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Abstract 31 

 32 

Growing evidence implicates systemic inflammation in the loss of structural brain 33 

integrity in natural ageing and disorder development. Chronic stress and glucocorticoid 34 

exposure can potentiate inflammatory processes and have also been linked to neuronal atrophy, 35 

particularly in the hippocampus and the human neocortex. To improve understanding of 36 

emerging maladaptive interactions between stress and inflammation, this study examined 37 

evidence for glucocorticoid- and inflammation-mediated neurodegeneration in healthy mid-38 

aged adults. 39 

N=169 healthy adults (mean age = 39.4, 64.5% female) were sampled from the general 40 

population in the context of the ReSource Project. Stress, inflammation and neuronal atrophy 41 

were quantified using physiological indices of chronic stress (hair cortisol (HCC) and cortisone 42 

(HEC) concentration), systemic inflammation (interleukin-6 (IL-6), high-sensitive C-reactive 43 

protein (hs-CRP)), the systemic inflammation index (SII), hippocampal volume (HCV) and 44 

cortical thickness (CT) in regions of interest.  Structural equation models were used to examine 45 

evidence for pathways from stress and inflammation to neuronal atrophy. Model fit indices 46 

indicated good representation of stress, inflammation, and neurological data through the 47 

constructed models (CT model: robust RMSEA = 0.041, robust 𝛘2= 910.90; HCV model: robust 48 

RMSEA < 0.001, robust 𝛘2 = 40.95). Among inflammatory indices, only the SII was positively 49 

associated with hair cortisol as one indicator of chronic stress (β = 0.18, p<.05). Direct and 50 

indirect pathways from chronic stress and systemic inflammation to cortical thickness or 51 

hippocampal volume were non-significant. In exploratory analysis, the SII was inversely related 52 

to mean cortical thickness. 53 

Our results emphasize the importance of considering the multidimensionality of 54 

systemic inflammation and chronic stress, with various indicators that may represent different 55 

aspects of the systemic reaction. We conclude that inflammation and glucocorticoid-mediated 56 

neurodegeneration indicated by IL-6 and hs-CRP and HCC and HEC may only emerge during 57 

advanced ageing and disorder processes, still the SII could be a promising candidate for 58 

detecting associations between inflammation and neurodegeneration in younger and healthy 59 

samples. Future work should examine these pathways in prospective longitudinal designs, for 60 

which the present investigation serves as a baseline.   61 
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1. Introduction 62 

 63 

1.1. Short Overview  64 

Mental health conditions and other disorders of the brain are highly prevalent and rank 65 

among the leading causes for global burden of disease (James et al., 2018; Wittchen, et al., 66 

2011). Chronic stress and pro-inflammatory activity are both linked to neuronal atrophy in 67 

cortical and subcortical structures, forming pathways that are implicated in accelerated ageing, 68 

cognitive impairment and the development of psychiatric brain disorders, such as Major 69 

Depressive Disorder (MDD) (Chrousos, 2009; Chung et al., 2002; Kremen et al., 2010; 70 

Lebedeva et al., 2018; Marsland et al., 2015; McEwen, 2008; Sapolsky, 2004).  71 

To date, there has been limited research comprehensively exploring the intricate relationship 72 

between chronic stress, systemic inflammation, and brain morphology. Specifically, there is a 73 

lack of understanding regarding the development of their maladaptive interactions and potential 74 

pathways to disorders. A thorough understanding of these interactions, including chronic and 75 

subclinical levels of systemic indicators, could not only provide insight into early intervention 76 

opportunities but also offer valuable information on effective intervention strategies.  77 

The present study addresses this gap by comprehensively investigating the interplay 78 

between glucocorticoid (GC) exposure, systemic inflammation, and cortical and subcortical 79 

brain morphology in a healthy mid-aged sample. Data was collected at baseline of a large-scale, 80 

multi-disciplinary longitudinal mental training intervention study, the ReSource Project (Singer 81 

et al., 2016). Using structural equation models (SEMs), we evaluate evidence for different 82 

neurobiological pathways that may indicate emerging maladaptive processes, which is crucial 83 

to identify neurobiological risk factors and targets for future preventive interventions. 84 

 85 

1.2. Chronic Stress 86 

Among the most important endocrine mediators of the stress response and its long-term 87 

health effects are GCs like cortisol, the end-product of the human hypothalamus-pituitary-88 

adrenal (HPA) axis. Released as part of a cascade of stress-mediators, cortisol is an essential 89 

signalling agent in mainly down-regulatory feedback loops that centrally involve the brain 90 

(McEwen, 2007). Prolonged exposure to stress and GC signalling appears to impair these 91 

regulatory mechanisms, potentially via reduced sensitivity to GC signalling (glucocorticoid 92 

receptor resistance (GCR) hypothesis, Cohen et al., 2012) leading to a failure to properly 93 

terminate HPA axis activity (Chrousos et al., 1993; Chrousos, 1995). While glucocorticoid 94 

resistance is typically expected after long-term stress exposure (Cohen et al., 2012), changes in 95 
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HPA axis functioning in terms of inability to suppress post-dexamethasone cortisol levels have 96 

been found in otherwise healthy populations (MacLullich et al., 2006, Jeckel et al., 2010).  97 

Chronic stress and the resulting sustained GC exposure have been linked to neuronal atrophy 98 

in a range of studies. Particularly well-documented is the neurotoxic effect of sustained GC 99 

exposure in the hippocampus (Geerlings & Gerritsen, 2017; Lupien et al., 1998; McEwen & 100 

Gould, 1990; McEwen, 1999; Sapolsky & Pulsinelli, 1985; Sapolsky, 1990), the brain region 101 

expressing the highest density of GC receptors (McEwen, 1982). Inverse associations with basal 102 

cortisol levels have, however, also been found for regional and total brain volumes (Sigurdsson 103 

et al., 2012), and HPA axis dysregulation seems to be linked to smaller left anterior cingulate 104 

cortex (ACC) volumes (MacLullich et al., 2006) and frontal lobe atrophy (Gold et al., 2005). 105 

Similarly, total diurnal cortisol output is inversely associated with cortical thickness (CT) 106 

(Lebedeva et al., 2018). Furthermore, sustained GC exposure has been linked to the 107 

development of prevalent disorders such as MDD and the corresponding neuronal atrophy 108 

(Duman & Monteggia). In patients with early-stage MDD, serum cortisol levels were inversely 109 

correlated with CT in several brain areas (Liu et al., 2015). Overall, neurotoxic effects of stress 110 

and GC exposure thus appear to extend beyond the hippocampus to cortical brain regions 111 

(Lupien & Lepage, 2001).  112 

Given these adverse and neurotoxic impacts of chronic stress, there is a pressing need for a 113 

deeper comprehension of the health relevance of subclinical cortisol levels, particularly in mid-114 

aged and healthy individuals. The association between reported experienced stress and elevated 115 

GC levels in healthy adults is not straightforward and detected in some (Almadi et al., 2013) 116 

but not other studies (Jeckel et al., 2010, Engert et al., 2018, Prado-Gascó, et al., 2019). 117 

