviation of the corrected fluxes (Ht + HΔSt + Hd,predicted) is
significantly smaller than for the turbulent fluxes alone.

In Fig. 3 and Table 3, another interesting aspect can be observed: when considering domain-averaged
values, the Bowen ratio of turbulent and dispersive fluxes are the same, although the gap between
surface fluxes and turbulent fluxes is different for Hd and λEd. This difference is compensated by the

storage change alone. Thus, one could conclude that to close the SEB gap, it may be sufficient in many
cases to measure HΔSt and λEΔSt and fill the remaining gap according to the Bowen ratio of the
measured turbulent heat fluxes. This approach has been discussed several times (Gebler et al. 2015;
Hirschi et al. 2017; Mauder et al. 2007b; Mauder et al. 2013; Mauder et al. 2020; Twine et al. 2000).
However, the relation between Bowen ratios of storage change and surface, turbulent, and dispersive heat
fluxes is different in the more realistic CHEESEHEAD19 LES which is discussed in the next section. It
furthermore remains questionable whether this assumption still holds if locally measured heat fluxes
differ considerably from the average heat fluxes of the surroundings, which is typically the case in
heterogeneous areas.

Due to the rather coarse resolution in the idealized LESs that were used to train the model, one has to
assume that the strength of the SCs is underestimated, especially near the lower boundary of the domain.
It is therefore likely that the model underestimates the transport of energy by SCs. The magnitude of this
systematic error, however, is not known and requires further investigation in follow-up studies.

4.2 Application to the More Realistic CHEESEHEAD19 LES
Figure 4 shows that the model could be applied to almost all 30-minute intervals with unstable conditions
and for a wide range of measurement heights. A few observations near the canopy top had to be

discarded because of the low values of z/⟨
−
zi⟩. However, this affected mostly measurement heights of

less than 16.5 m, which corresponds to approximately 10 m above the canopy top. To avoid individual
roughness elements affecting the measured turbulent fluxes, EC measurements should not be carried out
within the roughness sublayer (Katul et al. 1999) and are often located more than 10 m above the canopy
top at forest locations.

In comparison with the dispersive fluxes calculated from the CHEESEHEAD19 LES output, the model
slightly overestimates λEd and clearly overestimates Hd (Fig. 5), resulting in a general overestimation of
dispersive fluxes (Fig. 6) and a slightly higher Bowen ratio (Table 4). The fact that Hd,mod and λEd,mod
are slightly larger than the actual fluxes could be due to non-cyclic boundary conditions in the
CHEESEHEAD19 LES. This arrangement raises the possibility that some of the energy transport is not
captured in the dispersive fluxes. Another reason could be the different setup of the simulations. In the
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idealized simulations, the fluxes were specified at the surface, whereas in the realistic simulations, an
LSM was used in combination with PCM. Wanner et al. (2022a) showed that the use of LSM and PCM
increases the dispersive heat fluxes directly above the canopy but decreases the dispersive fluxes further
up, compared to dispersive fluxes in simulations with prescribed surface fluxes, owing to feedbacks
between atmosphere and surface.

In contrast to the results from the idealized LESs, β ⟨Fd,LES⟩  does not equal β ⟨Ft⟩  in the

CHEESEHEAD19 LES but is considerably lower, indicating that SCs have a larger relative share in the
transport of latent heat than in the transport of sensible heat. It follows that the Bowen ratio approach to
fill the SEB gap is not so well suited under more realistic conditions. Our dispersive flux model is capable

of partially capturing the difference between β ⟨Fd,LES⟩  and β ⟨Ft⟩ , but due to the strong

overestimation of the sensible dispersive heat flux by roughly 18%, the partitioning of dispersive fluxes in
the realistic LES is not ideally captured by the model.

Another factor that could alter the partitioning is the influence of entrainment on the transport of energy
by secondary circulations (Gao et al. 2017; Huang et al. 2008; Mauder et al. 2020) which is not
considered in our model. A temperature or humidity gradient in the boundary layer is the basic

prerequisite for any transport of sensible or latent energy through SC which is why we included ⟨
−

Δθ⟩ and 

⟨
−

Δq⟩ as predictors in our model. The properties of the air mixed into the boundary layer at the upper

boundary should also affect the transport of heat or water vapor. Since ⟨
−

Δθ⟩ and ⟨
−

Δq⟩ only represent the
lower half of the atmospheric boundary layer (see Eq. 16–17), this influence is only partially considered in
the model and could also contribute to the underestimation of the dispersive fluxes. Since the ABL is
confined by an inversion at the top, the influence of entrainment on the Hd may be quite small. However,
the humidity above the boundary layer is highly variable, so the effect of entrainment could also be a
reason for the high uncertainty in the prediction of λEd. The heat flux profiles (not shown) confirm that

the flux regime in the CHEESEHEAD19 LES was driven rather by dry air entrainment at the ABL top than
by the surface fluxes at some times. As already discussed in the previous section, including entrainment
as a predictor variable might therefore improve the model performance.

