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Abstract

Recent advances in connectomics research enable the acquisition of increasing amounts of

data about the connectivity patterns of neurons. How can we use this wealth of data to effi-

ciently derive and test hypotheses about the principles underlying these patterns? A com-

mon approach is to simulate neuronal networks using a hypothesized wiring rule in a

generative model and to compare the resulting synthetic data with empirical data. However,

most wiring rules have at least some free parameters, and identifying parameters that repro-

duce empirical data can be challenging as it often requires manual parameter tuning. Here,

we propose to use simulation-based Bayesian inference (SBI) to address this challenge.

Rather than optimizing a fixed wiring rule to fit the empirical data, SBI considers many

parametrizations of a rule and performs Bayesian inference to identify the parameters that

are compatible with the data. It uses simulated data from multiple candidate wiring rule

parameters and relies on machine learning methods to estimate a probability distribution

(the ‘posterior distribution over parameters conditioned on the data’) that characterizes all

data-compatible parameters. We demonstrate how to apply SBI in computational connec-

tomics by inferring the parameters of wiring rules in an in silico model of the rat barrel cortex,

given in vivo connectivity measurements. SBI identifies a wide range of wiring rule parame-

ters that reproduce the measurements. We show how access to the posterior distribution

over all data-compatible parameters allows us to analyze their relationship, revealing biolog-

ically plausible parameter interactions and enabling experimentally testable predictions. We

further show how SBI can be applied to wiring rules at different spatial scales to quantita-

tively rule out invalid wiring hypotheses. Our approach is applicable to a wide range of gen-

erative models used in connectomics, providing a quantitative and efficient way to constrain

model parameters with empirical connectivity data.
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Author summary

The brain is composed of an intricately connected network of cells—what are the princi-

ples that contribute to constructing these patterns of connectivity, and how? To answer

these questions, amassing connectivity data alone is not enough. We must also be able to

efficiently develop and test our ideas about the underlying connectivity principles. For

example, we could simulate a hypothetical wiring rule like “neurons near each other are

more likely to form connections” in a computational model and generate corresponding

synthetic data. If the synthetic, simulated data resembles the real, measured data, then we

have some confidence that our hypotheses might be correct. However, the proposed wir-

ing rules usually have unknown parameters that we need to “tune” such that simulated

data matches the measurements. The central challenge thus lies in finding all the potential

parametrizations of a wiring rule that can reproduce the measured data, as this process is

often idiosyncratic and labor-intensive. To tackle this challenge, we introduce an

approach combining computational modeling in connectomics, deep learning, and Bayes-

ian statistical inference to automatically infer a probability distribution over the model

parameters likely to explain the data. We demonstrate our approach by inferring the

parameters of a wiring rule in a detailed model of the rat barrel cortex and find that the

inferred distribution identifies multiple data-compatible model parameters, reveals bio-

logically plausible parameter interactions, and allows us to make experimentally testable

predictions.

Introduction

Connectomics investigates the structural and functional composition of neural networks to

distill principles of the connectivity patterns underlying brain function [1, 2]. Over the last

years, advances in imaging and tracing techniques enabled the acquisition of increasingly

detailed connectivity data [3–5] and led to significant insights [6–8]. These advances in data

acquisition necessitate new computational tools for analyzing the data and testing hypotheses

derived from it [9–11]. A recent computational approach for testing hypotheses in connec-

tomics has been to use so-called generative models [12–14]. The idea of generative modeling is

to develop a computational model capable of generating synthetic connectivity data according

to a specific hypothesis, e.g., a wiring rule (Fig 1A, left). Subsequently, one can validate and

refine the wiring rule (or the underlying computational model) by comparing the simulated

with measured connectivity data (Fig 1A, right). Examples for this approach range from large-

scale generative models of functional connectivity in the human cortex [15, 16], system-level

network models of the mouse visual cortex [17], and generative models of cortical microcir-

cuits [18].

As a specific example, we here consider a generative model for simulating hypothesized

wiring rules in the rat barrel cortex [19]. The model is based on reconstructions of axon and

dendrite morphologies from in vivo recordings [20] and reconstructions of the barrel cortex

geometry, cytoarchitecture, and cellular organization [21, 22]. These anatomical features were

combined into a 3D model to obtain a quantitative and realistic estimate of the dense neuropil

structure for a large volume of the rat barrel cortex [19, 23]. Thus, by applying a hypothesized

wiring rule to the structural features of the model, one can generate a corresponding synthetic

barrel cortex connectome and compare it to empirical data to test the validity of the wiring

rule. For example, [19] used the barrel cortex model to show that a wiring rule that only takes
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into account neuron morphology predicts connectivity patterns that are consistent with those

observed empirically in the barrel cortex.

Building generative models that accurately reproduce connectivity measurements can be

challenging: Suppose a hypothesized wiring rule does not reproduce the data. In that case, a

common approach would be to introduce free parameters to the rule and employ a parame-

ter-fitting algorithm to find the best-fitting wiring rule parameters (Fig 1A). However, iden-

tifying one specific wiring rule configuration for which simulated and empirical data match

might not be sufficient: Given that the available empirical connectivity data is sparse com-

pared to the structural and functional complexity of the connectome, it is likely that there

are many data-compatible wiring rules. While some parameter fitting algorithms can be

adapted to identify and compare multiple wiring rule configurations as well (see, e.g., [24]),

they require a manual assessment of different solutions and generally involve many repeti-

tions of the simulate-and-compare-to-measurements loop, which can be laborious and

inefficient.

