
29

On Strongest Algebraic Program Invariants

EHUD HRUSHOVSKI, Oxford University, UK

JOËL OUAKNINE, Max Planck Institute for Software Systems, Germany

AMAURY POULY, Université de Paris, IRIF, CNRS, France

JAMES WORRELL, Oxford University, UK

A polynomial program is one in which all assignments are given by polynomial expressions and in which all

branching is nondeterministic (as opposed to conditional). Given such a program, an algebraic invariant is

one that is defined by polynomial equations over the program variables at each program location. Müller-Olm

and Seidl have posed the question of whether one can compute the strongest algebraic invariant of a given

polynomial program. In this article, we show that, while strongest algebraic invariants are not computable

in general, they can be computed in the special case of affine programs, that is, programs with exclusively

linear assignments. For the latter result, our main tool is an algebraic result of independent interest: Given a

finite set of rational square matrices of the same dimension, we show how to compute the Zariski closure of

the semigroup that they generate.

CCS Concepts: • Theory of computation→ Verification by model checking; Abstraction; Quantitative au-

tomata; Invariants; • Mathematics of computing → Topology; • Computing methodologies → Alge-

braic algorithms;

Additional Key Words and Phrases: Program verification, polynomial programs, algebraic invariants, matrix

semigroups, Zariski closure

ACM Reference format:

Ehud Hrushovski, Joël Ouaknine, Amaury Pouly, and James Worrell. 2023. On Strongest Algebraic Program

Invariants. J. ACM 70, 5, Article 29 (October 2023), 22 pages.

https://doi.org/10.1145/3614319

1 INTRODUCTION

Invariants are one of the most fundamental and useful notions in the quantitative sciences, ap-
pearing in a wide range of contexts, from gauge theory, dynamical systems, and control theory
in physics, mathematics, and engineering, to program verification, static analysis, abstract inter-
pretation, and programming language semantics (among others) in computer science. In spite of
decades of scientific work and progress, automated invariant synthesis remains a topic of active

Joël Ouaknine is also affiliated with Keble College, Oxford as emmy.network Fellow; he was supported by ERC grant AVS-

ISS (648701) and by DFG grant 389792660 as part of TRR 248 (see https://perspicuous-computing.science). James Worrell

was supported by EPSRC Fellowship EP/N008197/1 and by UKRI Fellowship EP/X033813/1.

Authors’ addresses: E. Hrushovski, Mathematical Institute, Oxford University, UK; email: ehud.hrushovski@maths.ox.

ac.uk; J. Ouaknine, Max Planck Institute for Software Systems, Saarland Informatics Campus, Germany; email: joel@

mpi-sws.org; A. Pouly, Université de Paris, IRIF, CNRS, F-75013 Paris, France; email: amaury.pouly@irif.fr; J. Worrell,

Department of Computer Science, Oxford University, UK; email: jbw@cs.ox.ac.uk.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2023 Copyright held by the owner/author(s).

0004-5411/2023/10-ART29 $15.00

https://doi.org/10.1145/3614319

Journal of the ACM, Vol. 70, No. 5, Article 29. Publication date: October 2023.

https://doi.org/10.1145/3614319
https://perspicuous-computing.science
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3614319
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3614319&domain=pdf&date_stamp=2023-10-11

29:2 E. Hrushovski et al.

research, particularly in the fields of theorem proving and program analysis, and plays a central
role in methods and tools seeking to establish correctness properties of computer programs; see,
e.g., Reference [25], and particularly Section 8 therein.

Affine programs are a simple kind of nondeterministic imperative programs (which may contain
arbitrarily nested loops) in which the only instructions are assignments whose right-hand sides
are affine expressions, such as x3 := x1 − 3x2 + 7. A conventional imperative program can be ab-
stracted to an affine program by replacing conditionals with nondeterminism and conservatively
over-approximating non-affine assignments; see, e.g., Reference [5]. In doing so, affine programs
enable one to reason about more complex programs; a particularly striking example is the appli-
cation of affine programs to several problems in inter-procedural program analysis [5, 18, 36, 37].

An affine invariant for an affine program with n variables assigns to each program location an
affine subspace of Qn such that the resulting family of subspaces is preserved under the transition
relation of the program. Such an invariant is specified by giving a finite set of affine equations at
each location. The strongest (i.e., smallest with respect to set inclusion) affine invariant is obtained
by taking the affine hull of the set of reachable configurations (i.e., values of the program variables)
at each program location. Equivalently, the strongest affine invariant is determined by giving, for
each program location, the set of all affine equations holding at that location.

An algorithm due to Michael Karr in 1976 [24] computes the strongest affine invariant of an
affine program. A more efficient reformulation of Karr’s algorithm was given by Müller-Olm and
Seidl [37], who moreover showed that if the class of affine programs is augmented with equality
guards, then it becomes undecidable whether or not a given affine equation holds at a particu-
lar program location. A randomised algorithm for discovering affine equations was proposed by
Gulwani and Necula [18].

A natural and more expressive generalisation of affine invariants are algebraic invariants. An
algebraic invariant assigns to each program location an algebraic set (i.e., one defined by a con-
junction of polynomial equations) such that the resulting family is preserved under the transition
relation of the program. An algebraic invariant is specified by giving a set of polynomial equa-
tions that hold at each program location. The strongest algebraic invariant (i.e., smallest algebraic
set with respect to set inclusion) is obtained by taking the Zariski closure of the set of reachable
configurations in each location.

The problem of computing algebraic invariants for affine programs and related formalisms has
been extensively studied over the past 15 years; see, e.g., References [6, 8, 12, 12, 20, 23, 25, 27,
29, 42–44]. However, in contrast to the case of affine invariants, as of yet no method is known
to compute the strongest algebraic invariant, i.e., (a basis for) the set of all polynomial equations
holding at each location of a given affine program. Existing methods are either heuristic in nature
or only known to be complete relative to restricted classes of invariants or programs. For example,
it is shown in Reference [37] (see also Reference [42]) that Karr’s algorithm can be applied to
compute the smallest algebraic invariant that is specified by polynomial equations of a fixed degree
d . (The case of affine invariants corresponds to d = 1.) Reference [12] gives a method that finds all
algebraic invariants for a highly restricted class of affine programs (in which all linear mappings
have positive rational eigenvalues). The approach of References [20, 27] via so-called P-solvable
loops does not encompass the whole class of affine programs either (although it does allow to
handle certain classes of programs with polynomial assignments) [28].

In this article, we give a method to compute the set of all polynomial equations that hold at
a given location of an affine program, or in other words, the strongest algebraic invariant. The
output of the algorithm gives for each program location a finite basis of the ideal of all polynomial
equations holding at that location.

Journal of the ACM, Vol. 70, No. 5, Article 29. Publication date: October 2023.

On Strongest Algebraic Program Invariants 29:3

Our main tool is an algebraic result of independent interest: We give an algorithm that, given a
finite set of rational square matrices of the same dimension, computes the Zariski closure of the
semigroup that they generate. Our algorithm generalises (and uses as a subroutine) an algorithm
of Derksen, Jeandel, and Koiran [13] to compute the Zariski closure of a finitely generated group
of invertible matrices.1

Our procedure for computing the Zariski closure of a matrix semigroup also generalises a result
of Mandel and Simon [30] and, independently, of Jacob [21, 22], to the effect that it is decidable
whether a finitely generated semigroup of rational matrices is finite. Note that for a field K, an
algebraic set that is given as the zero set of a polynomial ideal I ⊆ K[x1, . . . ,xn] is finite just in
case the quotient K[x1, . . . ,xn]/I is finite-dimensional as a vector space over K [11, Chapter 5,
Section 3]). The latter condition can be checked by computing a Gröbner basis for I .

As mentioned above, we make use of the result of Reference [13] that one can compute the
Zariski closure of the group generated by a finite set of invertible rational matrices. That result
itself relies on several non-trivial mathematical ingredients, including results of Masser [32] on
computing multiplicative relations among given algebraic numbers and Schur’s theorem that every
finitely generated periodic subgroup of the general linear group GLn (C) is finite.

Given a set A of rational square matrices of the same dimension, we leverage these group-

theoretic results to compute the Zariski closure 〈A〉 of the generated semigroup 〈A〉. To this end,
we use multilinear algebra as well as structural properties of matrix semigroups to identify finitely

many subsemigroups of 〈A〉 that can be used to generate the entire semigroup. Pursuing this ap-
proach requires that we first generalise the result of Reference [13] to show that one can compute
the Zariski closure of the group generated by a constructible (as opposed to finite) set of invertible
matrices.

It is worth pointing out that whether a particular configuration is reachable at a certain pro-
gram location of a given affine program is in general an undecidable problem—this follows quite
straightforwardly from the undecidability of the membership problem for finitely generated matrix
semigroups, discussed shortly. It is therefore somewhat remarkable that the Zariski closure (i.e.,
the smallest algebraic superset) of the set of reachable configurations at any particular location
nevertheless turns out to be a computable object.

Finally, we consider a generalisation of the class of affine programs to the class of so-called
polynomial programs, which allows polynomial assignments but still has only nondeterministic
(as opposed to conditional) branching. The problem of computing all algebraic invariants of a
given polynomial program was posed in Reference [36, Section 5] by Müller-Olm and Seidl. We
show that this problem is undecidable in Section 7 by a reduction from the boundedness problem
for reset Petri nets.