Furthermore, with non-cyclic boundary conditions it is possible that weather fronts pass through the

domain which can carry warmer/cooler or moister/dryer air into the domain, affecting 
−
w, 

−
θ , and 

−
q  used

to calculate the dispersive fluxes. In the CHEESEHEAD19 LES, a front passed through the domain in the
afternoon on the first day, causing the boundary layer to collapse at 2:30 p.m. which is shown by the

increase of z/⟨
−
zi⟩ (Fig. 4). Figure 13 (Appendix 2) shows that the surface fluxes started decreasing at

1:00 p.m., indicating that advection may already have played a minor role, affecting Hd,LES and 

λEd,LES. The effect of weather fronts passing by is generally less relevant for EC measurements, as

( ) ( )

( ) ( )
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they would typically be discarded in the affected periods, due to the violation of the stationarity
requirement (Mauder et al. 2006).

4.3 Application to the CHEESEHEAD19 Field Measurements
The application of the model to field measurements was very limited because the ranges of the predictor
variables in the field measurements were significantly larger than covered by the idealized LESs used to

train the model (Fig. 7). The ranges of ⟨
−

u ∗ /w ∗ ⟩, H and ⟨
−

Δq⟩ encountered in the ERA5 reanalysis data
is much larger than in the idealized LES. However, this seems to be caused by extreme cases and outliers
since a considerable number of observations (45.27%, 99.62%, and 67.20%, respectively) were covered by

the training data (Table 5). The range of z/⟨
−
zi⟩ encountered in the field is only slightly larger than in the

idealized LES. Nevertheless, only 37.60% were covered by the training data (Table 5). This is due to the
low measurement heights in some of the field stations (12 m at NW2 and SE5 and 3 m at NW3 and SE5)
whose data were entirely discarded. Such low measurement heights could not be covered by the idealized
LES due to the coarse grid resolution. Most measurements had to be discarded due to insufficient

coverage of ⟨
−

Δθ⟩, as only 27.60% of the observed values were covered by the idealized LES (Table 5).

To investigate whether the large ranges in predictor variables are realistic, we compared the predictor
variables derived from the ERA5 reanalysis data to the predictor variables derived from the

CHEESEHEAD19 LES for 22–23 August 2019 (Fig. 10). They show a good agreement in H and ⟨
−
zi⟩,

although ERA5 does not capture the variability in ⟨
−
zi⟩ as well as the CHEESEHEAD19 LES. Compared to

the CHEESEHEAD19 LES, ERA5 underestimates ⟨
−

u ∗ /w ∗ ⟩ and overestimates ⟨
−

Δθ⟩ and ⟨
−

Δq⟩. The

comparison of hourly vertical profiles (Fig. 14, Appendix 3) shows that the overestimation of ⟨
−

Δθ⟩ results
mainly from a stronger increase in theta near the surface, whereas the profiles agree very well within the
mixed layer.

The CHEESEHEAD19 LES was validated against field measurements and the domain-averaged vertical
profiles showed good agreement with radiosonde measurements (Paleri et al. (submitted)). Nevertheless,
it must be noted, that the domain was mostly forested with an average canopy height of 22.08 m. The

active surface is therefore not clearly defined and the lowest grid points receive less radiation. ⟨
−
θ⟩ may

therefore be slightly underestimated near the surface.