Fig 1. Enhancing generative modeling in connectomics with simulation-based inference. (A) Generative modeling is a common approach for testing

hypotheses about the connectome: One implements a hypothesized wiring rule as a computational model that simulates connectivity data x (left) and then

tests and manually refines the rule by comparing simulated with measured data xo (right). (B) Our goal is to make this approach more efficient using

simulation-based Bayesian inference (SBI): By equipping the generative model with parameters θ, we define a space of multiple a-priori hypotheses (left)

from which we can generate multiple simulated data x (middle). We then use the simulated data to perform density estimation with artificial neural

networks to estimate the posterior distribution over model parameters conditioned on the measured data, i.e., p(θ|xo). The inferred posterior distribution

characterizes all wiring rule parameters compatible with the measured data, replacing the manual refinement of single wiring rules in the conventional

approach (bottom).

https://doi.org/10.1371/journal.pcbi.1011406.g001
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To address these challenges, we propose a new approach that employs Bayesian inference to

enhance the identification of generative models in computational connectomics (Fig 1B). We

achieve this by taking two conceptual steps: First, we equip the generative model with parame-

ters θ and interpret different parameter combinations as variants of the underlying hypothesis,

e.g., variants of the wiring rule. Second, we define a probability distribution p(θ) over the

model parameters such that each parameter configuration corresponds to a different candidate

wiring rule (Fig 1B, left), and use Bayesian inference to infer all data-compatible parameters.

Given measured connectivity data xo and a parametrized generative model, we infer the condi-

tional probability distribution over the model parameters given the measured data, i.e., the pos-
terior distribution p(θ|xo). The posterior distribution automatically characterizes all wiring rule

parametrizations likely to explain the measured data. For example, by sampling different

parameters from the inferred posterior we would obtain different wiring rule configurations

all of which are likely to generate data similar to the measured data (Fig 1B, bottom). Addition-

ally, the posterior distribution naturally quantifies uncertainties and correlations between the

parameters, which can help to reveal parameter interactions and potential compensation

mechanisms in the model.

On a technical level, standard Bayesian inference methods usually require access to the

likelihood function of the model. However, generative models employed in computational

connectomics are often defined as computer simulations for which the likelihood may not

be easily accessible. Therefore, we propose using simulation-based inference (SBI, [25–

29]). SBI enables Bayesian inference using only simulated data from the generative model,

i.e., without requiring access to the likelihood. In particular, SBI performs conditional den-

sity estimation with artificial neural networks: It uses data simulated from the model to

train an artificial neural network that takes data as input and predicts an approximation to

the posterior distribution. Once trained on simulated data, the neural network can be

applied to the measured data to obtain the desired posterior distribution p(θ|xo) (Fig 1B,

right).

We demonstrate our approach using the example of constraining wiring rules in the

structural model of the rat barrel cortex introduced above. First, we show how to reformu-

late wiring rules as parametrized models to make them amenable to Bayesian inference.

The resulting generative model consists of the parametrized wiring rule applied to the

structural model to generate a simulated connectome of the rat barrel cortex. Second, we

show that SBI can identify all parameter configurations that agree with measured connec-

tivity data. When testing our approach in a scenario with simulated data and a known refer-

ence solution, we find that SBI performs accurately. In the realistic setting with measured

connectivity data, SBI identifies a large set of rule configurations that reproduce observed

and predict unobserved features of the connectome. Importantly, analyzing the inferred

posterior reveals that this set of plausible rules is highly structured and reflects biologically

interpretable interactions of the parameters. Finally, we illustrate the flexibility of the SBI

approach by inferring two proximity-based wiring rules at different spatial scales to quanti-

tatively show that Peters’ rule cannot explain connectivity measurements in the barrel

cortex.

Our approach provides a new quantitative and efficient tool for constraining model param-

eters with connectivity measurements and is applicable to many generative models used in

connectomics. For example, it sets the stage for building generative models based on dense

reconstructions of brain tissue [30–32] and inferring underlying connectivity principles using

SBI. We are making all software tools required for applying SBI available via an established

open-source software package for SBI (sbi, [33]), facilitating its use by researchers across the

field.
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Results

Formulating wiring rules in the rat barrel cortex as simulation-based

models

To demonstrate the potential of simulation-based inference (SBI) for connectomics, we

selected the problem of constraining wiring rules in the rat barrel cortex with empirical con-

nectivity data. Applying SBI requires three ingredients: a simulation-based model with free

parameters, a prior distribution over the parameters, and measured data (see Methods & mate-

rials for details). Our analyses are based on a digital model of the dense neuropil structure of

the rat barrel cortex [19, 23], which we extended to obtain a simulation-based model. The

model contains reconstructions of the number and distribution of somata, axon, and dendrite

morphologies, and subcellular features like pre-synaptic boutons and post-synaptic dendritic

spines. These anatomical features were collected for several neuron types in the barrel cortex

and projecting neurons from the ventral posterior medial nucleus (VPM) of the thalamus and

arranged in a 3D model (Fig 2A, see Methods & materials for details). The model enables us to

construct a simulated connectome of the barrel cortex by applying a wiring rule that predicts

the connectivity of each neuron pair in the model from the structural features [23]. Using this