Researchers are thus looking for biomarkers of physiological stress and disorder, which may 118 

facilitate early detection of stress load and disease risk. This necessity served as the impetus for 119 

the current study. 120 

 121 

1.3. Systemic Inflammation  122 

Similar to the stress response, the acutely adaptive innate immune response can become 123 

damaging if not appropriately terminated. Failure to downregulate pro-inflammatory activity 124 

can result in systemic inflammation, a maladaptive state that manifests itself with prolonged, 125 

low-level elevations of pro-inflammatory cytokines, such as Interleukin-6 (IL-6) and high-126 

sensitive C-reactive Protein (hs-CRP), the most commonly assessed markers of systemic 127 

inflammation (Slavich, 2020; Rohleder, 2019).  128 
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Like chronic stress, systemic inflammation is associated with a range of psychological 129 

disorders such as MDD (Rosenblat et al., 2014) and Schizophrenia (Stojanovic et al., 2014). 130 

Neuroinflammation and the co-occurrence of systemic inflammation and neuronal have been 131 

implicated in the development of these disorders. Early studies in rats show that 132 

neuropathological changes and loss of synapses and granule neurons are associated with chronic 133 

neuroinflammation and IL-6 concentrations (Campbell et al., 1993; Heyser et al., 1997; Qiu et 134 

al., 1998). IL-6 also appears to modulate neurogenesis in the dentate gyrus of the mouse 135 

hippocampus (Vallieres et al., 2002).  136 

In humans, associations between inflammation and brain morphology are commonly 137 

studied in clinical samples. Systemic inflammation in terms of elevated CRP, IL-6 and TNF-α 138 

levels is inversely correlated to lower CT and cortical grey matter volume in patients with 139 

schizophrenia (Jacomb et al., 2018; Massuda et al., 2014), and it has been associated with the 140 

promotion of neurodegeneration in chronic neurodegenerative diseases, such as Alzheimer’s 141 

disease (Holmes et al., 2007).  Similar associations have also been found in subclinical samples, 142 

albeit less prominently, providing evidence for an inflammatory pathway towards progressive 143 

neuronal atrophy and disorder development. Studies involving healthy subjects report inverse 144 

associations between IL-6 or CRP levels and hippocampal grey matter and total brain volume 145 

(Jefferson et al., 2007; Marsland et al., 2008), as well as cortical thinning in middle aged (van 146 

Velzen et al., 2017) and elderly individuals without dementia (Fleischman et al., 2010; 147 

McCarrey et al., 2014; Gu et al., 2017). Biological ageing processes are accompanied by 148 

enhanced levels of inflammatory markers (Godbout & Johnson, 2004; Wei et al., 1992; Ye & 149 

Johnson, 1999;) and also appear to play an important role in the interplay of chronic stress and 150 

systemic inflammation (Gouin et al., 2008). Thus, early onset of inflammation-mediated 151 

neuronal atrophy may serve as a risk marker for accelerated ageing and neurodegenerative 152 

disorders.  153 

 154 

1.4. Stress, Inflammation, and Brain Structure 155 

Chronic stress and cortisol exposure closely interact with systemic (or chronic low-156 

grade) inflammation. While GCs generally have a regulatory effect on the acute immune 157 

response (Waage et al., 1990), prolonged psychosocial stress is associated with elevated low-158 

grade inflammation (Rohleder, 2014, 2019). It is thus presumed that chronic stress may alter 159 

GC signalling and lead to a pro-inflammatory effect (Ader et al., 1995; Arimura et al., 1994; 160 

Black, 2002; Chrousos, 2000; Hänsel et al., 2010; McEwen et al., 1997). The GC receptor 161 

hypothesis for example assumes that due to permanent exposure to GCs, not only receptors in 162 
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hypothalamus and pituitary but also in immune cells such as macrophages become insensitive 163 

to GCs, which can lead to the disruption of GC-induced suppression of inflammation (Cohen 164 

et al., 2012; Miller et al., 2008; Stark et al., 2001). Multiple human studies suggest a link 165 

between increased stress experience and inflammation, including in healthy adults (Maes et al., 166 

1998; Miller et al., 2002). Chronic stress and systemic inflammation are highly synergistic in 167 

their interactive effect on many pathologies such as Metabolic Syndrome (MtS) (Almadi et al., 168 

2013), MDD (Robles et al., 2016) or coronary artery disease (Nijm & Jonasson, 2009).  169 

Although the interplay between chronic stress and systemic inflammation and their joint 170 

contribution to alterations in brain morphology has been subject to several high-profile reviews, 171 

studies examining these associations in a joint statistical model and in a healthy sample are rare. 172 

Summarizing the animal literature, Sorrells and Sapolsky (2007) and Kubera et al. (2011) 173 

conclude that in animal models, stress-induced inflammation enhances neurodegeneration, 174 

which in turn may provoke depression-like behaviours (see also inflammatory and 175 

neurodegenerative hypothesis, Maes et al., 2009). Fewer studies have been able to investigate 176 

this maladaptive triangulation in humans, although one review on MDD patients identifies 177 

similar relations on chronic stress, neuroinflammation and alterations in brain structure and 178 

function (Kim & Won, 2017). Regarding endocrine stress markers, reduced GC responsiveness 179 

and enhanced IL-6 levels were also related to thinner cortices in patients with mood disorders 180 

(van Velzen et al., 2017) and to smaller hippocampi for patients with MDD specifically (Frodl 181 

et al., 2012).       182 

 183 

1.5. Present Study      184 

In addition to the clinical studies mentioned, there is limited understanding of how 185 

chronic stress, systemic inflammation, and brain structure are connected in healthy adults and 186 

the general population. This may hinder the use of subclinical levels of glucocorticoids and 187 

inflammatory markers as early indicators of diseases related to neurodegeneration. The extent 188 

to which chronic stress and systemic inflammation are linked to neuronal atrophy in the absence 189 

of disorder or advanced aging, as well as the potential combined effects of stress and 190 

inflammation as risk factors for neurodegenerative processes, remains understudied. This study 191 

aims to address these questions to enhance our understanding of disorder development and to 192 

identify chronic stress and inflammation as risk factors for early neurodegenerative processes. 193 

To map the interrelation of physiological indices related to chronic stress, systemic low-grade 194 

inflammation, and cortical and subcortical brain morphology, we used multimodal cross-195 

sectional data from N=169 healthy adults (N=150 for subcortical morphology). Data collected 196 
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at baseline of a large-scale, multi-disciplinary longitudinal mental training intervention study, 197 

the ReSource Project (Singer et al., 2016). In the context of this study, chronic stress refers to 198 

the prolonged stress physiological load over several weeks and months, measured via hair 199 

cortisol (HCC) and hair cortisone (HEC) concentrations (Short et al., 2016; Stalder & 200 

