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Abstract 
 

Growing evidence implicates systemic inflammation in the loss of structural brain 

integrity in natural ageing and disorder development. Chronic stress and glucocorticoid 

exposure can potentiate inflammatory processes and have also been linked to neuronal atrophy, 

particularly in the hippocampus and the human neocortex. To improve understanding of 

emerging maladaptive interactions between stress and inflammation, this study examined 

evidence for glucocorticoid- and inflammation-mediated neurodegeneration in healthy mid-

aged adults. 

N=169 healthy adults (mean age = 39.4, 64.5% female) were sampled from the general 

population in the context of the ReSource Project. Stress, inflammation and neuronal atrophy 

were quantified using physiological indices of chronic stress (hair cortisol and cortisone 

concentration), systemic inflammation (interleukin-6, high-sensitive C-reactive protein), the 

systemic inflammation index (SII), hippocampal volume (HCV) and cortical thickness (CT) in 

regions of interest.  Structural equation models were used to examined evidence for pathways 

from stress and inflammation to neuronal atrophy. 

 Model fit indices indicated good representation of stress, inflammation, and 

neurological data through the constructed models (CT model: robust RMSEA = 0.041, robust 

𝛘2= 910.90; HCV model: robust RMSEA < 0.001, robust 𝛘2 = 40.95). We replicated typical 

negative age-cortical thickness associations (Anterior cingulate cortex (β =-0.51, p < .001), 

Parahippocampal Cortex (β = -0.50, p = .012), Frontal Lobe (β = -0.56, p < .001) and Temporal 

Lobe (β = -0.61, p < .001). Among inflammatory indices, only the SII was positively associated 

with hair cortisol as one indicator of chronic stress (β = 0.18, p<.05). Direct and indirect 

pathways from chronic stress and systemic inflammation to cortical thickness or hippocampal 

volume were non-significant. 

We identify the SII as a potential marker of systemic inflammation in human 

psychobiological studies. More generally, these data suggest that neurophysiological 

associations found in at-risk populations are not detectable in healthy, mid-aged populations. 

We conclude that inflammation and glucocorticoid-mediated neurodegeneration may only 

emerge during advanced ageing and disorder processes and may thus have limited use as early 

risk markers. Future work should examine these pathways in prospective longitudinal designs, 

for which the present investigation serves as a baseline.  
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1. Introduction 
 

1.1. Short Overview  

Mental health conditions and other disorders of the brain are highly prevalent and rank 

among the leading causes for global burden of disease (James et al., 2018; Wittchen, et al., 

2011). Chronic stress and pro-inflammatory activity are both linked to neuronal atrophy in 

cortical and subcortical structures, forming pathways that are implicated in accelerated ageing, 

cognitive impairment and the development of psychiatric brain disorders, such as Major 

Depressive Disorder (MDD) (Chrousos, 2009; Chung et al., 2002; Kremen et al., 2010; 

Lebedeva et al., 2018; Marsland et al., 2015; McEwen, 2008; Sapolsky, 2004). To date, 

however, few studies have comprehensively investigated the complex interrelation of chronic 

stress, systemic inflammation, and brain morphology. In particular, little is known about the 

emergence of their maladaptive interactions and potential pathways to disorder. The present 

study addresses this gap by comprehensively investigating the interplay between glucocorticoid 

(GC) exposure, systemic inflammation, and cortical and subcortical brain morphology in a 

healthy mid-aged sample. Data was collected at baseline of a large-scale, multi-disciplinary 

longitudinal mental training intervention study, the ReSource Project (Singer et al., 2016). 

Using structural equation models (SEMs), we evaluate evidence for different neurobiological 

pathways that may indicate emerging maladaptive processes, which is crucial to identify 

neurobiological risk factors and targets for future preventive interventions. 

 

1.2. Chronic Stress 

Among the most important endocrine mediators of the stress response and its long-term 

health effects are GCs like cortisol, the end-product of the human hypothalamus-pituitary-

adrenal (HPA) axis. Released as part of a cascade of stress-mediators, cortisol is an essential 

signalling agent in mainly down-regulatory feedback loops that centrally involve the brain 

(McEwen, 2007). Prolonged exposure to stress and GC signalling appears to impair these 

regulatory mechanisms, potentially via reduced sensitivity to GC signalling (glucocorticoid 

receptor resistance (GCR) hypothesis, Cohen et al., 2012) leading to a failure to properly 

terminate HPA axis activity (Chrousos et al., 1993; Chrousos, 1995). 

Chronic stress and the resulting sustained GC exposure have been linked to neuronal 

atrophy and the development of prevalent psychiatric disorders such as MDD (Duman & 

Monteggia, 2006). Particularly well-documented is the neurotoxic effect of sustained GC 

exposure in the hippocampus (Geerlings & Gerritsen, 2017; Lupien et al., 1998; McEwen & 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 21, 2023. ; https://doi.org/10.1101/2023.10.18.562886doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.18.562886
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

 

Gould, 1990; McEwen, 1999; Sapolsky & Pulsinelli, 1985; Sapolsky, 1990), the brain region 

expressing the highest density of GC receptors (McEwen, 1982). Inverse associations with basal 

cortisol levels have, however, also been found for regional and total brain volumes (Sigurdsson 

et al., 2012), and HPA axis dysregulation seems to be linked to smaller left ACC volumes 

(MacLullich et al., 2006) and frontal lobe atrophy (Gold et al., 2005). Similarly, total diurnal 

cortisol output is inversely associated with cortical thickness (CT) (Lebedeva et al., 2018). In 

patients with early-stage MDD, serum cortisol levels were inversely correlated with CT in 

several brain areas (Liu et al., 2015). Overall, neurotoxic effects of stress and GC exposure thus 

appear to extend beyond the hippocampus to cortical brain regions (Lupien & Lepage, 2001).  