Fig 2. Formulating wiring rules in the rat barrel cortex as simulation-based models. (A) The structural model of the rat barrel cortex contains digital

reconstructions of position, morphology, and subcellular features of several neuron types in the barrel cortex and the ventral posterior medial nucleus

(VPM) of the thalamus. (B) We formulate a wiring rule that predicts the probability of a synapse between two neurons from their dense structural
overlap (DSO), i.e., the product of the number of pre- and postsynaptic structural features, normalized by all postsynaptic features in a given subvolume

(postAll). (C) By applying the wiring rule to every neuron-pair subvolume combination of the model to connection probabilities and then sampling

corresponding synapse counts from a Poisson distribution (left), we can simulate a barrel cortex connectome. To compare the simulated data to

measurements, we calculate population connection probabilities between VPM and barrel cortex cell types as they have been measured experimentally

(right). (D) To obtain a simulation-based model, we introduce parameters to the rule and define a prior distribution (left) such that each parameter

combination corresponds to a different rule configuration and leads to different simulated connection probabilities (right, grey; measured data in black,

[34, 35]).

https://doi.org/10.1371/journal.pcbi.1011406.g002
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approach, [19] proposed a parameter-free wiring rule that predicts barrel cortex connectivity

from structural features like pre-synaptic boutons and postsynaptic dendritic spines. Here, we

extended this wiring rule to a parameterized version that allows systematic analysis of how

such structural features could interact and be predictive of connectivity.

A wiring rule for the rat barrel cortex. The parameter-free wiring rule introduced by

[19] proposes that the probability of two neurons forming a synapse is proportional to a quan-

tity called dense structural overlap (DSO). The DSO is defined as the product of the number of

presynaptic boutons and postsynaptic contact sites (e.g., dendritic spines), normalized by the

number of all postsynaptic targets in the neighborhood (denoted as prei, postj and postAllk

respectively, for each neuron i, neuron j and subvolume k in the model, Fig 2B):

DSOi; j; k ¼
prei � postj
postAllk

: ð1Þ

To simulate a connectome from the DSO wiring rule, one applies the rule to every subvo-

lume-neuron-pair combination of the structural model and then stochastically generates

synapse counts by sampling from a Poisson distribution using the calculated synapse proba-

bilities (Fig 2C, left, see Methods & materials for details). Ultimately, we want to evaluate

the wiring rule against empirical data, i.e., compare the simulated connectome with mea-

surements from the barrel cortex. To this end, the resulting simulated connectome can be

used to calculate summary statistics in the format recorded in experiments, e.g., in vitro or

in vivo paired recordings or dense reconstructions at electron microscopic levels (Fig 2C,

right).

[19] showed that the DSO wiring rule can reproduce measured network characteristics at

different scales. However, in its current form, the DSO rule assumes that the pre- and postsyn-

aptic features have the same relative weight in determining the probability of a synapse and

that these weights are the same across all barrel cortex cell types. Is this specific combination of

pre- and postsynaptic features in the DSO rule the only valid choice? Specifically, it has been

found that single boutons from VPM axons can establish multiple synapses in cortical layer

four [36]; it has also been observed that in some cases, multiple synapses are formed at a single

postsynaptic spine [37]. Thus, the weighting of the DSO features could, in principle, be

unequal. A common approach to testing this question would be to iteratively modify the rule,

e.g., by adding a scaling factor to the postsynaptic features or introducing different scaling fac-

tors for every cell type. However, this approach can be inefficient because any changes to the

rule would require rerunning the procedure of generating simulated data and manually com-

paring it to measured data.

Defining a wiring rule simulator. In order to test different variations of the DSO rule

efficiently, we introduced three parameters to the DSO rule and applied SBI to constrain these

parameters with measured data. The three DSO parameters represent the relative weight with

which each local subcellular feature contributes to forming connections: θpre scales the presyn-

aptic bouton counts, θpost scales the postsynaptic target density, and θpostAll scales the normaliz-

ing feature (Fig 2D, left). The parametrized DSO rule for a presynaptic neuron i and

postsynaptic neuron j positioned in a subvolume k is then given by

DSOi; j; kðθÞ ¼
preyprei � post

ypost
j

postAllypostAllk

; ð2Þ

(see Methods & materials for details).

The next step towards applying SBI is selecting measured data xo to constrain the rule

parameters. We selected seven measurements of connection probabilities of neuronal
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populations mapping from the ventral posterior medial nucleus (VPM) of the thalamus to

different layers and cell types in the barrel cortex, as proposed by [19]: layer four (L4), layer

four septum (L4SEP), layer four star-pyramidal cells (L4SP), and layer four spiny stellate

cells (L4SS) [34], layer five slender-tufted intratelencephalic cells (L5IT), layer five thick-

tufted pyramidal tract cells (L5PT), and layer six [35]. Thus, overall, one simulation of the

wiring rule consisted of three steps: First, applying the rule with a given set of parameters to

the structural features of every combination of neuron-pair-subvolume to obtain connec-

tion probabilities; second, sampling synapses from the Poisson distribution given the proba-

bilities; and third, calculating the summary statistics matching the seven measured VPM-

barrel cortex population connection probabilities (Fig 2A-D; see Methods & materials for

details).