Figure 8 shows that adding the modelled energy transport by secondary circulations considerably
decreases the SEB gap from 23.8% on average to 18.6% on average but the SEB is still not closed. As
mentioned in Section 4.1, one reason for the remaining gap is that the model might underestimate the
transport by SCs due to the coarse grid spacing. However, there are more reasons why considering the
energy transport by SCs alone does not result in SEB closure.
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Because the model predicts only the dispersive heat fluxes and not the entire SEB gap, the storage of
energy in the underlying air volume and canopy must be measured at tall EC stations since it also
contributes significantly to the SEB gap. The measurement of the energy storage in the air volume
beneath an EC station can be realized by simple profile measurements of temperature and humidity.
Thisis already standard in some EC stations (Heiskanen et al. 2022) and was also included in the
CHEESEHEAD19 measurements. However, the biomass storage change is typically not measured at EC
stations and adds uncertainty to the energy storage quantification. It was not included in the energy
storage measurements at the CHEESEHEAD19 sites, though tree biomass heat storage was measured at
several sites subsequent to the campaign, where it averaged 6.5% of the energy balance gap (Butterworth
et al. submitted). This agrees with other studies which have found the biomass storage change to be of
the same magnitude as the storage change in the air (Lindroth et al. 2010) or even twice as high (Haverd
et al. 2007) at forest locations. Figure 9 shows that the addition of modelled dispersive heat fluxes to
measured heat fluxes and air storage change decreases the SEB gap from 22.82 ± 17.67% to 15.66 ± 
19.44%. Including the biomass storage change would further decrease the SEB gap to roughly 9 % on
average.

As discussed in section 4.1, a slight underestimation of the dispersive fluxes by the model is expected
due to the coarse grid spacing in the idealized LESs providing the training data. However, there are some
more minor factors that contribute to the SEB gap that were not considered in this analysis.

First, the model only considers the effect of atmospheric stability and thermal surface heterogeneity on
the energy transport by secondary circulations, which were identified as the major factors. However,
topography effects can also enhance the energy transport of energy by SCs (Finnigan et al. 2003) but are
not included in the model. Even though the measurement area was chosen in part because of its weak
topography, the area in which the CHEESEHEAD19 campaign took place is not entirely flat. This may
have strengthened the SCs, especially near the numerous water bodies in the domain which would also
explain why the dispersive fluxes in the field measurements are larger than in both the idealized and
CHEESEHEAD19 LESs.

Finally, the turbulent heat fluxes might be underestimated as CSAT3AW (Campbell Scientific) sonic
anemometers were used. For this type of sonic anemometer, a correction to account for transducer
shadowing was developed that increases the fluxes by up to 5% (Horst et al. 2015) which was not applied
to the CHEESEHEAD19 field measurements. Also, minor contributions to the SEB gap are not considered,
like energy consumption by photosynthesis, which is estimated to account for roughly 1% of Rnet
(Finnigan 2008). Taking these factors into account, the remaining SEB gap would be only about 3%,
which suggests that the underestimation of energy transport by SCs by our model is quite small.

4.4 Different Data Availability in Idealized LES, More
Realistic LES, and Field Measurements
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Fundamental differences in data availability in the idealized and more realistic LES and field
measurements complicate the accurate application of the model. This includes the determination of H,

the true dispersive fluxes and the vertical gradients ⟨
−

Δθ⟩ and ⟨
−

Δq⟩.

The calculation of H involves Δ
−
T , ⟨

−
Ts⟩, and Lh. All three parameters are calculated based on the two-

dimensional surface temperature. In the idealized LES, the surface temperature is clearly defined as the
temperature at the lower boundary of the domain. In the CHEESEHEAD19 simulations, where a plant
canopy model has been used in the forested areas, the surface is not so clearly defined. The temperature
at the lower boundary of the domain is not very meaningful because it is mostly shaded and the majority
of radiative transfer happens at the canopy level. We therefore used the air temperature at the top of the
vegetation instead of the actual surface temperature as Ts, but this is based on the assumption that the

vegetation has the same temperature as the air and introduces additional uncertainty. In field
measurements, Ts is difficult to determine at sufficiently high spatial and especially temporal resolution.
Therefore, we used the surface-temperature maps from Desai et al. (2021), which are a fusion data
product using land-surface models, satellite and hyperspectral imagery to apply the model to the
CHEESEHEAD19 field measurements.

The dispersive fluxes can be computed directly as the spatial covariance of w and θ or w and q in the
idealized LESs with cyclic boundary conditions and thus quasi-infinite horizontal extent. In the realistic
LES, the dispersive fluxes can also be computed as spatial covariance in a defined area. This area must
be sufficiently large to fully cover the horizontal extent of the secondary circulations, similarly to how the
averaging period in classical EC measurements must theoretically be sufficiently long to cover all relevant
time scales. Since the horizontal extent of secondary circulations can reach about 2–3 zi (Paleri et al.