 

1.3. Systemic Inflammation  

Similar to the stress response, the acutely adaptive innate immune response can become 

damaging if not appropriately terminated. Failure to downregulate pro-inflammatory activity 

can result in systemic inflammation, a maladaptive state that manifests itself with prolonged, 

low-level elevations of pro-inflammatory cytokines, such as Interleukin-6 (IL-6) and high-

sensitive C-reactive Protein (CRP), the most commonly assessed markers of systemic 

inflammation (Slavich, 2020; Rohleder, 2019). Like chronic stress, systemic inflammation is 

associated with a range of psychological disorders such as MDD (Rosenblat et al., 2014) and 

Schizophrenia (Stojanovic et al., 2014). Neuroinflammation and the co-occurrence of systemic 

inflammation and neuronal atrophy have in particular been implicated in the development of 

these disorders. Early studies in rats show that neuropathological changes and loss of synapses 

and granule neurons are associated with chronic neuroinflammation and IL-6 concentrations 

(Campbell et al., 1993; Heyser et al., 1997; Qiu et al., 1998). IL-6 also appears to modulate 

neurogenesis in the dentate gyrus of the mouse hippocampus (Vallieres et al., 2002).  

In humans, associations between inflammation and brain morphology are commonly 

studied in clinical samples. Systemic inflammation in terms of elevated CRP, IL-6 and TNF-α 

levels is inversely correlated to lower CT and cortical grey matter volume in patients with 

schizophrenia (Jacomb et al., 2018; Massuda et al., 2014), and it has been associated with the 

promotion of neurodegeneration in chronic neurodegenerative diseases, such as Alzheimer’s 

disease (Holmes et al., 2007).   

Similar associations have also been found in subclinical samples, albeit less 

prominently, providing evidence for an inflammatory pathway towards progressive neuronal 

atrophy and disorder development. Studies involving healthy subjects report inverse 

associations between IL-6 or CRP levels and hippocampal grey matter and total brain volume 
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(Gu et al., 2017; Jefferson et al., 2007; Marsland et al., 2008 ), as well as cortical thinning in 

middle aged (van Velzen et al., 2017) and elderly individuals without dementia (Fleischman et 

al., 2010; McCarrey et al., 2014). Biological ageing processes are accompanied by enhanced 

levels of inflammatory markers (Godbout & Johnson, 2004; Wei et al., 1992; Ye & Johnson, 

1999;) and also appear to play an important role in the interplay of chronic stress and systemic 

inflammation (Gouin et al., 2008). Thus, early onset of inflammation-mediated neuronal 

atrophy may serve as a risk marker for accelerated ageing and neurodegenerative disorders.  

 

1.4. Stress, Inflammation, and Brain Structure 

Chronic stress and cortisol exposure closely interact with systemic (or chronic low-

grade) inflammation. While GCs generally have a regulatory effect on the acute immune 

response (Waage et al., 1990), prolonged psychosocial stress is associated with elevated low-

grade inflammation (Rohleder, 2014, 2019). It is thus presumed that chronic stress may alter 

GC signalling and lead to a pro-inflammatory effect (Ader et al., 1995; Arimura et al., 1994; 

Black, 2002; Chrousos, 2000; Hänsel et al., 2010; McEwen et al., 1997). The GC receptor 

hypothesis for example assumes that due to permanent exposure to GCs, not only receptors in 

hypothalamus and pituitary but also in immune cells such as macrophages become insensitive 

to GCs, which can lead to the disruption of GC-induced suppression of inflammation (Cohen 

et al., 2012; Miller et al., 2008; Stark et al., 2001). Multiple human studies suggest a link 

between increased stress experience and inflammation, including in healthy adults (Maes et al., 

1998; Miller et al., 2002). Chronic stress and systemic inflammation are highly synergistic in 

their interactive effect on many pathologies such as Metabolic Syndrome (MtS) (Almadi et al., 

2013) or coronary artery disease (Nijm & Jonasson, 2009). As mentioned above, MDD was 

found to be closely related to inflammatory processes, but it also interacts with stress in 

inhibiting the negative feedback loop of inflammation, adding to the enduring state of 

inflammation, especially pronounced in aged subjects (Robles et al., 2016). 

Although the interplay between chronic stress and systemic inflammation and their joint 

contribution to alterations in brain morphology has been subject to several high-profile reviews, 

studies examining these associations in a joint statistical model and in a healthy sample are rare. 

Summarizing the animal literature, Sorrells and Sapolsky (2007) and Kubera et al. (2011) 

conclude that in animal models, stress-induced inflammation enhances neurodegeneration, 

which in turn may provoke depression-like behaviours (see also inflammatory and 

neurodegenerative hypothesis, Maes et al., 2009). Fewer studies have been able to investigate 

this maladaptive triangulation in humans, although one review on MDD patients identifies 
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similar relations on chronic stress, neuroinflammation and alterations in brain structure and 

function (Kim & Won, 2017). Regarding endocrine stress markers, reduced GC responsiveness 

and enhanced IL-6 levels were also related to thinner cortices in patients with mood disorders 

(van Velzen et al., 2017) and to smaller hippocampi for patients with MDD specifically (Frodl 

et al., 2012).  

 

1.5. Present Study  

Beyond the above clinical studies, little is known about the relation between chronic 

stress, systemic inflammation, and brain structure in healthy adults and the general population. 

As such, it remains unclear to what extent chronic stress and systemic inflammation are linked 

to neuronal atrophy in the absence of disorder or advanced ageing, and whether stress and 

inflammation interact or potentiate each other as risk factors for neurodegenerative processes. 