Our SBI approach can be summarized as follows: Given a generative model that can simu-

late barrel cortex connectomes from many different parametrizations of the DSO rule, we use

SBI to infer those parametrizations that agree with connection probabilities measured in the

barrel cortex. To perform SBI, we define a prior distribution p(θ) over the DSO rule parame-

ters and generate training data for SBI by sampling random parameter values from the prior

and simulating corresponding connection probabilities (Fig 2D, see Methods & materials for

details). We selected the prior such that sampling random parameter values from the prior

resulted in connection probabilities covering a broad range of values, including the measure-

ments (Fig 2D, right, see Experimental settings and S1 Text for details). The prior also con-

tained parameter combinations that led to extreme values, e.g., connection probabilities close

to zero. SBI leverages this diverse set of parameter-data pairs to learn an approximation to the

posterior distribution over DSO parameters p(θ|xo) and thereby identifies those parameters

that reproduce the measured data.

SBI performs accurately on simulated data. Before applying SBI to infer the parame-

ters of the DSO rule given measured data, we validated its accuracy on simulated data. As a

first step, we considered a reduced version of the DSO rule simulator for which it was possi-

ble to obtain a ground-truth reference posterior distribution (see section Methods & mate-

rials for details). Using this reference solution, we checked whether SBI infers the posterior

accurately and how many training simulations it requires. We compared three SBI algo-

rithms: Sequential Neural Posterior Estimation (SNPE, [27–29]), which performs SBI

sequentially over multiple rounds focusing inference on one particular observation; its

non-sequential variant NPE; and a classical rejection-sampling-based approach called

Sequential Monte Carlo (SMC, [38, 39]). We found that all three methods can accurately

infer the reference posterior distribution (S1A and S1B Fig) but that they differ in terms of

simulation efficiency, i.e., how many model simulations are required for accurate inference:

SNPE was slightly more efficient than NPE, and both were substantially more efficient than

SMC (S1B Fig).

As a second step, we performed two checks to validate SBI on the full version of the

DSO rule simulator for which no reference solution was available. First, we used simu-

lated-based calibration (SBC, [40]) to check whether the variances of posterior distribu-

tions inferred with SBI were well-calibrated, i.e., that the posteriors were neither too

narrow (overconfident) nor too wide (conservative). We found that SNPE and NPE run

with simulated observed data inferred well-calibrated posteriors for all three parameters

(S1C Fig). Lastly, we checked the predictive performance of SBI by generating simulated

data using parameter values sampled from the inferred posterior. We found that the pre-

dicted data resembles the (simulated) observed data (S1D Fig, see Methods & materials for

details).
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SBI identifies many possible wiring rules and reveals parameter

interactions

After evaluating SBI with simulated data, we applied it to infer the posterior over DSO rule

parameters given the seven measured VPM-barrel cortex connection probabilities [34, 35].

Our analysis of the inferred posterior distribution revealed three key insights.

The posterior identifies many data-compatible wiring rule configurations. We found

that the inferred posterior distribution was relatively broad, indicating that there are many

parameter combinations with a high probability of explaining the measured data. The most

likely parameter combination, i.e., the maximum of the one-dimensional posterior marginal

distributions (Fig 3A, blue in diagonal subplots) was θMAP = [1.14, 1.1, 1.08], corresponding to

a relatively similar weighting of pre- and postsynaptic DSO rule features. This was in line with

the assumption of the initial “a-priori” version of the DSO rule (θ = [1, 1, 1], orange lines in

Fig 3A). Importantly, however, the posterior marginal standard deviations of ŝpre ¼ 0:2,

ŝpost ¼ 0:2 and ŝpostAll ¼ 0:1 showed that this is not the only solution but that there are several

other parameter combinations with high posterior probability. For example, sampling parame-

ter values from the posterior for θpost would return values lying mostly in an interval as broad

as [0.7, 1.5] (95% posterior credible interval). Despite this relatively broad range of plausible

parameter values, we still found that the posterior predictive distribution, i.e., connection

probabilities simulated with parameters sampled from the posterior, clustered around the

measured data and closely matched the data simulated from the initial version of the DSO rule

(Fig 3B). Quantitatively, we observed that all except the L4SS and L5IT measurements were

located within one standard deviation of the posterior predictive distribution, which matched

the standard deviation expected from the sample size used in the experiments (see Methods &

materials for details, [34, 35]). How can so many parameter configurations from such broad

ranges all result in similar data?