Kirschbaum, 2012; Stalder et al., 2012). Systemic inflammation was indicated by blood serum 201 

levels of IL-6, hs-CRP and the systemic inflammation index (SII). Finally, we examined brain 202 

morphology via hippocampal volume (HCV), since hippocampal structure and function are 203 

closely tied to stress and neuroinflammation, as well as via thickness of the neocortex (cortical 204 

thickness, CT).  CT provides an anatomically specific (Lemaitre et al., 2012; Winkler et al., 205 

2010) and particularly sensitive measures of grey matter variation, especially in ageing (Hutton 206 

et al., 2009), for example compared to volume-based methods. 207 

 In previous work of the ReSource Project, we demonstrated the multidimensionality of 208 

the psychophysiological construct stress and its relation to various health and sleep measures 209 

using network analysis (Engert et al., 2018). Here, we now examine inflammation and stress as 210 

latent constructs and in their relation to brain morphology. Using SEMs, we test secondary 211 

hypotheses on specific physiological pathways to neurostructural atrophy involving mediation 212 

and moderation pathways through stress and inflammation: We expected a positive association 213 

between the latent constructs chronic stress and systemic inflammation, representing stress-214 

related inflammation, potentially mediated via the body mass index (BMI), which we 215 

previously found associated with single inflammatory and stress-related biomarkers in the same 216 

sample (Engert et al., 2018). We also expected a negative relation of elevated chronic stress and 217 

systemic inflammation on both CT and HCV, in form of either an indirect association of stress 218 

via inflammation, or a moderation effect in terms of a statistical interaction of the latent 219 

variables systemic inflammation and chronic stress. Finally, next to IL-6 and hs-CRP as our 220 

primary indicators of systemic inflammation, we further tested an indirect association from 221 

chronic stress to brain structure via the systemic inflammation index (SII) which is assumed to 222 

have prognostic value for overall survival in certain cancers (Hong et al., 2015; Zhong et al., 223 

2017) but has not yet been examined in humans with regard to psychosocial factors such as 224 

stress-related inflammation.  225 

2. Methods 226 

 227 

2.1. Sample and Recruitment 228 

Data for the present investigation was collected in the context of a large-scale 9-month 229 

longitudinal mental training study, the ReSource Project (Singer et al., 2016). Healthy 230 
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participants with an age range of 20 – 55 years (mean age = 39.4, SD = 9.8) were recruited (see 231 

Tables 2a, 2b). All participants underwent mental and physical health screenings as well as two 232 

clinical diagnostic interviews [Structured Clinical Interview for DSM-IV Axis-I (SCID-I) 233 

(Wittchen & Pfister, 1997); SCID-II for Axis-II disorders (First et al., 1997)]. Participants were 234 

excluded if they fulfilled the criteria for an Axis I disorder in the past two years or an Axis-II 235 

disorder at any time in their life. Additional exclusion criteria were several chronic physical 236 

pathologies and intake of medication affecting the HPA axis or central nervous system. A 237 

detailed description of the recruitment procedure and information about the final sample of the 238 

ReSource Project can be found in Singer et al., 2016, chapter 7. The ReSource Project was 239 

registered via the Protocol Registration System of ClinicalTrial.gov (Identifier NCT01833104) 240 

and the study was approved by the research ethics boards of Leipzig University (ethic number: 241 

376/12-ff) and Humboldt University Berlin (ethic numbers: 2013–20, 2013–29, 2014–10). 242 

Participants gave written informed consent, received financial compensation, and could 243 

withdraw from the study at any time. 244 

For the present investigation, only data collected at the pre-training baseline (T0) of the 245 

ReSource Project was evaluated. Although the data reported here were previously published in 246 

the context of other research questions mostly pertaining to the effect of ReSource training 247 

(Degering et al., 2023; Engert et al., 2018; Puhlmann, Engert, et al., 2019; Puhlmann, Linz, et 248 

al., 2021; Puhlmann, Valk, et al., 2019; Puhlmann, Vrtička, et al., 2021; Valk et al., 2017, 2023), 249 

none of these studies investigated the complex relation between measures of chronic stress 250 

physiology, inflammatory activity and brain morphology, and potentially associated pathways 251 

of moderation and mediation. The present study is an a-posteriori exploratory study not planned 252 

during the designing of the ReSource Project and all formulated hypotheses and models should 253 

be considered secondary.   254 

 255 

2.2. Measures 256 

2.2.1. Indices of Chronic Stress: Hair cortisol (HCC) and Hair Cortisone Concentration 257 

(HEC). A popular biomarker of chronic stress is the extraction of HCC, and HEC as a 258 

complementary measure, which both serve as indices of systemic cortisol exposure (Short et 259 

al., 2016; Stalder & Kirschbaum, 2012; Stalder et al., 2012). HCC appears to be quite robust to 260 

confounders and is associated with well-known correlates of stress-related cardiometabolic 261 

parameters such as systolic blood pressure and BMI (Stalder et al., 2017). Both HCC and HEC 262 

are generally more stable compared to serum or salvia cortisol levels that are part of a dynamic 263 

system with day-to-day changes in activity (Ross et al., 2014). For their assessment, hair strands 264 
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were collected close to the scalp and a 3 cm segment, corresponding to approximately 3 months 265 

of cortisol exposure, was analysed. Concentrations of HCC and cortisone were measured with 266 

liquid chromatography-tandem mass spectrometry (LC–MS/MS) (Gao et al., 2016).  267 

2.2.2. Indices of Systemic Inflammation: Interleukin-6 (IL-6) and high-sensitive C-268 

Reactive Protein (hs-CRP). IL-6 and hs-CRP were used as primary indices of systemic 269 

inflammation. For the assessment of IL-6 and hs-CRP levels, 5.5 ml blood was collected and 270 

stored at -80 degrees Celsius. Hs-CRP was measured with a latex-enhanced 271 

immunoturbidimetric assay using the Siemens Advia 1800 Clinical Chemistry System 272 

(Siemens Healthineers, Tarrytown, NY, USA). IL-6 levels were detected with a solid phase 273 

enzyme-labelled chemiluminescence immunometric assay using the random access 274 

chemiluminescence-immunoassay system (IMMULITE 2000, Siemens Healthineers, 275 

Tarrytown, NY, USA) (for more details see Engert et al. (2018)). Levels of IL-6 follow a 276 

circadian cycle, with lower levels during daytime and higher levels during the night (Vgontzas 277 

et al., 2005). To account for these fluctuations, time of sampling was documented and included 278 

as a control variable in all analysis.  279 

2.2.3. Systemic Inflammation Index (SII). Systemic inflammation is a complex and 280 

extensive process, during which not only levels of IL-6 and hs-CRP but also the count of 281 

circulating leukocytes such as neutrophile granulocytes and monocytes is increased while the 282 

lymphocyte count is decreased (Rink et al., 2015). Some studies use ratios of neutrophils, 283 

thrombocytes (platelets) and lymphocytes as indicators for systemic inflammation (Systemic 284 

inflammation Index, SII; Hong et al., 2015; Wu et al., 2016).  The SII can thus be derived from 285 

a complete blood count and is calculated as the product of thrombocytes and neutrophils divided 286 

by lymphocytes (Hong et al., 2015; Hu et al., 2014; Wu et al., 2016).  287 

The SII is assumed to have prognostic value for overall survival in certain cancers (Hong 288 

et al., 2015; Zhong et al., 2017). Even though the SII is an index of systemic inflammation, it 289 

has not yet been examined with regard to psychosocial factors in humans. In the current study, 290 