The present work examines this question, aiming to inform neurobiological models of disorder 

development and chronic stress and inflammation as risk indices for early neurodegenerative 

processes. To map the interrelation of physiological indices related to chronic stress, systemic 

low-grade inflammation, and cortical and subcortical brain morphology, we used multimodal 

cross-sectional data from N=169 healthy adults (N=150 for subcortical morphology). Data 

collected at baseline of a large-scale, multi-disciplinary longitudinal mental training 

intervention study, the ReSource Project (Singer et al., 2016). Chronic stress was measured via 

hair cortisol (HCC) and cortisone (HEC) concentrations. Systemic inflammation was indicated 

by blood serum levels of IL-6, hs-CRP and the systemic inflammation index (SII). Finally, we 

examined brain morphology via hippocampal volume (HCV), since hippocampal structure and 

function are closely tied to stress and neuroinflammation, as well as via thickness of the 

neocortex (cortical thickness, CT).  CT provides an anatomically specific (Lemaitre et al., 2012; 

Winkler et al., 2010) and particularly sensitive measures of grey matter variation, especially in 

ageing (Hutton et al., 2009), for example compared to volume-based methods. 

 In previous work of the ReSource Project, we demonstrated the multidimensionality of 

the psychophysiological construct stress and its relation to various health and sleep measures 

using network analysis (Engert et al., 2018). Here, we now examine inflammation and stress as 

latent constructs and in their relation to brain morphology. Using SEMs, we test secondary 

hypotheses on specific physiological pathways to neurostructural atrophy involving mediation 

and moderation effects through stress and inflammation: We expected a positive association 

between the latent constructs chronic stress and systemic inflammation, representing stress-

related inflammation, potentially mediated via the BMI, which we previously found associated 
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with single inflammatory and stress-related biomarkers in the same sample (Engert et al., 2018). 

We also expected a cumulative negative effect of elevated chronic stress and systemic 

inflammation on both CT and HCV, in form of either an indirect effect of stress effects via 

inflammation, or a moderation effect of inflammation and stress. Finally, next to IL-6 and hs-

CRP as our primary indicators of systemic inflammation, we further tested an indirect 

association from chronic stress to brain structure via the systemic inflammation index (SII) 

which is assumed to have prognostic value for overall survival in certain cancers (Hong et al., 

2015; Zhong et al., 2017) but has not yet been examined in humans with regard to psychosocial 

factors such as stress-related inflammation.  

2. Methods 
 

2.1. Sample and Recruitment 

Data for the present investigation was collected in the context of a large-scale 9-month 

longitudinal mental training study, the ReSource Project (Singer et al., 2016). Healthy 

participants with an age range of 20 – 55 years (mean age = 39.4, SD = 9.8) were recruited (see 

Tables 2a, 2b). All participants underwent mental and physical health screenings as well as two 

clinical diagnostic interviews [Structured Clinical Interview for DSM-IV Axis-I (SCID-I) 

(Wittchen & Pfister, 1997); SCID-II for Axis-II disorders (First et al., 1997)]. Participants were 

excluded if they fulfilled the criteria for an Axis I disorder in the past two years or an Axis-II 

disorder at any time in their life. Additional inclusion criteria were several chronic physical 

pathologies and intake of medication affecting the HPA axis or central nervous system. A 

detailed description of the recruitment procedure and information about the final sample of the 

ReSource Project can be found in Singer et al., 2016, chapter 7. The ReSource Project was 

registered via the Protocol Registration System of ClinicalTrial.gov (Identifier NCT01833104) 

and the study was approved by the research ethics boards of Leipzig University (ethic number: 

376/12-ff) and Humboldt University Berlin (ethic numbers: 2013–20, 2013–29, 2014–10). 

Participants gave written informed consent, received financial compensation, and could 

withdraw from the study at any time. 

For the present investigation, only data collected at the pre-training baseline (T0) of the 

ReSource Project was evaluated. Although the data reported here were previously published in 

the context of other research questions mostly pertaining to the effect of ReSource training 

(Degering et al., 2023; Engert et al., 2018; Puhlmann, Engert, et al., 2019; Puhlmann, Linz, et 

al., 2021; Puhlmann, Valk, et al., 2019; Puhlmann, Vrtička, et al., 2021; Valk et al., 2017, 2023), 

none of these studies investigated the complex relation between measures of chronic  stress 
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physiology, inflammatory activity and brain morphology, and potentially associated pathways 

of moderation and mediation. The present study is an a-posteriori exploratory study not planned 

during the designing of the ReSource Project and all formulated hypotheses and models should 

be considered secondary.   

 

2.2. Measures 

2.2.1. Indices of Chronic Stress: Hair cortisol (HCC) and Hair Cortisone Concentration 

(HEC). A popular biomarker of chronic stress is the extraction of HCC, and HEC as a 

complementary measure, which both serve as indices of systemic cortisol exposure (Short et 

al., 2016; Stalder & Kirschbaum, 2012; Stalder et al., 2012). HCC appears to be quite robust to 

confounders and is associated with well-known correlates of stress-related cardiometabolic 

parameters such as systolic blood pressure and BMI (Stalder et al., 2017). Both HCC and HEC 

are generally more stable compared to serum or salvia cortisol levels that are part of a dynamic 

system with day-to-day changes in activity (Ross et al., 2014). For their assessment, hair strands 

were collected close to the scalp and a 3 cm segment, corresponding to approximately 3 months 

of cortisol exposure, was analysed. Concentrations of HCC and cortisone were measured with 

liquid chromatography-tandem mass spectrometry (LC–MS/MS) (Gao et al., 2016).  

2.2.2. Indices of Systemic Inflammation: Interleukin-6 (IL-6) and high-sensitive C-

Reactive Protein (hs-CRP). IL-6 and hs-CRP were used as primary indices of systemic 

inflammation. For the assessment of IL-6 and hs-CRP levels, 5.5 ml blood was collected and 

stored at -80 degrees Celsius. Hs-CRP was measured with a latex-enhanced 

immunoturbidimetric assay using the Siemens Advia 1800 Clinical Chemistry System 

(Siemens Healthineers, Tarrytown, NY, USA). IL-6 levels were detected with a solid phase 

enzyme-labelled chemiluminescence immunometric assay using the random access 

chemiluminescence-immunoassay system (IMMULITE 2000, Siemens Healthineers, 

Tarrytown, NY, USA) (for more details see Engert et al. (2018)). Levels of IL-6 follow a 

circadian cycle, with lower levels during daytime and higher levels during the night (Vgontzas 

et al., 2005). To account for these fluctuations, time of sampling was documented and included 

as a control variable in all analysis.  