Fig 3. SBI posterior reveals parameter interactions and predicts unseen data. (A) The posterior over the three wiring rule parameters scaling the

DSO features (inset) inferred with SBI (blue) and the initial prior distribution over parameters (gray). The corner plot shows the one-dimensional

marginal distribution of each parameter on the diagonal and the pairwise two-dimensional marginals on the off-diagonal (contour lines show the 34%,

68%, and 95% credible regions). (B) Comparison of measured connection probabilities (black, [34, 35]) with those simulated with parameter values

sampled from the inferred posterior (blue), from the prior (gray) and the unparametrized a-priori DSO rule (orange). (C) Each panel shows the

predictions for one held-out measurement generated from a posterior that was trained and conditioned only on the other six measurements, i.e., each

panel refers to a different posterior.

https://doi.org/10.1371/journal.pcbi.1011406.g003
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Posterior analysis reveals biologically plausible parameter interactions. Having access

to the full posterior distribution and its covariance structure allowed us to answer this ques-

tion. Inspection of the two-dimensional marginals of each parameter pair indicated a correla-

tion structure substantially different from the uncorrelated prior distribution (Fig 3A, off-

diagonal subplots). To quantify this, we estimated the Pearson correlation coefficients of 10,

000 parameter values sampled from the posterior distribution. We found a negative correlation

between θpre and θpost (Pearson correlation coefficient ρ = −0.14) and positive correlations

between θpostAll and θpre as well as θpost (ρ = 0.48 and ρ = 0.79, respectively). These correlations

are plausible given the design of the DSO rule (see Eq 2 and Fig 3A, inset). For example, the

negative correlation between θpre and θpost indicated that when increasing the value of θpre, we

would have to decrease θpost in order to obtain the same overall number of connections for a

particular cell type. This suggests that a stronger influence of presynaptic boutons on the con-

nection probability requires a weaker influence of postsynaptic target targets on the connec-

tion probability.

The correlations further suggested that all three structural features are relevant in predicting

the connection probabilities: Once one parameter is fixed, the values of the other parameters

are strongly constrained. Having access to the full posterior distribution allowed us to quantify

this by calculating the conditional correlations between the parameters. We obtained the con-

ditional correlations by conditioning the posterior on one parameter dimension—i.e., holding

it at a fixed value—and calculating the correlation between samples drawn from the resulting

two-dimensional conditional posterior, once for each of the three parameters θpre, θpost and

θpostAll (see Methods & materials for details). The resulting correlation coefficients were sub-

stantially higher than without conditioning: -0.97 between θpre and θpost and 0.99 between the

other two parameter combinations (see S3 Fig for a visualization of the conditional posteriors).

This result confirmed that while the overall range of data-compatible wiring rule parameters is

relatively large (Fig 3A), once one parameter is fixed, the other two are constrained to a very

small range of values. Furthermore, the strong conditional posterior correlations indicated

that the DSO rule with three parameters is overparametrized, i.e., a parametrization of the

DSO rule with only two parameters likely suffices to explain the measured data (see S2 Text

for details).

Collectively, the SBI approach enabled us to efficiently identify several different DSO rule

configurations that can all explain the measurements, among them the initially proposed ver-

sion of the DSO rule. The analysis of the inferred posterior showed that the number of presyn-

aptic boutons and the number of postsynaptic contact sites (and, by extension, axonal and

dendritic path length) are sensitive and strongly interdependent structural features for predict-

ing synaptic connectivity. Further, we found that the inferred parameters attribute similar

weights to the DSO rule features and could predict the measurements well (except for the L4SS

and L5IT cell types), indicating that multi-synaptic contacts at pre- or postsynaptic sites [36,

37] do not significantly impact the predictions of the DSO rule. The mismatch between the

predicted and measured connection probabilities that we found for the L4SS and L5IT cell

types (Fig 3B) suggests the DSO-rule assumption of similar scaling of DSO features does not

hold here. Applying the SBI approach to an extension of the DSO rule with additional features

or separate scaling factors for these cell types would likely reproduce these measurements

more accurately.

SBI posterior predicts unobserved connection probabilities. To demonstrate the utility

of SBI-enabled generative models as a tool for hypothesis generation, we investigated how one

can make predictions on unobserved data. Above, we performed SBI to constrain the wiring

rule parameters using only the seven measured connection probabilities. However, in princi-

ple, the structural model provides access to the entire (simulated) connectome of one barrel
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cortex column. Thus, it allows us to make predictions about other features of the connectome

that have not been measured yet. To test this approach, we repeated the SBI training procedure

seven times, holding out each connectivity measurement once from the training data set, i.e.,

we trained the posterior estimator on pairs of parameters and data, (θ, x), where x has six

entries instead of seven. After training, we obtained seven different posteriors, each condi-

tioned on six of the seven measured connection probabilities. We then sampled parameter val-

ues from every posterior, simulated the corresponding barrel cortex connectomes, and

calculated all seven connection probabilities.

The posterior predictive distributions for held-out measurements clustered around the

actual measurement values for all of the seven cell types, except for L4SS and L5IT (Fig 3C),

and closely resembled the predictive distributions of the posterior inferred given all measure-

ments (Fig 3B). To quantify this, we performed a classifier-based two-sample test (C2ST, [41,

42]): We trained a two-layer artificial neural network to classify the predictions of the posterior

inferred using all measurements (class 1) from the predictions of the posterior inferred using

only six measurements (class 2). In this setting, a classification accuracy close to 0.5 indicates

performance at chance level, i.e., the two classes are indistinguishable. We found that the C2ST

accuracy was below 0.55 for all measurements except for L4SS (0.68) and L5PT (0.59). This

indicated that for all but the L4SS and L5PT cell types, the weighting of the DSO features could

be accurately predicted from the other cell types, in line with the results presented above. Col-

lectively, these cross-validation results suggested that the structural model paired with the SBI-

enabled wiring rule enables us to make experimentally testable predictions. For example, one

could predict connection probabilities of cell types different from the seven measured here or

other connectivity features of the rat barrel cortex available in the structural model (see

below).