IL-6 and hs-CRP were considered as the main marker of systemic inflammation, and the SII 291 

was related to chronic stress and brain structure in an additional analysis.  292 

2.2.4. MRI Acquisition. High resolution T1-weighted structural MRI images were 293 

acquired on a 3T Trio TIM scanner (Siemens Verio; Siemens, Erlangen, Germany) with a 32 -294 

channel head coil, using magnetization-prepared rapid gradient echo (MPRAGE; 176 sagittal 295 

slices; repetition time, 2300 milliseconds; echo time, 2.98 milliseconds; inversion time, 900 296 

milliseconds; flip angle, 7; field of view, 240256 mm2; and matrix, 240256; 111 mm3 voxels) 297 

sequence.  298 
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2.2.5. Cortical Thickness (CT) Calculation and selection of Regions of Interest (ROIs). 299 

We used Freesurfer version 5.1.0 (consistent with previous publications from the ReSource 300 

Project, e.g. Valk et al., 2017) to generate cortical surface models for the calculation of CT 301 

following previously reported steps (Dale et al., 1999; Fischl et al., 1999; see also Valk et al., 302 

2017). Briefly, T1-weighted images were intensity normalized and skull stripped, and the grey/ 303 

white matter cortical boundary tessellated. After automatic correction of topology, the surface 304 

deformations converged the cortical interfaces of the inner boundary (gray/white matter) and 305 

outer boundary (gray matter/ cerebrospinal fluid), following intensity gradients. Surface 306 

reconstruction was visually inspected by two independent raters and inaccuracies manually 307 

corrected. CT was then calculated as the shortest distance from the gray/white matter boundary 308 

to the gray matter/CSF boundary at each vertex on the tessellated surface. For more details of 309 

the processing steps see Dale et al., (1999); Fischl et al., (1999) and Han et al., (2006). Regions 310 

of interest (ROIs) for CT analyses were parcellated following the Desikan-Killiany Atlas as 311 

implemented in FreeSurfer 5.1.0. 312 

To not overload our models, and since it is advised to build SEMs on a strong conceptual 313 

foundation (Bentler & Chou, 1987; Hoyle, 1995), we focused on CT of 14 regions of interest 314 

identified from the literature. We compared ROIs of studies with healthy samples (Kaur et al., 315 

2015; Kremen et al., 2010; Marsland et al., 2015;  Piras et al., 2012; Savic, 2015; van Velzen 316 

et al., 2017), pathological samples (Chiappelli et al., 2017; Jacomb et al., 2018; Lebedeva et al., 317 

2018; Liu et al., 2015; Massuda et al., 2014; Ottino-Gonzalez et al., 2017;  Veit et al., 2014; ), 318 

aged samples (Fleischman et al., 2010), longitudinal studies (Gu et al., 2017; McCarrey et al., 319 

2014) and two reviews (Byrne et al., 2016; Sheline, 2003), selecting ROIs in which CT had 320 

been found to relate to either HCC/HEC or IL-6/CRP. All ROIs and the final factor solution for 321 

ROIs is presented in Table 1 (for more details on ROI selection see Supplementary Methods 322 

C). 323 

2.2.6. Hippocampal Volume (HCV) Calculation. On the base of the high resolution T1-324 

weighted structural MRI images CA1-3, CA4/DG, and subiculum (SUB) were segmented, with 325 

a patch-based algorithm in every subject. Briefly, the algorithm employs a population-based 326 

patch normalization relative to a template library (Kulaga-Yoskovitz et al., 2015), which has 327 

shown high segmentation accuracy of hippocampal subfields in previous validations 328 

(Caldairou et al., 2016). All HCV segmentations were quality controlled by two independent 329 

raters and any segmentations with average quality rating scores lower than 5 were excluded 330 

from the analysis (details on the algorithm and quality control procedure see Puhlmann, et al., 331 

2021). While Freesurfer also provides estimates of HCV, we use the patch-based method 332 
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throughout the ReSource Project following our preregistered study. The resulting surface-based 333 

estimates show decent overlap with Freesurfer estimates (Puhlmann et al., 2021).  334 

2.2.7. Other Measures. BMI, hormonal status and smoking behaviour are suggested as 335 

potential covariates of markers of stress, inflammation and brain structure (Kajantie & Phillips, 336 

2006; Thayer et al., 2010; Ugur et al., 2018;  Veit, R., et al., 2014; Wright et al., 2006). 337 

The body mass index (BMI), as the relation of the individual’s body weight in kilograms 338 

to the squared height, was incorporated as an indicator for adipose tissue. Hormonal status was 339 

documented through the categories male, female no cycle, female hormonal contraceptives and 340 

female natural cycle and smoking status was measured as binary variable, smokers/ non- 341 

smokers.   342 

 343 

2.3. Data Analysis. 344 

Data analysis was conducted using Structural Equation Models (SEMs). SEMs allow 345 

the testing of complex interrelations by representing conceptual research models through a 346 

system of connected regression-style equations. An additional benefit of SEMs is the possibility 347 

to include latent factors, which are estimated based on multiple indicator variables via factor 348 

analysis. In our hypothesized model, we indicated chronic stress via HCC and HEC, systemic 349 

inflammation via IL-6 and hs-CRP, and CT via the selected ROIs, based on the above reviewed 350 

evidence. Using multiple indices increases the reliability of latent factors and reduces the 351 

influence of random measurement noise. Total left and right HCV were added as measurement 352 

variables without forming a latent construct as literature did not indicate subfield specific 353 

associations. 354 

2.3.1. Sample Size Calculation. Following recommendations to ensure adequately 355 

powered SEMs (MacCallum et al., 1996; Westland, 2010), we assessed whether the pre-existing 356 

sample size was sufficient for the planned model using the A-priori Sample Size Calculator for 357 

Structural Equation Models (Soper, 2022). Given the levels of complexity in both models, the 358 

available sample sizes of N= 169 respectively N = 150 could be considered sufficient. For more 359 

details on the sample size calculation see Supplementary Methods E. 360 

2.3.2. Variable pre-processing. The biological variables IL-6, hs-CRP, HCC and HEC 361 

were ln-transformed to remedy their typical skewed distribution. Outliers defined as +/- SD = 362 

3 were winsorized to the upper or lower boundary of 3 SDs, respectively. Estimating the models 363 

with non-winsorized data did not change our findings. For more details on the statistical pre-364 

processing of variables see Supplementary Methods D.  365 
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  2.3.3. Fitting the SEMs. To address our conceptual model of interrelations, we fit one 366 

SEM to map the chronic stress and systemic inflammation in relation to CT, and one in relation 367 

to HCV (Figure 1 and 2, respectively). Chronic stress and systemic low-grade inflammation 368 

were included as latent factors as described above, with one indicator variable fixed to λ = 1, as 369 

recommended for hypothesis-driven measurement models with few indicator variables 370 