2022a; Stull 1988), we recommend using an area with an edge length of at least 4 zi to calculate the
dispersive fluxes. If the area is too small, SCs partially contribute to horizontal transport, i.e., advection,
that is not captured by the spatial covariance of w and θ or q. If the area is very large or includes an area
where land cover or topography changes significantly the resulting dispersive flux is not representative of
the area in which the EC measurement takes place. For typical single-tower field measurements, the
dispersive flux cannot be calculated directly, as the calculation of covariances would require high-
resolution spatial measurements of w, q and θ. Instead, the amount of energy transported by the SCs
must be calculated indirectly as a residual from the available energy at the surface (Rnet– G) minus the

energy stored in the air volume between the surface and the measurement height (HΔSt + λEΔSt) and
the turbulent transport of energy (Ht + λEt). A drawback of this approach is the scale mismatch

between the measurement of Rnet and G, which is only representative for the location of the EC station,
and H and λE, which reflect the energy flux of the entire footprint, which covers a much larger area
depending on the measurement height and atmospheric stability (Kljun et al. 2015).
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For the model training, the output from the idealized LESs was used where the vertical gradients ⟨
−

Δθ⟩

and ⟨
−

Δq⟩ were calculated as the difference between surface values and the 0.5 ⟨
−
zi⟩. Since surface

values are not available in the ERA5 reanalysis data, we used the 2 m temperature and humidity
measurements instead to predict the dispersive fluxes in the CHEESEHEAD19 measurements. Under
unstable conditions, the temperature gradient near the surface is very steep. Thus, the 2 m temperature is
expected to be lower than the air temperature directly above the surface, resulting in an underestimation
of the vertical temperature gradient between the surface and the middle of the boundary layer. Over
vegetated surfaces, which typically serve as a source of moisture unless they experience water stress,
using the 2 m humidity instead of a near-ground measurement also results in an underestimation of the

vertical gradient. However, as shown in Fig. 10, ⟨Δ
−
θ⟩ derived from ERA5 reanalysis data is not

underestimated but overestimated compared to the CHEESEHEAD19 LES.

In the more realistic CHEESEHEAD19 LES, a PCM is used in forested areas, which is why the active
surface is not as clearly defined as in the idealized LES. This increases the uncertainty in the calculation

of Ts, ⟨Δ
−
θ⟩ and ⟨Δ

−
q⟩ and ⟨

−
u ∗ /w ∗ ⟩, as well as the surface fluxes.

4.5 Feasibility of the Model Application to Eddy-Covariance
Stations
Single point EC field measurements typically only represent a limited area, referred to as footprint. The
size of this area depends on various factors such as measurement height, atmospheric stability, and
horizontal wind speed (Kljun et al. 2015), but it is always only a subset of the area that influences the
development of SCs. Since the horizontal extent of SCs can reach 2–3 times the boundary layer height zi,
they can span multiple kilometres and the area that has an effect on their development is
correspondingly large. Therefore, EC measurements are likely to differ from the average values
representing the entire area and are not suited as predicting variables for a model based on domain-
averaged values.

This is why we used the ERA5 reanalysis data to provide the majority of the predictor variables for the
application of the model to the CHEESEHEAD19 EC measurements. One advantage of the ERA5
reanalysis data is that it is available in all locations where EC measurements are carried out and thus can
be used to predict dispersive fluxes at any tower without installing additional measurement instruments.
This also facilitates the prediction of dispersive fluxes for EC measurements carried out in the past for
which no field measurements of predictor variables are available. Since the ERA5 reanalysis data is
available for the past 80 decades it can be used to consistently improve the energy-balance closure in
long existing time series. However, with a spatial resolution of 0.25°, one grid cell in the ERA5 data is
representative of up to 28×28 km2, which might include landscapes that are not representative of the
surroundings of an EC tower.
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The only parameters not derived from the ERA5 reanalysis data were Δ
−
T , ⟨

−
Ts⟩, and Lh used to calculate

the thermal heterogeneity parameter as their calculation requires spatially highly resolved surface-
temperature maps. We used the land-surface temperature fusion maps provided by Desai et al. (2021)
which are derived by combining the information gathered from different satellite observations with high
temporal resolution (NLDAS-2 (Xia et al. 2012), GOES-R (Yu et al. 2009)) and high spatial resolution
(ECOSTRESS (Hulley et al. 2022)). Desai et al. (2021) showed that these maps represent the spatial and
temporal variation in surface temperature in the CHEESEHEAD19 domain. Their approach can be used to
generate land-surface temperature fusion maps with a spatial resolution of 50 m and a temporal
resolution of 1 h for any location where temporally frequent geostationary (such as GOES) and high-
spatial resolution less frequent land surface-temperature data (such as ECOSTRESS) are available and
therefore can as well be derived for many EC stations without additionally carrying out measurements.