Related Work

Decision problems for matrix semigroups have also been studied for many decades, independently
of program analysis. One of the most prominent such is the Membership Problem, i.e., whether a
given matrix belongs to a finitely generated semigroup of integer matrices. An early and striking
result on this topic is due to Markov, who showed undecidability of the Membership Problem
in dimension 6 in 1947 [31]. Later, Paterson [40] improved this result to show undecidability
in dimension 3, while decidability in dimension 2 remains open. A breakthrough was achieved
in 2017 by Potapov and Semukhin, who showed decidability of membership for semigroups

1Related to this, Corollary 3.7 and Lemma 3.6a in Reference [19] reduce the question of computing the Zariski closure of

a finitely generated group of invertible matrices to that of finding multiplicative relations among diagonal matrices. Note

that if one begins with rational matrices, then such relations can be found simply using prime decomposition of the entries.

Journal of the ACM, Vol. 70, No. 5, Article 29. Publication date: October 2023.

29:4 E. Hrushovski et al.

generated by nonsingular integer 2 × 2 matrices [41]. By contrast, the Membership Problem was
shown to be polynomial-time decidable in any dimension by Babai et al. for commuting matrices
over algebraic numbers [2]. As aptly noted by Stillwell, “noncommutative semigroups are hard
to understand” [47]. Matrix semigroup theory also plays a central role in the analysis of weighted
automata (such as probabilistic and quantum automata; see, e.g., References [4, 13]).

Algebraic invariants are stronger (i.e., more precise) than affine invariants. Various other types
of domains have been considered in the setting of abstract interpretation, e.g., intervals, octago-
nal sets, and convex polyhedra (see, e.g., References [9, 10, 33] and references in Reference [5]).
The precision of such domains in general is incomparable to that of algebraic invariants. Unlike
with algebraic and affine invariants, there need not be a strongest convex polyhedral invariant
for a given affine program. A natural decision problem in this setting is to ask for an inductive
invariant that is disjoint from a given set of states (which one would like to show is not reachable).
The version of this decision problem for convex invariants on affine programs was proposed by
Monniaux [34] and remains open; if the convexity requirement is dropped, then the problem is
shown to be undecidable in Reference [15].

The computation of semialgebraic invariants has also been considered in the context of discrete-
time linear dynamical systems and linear loops (which can be viewed as highly restricted instances
of affine programs); see, e.g., References [1, 16, 17].

2 TWO ILLUSTRATIVE EXAMPLES

We now present two simple examples to illustrate some of the ideas and concepts that are discussed
in this article. Some of the notation and terminology that we use is only introduced in later sections;
should this impede understanding, we recommend that the reader return to these examples after
having read Sections 3 and 4.

As a first motivating example, consider the following linear loop:

x := 3;

y := 2;

while 2y − x ≥ −2 do(
x
y

)
:=

(
10 −8
6 −4

) (
x
y

)
;

This loop never halts, although this fact is perhaps not immediately obvious. Here, we show
how the techniques developed in this article can help establish non-termination. To this end, we
first turn our code into an affine program consisting of two locations, as follows:

Here, f1 is the constant affine function assigning 3 to x and 2 to y, whereas f2 is the linear transfor-
mation associated with the matrix appearing in our while loop. Note that we have discarded the
loop guard.

The collecting semantics of this affine program assigns to location q2 the set Sq2 ⊆ Z2 of all
values taken by the pair of variables (x ,y) in the unending execution of the program. As it turns
out, the Zariski closure of Sq2 , regarded as a subset of real affine space R2, is the set

{(x ,y) ∈ R2 : x − 9x2 − y + 24xy − 16y2 = 0} .

Journal of the ACM, Vol. 70, No. 5, Article 29. Publication date: October 2023.

On Strongest Algebraic Program Invariants 29:5

By construction, this algebraic invariant is stable under f2 and over-approximates the set Sq2 of
reachable (x ,y)-configurations. Verifying that all tuples in this algebraic set moreover satisfy the
guard 2y −x ≥ −2 is now a simple exercise in high-school algebra, from which one concludes that
our original loop will indeed never terminate.

For our second example, consider the matrix semigroup 〈S,T ,E〉 generated by the following
matrices:

S :=

(
0 −1
1 0

)
, T :=

(
1 1
0 1

)
, E :=

(
1 0
0 0

)
.

We identify the setM2 (R) of real 2×2 matrices with the real affine spaceR4 and defineG := 〈S,T ,E〉
to be the Zariski closure of the above semigroup. We show that G = {M ∈ R2×2 : det(M) =
1 or det(M) = 0} and in the process illustrate (in a very simple setting) the approach of computing
the Zariski closure of a matrix semigroup by order of decreasing rank. This approach underlies
the algorithm described in Section 6.

Consider first G ′ := {M ∈ G : rk(M) = 2}. From the fact that the set of singular matrices in

M2 (R) is Zariski closed, one can show that G ′ = {M ∈ 〈S,T 〉 : rk(M) = 2}. Now, it is well known
that S and T generate the semigroup SL2 (Z) of 2 × 2 integer matrices of determinant 1 and that
the real Zariski closure of SL2 (Z) is the semigroup SL2 (R) of 2× 2 real matrices of determinant 12;
hence,G ′ = SL2 (R). More generally, we can use the algorithm of Derksen, Jeandel, and Koiran [13]
to compute the Zariski closure of any finitely generated semigroup of invertible matrices.

Now, we consider the sub-semigroupG ′′ of singular matrices inG. This is the real Zariski closure
of the semigroup generated by the (constructible) set of matrices

{MEM ′,ME,EM : M,M ′ ∈ SL2 (R)} .
It is straightforward to observe that this generating set already includes all rank-1 matrices in
M2 (R) and hence that the generated semigroup contains all singular matrices. We conclude that
G = G ′ ∪G ′′ comprises all matrices in M2 (R) of determinant 0 or 1.

3 MATHEMATICAL BACKGROUND

3.1 Linear Algebra

Matrices. Let K be a field. We denote by Mn (K) the semigroup of square matrices of dimension
n with entries inK. We write GLn (K) for the subgroup ofMn (K) comprising all invertible matrices.
Given a set of matricesA ⊆ Mn (K), we denote by 〈A〉 the sub-semigroup of Mn (K) generated byA.
The rank of a matrix a is denoted by rk(a), its kernel by ker(a), and its image by im(a). We denote
by U ⊕ V the direct sum of U and V .

Exterior Algebra and the Grassmannian. Given a vector spaceV over the fieldK, its exterior
algebra ΛV is a vector space that embedsV and is equipped with an associative, bilinear, and anti-
symmetric map

∧ : ΛV × ΛV → ΛV .

We can construct ΛV as a direct sum

ΛV = Λ0V ⊕ Λ1V ⊕ Λ2V · · · ,
where ΛrV denotes the r th-exterior power of V for r ∈ N, that is, the subspace of ΛV generated
by r -fold wedge products v1 ∧ . . . ∧ vr for v1, . . . ,vr ∈ V . If V is finite dimensional, with basis
e1, . . . , en , then a basis of ΛrV is given by ei1 ∧ · · · ∧ eir

, 1 ≤ i1 < . . . < ir ≤ n. Thus, ΛrV has

dimension
(
n
r

)
(where

(
n
r

)
= 0 for r > n).

2The latter fact follows from the Borel density theorem [35, Sections 4.5 and 7.0], but can also be established directly by an

elementary argument.

Journal of the ACM, Vol. 70, No. 5, Article 29. Publication date: October 2023.

29:6 E. Hrushovski et al.

A basic property of the wedge product is that given vectors u1, . . . ,ur ∈ V , u1 ∧ . . . ∧ ur � 0
if and only if {u1, . . . ,ur } is a linearly independent set. Furthermore, given w1, . . . ,wr ∈ V , we
have that u1 ∧ . . . ∧ ur and w1 ∧ . . . ∧wr are scalar multiples of each other iff span(u1, . . . ,ur) =
span(v1, . . . ,vr).

The Grassmannian Gr(r ,n) is the set of r -dimensional subspaces of Kn . By the above-stated
properties of the wedge product there is an injective function

ι : Gr(r ,n) → Λr (Kn)

such that for anyW , ι (W) = v1∧· · ·∧vr wherev1, . . . ,vr is an arbitrarily chosen basis ofW . Note
that given two bases v1, . . . ,vr and u1, . . . ,ur ofW , there exists α ∈ K such that v1 ∧ · · · ∧ vr =

α (u1∧· · ·∧ur). In other words, the particular choice of a basis forW only changes the value of ι (W)
up to a constant. Given subspacesW1,W2 ⊆ V , we moreover haveW1∩W2 = 0 iff ι (W1)∧ ι (W2) � 0.
We refer to Reference [39, Chapter 1.3] for more details about the Grassmannian.

3.2 Algebraic Geometry

In this section, we summarise some basic notions of algebraic geometry that will be used in the
rest of the article.

Let K be a field. An affine variety or algebraic set X ⊆ Kn is the set of common zeros of a finite
collection of polynomials, i.e., a set of the form

X =
{
x ∈ Kn : p1 (x) = p2 (x) = · · · = p� (x) = 0

}
,

where p1, . . . ,p� ∈ K[x1, . . . ,xn].3 Given a polynomial ideal I ⊆ K[x1, . . . ,xn], by Hilbert’s basis
theorem the set

V(I) = {x ∈ Kn : ∀p ∈ I , p (x) = 0}
is a variety, called the variety of I . The two main varieties of interest to us are X = Mn (K), which

we identify with affine space Kn2
in the natural way, and X = GLn (K), which we identify with the

variety

{(A,y) ∈ Kn2+1 : det(A) · y = 1} .
Given an affine variety X ⊆ Kn , the Zariski topology on X has as closed sets the subvarieties

of X , i.e., those sets A ⊆ X that are themselves affine varieties in Kn . For example, {a ∈ Mn (K) :
rk(a) < r } is a Zariski closed subset of Mn (K), since for a ∈ Mn (K) we have rk(a) < r iff all r × r
minors of a vanish. Given an arbitrary set S ⊆ X , we write S for its closure in the Zariski topology
on X .