(Hayduk & Littvay, 2012). The SII was included exploratorily as an additional endogenous 371 

variable. BMI was modelled as a mediator from chronic stress to systemic inflammation 372 

following previous results (Engert et al., 2018). Age, hormonal status (male, female no cycle, 373 

female hormonal contraceptives, female natural cycle) and information about smokers/ non- 374 

smokers were always included as exogenous variables (i.e., variables that perform only as 375 

independent variable) to account for their well-established influence on cortisol/cortisone, 376 

inflammatory proteins and brain structure (Fleischman et al., 2010;  Godbout & Johnson, 2004; 377 

Kajantie & Phillips, 2006; Thayer et al., 2010; Ugur et al., 2018;  Veit, R., et al., 2014; Wright 378 

et al., 2006).   379 

As the first physiological endpoint, CT was added to the SEM. To robustly represent 380 

CT without averaging across functionally and structurally heterogeneous regions, we formed 381 

five latent CT factors based on the ROI estimates (Table 1). For more details on the formation 382 

of latent factors of cortical thickness see Supplementary Methods C. 383 

 384 

Table 1 385 

Latent factor solution of ROIs. 386 

Latent 

Variable ACC Frontal Lobe Temporal Lobe 
Entorhinal 

Cortex 
Parahippocampal 

Cortex 

Indicato

r 

Variable

s 

left 

Frontal 

Rostral 

ACC 

left Frontal 

Superior Gyrus 
left Temporal 

Fusiform Gyrus 
left 

Entorhinal 

Cortex 

left 

Parahippocampal 

Cortex 

 right 

Frontal 

rostral 

ACC 

right Frontal 

Superior Gyrus 
right Temporal 

Fusiform Gyrus 
right 

Entorhinal 

Cortex 

right 

Parahippocampal 

Cortex 

 left 

Frontal 

Caudal 

ACC 

left Frontal 

Caudal Middle 

Gyrus 

left Superior 

Temporal Banks 
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Latent 

Variable ACC Frontal Lobe Temporal Lobe 
Entorhinal 

Cortex 
Parahippocampal 

Cortex 

 right 

Frontal 

Caudal 

ACC 

right Frontal 

Caudal Middle 

Gyrus 

right Superior 

Temporal Banks 
  

  left Paracentral 

Gyrus 
left Temporal 

Inferior Gyrus 
  

  right 

Paracentral 

Gyrus 

right Temporal 

Inferior Gyrus 
  

  left Precentral 

Gyrus 
left Transverse-

temporal Gyrus 
  

  right Precentral 

Gyrus 
right Transverse-

temporal Gyrus 
  

   left Temporal 

Middle Gyrus 
  

   right Temporal 

Middle Gyrus 
  

        left Temporal 

Superior Gyrus 
  

   right Temporal 

Superior Gyrus 
  

 387 

  388 

The second model relating chronic stress and systemic inflammation to HCV was 389 

identical to the model comprising CT, except that all latent factors of CT were replaced with 390 

the two exogenous variables HCV in the left and right hemisphere.  391 

2.3.4. Path analyses and model comparisons. To test the statistical significance of direct 392 

associations, potential moderation effects and indirect associations between the latent 393 

constructs and indicator variables of interest, we conducted path-analyses within the two fitted 394 

SEMs. Indirect associations were evaluated within an implicit procedure (Rungtusanatham et 395 

al., 2014), testing for the joint significance of every constituent path of an indirect association. 396 

For moderation analysis, product indicators for latent interaction factors were calculated, 397 

following the residual centring approach (Little et al., 2006), which is also recommended by 398 

Steinmetz et al. (2011). All path coefficient estimates are reported in the all-variables-399 

Final five latent factor solution, each latent factor listed with all its ROI indicator variables. Jo
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standardized-version, Std.all. For evaluating statistical significance an α-level of .05 was 400 

applied. Family-wise error correction was performed on significant parameters by applying the 401 

false discovery rate (FDR) (Benjamini & Hochberg, 1995) to correct for multiple comparisons 402 

of paths to each of the different brain areas included in the model. Once all models were set, 403 

direct model comparisons of nested models were evaluated through significance testing of chi^2 404 

differences. 405 

3. Results 406 

 407 

3.1. Final Sample 408 

From the N = 332 subjects included at study baseline (T0) (Singer et al., 2016), n = 169 409 

provided data for all present variables of interest in the CT model and n = 150 in the HCV 410 

model and could thus be used in the SEM analysis (see Table 2a) and b), for more details see 411 

also Supplementary Table S1).  412 

Missing data was excluded case wise, as implemented by the lavaan (Rosseel, 2012) and sem 413 

(Fox, 2006) packages to ensure a true and unbiased correlation matrix as input for the SEM. 414 

Most cases were excluded due to missing HCC or HEC data, because sampling of hair for the 415 

assessment of HCC and HEC was presented to participants as an optional rather than a core 416 

testing procedure, leading to lower adherence rates (see Puhlmann et al., 2021 for further 417 

details). 418 

 419 

Table 2a. Sample Characteristics CT for model (N=169). 420 

  Female male overall 

  (N=109) (N=60) (N=169) 

Mean age (SD) 41.0 (9.40) 36.6 (9.84) 39.4 (9.75) 

Mean BMI (SD) 23.0 (3.29) 24.3 (2.84) 23.5 (3.19) 

no cycle (%) 25 (22.9) 0 (0) 25 (14.8) 

hormonal contraceptives (%) 24 (22.0) 0 (0) 24 (14.2) 

natural cycle (%) 60 (55.0) 0 (0) 60 (35.5) 

Smoking status (%) 16 (14.7) 5 (8.3) 21 (12.4) 

Median SII (Gpt/l) [range] 471 [170, 1280] 406 [147, 1320] 445 [147, 1320] 

Median IL-6 (pg/ml) [range] 1.49 [1.28, 24.6] 1.44 [1.28, 3.40] 1.47 [1.28, 24.6] 
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Median hs-CRP (mg/L) [range] 0.925 [0.128, 13.2] 0.500 [0.138, 5.98] 0.709[0.128, 13.2] 

Median HCC (pg/mg) [range] 3.31 [0.486, 95.2] 4.81 [0.181, 52.1] 3.83 [0.181, 95.2] 

Median HEC (pg/mg) [range] 8.89 [1.87, 66.1] 14.6 [2.54, 51.0] 11.0 [1.87, 66.1] 

 421 

 422 

Table 2b Sample Characteristics for HCV model (N=150). 423 

  Female male overall 

  (N=98) (N=52) (N=150) 

Mean age (SD) 40.9 (9.52) 36.1 (9.34) 39.2 (9.70) 

Mean BMI (SD) 23.1 (3.41) 24.4 (2.91) 23.6 (3.30) 

no cycle (%) 23 (23.5) 0 (0) 23 (15.3) 

hormonal contraceptives (%) 21 (21.4) 0 (0) 21 (14.0) 

natural cycle (%) 54 (55.1) 0 (0) 54 (36.0) 