2.2.3. Systemic Inflammation Index (SII). Systemic inflammation is a complex and 

extensive process, during which not only levels of IL-6 and hs-CRP but also the count of 

circulating leukocytes such as neutrophile granulocytes and monocytes is increased while the 

lymphocyte count is decreased (Rink et al., 2015). Some studies use ratios of neutrophils, 

thrombocytes (platelets) and lymphocytes as indicators for systemic inflammation (Systemic 
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inflammation Index, SII; Hong et al., 2015; Wu et al., 2016).  The SII can thus be derived from 

a complete blood count and is calculated as the product of thrombocytes and neutrophils divided 

by lymphocytes (Hong et al., 2015; Hu et al., 2014; Wu et al., 2016).  

The SII is assumed to have prognostic value for overall survival in certain cancers (Hong 

et al., 2015; Zhong et al., 2017). Even though the SII is an index of systemic inflammation, it 

has not yet been examined with regard to psychosocial factors in humans. In the current study, 

IL-6 and hs-CRP were considered as the main marker of systemic inflammation, and the SII 

was related to chronic stress and brain structure in an additional analysis.  

2.2.4. MRI Acquisition. High resolution T1-weighted structural MRI images were 

acquired on a 3T Trio TIM scanner (Siemens Verio; Siemens, Erlangen, Germany) with a 32 -

channel head coil, using magnetization-prepared rapid gradient echo (MPRAGE; 176 sagittal 

slices; repetition time, 2300 milliseconds; echo time, 2.98 milliseconds; inversion time, 900 

milliseconds; flip angle, 7; field of view, 240256 mm2; and matrix, 240256; 111 mm3 voxels) 

sequence.  

2.2.5. Cortical Thickness (CT) Calculation and selection of ROIs. We used Freesurfer 

version 5.1.0 (consistent with previous publications from the ReSource Project, e.g. Valk et al., 

2017) to generate cortical surface models for the calculation of CT following previously 

reported steps (Dale et al., 1999; Fischl et al., 1999; see also Valk et al., 2017). Briefly, T1-

weighted images were intensity normalized and skull stripped, and the grey/ white matter 

cortical boundary tessellated. After automatic correction of topology, the surface deformations 

converged the cortical interfaces of the inner boundary (gray/white matter) and outer boundary 

(gray matter/ cerebrospinal fluid), following intensity gradients. Surface reconstruction was 

visually inspected by two independent raters and inaccuracies manually corrected. CT was then 

calculated as the shortest distance from the gray/white matter boundary to the gray matter/CSF 

boundary at each vertex on the tessellated surface. For more details of the processing steps see 

Dale et al., (1999); Fischl et al., (1999) and Han et al., (2006). Regions of interest (ROIs) for 

CT analyses were parcellated following the Desikan-Killiany Atlas as implemented in 

FreeSurfer 5.1.0. 

To not overload our models, and since it is advised to build SEMs on a strong conceptual 

foundation (Bentler & Chou, 1987; Hoyle, 1995), we focused on CT of 14 regions of interest 

identified from the literature. We compared ROIs of studies with healthy samples (Kaur et al., 

2015; Kremen et al., 2010; Marsland et al., 2015;  Piras et al., 2012; Savic, 2015; van Velzen 

et al., 2017), pathological samples (Chiappelli et al., 2017; Jacomb et al., 2018; Lebedeva et al., 

2018; Liu et al., 2015; Massuda et al., 2014; Ottino-Gonzalez et al., 2017;  Veit et al., 2014; ), 
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aged samples (Fleischman et al., 2010), longitudinal studies (Gu et al., 2017; McCarrey et al., 

2014) and two reviews (Byrne et al., 2016; Sheline, 2003), selecting ROIs in which CT had 

been found to relate to either HCC/HEC or IL-6/CRP. All ROIs and the final factor solution for 

ROIs is presented in Table 3 (for more details on ROI selection see Supplementary Methods 

C). 

2.2.6. Hippocampal Volume (HCV) Calculation. On the base of the high resolution T1-

weighted structural MRI images CA1-3, CA4/DG, and subiculum (SUB) were segmented, with 

a patch-based algorithm in every subject. Briefly, the algorithm employs a population-based 

patch normalization relative to a template library (Kulaga-Yoskovitz et al., 2015), which has 

shown high segmentation accuracy of hippocampal subfields in previous validations 

(Caldairou et al., 2016). All HCV segmentations were quality controlled by two independent 

raters and any segmentations with average quality rating scores lower than 5 were excluded 

from the analysis. (details on the algorithm and quality control procedure see Puhlmann, et al., 

2021). While Freesurfer also provides estimates of HCV, we use the patch-based method 

throughout the ReSource Project following our preregistered study. The resulting surface-based 

estimates show decent overlap with Freesurfer estimates (Puhlmann et al., 2021).  

2.2.7. Other Measures. The body mass index (BMI), as the relation of the individual’s 

body weight in kilograms to the squared height, was incorporated as an indicator for adipose 

tissue. 

 

2.3. Data Analysis. 

Data analysis was conducted using Structural Equation Models (SEMs). SEMs allow 

the testing of complex interrelations by representing conceptual research models through a 

system of connected regression-style equations. An additional benefit of SEMs is the possibility 

to include latent factors, which are estimated based on multiple indicator variables via factor 

analysis. In our hypothesized model, we indicated chronic stress via HCC and HEC, systemic 

inflammation via IL-6 and hs-CRP, and CT via the selected ROIs, based on the above reviewed 

evidence. Using multiple indices increases the reliability of latent factors and reduces the 

influence of random measurement noise. Total left and right HCV were added as measurement 

variables without forming a latent construct as did literature did not indicate subfield specific 

associations. 