Given S ⊆ Kn , let I ⊆ K[x1, . . . ,xn] be the ideal of polynomials that vanish on S . Observe that if
the elements of S lie in a subfield F ofK, then the ideal I has a basis of polynomials with coefficients
in F. Indeed, if we fix a monomial ordering, then, by linear algebra, for every polynomial f ∈
K[x1, . . . ,xn] that vanishes on S there is a polynomial д ∈ F[x1, . . . ,xn] that also vanishes on
S such that f and д have the same leading monomial. It follows that I has a Gröbner basis of
polynomials in F[x1, . . . ,xn] (cf. [11, Chapter 5.2, Corollary 6]).

A set S ⊆ X is irreducible if for all closed subsets A1,A2 ⊆ X such that S ⊆ A1 ∪ A2, we have
either S ⊆ A1 or S ⊆ A2. It is well known that the Zariski topology on a variety is Noetherian.
In particular, any closed subset A of X can be written as a finite union of irreducible components,
where an irreducible component of A is a maximal irreducible closed subset of A.

3We use the terms variety and algebraic set interchangeably. Many authors reserve the term variety for an irreducible

algebraic set.

Journal of the ACM, Vol. 70, No. 5, Article 29. Publication date: October 2023.

On Strongest Algebraic Program Invariants 29:7

The dimension of a variety X is defined to be the maximum number d ∈ N such that there is
a strictly increasing chain S0 ⊂ S1 ⊂ · · · ⊂ Sd of non-empty irreducible closed subsets of X . A
variety X ⊆ Kn has dimension at most n.

The class of constructible subsets of a variety X is obtained by taking all Boolean combinations
(including complementation) of Zariski closed subsets. Suppose that the underlying fieldK is alge-
braically closed. Since the first-order theory of algebraically closed fields admits quantifier elimi-
nation, the constructible subsets ofX are exactly the subsets ofX that are first-order definable over
K in the language of rings, i.e., that are definable by first-order formulas with parameters from K.

Suppose that X ⊆ Km and Y ⊆ Kn are affine varieties. A function φ : X → Y is called a regular

map if it arises as the restriction of a polynomial map Km → Kn . Chevalley’s Theorem states that
if K is algebraically closed and φ : X → Y is a regular map, then the image φ (A) of a constructible
set A ⊆ X under φ is a constructible subset of Y . This result also follows from the fact that the
theory of algebraically closed fields admits quantifier elimination.

A regular map of interest to us is matrix multiplication Mn (K)×Mn (K) → Mn (K). In particular,
we have that for constructible sets of matrices A,B ⊆ Mn (K) the set of products

A · B := {ab : a ∈ A,b ∈ B}

is again constructible. Notice also that matrix inversion is a regular map GLn (K) → GLn (K).
Thus, if A ⊆ GLn (K) is a constructible set, then so is A−1 := {a−1 : a ∈ A}. Finally, the projection
(A,y) �→ A yields an injective regular map GLn (K) → Mn (K). Via this map, we can identify
GLn (K) with a constructible subset of Mn (K).

On several occasions, we will use the facts that regular maps are continuous with respect to the
Zariski topology and that the image of an irreducible set under a regular map is again irreducible.
In particular, we have:

Lemma 1. If X ,Y ⊆ GLn (K) are irreducible closed sets, then X · Y is also irreducible.

3.3 Algorithmic Manipulation of Constructible Sets

In this subsection, we briefly recall some algorithmic constructions on constructible subsets of a

variety. We work over the field Q of algebraic numbers. Not only is this field algebraically closed,
but there are also symbolic representations of algebraic numbers with respect to which arithmetic
is effective (see Reference [7, Section 4.2]), which allows us to use standard algebraic-geometry
algorithms, such as procedures for computing Gröbner bases, and so on.

Representing Constructible Sets. Consider a variety X ⊆ Qn
and let I ⊆ Q[x1, . . . ,xn] be the

ideal of polynomials that vanish on X . We represent Zariski closed subsets of X as zero sets of

ideals in the coordinate ring Q[X] = Q[x1, . . . ,xn]/I of X . The coordinate ring of Mn (Q) is just

Q[x1,1, . . . ,xn,n] while the coordinate ring of GLn (Q) is

Q[x1,1, . . . ,xn,n ,y]/(det(xi, j)y − 1) .

Unions and intersections of Zariski closed subsets of X , respectively, correspond to products

and sums of the corresponding ideals in Q[X]. We furthermore represent constructible subsets of
X as Boolean expressions over Zariski closed subsets.

Irreducible Components. Let A ⊆ X denote a Zariski closed set that is given as the variety of an

ideal I ⊆ Q[X]. If I = P1 ∩ · · · ∩ Pm is an irredundant decomposition of I into primary ideals, then
A = V(P1) ∪ . . . ∪ V(Pm) is a decomposition of A into irreducible components. One can compute
the primary decomposition of an ideal using Gröbner basis techniques [3, Chapter 8].

Journal of the ACM, Vol. 70, No. 5, Article 29. Publication date: October 2023.

29:8 E. Hrushovski et al.

Zariski Closure. At several points in our development, we will need to compute the Zariski clo-
sure of a constructible subset of a variety. Now, an arbitrary constructible subset of a varietyX can
be written as a union of differences of closed subsets ofX . Thus, it suffices to be able to compute the
closure ofA\B for closed setsA,B ⊆ X . Furthermore, by first computing a decomposition ofA as a

union of irreducible closed sets, we may also assume that A is irreducible. But A ⊆ A \ B ∪ (A∩B);

thus, by irreducibility of A, we have A \ B = ∅ if A ⊆ B and otherwise A \ B = A. An algorithm
(when using the representation above) for computing the Zariski closure of a constructible set,
essentially following this recipe, is given in Reference [26, Theorem 1].

Images under Regular Maps. One can use an algorithm for quantifier elimination for the theory
of algebraically closed fields to compute the image of a constructible set under a regular map. An
explicit algorithm for this task, using Gröbner bases, is given in Reference [45, Section 4].

Finding an Element in a Constructible Set. The problem of finding an element in a given non-

empty constructible set A ⊆ Qn
is clearly computable in principle: Enumerate the elements of Q

n

and check each one for membership in A. A more efficient procedure is to proceed by induction
on the dimension n. In dimension one, a constructible set A is a Boolean combination of finite
algebraic sets, thus, one can find a point of A among the elements of these sets plus one additional
fresh element. In dimension n ≥ 2, one can projectA on the first n−1 dimensions, find an algebraic
point in the projection by induction, then substitute this point into the description A and reduce
to the one-dimensional case.

4 ALGEBRAIC INVARIANTS FOR POLYNOMIAL PROGRAMS

In this section, we introduce the notions of polynomial programs and algebraic invariants. In dis-

cussing the latter, we work over the fieldQ of algebraic numbers. However, as we note below, since
polynomial programs are defined with rational data, the Zariski closure of the set of reachable con-
figurations is the zero set of a collection of polynomials with rational coefficients, regardless of the
field in which one takes the Zariski closure.4 In this section, boldface symbols denote vectors.

A polynomial program of dimension n is a tuple A = (Q,E,qinit), where Q is a finite set of
program locations, E ⊆ Q × Q[x1, . . . ,xn]n × Q is a finite set of edges, and qinit ∈ Q is the initial

location. We say that A is an affine program if for every edge (q, f ,q′) ∈ E, with f = (f1, . . . , fn),
each polynomial fi has degree at most one. We think of x1, . . . ,xn as program variables that range
over Q and a transition (p, f ,q) as performing a simultaneous assignment x := f (x), where x =
(x1, . . . ,xn).

A configuration ofA is a pair (q,a) ∈ Q ×Qn . Intuitively, an edge (q, f ,q′) induces a transition
from configuration (q,a) to configuration (q′, f (a)) (under the natural view of f as a function
from Qn to Qn). The collecting semantics of A assigns to each location q the set Sq ⊆ Qn of all
those a ∈ Qn such that the configuration (q,a) is reachable from (qinit, 0). The family {Sq : q ∈ Q }
can be characterised as the least solution of the following system of inclusions (see Reference [37]):

Sqinit ⊇ {0}
Sq ⊇ f (Sp) for all (p, f ,q) ∈ E . (1)

A family of sets X = {Xq : q ∈ Q }, with Xq ⊆ Q
n

, is said to be an inductive invariant of the
program A if it satisfies the system of inclusions (1), i.e., Xqinit ⊇ {0} and Xq ⊇ f (Xp) for all
(p, f ,q) ∈ E. Such a family is moreover said to be an algebraic inductive invariant if each Xq is an

4Note that our techniques allow us to compute the Zariski closure of affine programs with coefficients in Q (not just Q), in

which case the Zariski closure would be defined by polynomials with coefficients in Q also.

Journal of the ACM, Vol. 70, No. 5, Article 29. Publication date: October 2023.

On Strongest Algebraic Program Invariants 29:9

algebraic subset of Q
n

. It is clear that the class of algebraic inductive invariants is closed under
intersections (where the intersection of Q-indexed sets is defined pointwise) and hence there is a
minimal algebraic inductive invariant.

The minimal inductive algebraic invariant can be characterised as the family of sets X = {Xq :

q ∈ Q } such that Xq := Sq for all q ∈ Q , i.e., Xq is the Zariski closure of Sq in Q
n

. Note that X
is indeed an inductive invariant: For each edge (p, f ,q) ∈ E, we have f (Xp) = f (Sp) ⊆ f (Sp) ⊆
Sq = Xq , since the polynomial map f is Zariski continuous, and by Equation (1).