Smoking status (%) 14 (14.3) 3 (5.8) 17 (11.3) 

Median SII (Gpt/l) [range] 477 [170, 1280] 406 [178, 1320] 452 [170, 1320] 

Median IL-6 (pg/mL) [range] 1.49 [1.29, 24.6] 1.44 [1.28, 2.10] 1.48 [1.28, 24.6] 

Median hs-CRP (mg/L [range] 0.943 [0.128, 13.2] 0.532 [0.138, 5.98] 0.741[0.128, 13.2] 

Median HCC (pg/mg) [range] 3.59 [0.486, 95.2] 4.63 [0.181, 52.1] 3.99 [0.181, 95.2] 

Median HEC (pg/mg) [range] 8.85 [1.87, 61.8] 13.7 [2.54, 45.6] 10.9 [1.87, 61.8] 

 424 

3.2. Correlations of stress and inflammation biomarkers  425 

Before building latent constructs, partial correlations between the key risk factors in our 426 

hypothesized pathways were calculated, namely the chronic stress indicator variables HEC and 427 

HCC, inflammation indicators hs-CRP and IL-6, as well as SII and BMI. We replicated 428 

previously identified associations (see Engert et al., 2018) and additionally found that the SII 429 

was significantly positively correlated with HCC (p<.05) (see Table 3). 430 

 431 

 432 

 433 
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Table 3 434 

Partial Correlations among stress-, and inflammation-related measures. 435 

 SII BMI IL6 hs-CRP HCC 

BMI 0.04     

IL6 0.11 0.15*    

hs-CRP -0.01 0.30**** 0.33****   

HCC 0.18* 0.12 -0.01 0.03  

HEC 0.07 0.06 0.02 -0.04 0.69**** 

Partial correlations among stress-, and inflammation-related measures, controlling for age, hormonal 436 
status (male, female no cycle, female hormonal contraceptives, female natural cycle) and smoking 437 

status (smoker, non-smoker). * p< .05; ** p< .01; *** p< .001; **** p < .0001. 438 

 439 

In initial sanity checks, we also confirmed the significance of several common 440 

associations not directly related to our conceptual research model, such as negative associations 441 

of age with latent CT factors and HCV, and positive associations between BMI and 442 

inflammation (see Supplementary Tables S8 and S9 ).443 

Jo
urn

al 
Pre-

pro
of



16 

 

 

Figure 1: Structural model with all latent factors of CT, latent factor chronic stress with indicator variables HCC and HEC, latent factor systemic inflammation 

with indicator variables IL-6 and hs-CRP and interaction factor of inflammation and chronic stress. Standardized (latent and observed variables) path coefficients 

are reported. All variances, indicator variables for the CT ROIs and covariations of error terms are hidden for visual clarity. Spheres represent latent factors, square 

boxes measured variables. BMI is modelled as a control variable for all variables except for chronic stress and systemic inflammation, where it was modelled as a 

mediator variable. 
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Figure 2: Structural model with HCV in left and right hemisphere, latent factor chronic stress with indicator variables HCC and HEC, latent factor systemic 

inflammation with indicator variables IL-6 and hs-CRP and interaction factor of inflammation and chronic stress. Standardized (latent and observed variables) path 

coefficients are reported. All variances, indicator variables for the CT ROIs and covariations of error terms are hidden for visual clarity. Spheres represent latent 

factors, square boxes measured variables. BMI is modelled as a control variable for all variables except for chronic stress and systemic inflammation, where it was 

modelled as a mediator variable.

- 
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3.3. Cortical Thickness Model  1 

Setting up the full CT Model (N=169) as described above (see Figure 1), resulted in an 2 

overidentified model with good model fit indicated by most model fit measures (robust chi^2 3 

(910.904) < 2*df (706), robust CFI (.929), robust TLI (.918), robust RMSEA (.041), robust 4 

SRMR (.059)). Path analysis indicated that the factor chronic stress was not associated with any 5 

factor representing CT (see Supplementary Table S2). Although there was a significant 6 

association of chronic stress and CT in the anterior cingulate cortex, this relation was no longer 7 

significant after correcting for multiple comparisons with the positive false discovery rate (see 8 

Figure 1). Similarly, there was no significant indirect association of chronic stress and CT via 9 

systemic inflammation (Figure 1). 10 

Path analysis further showed that systemic inflammation was not associated with any 11 

factor representing CT (see Figure 1) and that chronic stress did not play a moderating role in 12 

the association of systemic inflammation and CT (see Supplementary Table S3) and Figure 1).  13 

 14 

3.4. Hippocampal Model  15 

Setting up the HCV model, modelling the same paths as in the CT model, two Heywood 16 

cases occurred. They were handled by setting the product indicator variables to be equal (for 17 

more details on the handling of Heywood cases see Supplementary Methods B). All model fit 18 

indices and parameter estimates in the HCV model are reported in the Heywood case corrected 19 

version. Thus, the full HCV model (see Figure 2), too, resulted in an overidentified model with 20 

good model fit (robust chi^2 (40.945) < 2*df (60), robust CFI (1.000), robust TLI (1.117 21 

truncated to 1.000) robust RMSEA (.000), robust SRMR (.060)) (see Hu & Bentler, 1999; 22 

MacCallum et al., 1996). 23 

For the Hippocampal Model, similar to CT, path analysis showed no associations of 24 

either chronic stress or systemic inflammation with the left or right HCV (see Figure 2; 25 

Supplementary Table S4 and S5)). There was also no significant specific indirect association 26 

with chronic stress via systemic inflammation and chronic stress did not play a moderating role 27 

in the relation between systemic inflammation and HCV.  28 

All results of the path analyses were confirmed when addressing the same hypothesized 29 

paths via model comparison of constrained models with the paths of interest individually fixed 30 

to zero, compared to unconstrained models.  31 

 32 

 33 

 34 
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3.5. Exploratory analysis 35 

Introducing the SII as a potentially interesting supplement when it comes to measuring 36 

the relation of inflammation and brain structure, we evaluated the association of SII with factors 37 

of CT and HCV, as well as an indirect association of chronic stress via the SII, in exploratory 38 

path analysis (see Figure 1 and 2). 39 

None of these associations was significant in the CT model (see Supplementary Table S6). In 40 

the HCV model the SII was significantly positively associated with the left HCV (see 41 

Supplementary Table S7), which was no longer significant after correcting for multiple 42 

comparisons with the positive false discovery rate. The SII was furthermore significantly 43 

related to the latent factor chronic stress (p<.05) in the HCV model (see Figure 2), in line with 44 

its positive correlation with the measurement variable HCC (see Table 3). 45 

To account for potential associations masked by the grouping of IL-6 and hs-CRP, we included 46 

hs-CRP and IL-6 as separate variables in both the CT and the HCV model, which did not reveal 47 

any unknown significant associations or changed our results in any significant manner (see 48 