2.3.1. Sample Size Calculation. Following recommendations to ensure adequately 

powered SEMs (MacCallum et al., 1996; Westland, 2010), we assessed whether the pre-existing 

sample size was sufficient for the planned model using the A-priori Sample Size Calculator for 
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Structural Equation Models (Soper, 2022). Given the levels of complexity in both models, the 

available sample sizes of N= 169 respectively N = 150 could be considered sufficient. For more 

details on the sample size calculation see Supplementary Methods E. 

2.3.2. Variable pre-processing. The biological variables IL-6, hs-CRP, HCC and HEC 

were ln-transformed to remedy their typical skewed distribution. Outliers defined as +/- SD = 

3 were winsorized to the upper or lower boundary of 3 SDs, respectively. For more details on 

the statistical pre-processing of variables see Supplementary Methods D.  

  2.3.3. Fitting the SEMs. To address our conceptual model of interrelations, we fit one 

SEM to map the chronic stress and systemic inflammation in relation to CT, and one in relation 

to HCV (Figure 1 and 2, respectively). Chronic stress and systemic low-grade inflammation 

were included as latent factors as described above, with one indicator variable fixed to λ = 1, as 

recommended for hypothesis-driven measurement models with few indicator variables 

(Hayduk & Littvay, 2012). The SII was included exploratorily as an additional endogenous 

variable. BMI was modelled as a mediator from chronic stress to systemic inflammation 

following previous results (Engert et al., 2018). Age, hormonal status (male, female no cycle, 

female hormonal contraceptives, female natural cycle) and information about smokers/ non- 

smokers were always included as exogenous variables (i.e., variables that perform only as 

independent variable) to account for their well-established influence on cortisol/cortisone, 

inflammatory proteins and brain structure (Fleischman et al., 2010;  Godbout & Johnson, 2004; 

Kajantie & Phillips, 2006; Thayer et al., 2010; Ugur et al., 2018;  Veit, R., et al., 2014; Wright 

et al., 2006).   

As the first physiological endpoint, CT was added to the SEM. To robustly represent 

CT without averaging across functionally and structurally heterogeneous regions, we formed 

five latent CT factors based on the ROI estimates (Table 1). For more details on the formation 

of latent factors of cortical thickness see Supplementary Methods C. 
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Table 1 

Latent factor solution of ROIs. 

Latent 

Variable ACC Frontal Lobe Temporal Lobe 

Entorhinal 

Cortex 

Parahippocampal 

Cortex 

Indicator 

Variables 

left Frontal 

Rostral ACC 

left Frontal 

Superior Gyrus 

left Temporal Fusiform 

Gyrus 

left Entorhinal 

Cortex 

left Parahippocampal 

Cortex 

 right Frontal 

rostral ACC 

right Frontal 

Superior Gyrus 

right Temporal Fusiform 

Gyrus 

right 

Entorhinal 

Cortex 

right Parahippocampal 

Cortex 

 left Frontal 

Caudal ACC 

left Frontal Caudal 

Middle Gyrus 

left Superior Temporal 

Banks 

  

 right Frontal 

Caudal ACC 

right Frontal 

Caudal Middle 

Gyrus 

right Superior Temporal 

Banks 

  

  left Paracentral 

Gyrus 

left Temporal Inferior 

Gyrus 

  

  right Paracentral 

Gyrus 

right Temporal Inferior 

Gyrus 

  

  left Precentral 

Gyrus 

left Transverse-temporal 

Gyrus 

  

  right Precentral 

Gyrus 

right Transverse-

temporal Gyrus 

  

   left Temporal Middle 

Gyrus 

  

   right Temporal Middle 

Gyrus 

  

   left Temporal Superior 

Gyrus 

  

   right Temporal Superior 

Gyrus 

  

 

  

The second model relating chronic stress and systemic inflammation to HCV was 

identical to the model comprising CT, except that all latent factors of CT were replaced with 

the two exogenous variables HCV in the left and right hemisphere.  

2.3.4. Path analyses and model comparisons. To test the statistical significance of direct 

associations, potential moderation effects and indirect associations between the latent 

constructs and indicator variables of interest, we conducted path-analyses within the two fitted 

SEMs. Indirect associations were evaluated within an implicit procedure (Rungtusanatham et 

al., 2014), testing for the joint significance of every constituent path of an indirect association. 

For moderation analysis, product indicators for latent interaction factors were calculated, 

following the residual centring approach (Little et al., 2006), which is also recommended by 

Steinmetz et al. (2011). All path coefficient estimates are reported in the all-variables-

standardized-version, Std.all. For evaluating statistical significance an α-level of .05 was 

applied. Family-wise error correction was performed on significant parameters by applying the 

false discovery rate (FDR) (Benjamini & Hochberg, 1995) to correct for multiple comparisons 

Final five latent factor solution, each latent factor listed with all its ROI indicator variables. 
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of paths to each of the different brain areas included in the model. Once all models were set, 

direct model comparisons of nested models were evaluated through significance testing of chi^2 

differences. 

3. Results 
 

3.1. Final Sample 

From the N = 332 subjects included at study baseline (T0) (Singer et al., 2016), n = 169 

provided data for all present variables of interest in the CT model and n = 150 in the HCV 

model and could thus be used in the SEM analysis (see Table 2a) and b), for more details see 

also Supplementary Table S1).  

Missing data was excluded case wise, as implemented by the lavaan (Rosseel, 2012) and sem 

(Fox, 2006) packages to ensure a true and unbiased correlation matrix as input for the SEM. 

Most cases were excluded due to missing HCC or HEC data, because sampling of hair for the 

assessment of HCC and HEC was presented to participants as an optional rather than a core 

testing procedure, leading to lower adherence rates (see Puhlmann et al., 2021 for further 

details). 