Using SBI to rule out invalid wiring hypotheses

Above, we demonstrated that SBI provides a quantitative way to identify valid wiring rule con-

figurations from a large set of hypothesized wiring rules. SBI can also be used to rule out

invalid hypotheses, e.g., to show that an existing hypothesis does not agree with empirical data.

One such debated hypothesis in connectomics is the so-called Peters’ rule [43, 44]. According

to this hypothesis, neurons form connections whenever their axons and dendrites are in close

proximity, i.e., Peters’ rule can be formulated as “axo-dendritic proximity predicts connectiv-

ity” [19]. However, several empirical and theoretical studies on rat, mouse, and human con-

nectomes found substantial evidence against Peters’ rule [19, 45–47].

Here, we show that SBI provides an alternative, quantitative way to discard this hypothesis

for the rat barrel cortex. We formulated two wiring rules that implement the proximity

hypothesis in the structural model of the barrel cortex at two spatial scales: one predicting

connections on the neuron-to-neuron level (Fig 4) and one predicting synapse counts at the

subcellular level (Fig 5). Both wiring rules have one free parameter, i.e., they incorporate

many different proximity hypotheses, but there is one particular parameter value corre-

sponding to Peters’ rule. We used SBI to infer the posterior distribution over the rule param-

eters given the seven measured VPM-barrel cortex connection probabilities. Subsequently,

we compared inferred parameter values and their predictions with those corresponding to

Peters’ rule.

Neuron-level rule. At the neuron-to-neuron level, we defined the proximity of two neu-

rons as the number of subvolumes v they share in the structural model and introduced a

threshold parameter acting on the proximity: Neurons i and j form a connection ci,j if the

number of subvolumes vij that contain presynaptic structures of neuron i and postsynaptic
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structures of neuron j, exceeds a threshold parameter θthres:

ci; jðythresÞ ¼ 1 if vij > ythres else 0: ð3Þ

To compare the resulting pair-wise connections between neurons in the barrel cortex

model to the measured connection probabilities, we mapped them to the corresponding popu-

lation connection probabilities as described above (see section Methods & materials for

details).

The structural feature used in this rule is the number of shared subvolumes between two

neurons (in contrast to the subcellular features used in the DSO rule above). This feature

directly depends on the spatial resolution of the structural model, i.e., the edge length of the

subvolume used to construct the model. Therefore, we calculated the structural features at five

different spatial resolutions: 50, 25, 10, 5, and 1 μm. We found that the overall number of

shared subvolumes among neurons increased with edge length, reflecting the increase in sub-

volume size (Fig 4A).

Fig 5. Synapse-level wiring rule inferred with SBI differs from Peters’ rule. We compared an SBI-inferred parametrized wiring rule predicting

synapse counts on the subcellular level with a corresponding formulation of Peters’ rule. (A) SBI posterior for the wiring rule parameter θ (probability

of forming a synapse if two neurons are close), compared to Peters’ rule assuming θ = 1 (gray). (B) Number of synapses predicted by the inferred

posterior (blue) and Peters’ rule (gray) compared to the number of presynaptic boutons realistically available in the structural model (dashed black),

plotted over the entire cortical depth of the barrel cortex column. (C) Connection probabilities simulated from the inferred synapse level posterior

(blue) and Peters’ rule (gray) compared to the measured connection probabilities (black).

https://doi.org/10.1371/journal.pcbi.1011406.g005

Fig 4. Neuron-level wiring rule inferred with SBI differs from Peters’ rule. We used SBI to infer a proximity-based wiring rule at different spatial

resolutions of the rat barrel cortex model and compared its predictions to that of Peters’ rule. (A) Distributions of the shared subvolumes v between

neurons in the barrel cortex model for each spatial resolution (subvolume edge length, see legend in (b)). (B) SBI posteriors inferred over the

connection threshold parameter of the wiring rule (θthres, number of shared subvolumes required to form a connection), shown for each spatial

resolution (colors), and for Peters’ rule assuming θthres = 1 (gray). (C) Connection probabilities simulated from the inferred posterior (orange) and

Peters’ rule (gray) compared to the measured connection probabilities (black).

https://doi.org/10.1371/journal.pcbi.1011406.g004
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When applying Peters’ rule to the barrel cortex model at the neuron level, a connection

occurs whenever two neurons share at least one subvolume, i.e., the connection threshold

would be θthres = 1. Does this assumption hold for the barrel cortex at the neuron-to-neuron

level as well? To answer this question quantitatively, we used SBI to infer the threshold param-

eter θthres of the neuron level rule for each edge length. We observed that the inferred threshold

parameters shifted to larger values with increasing edge length, e.g., the higher the spatial reso-

lution, the fewer common subvolumes were required to obtain a connection (Fig 4B). This was

in line with our observation that the overall number of shared subvolumes available in the

structural model increased with increasing edge length (Fig 4A). However, irrespective of the

spatial resolution, all inferred threshold parameters were substantially larger than the θthres = 1

of Peters’ rule, reaching from θthres� 3 (posterior mean) for the 1 μm-subvolume model (Fig

4B, orange) to θthres� 28 for the 50 μm-subvolume model (Fig 4B, violet). Accordingly, the

comparison of predictive performances showed that for all but the L4SS cell type, the differ-

ence between measurement and the average prediction was smaller for the inferred rule than

for Peters’ rule and below one standard deviation expected in the experiments (Fig 4C). For

the L4SS cell type, we found that data simulated with Peters’ rule was close to the measurement

(0.02 difference).