Supplementary Tables S11 and S12).  49 

Most of the specific brain regions included in the prespecified SEMs were identified in 50 

studies with at-risk populations. It is possible that other brain regions are sensitive to chronic 51 

stress and inflammation in the present healthy, mid-aged sample. To address this possibility, 52 

we conducted an exploratory SEM with whole brain mean CT as the target endpoint. We set up 53 

this post-hoc model, to explore associations between the observed variables hs-CRP, IL-6 and 54 

SII, the latent variable chronic stress, indicated by HCC and HEC and the latent factor mean 55 

cortical thickness as whole brain measure, indicated by mean CT of the left and right 56 

hemisphere. Setting up the whole brain model (N=169) as described below (see Figure 3), 57 

resulted in an overidentified model with good model fit, indicated by most model fit measures 58 

(robust chi^2 (23.737), robust CFI (.987), robust TLI (.958), robust RMSEA (.060), robust 59 

SRMR (.023)). No associations with hs-CRP, IL-6 or chronic stress were found, but 60 

interestingly, the SII was significantly inversely related with mean cortical thickness (see Figure 61 

3 & Supplementary Table S10). 62 

 63 
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 64 

Figure 3: Structural model with latent factor Mean Cortical Thickness (indicator variables mean cortical 65 

thickness left and right hemisphere), latent factor Chronic Stress with indicator variables HCC and HEC 66 

and further observed variables: IL-6, hs-CRP and SII. Standardized (latent and observed variables) path 67 

coefficients are reported. All variances and covariations of error terms are hidden for visual clarity. 68 

Spheres represent latent factors, square boxes measured variables. All variables are controlled for BMI, 69 

age, hormonal -and smoking status. 70 

 71 

4. Discussion  72 

 73 

Chronic stress and related glucocorticoid (GC) exposure are linked to systemic 74 

inflammation (Chrousos, 2000; Cohen et al., 2012; Hänsel et al., 2010), and both processes 75 

have been implicated in advanced neurodegeneration (Gu et al., 2017; Jefferson et al., 2007; 76 

Kim & Won, 2017; Lebedeva et al., 2018; Lupien et al., 1998; Marsland et al., 2008; McEwen 77 

& Gould, 1990; McEwen, 1999).  Less is known, however, about the relation of biomarkers of 78 

low-grade inflammation, chronic stress and brain morphology in healthy subclinical 79 

populations. The present study adopted a structural equation modelling (SEM) approach to map 80 

these relations in a population-based sample of healthy adults, recruited in the context of the 81 

ReSource Project (Singer et al., 2016), including the influence of age and BMI, with the aim of 82 

informing the use of these indices in future preventive healthcare approaches.  83 
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 Models replicated patterns of associations between age and cortical thickness (Salat et 84 

al., 2004), age and BMI, and sex and BMI (Heymsfield et al., 1993; Mazariegos et al., 1994). 85 

In line with other studies (Wright et al., 2006) we also find a positive association of the latent 86 

systemic inflammation factor with the body mass index (BMI). This result replicates our earlier 87 

work in the same participants, showing a link between BMI and specifically IL-6 levels in a 88 

network analysis investigating the multidimensional interrelations of a large set of stress- and 89 

health-related measures (Engert et al., 2018). Subcutaneous adipose tissue is a contributor to 90 

increased levels of cytokines and especially IL-6 (Kern et al., 2001; Mohamed-Ali et al., 1997), 91 

properties that seem to be represented well in our latent inflammation factor. However, none of 92 

the formulated expectations could be supported in this sample. Chronic stress was not 93 

associated with HCV or any CT in the identified ROIs, directly or indirectly via systemic 94 

inflammation. Similarly, systemic inflammation, was neither directly associated with HCV or 95 

CT, nor was this association moderated by chronic stress. The systemic inflammation index 96 

(SII) based on neutrophil, thrombocyte and lymphocyte cell counts emerged as a potentially 97 

interesting additional inflammatory marker that was associated with HCC, although this link 98 

was rendered nonsignificant when HCC and HEC were grouped into a latent chronic stress 99 

factor in the CT model. Furthermore, in the exploratory whole brain model, the SII exhibited 100 

significant inverse associations with mean cortical thickness. This might hint towards the SII 101 

as an useful supplement when it comes to measuring the relation of inflammation and brain 102 

structure.   103 

Especially in patients and at-risk groups such as older adults, evidence for a link 104 

between neuronal atrophy and chronic enhanced cortisol levels (Lebedeva et al., 2018) as well 105 

as systemic inflammation (Fleischman et al., 2010; Jefferson et al., 2007; Kaur et al., 2015; van 106 

Velzen et al., 2017) is substantial. Chronic stress and systemic inflammation have also been 107 

quite reliably associated (Arimura et al., 1994; Black, 2002; Chrousos, 2000; Cohen et al., 2012; 108 

Hänsel et al., 2010; McEwen et al., 1997; Munck & Náray-Fejes-Tóth, 1994; Stark et al., 2001). 109 

Thus, it is likely that the absence of associations between chronic stress, systemic inflammation 110 

and brain structure in the present study are related to the sample demographics. Participants 111 

were thoroughly screened for health at the beginning of the ReSource project as it was a 9-112 

month intense longitudinal training study (Singer et al., 2016). Participants were excluded if 113 

they were taking medication affecting the HPA axis or the central nervous system but were not 114 

specifically screened for anti-inflammatory medication. 115 

Even for a healthy sample our participants displayed relatively low inflammatory levels 116 

of CRP (comparing the current sample medians to serum levels considered normal, CRP (mg/L) 117 
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current median = .709; ref median = 2.8; see Table 2 and Ridker et al., 2000). Accordingly, the 118 

results suggest that it is likely that maladaptive interactions only become pronounced as 119 

degenerative processes begin to take hold. This may prompt the conclusion that preventive 120 

interventions should best be focused on these sensitive periods and at-risk samples. In our own 121 

previous work in this sample, we also found that a meditation-based mental training with 122 

potential health benefits only reduced CRP and IL-6 values of participants with elevated levels 123 

at baseline (Puhlmann et al., 2019). 124 

To map transitions from health to disorder, future studies at this intersection should 125 

attempt to identify critical levels of GCs and cytokines for risk and degenerative processes, 126 

already in sub-clinical samples. As mentioned above, many of the associations between chronic 127 

stress, systemic inflammation  and atrophy of brain structure are strongly influenced by age and 128 

more pronounced in elderly subjects (Buford & Willoughby, 2008; Chung et al., 2002; Godbout 129 

& Johnson, 2004; Gouin et al., 2008; Kiecolt-Glaser et al., 2003;  Licastro et al., 2005; Marsland 130 

et al., 2015; Weaver et al., 2002; Wei et al., 1992; Ye & Johnson, 1999; ), where they emerge 131 

even in the absence of disorder (e.g., Gu et al., 2017). With an age range of 20-55 years and a 132 

mean age of 40.7 years, the current mid-aged sample was younger than the samples of older to 133 

old adults commonly examined in studies that find associations between stress, inflammation 134 

and CT (e.g., mean ages of 55, 59, 69 and 81; Fleischman et al., 2010; Kremen et al., 2010; 135 