As we now explain, the minimal inductive algebraic invariant is determined by the collection
of rational polynomial equations that hold at each program location. Given P ∈ Q[x1, . . . ,xn],
we say that the equation P = 0 holds at a program location q ∈ Q if P vanishes on Sq . Define

Iq := I(Sq) ⊆ Q[x1, . . . ,xn] to be the ideal of all polynomials P that vanish on the set Sq . The

variety corresponding to ideal Iq is Vq := V(Iq) = Sq , i.e., {Vq : q ∈ Q } is the minimal inductive
algebraic invariant. When we speak of computing the minimal inductive algebraic invariant, our
goal is to compute a basis of the ideal Iq for all locations q ∈ Q . As noted in Section 3.2, the ideal
Iq has a basis of polynomials with rational coefficients.

In the remainder of this section, we reduce the problem of computing the Zariski closure of
the collecting semantics of an affine program to that of computing the Zariski closure of a related
semigroup of matrices. The idea of this reduction is first to replace each affine assignment by a
corresponding linear assignment by adding an extra dimension to the program. One then simulates
a general affine program by a program with a single location.

Consider an affine programA = (Q,E,qinit), where the set of locations is Q = {q1, . . . ,qm } and

qinit = q1. For each edge e = (qj , f ,qi), we define a square matrix M (e) ∈ Mm (n+1) (Q) comprising
an m ×m array of blocks, with each block a matrix in Mn+1 (Q). If the affine map f is given by

f (x) = Ax + b, then the (i, j)-th block of M (e) is(
A b
0 1

)
,

while all other blocks are zero. Notice that for x ∈ Qn , we have(
A b
0 1

) (
x
1

)
=

(
Ax + b

1

)
=

(
f (x)

1

)
. (2)

Given i ∈ {1, . . . ,m}, define the projection Πi : Q
m (n+1) → Qn+1

by Πi (x1, . . . ,xm) = x i and

define the injection ini : Q
n → Qm (n+1)

by

ini (x) = (0, . . . , (x , 1), . . . , 0) ∈ Qm (n+1)
,

where (x , 1) occurs in the ith block. We denote in1 (0) byv init.

Proposition 2. LetM be the semigroup generated by the set of matrices {M (e) : e ∈ E}. Then, for

i = 1, . . . ,m, we have

Sqi
=

{
x ∈ Qn : ini (x) ∈ {Mv init : M ∈ M}} .

Proof. For an edge e = (qi , f ,qj) of the affine program A, we have

M (e) ini (x) = inj (f (x))

and

M (e) ink (x) = 0

Journal of the ACM, Vol. 70, No. 5, Article 29. Publication date: October 2023.

29:10 E. Hrushovski et al.

for k � i . Now, consider a sequence of edges

e1 = (qi1 , f1,qj1), e2 = (qi2 , f2,qj2), . . . , e� = (qi� , f�,qj�) .

If this sequence is a legitimate execution of A, i.e., i1 = 1 and jk = ik+1 for k = 1, . . . , � − 1, then
we have

M (e�) · · ·M (e1)v init = inj� (f� (. . . f1 (0) . . .)) .

If the sequence is not a legitimate execution of A, then we have

M (e�) · · ·M (e1)v init = 0 .

From the above it follows that for all i ∈ {1, . . . ,m},
Sqi
=

{
x ∈ Qn : ini (x) ∈ {Mv init : M ∈ M}} . �

Theorem 3. Given an affine program A, we can compute {Vq : q ∈ Q }—the Zariski closure of the

collecting semantics. This is the smallest algebraic inductive invariant of A.

Proof. Let M be the semigroup generated by the set of matrices {M (e) : e ∈ E}. From
Proposition 2, we have

Sqi
=

{
x ∈ Qn : ini (x) ∈ {Mv init : M ∈ M}}

=
{
x ∈ Qn : (x , 1) ∈ Πi ({Mv init : M ∈ M})} .

By Theorem 16, we can compute the Zariski closure M of the matrix semigroup M. Since the
projection Πi and the map M �→ Mv init are both Zariski continuous, we have that

Sqi
⊆

{
x ∈ Qn

: (x , 1) ∈ Πi

(
{Mv init : M ∈ M}

)}
⊆ Sqi

.

Thus, we can compute Sqi
as the Zariski closure of{
x ∈ Qn

: (x , 1) ∈ Πi

(
{Mv init : M ∈ M}

)}
,

since the latter is a constructible set. It is clear that any algebraic invariant must contain the Zariski
closure of the collecting semantics. Furthermore, we have already explained at the beginning of
this section that this invariant is inductive by the Zariski-continuity of the multiplication map. �

5 ZARISKI CLOSURE OF A SUBGROUP OF GLn (Q)

In this section, we show how to compute the Zariski closure of the subgroup of GLn (Q) generated

by a given constructible subset of GLn (Q). We show this by a reduction to the problem of com-

puting the Zariski closure of a finitely generated subgroup of GLn (Q). An algorithm for the latter

problem was given by Derksen, Jeandel, and Koiran [13]. Recall that for X ⊆ GLn (Q), we use 〈X 〉
to denote the sub-semigroup of GLn (Q) generated by X . But, we have:

Lemma 4 ([13]). A closed subsemigroup of GLn (Q) is a subgroup.

This lemma is useful in conjunction with the following fact: If S ⊆ GLn (Q) is a subsemigroup,

then S is a subsemigroup. This is a consequence of the Zariski-continuity of the multiplication

map of matrices. In particular, if X ⊆ GLn (Q), then 〈X 〉 is a subgroup of GLn (Q). Our aim is to
generalise the following result.

Theorem 5 ([13]). Given matrices a1, . . . ,ak ∈ GLn (Q), we can compute the closed subgroup

〈a1, . . . ,ak 〉.
The first generalisation is as follows:

Journal of the ACM, Vol. 70, No. 5, Article 29. Publication date: October 2023.

On Strongest Algebraic Program Invariants 29:11

Corollary 6. Let a1, . . . ,ak ∈ GLn (Q) and let Y ⊆ GLn (Q) be an irreducible variety containing

the identity In . Then 〈a1, . . . ,ak ,Y 〉 is computable from Y and the ai .

Proof. Let G = 〈a1, . . . ,ak 〉 and let H be the smallest Zariski closed subgroup of GLn (Q) that
contains Y and is closed under conjugation by a1, . . . ,ak (i.e., such that aiHa

−1
i ⊆ H for i =

1, . . . ,k). We claim that 〈a1, . . . ,ak ,Y 〉 = G · H .
To prove the claim, note that, since H is closed under conjugation by a1, . . . ,ak , H is also closed

under conjugation by any д ∈ 〈a1, . . . ,ak 〉. Moreover, since the map д �→ дhд−1 is Zariski continu-

ous for each fixed h ∈ H , we have that H is closed under conjugation by any д ∈ G = 〈a1, . . . ,ak 〉.
It follows that G · H is a sub-semigroup of GLn (Q) and so G · H is a group by Lemma 4. But

{a1, . . . ,ak } ∪ Y ⊆ G · H ⊆ 〈a1, . . . ,ak ,Y 〉

and hence G · H = 〈a1, . . . ,ak ,Y 〉.
It remains to show that we can compute G · H . Now, we can compute G by Theorem 5. To

compute H , we use the following algorithm:

Procedure FinPlusIrredClosure(a1, . . . ,ak ,Y)

input : Irreducible variety Y ⊆ GLn (Q) containing In
input : a1, . . . ,ak ∈ GLn (Q)

1 H := Y

2 S = {a1, . . . ,ak , In }
3 repeat

4 Hold := H

5 for y ∈ S do

6 H := H · yHy−1

7 until Hold = H

8 return H

We show that Algorithm FinPlusIrredClosure computes the smallest subgroupH of GLn (Q) that
is Zariski closed, containsY , and is closed under conjugation by a1, . . . ,ak . To this end, notice that,
sinceY contains the identity, the successive values taken by H in the algorithm form an increasing

chain of sub-varieties of GLn (Q). Moreover, by Lemma 1, this chain is in fact an increasing chain of

irreducible sub-varieties. But such a chain has bounded length, since GLn (Q) has finite dimension
and hence the algorithm must terminate.

We know that Y ⊆ H on termination. Moreover, from the loop termination condition, it is clear
that on termination H must be closed under conjugation by a1, . . . ,ak , and be a Zariski closed sub-

semigroup of GLn (Q) (and hence a sub-group of GLn (Q) by Lemma 4). Finally, by construction, H

is the smallest such subgroup of GLn (Q). This concludes the proof. �

We can now prove the main result of this section.

Theorem 7. Given a constructible subset A of GLn (Q), we can compute 〈A〉.

Proof. Let X1, . . . ,Xk be the irreducible components of A, which are computable from A. For
each i , compute a point ai ∈ Xi (see Section 3.3). Form Yi = a−1

i Xi , which is an irreducible variety

containing the identity and let Y = Y1 · Y2 · · ·Yk , which by Lemma 1 is also an irreducible variety
containing the identity. Note that Y is computable as the closure of the image of a variety under

Journal of the ACM, Vol. 70, No. 5, Article 29. Publication date: October 2023.

29:12 E. Hrushovski et al.

a polynomial map (the map (y1, . . . ,yk) �→ y1 · · ·yk)). We then have that 〈A〉 = 〈a1, . . . ,ak ,Y 〉.
Indeed,

〈A〉 ⊆ 〈a1, . . . ,ak ,Y1 · Y2 · · ·Yk 〉 ⊆ 〈A〉,
where the last inclusion holds, since 〈A〉 is a group by Lemma 4, ai ,a

−1
i ∈ 〈A〉 and hence Yi ⊆ 〈A〉.

It follows that

〈A〉 = 〈a1, . . . ,ak ,Y1 · Y2 · · ·Yk 〉

=
〈
a1, . . . ,ak ,Y1 · Y2 · · ·Yk

〉
.