 

Table 2a. Sample Characteristics CT for model (N=169). 

  Female male overall 

  (N=109) (N=60) (N=169) 

Mean age (SD) 41.0 (9.40) 36.6 (9.84) 39.4 (9.75) 

Mean BMI (SD) 23.0 (3.29) 24.3 (2.84) 23.5 (3.19) 

Median SII  (Gpt/l) [range] 471 [170, 1280] 406 [147, 1320] 445 [147, 1320] 

Median IL-6 (pg/ml) [range] 1.49 [1.28, 24.6] 1.44 [1.28, 3.40] 1.47 [1.28, 24.6] 

Median hs-CRP (mg/L) [range] 0.925 [0.128, 13.2] 0.500 [0.138, 5.98] 0.709 [0.128, 13.2] 

Median HCC (pg/mg) [range] 3.31 [0.486, 95.2] 4.81 [0.181, 52.1] 3.83 [0.181, 95.2] 

Median HEC (pg/mg) [range] 8.89 [1.87, 66.1] 14.6 [2.54, 51.0] 11.0 [1.87, 66.1] 
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Table 2b Sample Characteristics for HCV model (N=150). 

  Female male overall 

  (N=98) (N=52) (N=150) 

Mean age (SD) 40.9 (9.52) 36.1 (9.34) 39.2 (9.70) 

Mean BMI (SD) 23.1 (3.41) 24.4 (2.91) 23.6 (3.30) 

Median SII  (Gpt/l) [range] 477 [170, 1280] 406 [178, 1320] 452 [170, 1320] 

Median IL-6 (pg/mL) [range] 1.49 [1.29, 24.6] 1.44 [1.28, 2.10] 1.48 [1.28, 24.6] 

Median hs-CRP (mg/L [range] 0.943 [0.128, 13.2] 0.532 [0.138, 5.98] 0.741 [0.128, 13.2] 

Median HCC (pg/mg) [range] 3.59 [0.486, 95.2] 4.63 [0.181, 52.1] 3.99 [0.181, 95.2] 

Median HEC (pg/mg) [range] 8.85 [1.87, 61.8] 13.7 [2.54, 45.6] 10.9 [1.87, 61.8] 

 

3.2. Correlations of stress and inflammation biomarkers  

Before building latent constructs, partial correlations between the key risk factors in our 

hypothesized pathways were calculated, namely the chronic stress indicator variables HEC and 

HCC, inflammation indicators hs-CRP and IL-6, as well as SII and BMI. We replicated 

previously identified associations (see Engert et al., 2018) and additionally found that the SII 

was significantly positively correlated with HCC (p<.05) (see Table 3). 

Table 3 

Partial Correlations among stress-, and inflammation-related measures. 

 SII BMI IL6 hs-CRP HCC 

BMI 0.04     

IL6 0.11 0.15*    

hs-CRP -0.01 0.30**** 0.33****   

HCC 0.18* 0.12 -0.01 0.03  

HEC 0.07 0.06 0.02 -0.04 0.69**** 

Partial correlations among stress-, and inflammation-related measures, controlling for age, hormonal status 

(male, female no cycle, female hormonal contraceptives, female natural cycle) and smoking status (smoker, non-

smoker). * p< .05; ** p< .01; *** p< .001; **** p < .0001. 

 

In initial sanity checks, we also confirmed the significance of several common 

associations not directly related to our conceptual research model, such as negative associations 

of age with latent CT factors and HCV, and positive associations between BMI and 

inflammation (see Supplementary Tables S8 and S9 ).
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Figure 1: Structural model with all latent factors of CT, latent factor chronic stress with indicator variables HCC and HEC, latent factor systemic 

inflammation with indicator variables IL-6 and hs-CRP and interaction factor of inflammation and chronic stress. Standardized (latent and observed 

variables) path coefficients are reported. All variances, indicator variables for the CT ROIs and covariations of error terms are hidden for visual clarity. 

Spheres represent latent factors, square boxes measured variables. BMI is modelled as a control variable for all variables except for chronic stress and 

systemic inflammation, where it was modelled as a mediator variable. 
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Figure 2: Structural model with HCV in left and right hemisphere, latent factor chronic stress with indicator variables HCC and HEC, latent factor 

systemic inflammation with indicator variables IL-6 and hs-CRP and interaction factor of inflammation and chronic stress. Standardized (latent and 

observed variables) path coefficients are reported. All variances, indicator variables for the CT ROIs and covariations of error terms are hidden for 

visual clarity. Spheres represent latent factors, square boxes measured variables. BMI is modelled as a control variable for all variables except for 

chronic stress and systemic inflammation, where it was modelled as a mediator variable.

- 
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3.3. Cortical Thickness Model  

Setting up the full CT Model (N=169) as described above (see Figure 1), resulted in an 

overidentified model with good model fit indicated by most model fit measures (robust chi^2 

(910.904) < 2*df (706), robust CFI (.929), robust TLI (.918), robust RMSEA (.041), robust 

SRMR (.059)). Path analysis indicated that the factor chronic stress was not associated with any 

factor representing CT (see Supplementary Table S2). Although there was a significant effect 

of chronic stress on CT in the anterior cingulate cortex, this effect was no longer significant 

after correcting for multiple comparisons with the positive false discovery rate (see Figure 1). 

Similarly, there was no significant indirect association of chronic stress and CT via systemic 

inflammation (Figure 1). 

Path analysis further showed that systemic inflammation was not associated with any 

factor representing CT (see Figure 1) and that chronic stress did not play a moderating role in 

the association of systemic inflammation and CT (see Supplementary Table S3) and Figure 1).  