Synapse-level rule. We repeated this test of Peters’ rule at the subcellular level as well.

Here, we defined a probabilistic rule: Whenever a presynaptic structure of neuron i and a post-

synaptic structure of neuron j are present within the same subvolume k, they form a synapse

with probability θprob:

ci; j; kðyprobÞ � BernoulliðyprobÞ if axon of i and dendrite of j are present in k: ð4Þ

This rule predicts synapses for every neuron-pair-subvolume combination using the struc-

tural model with subvolumes of 1 μm edge length. To compare the simulated synapse counts

to the measured connection probabilities, we calculated simulated connection probabilities as

described above. The posterior distribution over the connection probability parameter θprob
inferred with SBI centered around θprob� 0.3 (Fig 5A). This result suggests that in only thirty

percent of the locations where axon and dendrite are close to each other (shared 1 μm subvo-

lume), the rule predicts a synapse, which is substantially lower than the value of θprob = 1 corre-

sponding to Peters’ rule. Accordingly, simulating parameter values sampled from the posterior

resulted in connection probabilities closer to the measured ones than those predicted by

Peters’ rule (smaller difference between average prediction and measurement, Fig 5C), except

for the L4SS cell type.

For another comparison of Peters’ rule with the inferred wiring rule at the synapse level, we

leveraged the predictive properties of the structural model and the SBI posterior. In particular,

the structural model provides access to estimates of the number of biologically available bou-

tons across the cortical depth of the barrel cortex column [19]. The SBI posterior allowed us to

simulate data according to the inferred wiring rule parameters. Thus, it was possible to com-

pare the estimate of the number of empirically available boutons of each presynaptic VPM

neuron with the number of simulated synapses from the inferred wiring rule and Peters’ rule.

We found that the inferred rule predicted synapses close to or below the total number of avail-

able boutons (Fig 5B), in contrast to Peters’ rule, which predicted more synapses than biologi-

cally plausible.

Our results demonstrate how SBI can be applied to competing wiring hypotheses to quanti-

tatively rule out a specific invalid hypothesis: One incorporates the hypothesis into a parame-

trized model and compares the SBI-inferred parameters to those corresponding to the

hypothesis. In case of Peters’ rule, the SBI analysis confirmed that axo-dendritic proximity
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alone cannot predict connectivity observed empirically in the rat barrel cortex—it predicted

too high connection probabilities for all measured cell types except L4SS (Fig 5C) and consis-

tently too many synapses across all cortical layers (Fig 5B). This is in line with previous results

showing that the number of dendrites and axons close to each other exceeds the number of

synapses by 1–2 orders of magnitude [19]. Thus, we can conclude that to explain connectivity

in the rat barrel cortex, wiring rules cannot be based solely on axo-dendritic proximity. They

also have to take into account subcellular features like pre- and post-synaptic structures along

axons and dendrites.

Discussion

What principles are behind the complex connectivity patterns of neural networks that shape

brain function? Connectomics aims to answer this question by acquiring detailed data about

the structural and functional composition of the brain. Over the last few years, the develop-

ment of new computational approaches for analyzing the resulting large amounts of data and

testing the derived hypotheses gained momentum [11, 48]. One computational approach is to

leverage generative models for testing hypotheses about the connectome, e.g., to implement a

hypothesized wiring rule in a computational model and ask whether model simulations can

reproduce the measured connectivity patterns of a specific brain region [13]. However, identi-

fying the free parameters in the wiring rule that reproduce measured connectivity data can be

challenging.

We introduced a method that renders the generative modeling approach to connectomics

more efficient, enabling us to systematically infer all data-compatible parameters of a given

computational model. Instead of manually refining a specific generative model to match the

data, we equipped it with parameters such that it represents several candidate hypotheses. We

then used Bayesian parameter inference to infer the posterior distribution over model parame-

ters conditioned on the measured data. The inferred distribution represents all candidate

parameter configurations, i.e., hypotheses, capable of reproducing the measured data. By rely-

ing on simulation-based inference (SBI) methods that do not require access to the likelihood

function of the model, we were able to apply our approach to the simulation-based generative

models commonly used in computational connectomics.

To demonstrate the utility of this approach, we employed it to constrain several wiring rules

—at different spatial scales—with connectivity measurements from the rat barrel cortex. We

first showed that the inference method is accurate in a scenario with a ground-truth reference

solution. Next, in the realistic setting with measured connectivity data, we retrieved many differ-

ent wiring rule configurations that could explain the measured data equally well. Analyzing the

geometrical structure of the inferred posterior distribution revealed strong correlations between

wiring rule parameters that are in line with their biological interpretations. Importantly, we

were able to accurately predict held-out connectivity measurements, demonstrating the meth-

od’s utility in making experimentally testable predictions. Finally, we used our approach to

quantitatively show that a wiring rule based solely on axo-dendritic proximity cannot explain

barrel cortex connectivity measurements. Overall, these results demonstrate the potential bene-

fits of the Bayesian inference approach, i.e., having access to the full posterior distribution over

model parameters rather than manually optimizing for individual parameters one hypothesis at

a time and the flexibility of SBI in requiring only simulated data to perform inference.