We can compute the closure of 〈a1, . . . ,ak ,Y 〉, thanks to Corollary 6. �

6 ZARISKI CLOSURE OF A FINITELY GENERATED MATRIX SEMIGROUP

In this section, we give a procedure to compute the Zariski closure of a finitely generated matrix
semigroup. We proceed by induction on the rank of the generators. To this end, it is useful to
generalise from finite sets of generators to constructible sets of generators. In particular, we will
use Theorem 7 on the computability of the Zariski closure of the group generated by a constructible
set of invertible matrices.

We first introduce a graph structure on the set of generators that allows us to reason about all
products of generators that have a given rank.

6.1 A Generating Graph

Given integers n and r , let A ⊆ Mn (Q) be a set of matrices of rank r . We define a labelled directed
graph K (A) as follows:

• There is a vertex (U ,V) for each pair of subspacesU ,V ⊆ Qn
such that dim(V) = r , dim(U) =

n − r , and U ∩V = 0.

• There is a labelled edge (U ,V)
a−→ (U ′,V ′) for each pair of vertices (U ,V) and (U ′,V ′), and

each matrix a ∈ A such that ker(a) = U and im(a) = V ′.

We note in passing thatK (A) can be seen as an edge-induced subgraph of the Karoubi envelope [46]

of the semigroup Mn (Q).
A path in K (A) is a non-empty sequence of consecutive edges

(U0,V0)
a1−−→ (U1,V1)

a2−−→ (U2,V2)
a3−−→ . . .

am−−→ (Um ,Vm).

The length of such a path ism and its label is the product a := am · · ·a1. Matrix a has rank r , since
ker(ai+1)∩im(ai) = 0 for i = 1, . . . ,m−1. It is moreover clear that {a ∈ 〈A〉 : rk(a) = r } is precisely
the set of labels over all paths in K (A). We will denote that there is a path from (U ,V) to (U ′,V ′)

with label a by writing (U ,V)
a
=⇒ (U ′,V ′).

The following sequence of propositions concerns the structure of the strongly connected

components (SCCs) in K (A). The respective proofs make repeated use of the fact that for each

vertex (U ,V) of K (A), we have ι (U) ∧ ι (V) � 0 and that dim Λr (Q
n

) =
(
n
r

)
(cf. Section 3). We

say that an SCC of K (A) is non-trivial if it contains a vertex (U ,V) such that there is a path from
(U ,V) back to itself. Figure 1 summarises the structural results on K (A).

Proposition 8. K (A) has at most
(

n
r

)
non-trivial SCCs.

Proof. Let (U1,V1), . . . , (Um ,Vm) be an arbitrary finite set of vertices drawn from distinct non-

trivial SCCs of K (A). To prove the proposition it suffices to show thatm ≤
(

n
r

)
.

Journal of the ACM, Vol. 70, No. 5, Article 29. Publication date: October 2023.

On Strongest Algebraic Program Invariants 29:13

Fig. 1. Graphical representation of K (A), vertex and edge labels omitted for clarity. Note that the graph
can have infinitely many vertices. Proposition 8 shows that there are only finitely many nontrivial SCCs.
Proposition 9 shows that the graph has finite diameter. Proposition 10 shows that paths avoiding nontrivial
SCCs must be short. All paths in K (A) are labelled by rank r matrices. Dotted arrows represent products in
the semigroup where the rank becomes less than r : those products do not correspond to labels inK (A) and
need to be handled separately.

Assume that the vertices (U1,V1), . . . , (Um ,Vm) are given according to a topological ordering of
SCCs—so there is no path from (Uj ,Vj) back to (Ui ,Vi) for i < j. By assumption, for i = 1, . . . ,m

there exists a path (Ui ,Vi)
ai

=⇒ (Ui ,Vi).
On the one hand, for all 1 ≤ i < j ≤ m, we have ι (Ui) ∧ ι (Vj) = 0 (equivalently,Ui ∩Vj � 0)—for

otherwise there would be a path

(Uj ,Vj)
aj

=⇒ (Ui ,Vj)
ai

=⇒ (Ui ,Vi) ,

contrary to the topological ordering. On the other hand, we have that ι (Uj)∧ι (Vj) � 0 (equivalently,
Uj ∩Vj = 0) for all j ∈ {1, . . . ,m} by definition of K (A). It follows that for all j ∈ {1, . . . ,m},

ι (Uj) � span{ι (Ui) : i = 1, . . . , j − 1},

since any elementU in this span satisfies ι (U) ∧ ι (Vj) = 0 by bilinearity of the wedge product. We
conclude that

dim span{ι (Ui) ∈ Λr (Q
n

) : i = 1, . . . , j} = j

for all 1 ≤ j ≤ m and hencem ≤ dim Λr (Q
n

) =
(

n
r

)
, as we wished to prove. �

Proposition 9. If there is a path from (U ,V) to (U ′,V ′) inK (A), then there is a path from (U ,V)

to (U ′,V ′) of length at most
(
n
r

)
+ 1.

Proof. Let

(U0,V0)
a1−−→ (U1,V1)

a2−−→ . . .
am−−→ (Um ,Vm) (3)

be a shortest path from (U0,V0) = (U ,V) to (Um ,Vm) = (U ′,V ′). By construction, we have that
Ui ∩Vi = 0 for i = 0, . . . ,m. Furthermore, we haveUj ∩Vi � 0 for all 0 < i < j < m, for otherwise,

Journal of the ACM, Vol. 70, No. 5, Article 29. Publication date: October 2023.

29:14 E. Hrushovski et al.

we would have a shortcut

(Ui−1,Vi−1)
ai−−→ (Uj ,Vi)

aj+1−−−→ (Uj+1,Vj+1) ,

contradicting the minimality of Equation (3). But then ι (Vj) � span{ι (Vi) : 1 ≤ i < j} for j =
1, . . . ,m − 1: indeed, any element V in this span satisfies ι (Uj) ∧ ι (V) = 0 by bilinearity of the
wedge product, but we know that ι (Uj) ∧ ι (Vj) � 0. We conclude that

dim span{ι (Vi) ∈ Λr (Q
n

) : i ∈ {1, . . . , j}} = j

for all j = 1, . . . ,m − 1. It follows thatm − 1 ≤
(
n
r

)
. �

Proposition 10. Given any path (U0,V0)
a1−−→ (U1,V1)

a2−−→ . . .
am−−→ (Um ,Vm) in K (A), where

m = 2
(
n
r

)
, some vertex (Ui ,Vi) lies in a non-trivial SCC.

Proof. The set of
(
n
r

)
+ 1 vectors {ι (U0), ι (U2), ι (U4), . . . , ι (Um)} is linearly dependent, since

dim Λr (Q
n

) =
(
n
r

)
. Thus, there must exist i ∈ {0, . . . ,m} such that ι (Ui) ∈ span

{
ι (Uj) : j ≤ i − 2

}
.

Now, by definition of K (A), we have Ui ∩Vi = 0 and hence ι (Ui) ∧ ι (Vi) � 0. Thus, by bilinearity
of the wedge product there must exist j ≤ i − 2 such that ι (Uj) ∧ ι (Vi) � 0, that is,Uj ∩Vi = 0. But
then we have a path

(Ui−1,Vi−1)
ai−−→ (Uj ,Vi)

aj+1−−−→ (Uj+1,Vj+1) ,

showing that (Ui−1,Vi−1) and (Uj+1,Vj+1) lie in the same (necessarily non-trivial) SCC. Indeed,
recall that j ≤ i −2, so either (Uj+1,Vj+1) =⇒ (Ui−1,Vi−1) or (Uj+1,Vj+1) = (Ui−1,Vi−1) in the original
path. �

6.2 Adding Pseudo-inverses

We now focus on individual SCCs within K (A). Let S be such a non-trivial SCC. For each edge

(U ,V)
a−→ (U ′,V ′) in S, define its pseudo-inverse to be a directed edge (U ′,V ′)

a+−−→ (U ,V), where

a+ ∈ Mn (Q) is the unique matrix such that ker(a+) = U ′, im(a+) = V , a+av = v for all v ∈ V , and
aa+v = v for all v ∈ V ′. We write S+ for the graph obtained from S by adding pseudo-inverses of
every edge in S.

The graph S+ can be seen as the generator of a groupoid in which the above-defined pseudo-
inverse matrices are genuine inverses. We do not develop this idea, except to observe that not only

edges but also paths in S have pseudo-inverses in S+. Specifically, given a path (U ,V)
a
=⇒ (U ′,V ′)

in S, one obtains a path (U ′,V ′)
a+

=⇒ (U ,V) in S+ by taking the pseudo-inverse of each constituent
edge. In the remainder of this section, we show that the pseudo-inverses of all paths inS are already

present in the Zariski closure 〈A〉.

Proposition 11. Let (U ,V) be a vertex of S and let B ⊆ Mn (Q) be a constructible set of matrices

such that there is a path (U ,V)
b
=⇒ (U ,V) in S for all b ∈ B. Then, 〈B〉 is computable from B and for

every b ∈ 〈B〉 the pseudo-inverse (U ,V)
b+

=⇒ (U ,V) is such that b+ ∈ 〈B〉.

Proof. By construction, all elements of B have kernelU and imageV , whereU ⊕V = Qn
. Thus,

there is an invertible matrix y ∈ GLn (Q) such that for every b ∈ B there exists c ∈ GLr (Q) with

y−1by =

[
c 0
0 0

]
. (4)

Journal of the ACM, Vol. 70, No. 5, Article 29. Publication date: October 2023.