 

3.4. Hippocampal Model  

Setting up the HCV model, modelling the same paths as in the CT model, two Heywood 

cases occurred. They were handled by setting the product indicator variables to be equal (for 

more details on the handling of Heywood cases see Supplementary Methods B). All model fit 

indices and parameter estimates in the HCV model are reported in the Heywood case corrected 

version. Thus, the full HCV model (see Figure 2), too, resulted in an overidentified model with 

good model fit (robust chi^2 (40.945) < 2*df (60), robust CFI (1.000), robust TLI (1.117 

truncated to 1.000) robust RMSEA (.000), robust SRMR (.060)) (see Hu & Bentler, 1999; 

MacCallum et al., 1996). 

For the Hippocampal Model, similar to CT, path analysis showed no associations of 

either chronic stress or systemic inflammation with the left or right HCV (see Figure 2; 

Supplementary Table S4 and S5)). There was also no significant specific indirect association 

with chronic stress via systemic inflammation and chronic stress did not play a moderating role 

in the relation between systemic inflammation and HCV.  

All results of the path analyses were confirmed when addressing the same hypothesized 

paths via model comparison of constrained models with the paths of interest individually fixed 

to zero, compared to unconstrained models.  
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3.5. Exploratory analysis 

In exploratory path analyses, the association of SII with factors of CT and HCV were 

evaluated, as well as an indirect association of chronic stress via the SII (see Figure 1 and 2).   

None of these associations was significant in the CT model (see Schaeferementary Table S6). 

In the HCV model the SII was significantly positively associated with the left HCV (see 

Supplementary Table S7), this effect was no longer significant after correcting for multiple 

comparisons with the positive false discovery rate. The SII was furthermore significantly 

related to the latent factor chronic stress (p<.05) in the HCV model (see Table 3 and Figure 2). 

 

4. Discussion  
 

Chronic stress and related glucocorticoid (GC) exposure are linked to systemic 

inflammation (Chrousos, 2000; Cohen et al., 2012; Hänsel et al., 2010), and both processes 

have been implicated in advanced neurodegeneration (Gu et al., 2017; Jefferson et al., 2007; 

Kim & Won, 2017; Lebedeva et al., 2018; Lupien et al., 1998; Marsland et al., 2008; McEwen 

& Gould, 1990; McEwen, 1999).  Less is known, however, about the relation of biomarkers of 

low-grade inflammation, chronic stress and brain morphology in healthy subclinical 

populations. The present study adopted a structural equation modelling (SEM) approach to map 

these relations in a population-based sample of healthy adults, recruited in the context of the 

ReSource Project (Singer et al., 2016), including the influence of age and BMI, with the aim of 

informing the use of these indices in future preventive healthcare approaches.  

 Models replicated patterns of associations between age and cortical thickness (Salat et 

al., 2004), age and BMI, and sex and BMI (Heymsfield et al., 1993; Mazariegos et al., 1994). 

In line with other studies (Wright et al., 2006) we also find a positive association of the latent 

systemic inflammation factor with the body mass index (BMI). This result replicates our earlier 

work in the same participants, showing a link between BMI and specifically IL-6 levels in a 

network analysis investigating the multidimensional interrelations of a large set of stress- and 

health-related measures (Engert et al., 2018). Subcutaneous adipose tissue is a contributor to 

increased levels of cytokines and especially IL-6 (Kern et al., 2001; Mohamed-Ali et al., 1997), 

properties that seem to be represented well in our latent inflammation factor. However, none of 

the formulated expectations could be supported in this sample. Chronic stress was not 

associated with HCV or any CT in the identified ROIs, directly or indirectly via systemic 

inflammation. Similarly, systemic inflammation, was neither directly associated with HCV or 
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CT, nor was this association moderated by chronic stress. The systemic inflammation index 

(SII) based on neutrophil, thrombocyte and lymphocyte cell counts emerged as a potentially 

interesting additional inflammatory marker that was associated with HCC, although this link 

was rendered nonsignificant when HCC and HEC were grouped into a latent chronic stress 

factor. 

Especially in patients and at-risk groups such as older adults, evidence for a link 

between neuronal atrophy and chronic enhanced cortisol levels (Lebedeva et al., 2018) as well 

as systemic inflammation (Fleischman et al., 2010; Jefferson et al., 2007; Kaur et al., 2015; van 

Velzen et al., 2017) is substantial. Chronic stress and systemic inflammation have also been 

quite reliably associated (Arimura et al., 1994; Black, 2002; Chrousos, 2000; Cohen et al., 2012; 

Hänsel et al., 2010; McEwen et al., 1997; Munck & Náray-Fejes-Tóth, 1994; Stark et al., 2001). 

Thus, it is likely that the absence of associations between chronic stress, systemic inflammation 

and brain structure in the present study are related to the sample demographics. Participants 

were thoroughly screened for health at the beginning of the ReSource project as it was a 9-

month intense longitudinal training study (Singer et al., 2016) and even for a healthy sample 

displayed relatively low inflammatory levels of CRP (comparing the current sample medians 

to serum levels considered normal, CRP (mg/L) current median = .709; ref median = 2.8; see 

Table 2 and Ridker et al., 2000). Accordingly, the results suggest that it is likely that 

maladaptive interactions only become pronounced as degenerative processes begin to take hold. 

This may prompt the conclusion that preventive interventions should best be focused on these 

sensitive periods and at-risk samples. In our own previous work in this sample, we also found 

that a meditation-based mental training with potential health benefits only reduced CRP and 

IL-6 values of participants with elevated levels at baseline (Puhlmann et al., 2019). 

To map transitions from health to disorder, future studies at this intersection should 

attempt to identify critical levels of GCs and cytokines for risk and degenerative processes, 

already in sub-clinical samples.  