5 Conclusion
We have developed a model to predict 30-min dispersive heat fluxes, i.e., the energy transport by SCs. A
python script to apply the model, including the training dataset, is included in the supplements.

By applying it to the CHEESEHEAD19 LES, we have shown that it reproduces the partitioning into sensible
and latent heat quite well. The application to CHEESEHEAD19 field measurements showed that the model
currently covers only a limited range of atmospheric conditions and is only applicable to measurement
heights where zmzd > 10 m. Therefore, to predict dispersive fluxes under all typical conditions at eddy

covariance stations, the training data set must be extended to cover a wider range of ⟨
−

Δθ⟩, ⟨
−

Δq⟩, H, and 
z/⟨zi⟩.

However, application to the measurements that were within the model limits showed that the modelled
dispersive fluxes resulted in a significant reduction in the SEB gap, although it did not close it completely.
A variety of possible reasons were discussed, including the low resolution of the LESs the training data

was extracted from, the different availability of information on vertical gradients of ⟨
−
θ⟩and ⟨

−
q⟩ in the

LES and the ERA5 reanalysis data, and uncertainties associated with the use of modelled surface
temperature and atmospheric variables as predictor variables. These issues can partially be further
improved by increasing the resolution of the LESs that provide the training data, which will allow for an

enhanced representation of SCs near the surface and the gradients of ⟨
−
θ⟩and ⟨

−
q⟩ can be defined in

accordance to data availability in field measurements.

We conclude that these factors likely cause a slight underestimation of the dispersive fluxes by the
model. However, a large portion of the remaining gap could be filled by adding the ignored biomass
storage change, which is estimated to account for 6.5% of the total available energy at 30-minute
intervals.
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We have also shown that it is possible to apply this model of dispersive heat fluxes to field
measurements without performing any additional field measurements. The application of the model is
based on ERA5 reanalysis data and remote sensing products that are available for most EC stations
around the world and can also be used to model the dispersive fluxes retrospectively.
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Figure 1

The map shows landcover types extracted from the WISCLAND 2.0 dataset (Wisconsin Department  of
Natural Resources 2016) that was used to inform the CHEESEHEAD LES (Sect. 2.3). The extent of the
map corresponds to the C1 domain and the white square shows the border of the C2 domain in the
CHEESEHEAD LES. The domains are centred around the WLEF Tall Tower (45.9459, -90.2723). The
orange points represent the EC stations in the field (Sect. 2.4).
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Figure 2

Performance of the model based on domain-averaged values. Panels a-b show comparisons of modelled
dispersive heat fluxes (y-axis) versus true dispersive heat fluxes calculated directly from the LES output
(x-axis) for sensible (panel a) and latent (panel b) dispersive heat fluxes. Panels c-d show the relative
importance of predicting variables in the models of sensible dispersive heat flux (panel c) and latent
dispersive heat flux (panel d).
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Figure 3

Relative contributions of the domain-averaged storage and dispersive fluxes predicted by the model
based on domain-averaged values to the gaps in sensible and latent heat fluxes. The error bars show the
standard deviation of the sums shown in each bar.
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Figure 4

See image above for figure legend
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Figure 5

Comparison of modelled sensible (panel a) and latent (panel b) dispersive heat fluxes with the sensible
and latent dispersive heat fluxes calculated as spatial covariances from the output of the more realistic
CHEESEHEAD LES. The different colours represent 30-minute observation periods used for this analysis
and the different symbols represent the height above the displacement height.
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Figure 6

Comparison of modelled total dispersive heat fluxes with total dispersive fluxes calculated as spatial
covariances from the output of the more realistic CHEESEHEAD LES. The different colours represent 30-
minute observation periods used for this analysis and the different symbols represent the height above
the displacement height.
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Figure 7

See image above for figure legend
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Figure 8

See image above for figure legend
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Figure 9

See image above for figure legend
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Figure 10

See image above for figure legend
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