On Strongest Algebraic Program Invariants 29:15

Such a matrix can be computed from U and V as follows: Let u1, . . . ,un−r be a basis of U and

v1, . . . ,vr a basis of V , and define y to be the matrix y =
[
v1 · · · vr u1 · · · un−r

]
. This

matrix is invertible, because U ⊕ V = Qn
and, given b ∈ B, one easily checks that y−1by has the

form shown in Equation (4). Let

C :=

{
c ∈ GLr (Q) : ∃b ∈ B .y−1by =

[
c 0
0 0

]}
,

which is constructible. We can compute 〈C〉 (the Zariski closure of 〈C〉 in the variety GLr (Q)) using
Theorem 7. But then {

y

[
c 0
0 0

]
y−1 : c ∈ 〈C〉

}

is a constructible subset of Mn (Q) whose closure equals 〈B〉. Note that we are using the fact that

〈C〉 is a subvariety of GLn (Q), thus, it is constructible in Mn (Q). Finally, if b = y
[
c 0
0 0

]
y−1 ∈ 〈B〉 ,

then b+ = y
[
c−1 0
0 0

]
y−1 ∈ 〈B〉, since c−1 ∈ 〈C〉 (which is a group by Lemma 4). �

Corollary 12. Suppose that (U ,V)
a
=⇒ (U ′,V ′) is a path in S with pseudo-inverse (U ′,V ′)

a+

=⇒
(U ,V). Then, a+ ∈ 〈A〉.

Proof. Since S is strongly connected, there is a path (U ′,V ′)
b
=⇒ (U ,V). Consider the path

(U ,V)
ba
==⇒ (U ,V) and its pseudo-inverse (U ,V)

(ba)+

====⇒ (U ,V). By Proposition 11, we have (ba)+ ∈
〈A〉. We moreover have a+ = a+b+b = (ba)+b and hence a+ ∈ 〈A〉, since 〈A〉 is a semigroup. �

6.3 Maximum-rank Matrices in the Closure

Let S be a non-trivial SCC in K (A). Write B ⊆ Mn (Q) for the set of labels of all paths in S+ of

length at most
(
n
r

)
+ 2. Moreover, fix a vertex (U∗,V∗) in S+ and write B∗ for the set of labels of all

paths in S+ of length at most 2
(

n
r

)
+ 3 that are self-loops on (U∗,V∗).

Proposition 13. Let 〈S〉 denote the set of labels of all paths in S. Then,

〈S〉 ⊆ B〈B∗〉B ⊆ 〈A〉.

Proof. By Corollary 12, we have that B,B∗ ⊆ 〈A〉. Thus, the right-hand inclusion follows from

the fact that 〈A〉 is a semigroup.
To establish the left-hand inclusion, consider a path

(U0,V0)
a1−−→ (U1,V1)

a2−−→ (U2,V2)
a3−−→ . . .

an−−→ (Un ,Vn)

within S. Proposition 9 ensures that for each vertex (Ui ,Vi) there is a path (U∗,V∗)
fi

=⇒ (Ui ,Vi) in

S of length at most
(
n
r

)
+ 1. Such a path has a pseudo-inverse (Ui ,Vi)

f +i
==⇒ (U∗,V∗) in S+. Now, by

the definition of a pseudo-inverse, we have ai fi−1 f
+

i−1 = ai for all i ∈ {1, . . . ,n}. Thus, we have (cf.
Figure 2):

an . . . a2a1 = an fn−1 f
+

n−1an−1 fn−2 f
+

n−2 · · · f2 f +2 a2 f1 f
+

1 a1

= an fn−1 (f +n−1an−1 fn−2) · · · (f +2 a2 f1) f +1 a1 .

The result follows from the observation that an fn−1 and f +1 a1 are both elements of B and that
f +i ai fi−1 ∈ B∗ for i = 2, . . . ,n − 1. �

Journal of the ACM, Vol. 70, No. 5, Article 29. Publication date: October 2023.

29:16 E. Hrushovski et al.

Fig. 2. Expressing a path in an SCC S in terms of “short” cycles on the distinguished vertex (U∗,V∗).

Recall from Proposition 8 that the graphK (A) has at most
(
n
r

)
non-trivial SCCs. Let S1, . . . ,S�

be a list of the non-trivial SCCs in K (A) and write

P := A ∪ 〈S1〉 ∪ · · · ∪ 〈S�〉 . (5)

Lemma 14. Given a ∈ 〈A〉 with rk(a) = r , we have a ∈ P∪ P2 ∪ · · · ∪ Pκ , where κ = 2
(
n
r

)2
+ 3

(
n
r

)
.

Proof. Suppose that a is the label of a path

(U0,V0)
a1−−→ (U1,V1)

a2−−→ (U2,V2)
a3−−→ . . .

am−−→ (Um ,Vm) (6)

inK (A). The vertices along this path can be partitioned into maximal blocks of contiguous vertices

all lying in the same SCC ofK (A). By Proposition 8 there are at most
(

n
r

)
such blocks correspond-

ing to non-trivial SCCs. The remaining blocks, corresponding to trivial SCCs, are singletons. By

Proposition 10 there can be at most 2
(
n
r

)
consecutive such blocks anywhere along the path. We

conclude that there at most κ = 2
(
n
r

)2
+ 3

(
n
r

)
blocks in total.

Now, we can factor the path into single edges that connect vertices in different blocks and sub-
paths all of whose vertices lie in the same block. There are at most κ such factors (the same as
the number of blocks) and the label of each factor lies in the set P defined in Equation (5). This
completes the proof. �

Let Rr = {x ∈ Mn (Q) : rk(x) = r }, which is a constructible set, and R<r = {x ∈ Mn (Q) : rk(x) <
r }, which is closed.

Proposition 15. Let A ⊆ Mn (Q) be a constructible set of matrices, all of rank r . Then, we can

compute 〈A〉 ∩ Rr from A.

Proof. By Proposition 13 (see also Section 6.5 for remarks on effectiveness), for i = 1, . . . , �, we

can compute a constructible set Ei ⊆ Mn (Q) such that 〈Si 〉 ⊆ Ei ⊆ 〈A〉. Writing E := A ∪ E1 ∪
. . . ∪ E� , we have P ⊆ E ⊆ 〈A〉.

By Lemma 14, we have 〈A〉 ∩ Rr ⊆ X , where X := E ∪ E2 ∪ . . . ∪ E2(n
r)2
+3(n

r) . Now,

〈A〉 ∩ Rr ⊆ X ⊆ 〈A〉

〈A〉 ∩ Rr ⊆ X ⊆ 〈A〉

〈A〉 ∩ Rr ∩ Rr ⊆ X ∩ Rr ⊆ 〈A〉 ∩ Rr .

We claim that

〈A〉 ∩ Rr ∩ Rr = 〈A〉 ∩ Rr , (7)

Journal of the ACM, Vol. 70, No. 5, Article 29. Publication date: October 2023.

On Strongest Algebraic Program Invariants 29:17

which shows that

〈A〉 ∩ Rr = X ∩ Rr

is constructible and computable. It remains to see why Equation (7) holds. Since all matrices in A
have rank r , all matrices in 〈A〉 have rank r or less, thus,

〈A〉 =
(
〈A〉 ∩ Rr

)
∪

(
〈A〉 ∩ R<r

)
〈A〉 = 〈A〉 ∩ Rr ∪ 〈A〉 ∩ R<r

〈A〉 ∩ Rr =
(
〈A〉 ∩ Rr ∩ Rr

)
∪

(
〈A〉 ∩ R<r ∩ Rr

)
︸

︷︷

︸

=∅

.

Indeed, 〈A〉 ∩ R<r ⊆ R<r , thus, 〈A〉 ∩ R<r ⊆ R<r , because R<r is closed, and R<r ∩ Rr = ∅.
�

6.4 Computing the Closure

We now present the main result of the article.

Theorem 16. Given a constructible set of matrices A ⊆ Mn (Q), one can compute 〈A〉—the Zariski

closure of the semigroup generated by A.

Proof. The proof is by induction on the maximum rank r of the matrices in A. The base case
r = 0 is trivial. For the induction step, write Ar := {a ∈ A : rk(a) = r } for the subset of matrices in

A of maximum rank and B := {a ∈ 〈Ar 〉 : rk(a) = r }. Now, B is computable by Proposition 15.

We claim that 〈A〉 = B ∪ 〈C〉, where

C = {a ∈ A ∪ BA ∪AB ∪ BAB : rk(a) < r } .
The theorem follows from the claim, since 〈C〉 is computable by the induction hypothesis.

It remains to prove the claim. For the right-to-left inclusion, notice that, since A,B ⊆ 〈A〉 and

〈A〉 is a Zariski-closed semigroup, 〈A〉 contains both B and 〈C〉.
For the left-to-right inclusion, it suffices to show that 〈A〉 ⊆ B ∪ 〈C〉. To this end, consider a

non-empty product a := a1a2 · · ·am , where a1, . . . ,am ∈ A. Suppose first that rk(a) = r . Then, of
course, a1, . . . ,am ∈ Ar and hence a ∈ B. Suppose now that rk(a) < r . We show that a ∈ 〈C〉 by
induction onm. Let a1 · · ·a� be a prefix of minimum length that has rank less than r . Clearly, such
a prefix lies in A ∪ BA. Moreover, the corresponding suffix a�+1 · · ·am is either empty, has rank r
(and hence is in B), or has rank < r and hence is in 〈C〉 by induction. In all cases, we have that
a ∈ 〈C〉. �

6.5 Effectively Representing the Generating Graph

We conclude by filling in some details about how the generating graph K (A) can be effectively
represented and thereby how one enumerates the (finitely many) non-trivial SCCs and, given a
representative of each SCC, computes the sets B and B∗ described in Proposition 13. Throughout
this section, by definable, we mean first-order definable by a formula in the language of rings with

parameters from Q.