Many of the associations between chronic stress , systemic inflammation  and atrophy 

of brain structure are strongly influenced by age and more pronounced in elderly subjects 

(Buford & Willoughby, 2008; Chung et al., 2002; Godbout & Johnson, 2004; Gouin et al., 

2008; Kiecolt-Glaser et al., 2003;  Licastro et al., 2005; Marsland et al., 2015; Weaver et al., 

2002; Wei et al., 1992; Ye & Johnson, 1999; ), where they emerge even in the absence of 

disorder (e.g., Gu et al., 2017). With an age range of 20-55 years and a mean age of 40.7 years, 

the current mid-aged sample was younger than the samples of older to old adults commonly 

examined in studies that find associations between stress, inflammation and CT (e.g., mean 
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ages of 55, 59, 69 and 81; Fleischman et al., 2010; Kremen et al., 2010; Lebedeva et al., 2018; 

McCarrey et al., 2014). It can be extrapolated that effects emerge only as ageing proceeds. 

Future work should address this research question using samples with even broader age ranges 

that include old and very old individuals and, ideally, in prospective longitudinal studies.  

 Although stress and inflammation have been found to affect brain structure in many 

studies (DePablos et al., 2006; Kubera et al., 2011; Ottino-Gonzalez et al., 2017; Sorrells & 

Sapolsky, 2007), there is still no consensus on the scope, characteristics and direction of this 

effect. Possibly, other pathways than hypothesized here may converge better in healthy 

samples, especially when combined with more nuanced measurement approaches. For example, 

chronically enhanced levels of GCs can potentially have different, even opposing effects in the 

central nervous system and the periphery, and the precise neurotoxic effect of GC-related 

inflammation also depends on the specific brain area of inflammation (Sorrells & Sapolsky, 

2007). SEMs can be employed to test a combination of pro- and anti-inflammatory GC 

pathways in future investigations.  

Rather than adopting a more nuanced approach, as we did in this study, other studies 

have opted to analyse the combined burden of chronic stress and inflammation via the allostatic 

load (AL) index. This integrative measure of prolonged stress exposure and associated 

physiological sequelae, including inflammation and metabolic changes, has been identified as 

a correlate of cortical structure (Juster et al., 2010; McEwen, 1993; Ottino-Gonzalez et al., 

2017). While this might be a promising approach in terms of identifying at-risk groups and 

monitoring overall health trajectories, we argue that more nuanced systemic models are 

necessary to understand the emergence of disorder and potential therapeutic pathways, such as 

stress-reduction, more fully. 

Relatedly, correlations of individual biomarkers showed that the SII, but not IL-6 or hs-

CRP, was significantly associated with HCC. This is one indication that the SII may be a 

valuable contribution to the construct of systemic inflammation when it comes to associations 

with physiological chronic stress. The lack of correlation with IL-6 and hs-CRP confirms that 

it captures divergent aspects of inflammation and underscores that some associations are only 

revealed in granular approaches that differentiate distinct markers of the same construct. 

 

4.1. Strength and weaknesses 

Previous studies of chronic stress, systemic inflammation and neuronal atrophy have 

mostly examined only two out of the three variables at a time. Here, we took a more 

comprehensive approach and jointly modelled all three variables, allowing us to examine 
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multiple pathways of association simultaneously, while also considering the risk factors age, 

BMI, hormonal status and smoking status. By conducting a sample size calculation, we ensured 

our sample size to be sufficient for the estimation of both our models. Although this approach 

is a significant strength of our study, issues with variable convergence to latent factors may also 

have hindered pathway detection. Notably, hs-CRP and IL-6 did not show high shared variance 

in their formative latent factor. This raises the question of whether IL-6 and hs-CRP share 

sufficient variance to be grouped, or if they should rather be considered as separate measures 

of systemic inflammation. Furthermore, although two indicator variables for a latent construct 

are sufficient in some cases (Hayduk & Littvay, 2012), three or more indicator variables are 

often recommended (Bentler & Chou, 1987; Hayduk & Littvay, 2012). 

In general, SEMs and the hypothesized pathways might converge better in samples with 

naturally higher variation in stress and inflammation markers, such as ageing and patient 

populations.  

Another strength of the present study is the selection of literature-based regions of 

interest (ROIs) for CT as well as the literature-based assumptions about the modelled paths. 

This approach is, however, also relatively conservative, working only with CT averages in 

previously identified regions. Whole-brain exploratory analyses with single indicator variables 

like CRP or IL-6 may be more sensitive to subtle associations, but do not allow the mapping of 

complex pathways.  

Finally, while the present investigation is informative for preventive healthcare 

approaches, future studies may focus on more diverse samples or sensitive periods. Next to 

ageing, consequences of a permanent exposure to stress are also particularly severe in children, 

especially if chronic stress is experienced during the developmental period (Björntorp, 2001; 

Pervanidou & Chrousos, 2012). Pathway analyses in the context of longitudinal studies will be 

crucial to establish a quasi-causal chain between chronic stress, systemic inflammation and 

neurodegeneration in humans. 

 

4.2. Conclusion 

A better understanding of the interplay between chronic stress and systemic 

inflammation in their common contribution to neurodegeneration is crucial to combat stress-

related disorders that emerge from cumulative burden in this interdependent system (McEwen, 

2000, 2007). The present study used SEMs for nuanced modelling of the relation between 

chronic stress, systemic inflammation and brain morphology as latent constructs. Models 

identified no evidence for meaningful associations between these three constructs in a sample 
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of healthy adults from the general population. We conclude that neurophysiological 

associations found previously in at-risk populations of either much older or diseased 

participants may not be detectable in the absence of such vulnerability. This suggests that other 

indices may be more informative as early markers of risk and vulnerability for 

neurodegenerative disorders. Although latent constructs did not covary as expected, 

multivariate models were successfully fit and replicated established associations for example 

between age and neuronal atrophy. These findings can serve as a baseline for studies 

investigating similar research questions in pathological or ageing populations. We further 

identified the SII as a potential informative marker of systemic inflammation in human 

psychobiological studies. Overall, we advocate the use of both the SII and path modelling in 

future studies to do justice to the complexity and interconnectivity of psychophysiological 

constructs.  
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