Lebedeva et al., 2018; McCarrey et al., 2014). It can be extrapolated that effects emerge only 136 

as ageing proceeds, but our sample was not suited properly to test this hypothesis. Future work 137 

should address this research question, using samples with even broader age ranges that include 138 

old and very old individuals and, ideally, in prospective longitudinal studies. Since these studies 139 

do require a lot of commitment from the participants side and might reflect some cohort specific 140 

attitudes such as in the case of our cohort, openness to a mental training intervention, potential 141 

selection biases should always be kept in mind when findings are interpreted and generalized. 142 

 Although stress and inflammation have been found to affect brain structure in many 143 

studies (DePablos et al., 2006; Kubera et al., 2011; Ottino-Gonzalez et al., 2017; Sorrells & 144 

Sapolsky, 2007), there is still no consensus on the scope, characteristics and direction of this 145 

effect. Possibly, other pathways than hypothesized here may converge better in healthy 146 

samples, especially when combined with more nuanced measurement approaches. For example, 147 

chronically enhanced levels of GCs can potentially have different, even opposing effects in the 148 

central nervous system and the periphery, and the precise neurotoxic effect of GC-related 149 

inflammation also depends on the specific brain area of inflammation (Sorrells & Sapolsky, 150 
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2007). SEMs can be employed to test a combination of pro- and anti-inflammatory GC 151 

pathways in future investigations.  152 

Rather than adopting a more nuanced approach, as we did in this study, other studies 153 

have opted to analyse the combined burden of chronic stress and inflammation via the allostatic 154 

load (AL) index. This integrative measure of prolonged stress exposure and associated 155 

physiological sequelae, including inflammation and metabolic changes, has been identified as 156 

a correlate of cortical structure (Juster et al., 2010; McEwen, 1993; Ottino-Gonzalez et al., 157 

2017). While this might be a promising approach in terms of identifying at-risk groups and 158 

monitoring overall health trajectories, we argue that more nuanced systemic models are 159 

necessary to understand the emergence of disorder and potential therapeutic pathways, such as 160 

stress-reduction, more fully. 161 

Relatedly, correlations of individual biomarkers showed that the SII, but not IL-6 or hs-162 

CRP, was significantly positively correlated with HCC. This is one indication that the SII may 163 

be a valuable contribution to the construct of systemic inflammation when it comes to 164 

associations with physiological chronic stress. The lack of correlation with IL-6 and hs-CRP 165 

confirms that it captures divergent aspects of inflammation and underscores that some 166 

associations are only revealed in granular approaches that differentiate distinct markers of the 167 

same construct. 168 

 169 

4.1. Strength and weaknesses 170 

Previous studies of chronic stress, systemic inflammation and neuronal atrophy have 171 

mostly examined only two out of the three variables at a time. Here, we took a more 172 

comprehensive approach and jointly modelled all three variables, allowing us to examine 173 

multiple pathways of association simultaneously, while also considering the risk factors age, 174 

BMI, hormonal status and smoking status. By conducting a sample size calculation, we ensured 175 

our sample size to be sufficient for the estimation of both our models. Although this approach 176 

is a significant strength of our study, issues with variable convergence to latent factors may also 177 

have hindered pathway detection. Hs-CRP and IL-6 did not show high shared variance in their 178 

formative latent factor in our models. This raised the question of whether IL-6 and hs-CRP, 179 

after controlling for age, BMI, hormonal and smoking status, share sufficient variance to be 180 

grouped. We did not find any associations of IL-6 and hs-CRP with brain morphology that was 181 

masked by their grouping, still future studies should consider implementing IL-6 and hs-CRP 182 

as separate measures of systemic inflammation. Furthermore, although two indicator variables 183 

for a latent construct are sufficient in some cases (Hayduk & Littvay, 2012), three or more 184 

Jo
urn

al 
Pre-

pro
of



24 

 

indicator variables are often recommended (Bentler & Chou, 1987; Hayduk & Littvay, 2012). 185 

Especially complex constructs such as systemic inflammation might benefit from a wider 186 

selection of measurement variables including more inflammatory cytokines that have been 187 

implicated in neurodegeneration such as TNF-alpha or IL-8. This might overcome the 188 

limitations of only including IL-6 and CRP, since their reflection of systemic inflammation 189 

might not be as straight forward as previously thought (Del Giudice & Gangestad, 2018). In 190 

general, SEMs and the hypothesized pathways might converge better in samples with naturally 191 

higher variation in stress and inflammation markers, such as ageing and patient populations.  192 

Another strength of the present study is the selection of literature-based regions of 193 

interest (ROIs) for CT as well as the literature-based assumptions about the modelled paths. 194 

This approach is, however, also relatively conservative, working only with CT averages in 195 

previously identified regions. As shown in our exploratory whole brain model, analyses with 196 

whole-brain measures such as mean cortical thickness may have more power and be therefore 197 

more sensitive to subtle associations, but do not allow the mapping of complex pathways.  198 

     While the present investigation is informative for preventive healthcare approaches, 199 

future studies may focus on more diverse samples or sensitive periods. Next to ageing, 200 

consequences of a permanent exposure to stress are also particularly severe in children, 201 

especially if chronic stress is experienced during the developmental period (Björntorp, 2001; 202 

Pervanidou & Chrousos, 2012).  203 

Finally, the cross-sectional design of our analysis needs to be acknowledged as a 204 

limitation when it comes to causal or at least longitudinal conclusions. Pathway analyses in the 205 

context of longitudinal studies will be crucial to establish a quasi-causal chain between chronic 206 

stress, systemic inflammation and neurodegeneration in humans. 207 

 208 

4.2. Conclusion 209 

A better understanding of the interplay between chronic stress and systemic 210 

inflammation in their common contribution to neurodegeneration is crucial to combat stress-211 

related disorders that emerge from cumulative burden in this interdependent system (McEwen, 212 

2000, 2007). The present study used SEMs for nuanced modelling of the relation between 213 

chronic stress, systemic inflammation and brain morphology as latent constructs. Models 214 

identified no evidence for meaningful associations between these three latent constructs in a 215 

sample of healthy middle-aged adults from the general population. We conclude that 216 

inflammation and glucocorticoid-mediated neurodegeneration indicated by IL-6 and hs-CRP 217 

and HCC and HEC may not be reliably detectable in healthy, mid-aged populations. It is 218 
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possible that these maladaptive processes and interactions only emerge in advanced ageing, 219 

risk- or disorder processes. Nonetheless, the SII could be a promising candidate for detecting 220 

associations between inflammation and neurodegeneration in younger and healthy samples.  221 

Although latent constructs did not covary in our analyses as expected, multivariate 222 

models were successfully fit and replicated established associations for example between age 223 

and neuronal atrophy. These findings can serve as a baseline for studies investigating similar 224 

research questions in pathological or ageing populations. We further identified the SII as a 225 

potential informative marker of systemic inflammation in human psychobiological studies, 226 

which was associated with hair cortisol levels and whole brain mean cortical thickness. Overall, 227 

we advocate the use of both the SII and path modelling in future studies to do justice to the 228 

complexity and interconnectivity of psychophysiological constructs.  229 
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