Let A ⊆ Mn (Q) be a constructible set of matrices. Representing vector spaces by bases, the
set of vertices of the generating graph K (A) is a definable set. More precisely, since the same
vector space has many different bases, the set of vertices is the quotient of a definable set by a
definable equivalence relation. Then, for every fixed m ∈ N, the binary relation of two vertices
being connected inK (A) by a path of lengthm is effectively definable if one already has a formula
defining the set of matricesA: Indeed, there is a length-m path from (U ,V) to (U ′,V ′) if there exist

Journal of the ACM, Vol. 70, No. 5, Article 29. Publication date: October 2023.

29:18 E. Hrushovski et al.

a1, . . . ,am ∈ A with ker(am · · ·a1) = U and �(am · · ·a1) = V ′. Thanks to Propositions 9 and 10, it
follows in turn that the binary reachability relation onK (A) is also effectively definable and hence
also the binary relation of two nodes being in the same SCC of K (A). Recall that Proposition 8
gives an upper bound on the number of SCCs of K (A). One can now enumerate a finite list of
nodes of K (A) that contains precisely one representative of each non-trivial SCC: Such a list can
be constructed by an iterative process that at each stage maintains a formula defining all nodes
lying in a non-trivial SCC other than the SCCs of the representatives found so far, and then uses
the procedure described in Section 3.3 to pick an algebraic point in this set, which thus becomes
a representative of a new SCC. Finally, given a representative node (U∗,V∗) of an SCC S, the sets
B and B∗ in Proposition 13 are also effectively definable, since they are labels of paths of bounded
length. Note here that it is easy to include pseudo-inverses in the set B∗, since the property of
being a pseudo-inverse is first-order definable.

7 UNDECIDABILITY

In this section, we show that there is no algorithm that computes the minimal algebraic invari-
ant of a polynomial program. In fact, we show that one cannot decide whether the minimal al-
gebraic invariant has dimension at most one. We prove this by reduction from the problem of
deciding boundedness of reset vector addition systems with states (reset VASS)—which is un-
decidable [14]. We refer to Section 3.2 for the definition of the dimension of an algebraic set. Below,
we will also give an algebraic characterisation of dimension in terms of polynomial equations.

Syntactically, we can consider a reset VASS as a special kind of affine program. However, VASS
have a different semantics to affine programs, since the program variables in a VASS are only
allowed to assume nonnegative-integer values. Formally, we define a reset VASS to be an affine
program A = (Q,E,qinit) such that for each edge (q, (f1, . . . , fn),q′) ∈ E, for all i ∈ {1, . . . ,n}
the polynomial fi ∈ Q[x1, . . . ,xn] lies in the set {0,xi ,xi + 1,xi − 1}. Intuitively a reset VASS
corresponds to a program in which variables can only be incremented, decremented, and reset to
zero and moreover in which every transition that attempts to decrement a zero variable is blocked.
The nonnegativity requirement on the program variables of a VASS is formalised by modifying
the definition of the collecting semantics (cf. Equation (1)). For the given reset VASSA, we define
the collection of reachable counter values Sq ⊆ Zn

≥0 in location q to be the least solution of the
following system of inclusions:

Sqinit ⊇ {0}
Sq ⊇ f (Sp) ∩ Zn

≥0 for all (p, f ,q) ∈ E . (8)

In the Boundedness Problem for Reset VASS the input is a reset VASS A = (Q,E,qinit) and a dis-
tinguished location q ∈ Q , and the question is whether the set Sq of reachable counter values in
location q is finite. This problem is undecidable [14].

In the remainder of the section, we reduce the Boundedness Problem for Reset VASS to the prob-
lem of computing the minimal algebraic invariant of a polynomial program. Let A = (Q,E,qinit)
be a reset VASS in dimension n. The idea is to define a polynomial programA′ in dimension n + 1
whose computations simulate those of A. We think of a configuration (q,a) of A as being repre-
sented by any configuration (q,b) of A′ such that bn+1 � 0 and ai = bi/bn+1 for i = 1, . . . ,n. We
simulate updates in A by homogeneous updates in A′, e.g., an increment operation xi := xi + 1
inA is simulated inA′ by the instruction xi := xi + xn+1. Likewise a reset operation xi := 0 inA
is simulated in A′ by the syntactically identical operation xi := 0. The value of xn+1 is initialised
to 1 by the first transition of A′.

Note that we can “rescale” a configuration of A′ by multiplying all components by a nonzero
scalar λ ∈ Z without changing the encoded configuration ofA. We use this fact to simulate inA′

Journal of the ACM, Vol. 70, No. 5, Article 29. Publication date: October 2023.

On Strongest Algebraic Program Invariants 29:19

the semantic requirement that the variables ofA remain nonnegative. For example, after executing
an assignment xi := xi − xn+1 in A′ (representing a decrement in A), we immediately perform a
simultaneous update x j := x j (xi +xn+1), j = 1, . . . ,n+ 1. Applying such an assignment to a vector
b ∈ Nn+1, the resulting vector has the form λb, where the scaling factor λ is equal to zero if and
only if bi/bn+1 = −1. Hence, any run of A that leads to a negative counter value is simulated in
A′ by a run that leads to (and forever remains in) the zero configuration.

Proceeding more formally, given an update polynomial f (x1, . . . ,xn) = cxi + d occurring
in A, where (c,d) ∈ {(0, 0), (1,−1), (1, 0), (1, 1)}, we define a corresponding homogeneous map
f ∗ (x1, . . . ,xn+1) := cxi + dxn+1. Using this notation, we define the polynomial automaton A′ =
(Q ′,E ′,q′init) as follows:

(1) The set of locations is Q ′ := Q ∪ {q′init}, where q′init � Q is the initial location.
(2) For each edge (q, (f1, . . . , fn),q′) ∈ E there is an edge (q, (д1, . . . ,дn+1),q′) ∈ E ′ such that

дi (x) := h(x) · f ∗i (x) for all i ∈ {1, . . . ,n},
дn+1 (x) := h(x) · xn+1 ,

where h(x) = 2(f ∗1 (x) + xn+1) · · · (f ∗n (x) + xn+1).
(3) There is an edge (q′init, (f1, . . . , fn+1),qinit) ∈ E ′, where fi (x) := 0 for i ∈ {1, . . . ,n} and

fn+1 (x) := 1.

In Item 2, the term h(x) can be thought of as a scaling factor that becomes zero when the state of
the polynomial program encodes a VASS configuration with negative counter values.

Denote the collecting semantics of A by the indexed family of sets {Sq : q ∈ Q } and similarly
denote the collecting semantics of A′ by {S ′q : q ∈ Q ′}.

Proposition 17. For all q ∈ Q , Sq is finite if and only if S ′q has dimension at most one.

Proof. As described above, the construction ofA′ is such that for all a ∈ Sq there exists b ∈ S ′q
such that bn+1 � 0 and ai = bi/bn+1 for i = 1, . . . ,n and, conversely, for all b ∈ S ′q such that
bn+1 � 0 the vector a ∈ Zn defined by ai = bi/bn+1, i = 1, . . . ,n, lies in Sq . Moreover, the only
b ∈ S ′q such that bn+1 = 0 is b = 0.

Let q ∈ Q and suppose that Sq is finite. For each configuration (q,a) ∈ Sq the corresponding
configurations (q,b) in S ′q , with ai = bi/bn+1 for i = 1, . . . ,n, all lie on a common line through the

origin in Qn+1. Thus, S ′q is contained in a finite union of lines and thereby has dimension at most
one.

Now, suppose that Sq is infinite. Without loss of generality, say that {a1 : a ∈ Sq } is infinite.

We will show that S ′q has dimension at least two. For this, it will suffice to show that no non-zero
polynomial that mentions only the variables x1 and xn+1 vanishes on S ′q . Here, we use the fact that

the dimension of an affine variety X ⊆ Qn+1
is equal to the largest number d for which there exist

d variables xi1 , . . . ,xid
such that no non-zero polynomial mentioning only variables xi1 , . . . ,xid

vanishes on X (see, e.g., Reference [11, Chapter 9, Section 5]).
By assumption, {b1/bn+1 : b ∈ S ′q ,bn+1 � 0} is infinite. Since each transition of A′ multiplies

the value of the variable xn+1 by at least two and increases the value of the quotient x1/xn+1

by at most one, we deduce that for all � ∈ N there exists b ∈ S ′q such that b1/bn+1 = � and

bn+1 ≥ 2� . It is now straightforward that the only polynomial mentioning only the variables x1

and xn+1 that vanishes on S ′q is the zero polynomial. Indeed, consider such a polynomial F and

denote by G (y,xn+1) the polynomial that is obtained from F by substituting xn+1y for x1. Since
this substitution maps distinct monomials of F to distinct monomials of G, it suffices to show
that G is the zero polynomial. But, by construction, for all � ∈ N there exists m ≥ 2� such that

Journal of the ACM, Vol. 70, No. 5, Article 29. Publication date: October 2023.

29:20 E. Hrushovski et al.

G (�,m) = 0. By a simple argument on dominating terms, this entails that G is identically zero.

This concludes the argument that S ′q has dimension at least two and the proof of the proposition
is complete. �

Theorem 18. There is no algorithm that computes the Zariski closure of the collecting semantics

of a given polynomial program.

Proof. Given a representation of an algebraic set as the zero set of a polynomial ideal, we can
compute its dimension (see, e.g., Reference [11, Chapter 9, Section 3]). Hence, if we can compute
the Zariski closure of the collecting semantics {S ′q : q ∈ Q } of the polynomial automatonA′, then

we can compute the dimension of sets S ′q , for each q ∈ Q , and hence determine boundedness of
the reset VASS A (which, recall, is an undecidable problem). �

8 CONCLUSION

The main technical contribution of this article is a procedure to compute the Zariski closure of the
semigroup generated by a given finite set of rational square matrices of the same dimension. We
have not attempted to analyse the complexity of this procedure. However a recent paper [38] gives
explicit complexity bounds for the problem of computing the Zariski closure of a finitely generated
group of invertible matrices, which is an important component of our algorithm for semigroups.
It may be that the techniques developed in this article can be used to obtain explicit bounds on the
degree of the generators of an ideal representing the Zariski closure of a given finitely generated
matrix semigroup. If this were the case, then one could compute a set of generators essentially
using only linear algebra (in the spirit of the algorithm of Reference [37] for computing algebraic
invariants of a given maximum degree for a given affine program).

REFERENCES

[1] S. Almagor, D. Chistikov, J. Ouaknine, and J. Worrell. 2018. O-minimal invariants for linear loops. In Proceedings of the

45th International Colloquium on Automata, Languages and Programming. Schloss Dagstuhl - Leibniz-Zentrum fuer

Informatik.

[2] L. Babai, R. Beals, J.-Y. Cai, G. Ivanyos, and E. M. Luks. 1996. Multiplicative equations over commuting matrices. In

Proceedings of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms. 498–507.

[3] T. Becker and V. Weispfenning. 1993. Gröbner Bases: A Computational Approach to Commutative Algebra (Graduate

Texts in Mathematics, Vol. 141). Springer-Verlag, New York.

[4] V. D. Blondel, E. Jeandel, P. Koiran, and N. Portier. 2005. Decidable and undecidable problems about quantum automata.

SIAM J. Comput. 34, 6 (2005), 1464–1473.

[5] A. R. Bradley and Z. Manna. 2007. The Calculus of Computation—Decision Procedures with Applications to Verification.

Springer.

[6] D. Cachera, T. P. Jensen, A. Jobin, and F. Kirchner. 2014. Inference of polynomial invariants for imperative programs:

A farewell to Gröbner bases. Sci. Comput. Program. 93 (2014), 89–109.

[7] Henri Cohen. 1993. A Course in Computational Algebraic Number Theory. Springer-Verlag.

[8] M. Colón. 2007. Polynomial approximations of the relational semantics of imperative programs. Sci. Comput. Program.

64, 1 (2007), 76–96.

[9] P. Cousot and R. Cousot. 1977. Abstract interpretation: A unified lattice model for static analysis of programs by

construction or approximation of fixpoints. In Proceedings of the 4th ACM Symposium on Principles of Programming

Languages. 238–252.

[10] P. Cousot and N. Halbwachs. 1978. Automatic discovery of linear restraints among variables of a program. In Proceed-

ings of the 5th Annual ACM Symposium on Principles of Programming Languages. 84–96.

[11] D. A. Cox, J. B. Little, and D. O’Shea. 1997. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic

Geometry and Commutative Algebra (2nd ed.). Springer-Verlag.

[12] S. de Oliveira, S. Bensalem, and V. Prevosto. 2016. Polynomial invariants by linear algebra. In Proceedings of the 14th

International Symposium on Automated Technology for Verification and Analysis, Vol. 9938. 479–494.

[13] H. Derksen, E. Jeandel, and P. Koiran. 2005. Quantum automata and algebraic groups. J. Symb. Comput. 39, 3-4 (2005),

357–371.

Journal of the ACM, Vol. 70, No. 5, Article 29. Publication date: October 2023.

On Strongest Algebraic Program Invariants 29:21

[14] C. Dufourd, A. Finkel, and Ph. Schnoebelen. 1998. Reset nets between decidability and undecidability. In Proceedings

of the 25th International Colloquium on Automata, Languages and Programming (Lecture Notes in Computer Science,

Vol. 1443). Springer, 103–115.

[15] Nathanaël Fijalkow, Engel Lefaucheux, Pierre Ohlmann, Joël Ouaknine, Amaury Pouly, and James Worrell. 2019. On

the Monniaux problem in abstract interpretation. In Proceedings of the 26th International Symposium on Static Analysis.

[16] N. Fijalkow, P. Ohlmann, J. Ouaknine, A. Pouly, and J. Worrell. 2017. Semialgebraic invariant synthesis for the

Kannan-Lipton Orbit problem. In Proceedings of the 34th Symposium on Theoretical Aspects of Computer Science. 29:1–

29:13.

[17] Nathanaël Fijalkow, Pierre Ohlmann, Joël Ouaknine, Amaury Pouly, and James Worrell. 2019. Complete semialgebraic

invariant synthesis for the Kannan-Lipton orbit problem. Theor. Comput. Syst. 63, 5 (2019), 1027–1048.

[18] S. Gulwani and G. C. Necula. 2003. Discovering affine equalities using random interpretation. In Proceedings of the

30th SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM, 74–84.

[19] E. Hrushovski. 2002. Computing the Galois group of a linear differential equation. In Banach Center Publications

(Differential Galois Theory), Vol. 58. Institute of Mathematics, Polish Academy of Sciences.

[20] A. Humenberger, M. Jaroschek, and L. Kovács. 2018. Invariant generation for multi-path loops with polynomial assign-

ments. In Proceedings of the 19th International Conference on Verification, Model Checking, and Abstract Interpretation

(Lecture Notes in Computer Science, Vol. 10747). Springer, 226–246.

[21] G. Jacob. 1977. Un algorithme calculant le cardinal, fini ou infini, des demi-groupes de matrices. Theor. Comput. Sci. 5,

2 (1977), 183–204.

[22] G. Jacob. 1978. La finitude des représentations linéaires des semi-groupes est décidable. J. Algeb. 52, 2 (1978), 437–459.

[23] D. Kapur. 2013. Elimination techniques for program analysis. In Programming Logics - Essays in Memory of Harald

Ganzinger (Lecture Notes in Computer Science, Vol. 7797). 194–215.

[24] M. Karr. 1976. Affine relationships among variables of a program. Acta Inf. 6 (1976), 133–151.

[25] Z. Kincaid, J. Cyphert, J. Breck, and T. W. Reps. 2018. Non-linear reasoning for invariant synthesis. PACMPL 2, POPL

(2018), 54:1–54:33.

[26] P. Koiran. 2000. The complexity of local dimensions for constructible sets. J. Complex. 16, 1 (2000), 311–323.

[27] L. Kovács. 2008. Reasoning algebraically about P-Solvable loops. In Proceedings of the 14th International Conference on

Tools and Algorithms for the Construction and Analysis of Systems, Held as Part of the Joint European Conferences on

Theory and Practice of Software (Lecture Notes in Computer Science, Vol. 4963). Springer, 249–264.

[28] L. Kovacs. 2018. personal communication.

[29] L. Ildikó Kovács and T. Jebelean. 2005. An algorithm for automated generation of invariants for loops with condition-

als. In Proceedings of the 7th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing

(SYNASC’05). IEEE Computer Society, 245–249.

[30] A. Mandel and I. Simon. 1977. On finite semigroups of matrices. Theor. Comput. Sci. 5, 2 (1977), 101–111.

[31] A. Markov. 1947. On certain insoluble problems concerning matrices. Doklady Akad. Nauk SSSR 57, 6 (1947), 539–542.

[32] D. W. Masser. 1988. Linear relations on algebraic groups. In New Advances in Transcendence Theory. Cambridge Uni-

versity Press.

[33] A. Miné. 2001. The octagon abstract domain. In Proceedings of the 8th Working Conference on Reverse Engineering.

[34] David Monniaux. 2019. On the decidability of the existence of polyhedral invariants in transition systems. Acta Inf.

56, 4 (2019), 385–389.

[35] D. W. Morris. 2001. Introduction to Arithmetic Groups. arXiv:math/0106063.

[36] Markus Müller-Olm and Helmut Seidl. 2004. Computing polynomial program invariants. Inf. Process. Lett. 91, 5 (2004),

233–244.

[37] M. Müller-Olm and H. Seidl. 2004. A note on Karr’s algorithm. In Proceedings of the 31st International Colloquium on

Automata, Languages and Programming (Lecture Notes in Computer Science, Vol. 3142). Springer, 1016–1028.

[38] Klara Nosan, Amaury Pouly, Sylvain Schmitz, Mahsa Shirmohammadi, and James Worrell. 2022. On the computa-

tion of the Zariski closure of finitely generated groups of matrices. In Proceedings of the International Symposium on

Symbolic and Algebraic Computation. ACM, 129–138.

[39] Jan Okniński. 1998. Semigroups of Matrices. World Scientific.

[40] M. Paterson. 1970. Unsolvability in 3 × 3 matrices. Stud. Appl. Math. 49, 1 (1970), 105–107.

[41] I. Potapov and P. Semukhin. 2017. Decidability of the membership problem for 2 × 2 integer matrices. In Proceedings

of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms. 170–186.

[42] E. Rodríguez-Carbonell and D. Kapur. 2007. Automatic generation of polynomial invariants of bounded degree using

abstract interpretation. Sci. Comput. Program. 64, 1 (2007), 54–75.

[43] E. Rodríguez-Carbonell and D. Kapur. 2007. Generating all polynomial invariants in simple loops. J. Symb. Comput.

42, 4 (2007), 443–476.

Journal of the ACM, Vol. 70, No. 5, Article 29. Publication date: October 2023.

http://arxiv.org/abs/math/0106063.

29:22 E. Hrushovski et al.

[44] S. Sankaranarayanan, H. Sipma, and Z. Manna. 2004. Non-linear loop invariant generation using Gröbner bases. In

Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM, 318–329.

[45] P. Schauenburg. 2007. A Gröbner-based treatment of elimination theory for affine varieties. J. Symb. Comput. 9 (2007),

859–870.

[46] B. Steinberg. 2016. Representation Theory of Finite Monoids. Springer.

[47] J. Stillwell. 2016. Elements of Mathematics: From Euclid to Gödel. Princeton University Press.

Received 8 April 2023; revised 11 July 2023; accepted 17 July 2023

Journal of the ACM, Vol. 70, No. 5, Article 29. Publication date: October 2023.