Related work

The problem of identifying parameters of computational models that reproduce experi-

mentally observed data has been addressed in computational connectomics before. For
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example, [15] built a model of functional connections between brain regions and used

optimization methods to find single best-fitting parameters capturing the functional MRI

data measured in humans. [49] and [16] used Monte Carlo sampling methods for optimiz-

ing the parameters of synthetic networks of structural connectivity to match the topologi-

cal properties of human connectomes recorded with MRI. Recently, [24] proposed a

parameter estimation method for connectome generative models based on averaging over

ensembles of best-fitting parameters. In contrast to our approach, these studies do not

perform Bayesian inference but rely on optimization techniques that identify best-fitting

solutions.

Aside from the above examples, computational models in connectomics are often imple-

mented as complicated computer simulations that can generate simulated data but for which

the underlying likelihood functions are not accessible, thus limiting our ability to perform

Bayesian inference. To account for this limitation, we employed simulation-based inference

(SBI, [25]) methods which only require simulations from the model to perform Bayesian infer-

ence. SBI has been applied previously in various fields, ranging from genomics [50], evolution-

ary biology [51, 52], computational and cognitive neuroscience [26, 53–57], to robotics [58],

global health [59] and astrophysics [60, 61]. For the wiring rule examples presented here, we

used sequential neural posterior estimation (SNPE, [27–29]), which performs neural-network-

based conditional density estimation to estimate the posterior distribution from simulated

data. Neural-network-based SBI approaches build on recent advances in probabilistic machine

learning [27, 62, 63] and exhibit several advantages compared to more classical rejection-sam-

pling-based techniques, commonly termed Approximate Bayesian Computation (ABC, [64]).

For example, in contrast to ABC approaches, they do not require selecting a criterion for quan-

titatively comparing simulated with measured data. Furthermore, they can leverage the ability

of neural networks to exploit continuities in the parameter space or automatically learn infor-

mative summary features from high-dimensional raw data. As a consequence, they are often

more simulation-efficient (S1B Fig) and scale better to problems with more model parameters

and high-dimensional data [42].

Bayesian inference methods have been employed in computational connectomics before,

but in different ways, than the SBI approach proposed here. [65] built a probabilistic model

of cell type-dependent connectivity in the mouse retina and proposed a non-parametric

Bayesian algorithm that automatically predicts cell types and microcircuitry from connec-

tomics data. More closely related to our approach, [66] performed Bayesian model compari-

son using a rejection-sampling approach [67] to compare a set of competing local circuit

models in layer 4 of the mouse primary somatosensory cortex based on structural connec-

tomics data. However, in contrast to our approach that infers the posterior distribution over
parameters of one particular model, [66] inferred the posterior probabilities over several
models (with the parameters of individual models integrated out). Moreover, their approach

relied on classical rejection-sampling techniques that are less simulation-efficient compared

to the neural-network-based SBI we employed and will likely not scale to higher-dimensional

inference problems (S1B Fig, see [42] for a detailed comparison). Yet, there have been recent

advances in neural network-based Bayesian model comparison [68–70] and simultaneous

model and parameter inference using SBI [71]. Thus, a promising direction for future

research in connectomics would be combining Bayesian model comparison and parameter

inference, e.g., to compare competing wiring rule hypotheses on the basis of empirical data:

One would simulate data from each wiring rule and use SBI to approximate the discrete pos-

terior distribution over different wiring rules to select the wiring rule with the highest poste-

rior probability and simultaneously use SBI to constrain the parameters of the selected rule

(as proposed here).
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Applicability and limitations

In this work, we applied SBI to the specific problem of inferring wiring rules that can generate

observed connectivity data. A key advantage of SBI is that it is generally applicable to any

computational model capable of simulating data from a set of parameters, i.e., only data simu-

lated from the model are required to infer the posterior distribution over model parameters.

For example, one could make the algorithms for generating synthetic functional connectomes

proposed by [15] or [49] amenable to SBI by introducing parameters of interest and then use

SBI to efficiently identify all data-compatible parameter values. Similarly, SBI could be applied

to infer unknown parameters of iterative growth-based generative models as used in the works

by [16, 24, 72]. Concretely, one would generate many different synthetic networks from a

given growth model using different candidate parameter settings and then use the simulated

data in the SBI framework to obtain the posterior distribution given empirical network data.

Posterior-targeting SBI approaches, like the NPE algorithm we used, have the advantage

that they can obtain the posterior distribution for new data points without retraining the

underlying artificial neural networks, i.e., they perform amortized inference [26, 27]. Another

advantage of SBI is that it can leverage the ability of neural networks to automatically learn

informative summary features from observations [26, 28, 29, 73, 74]. While we did not exploit

this feature for the low-dimensional measured data in the wiring rule examples presented

here, we believe that it will be essential for future applications of SBI in computational connec-

tomics, e.g., when dealing with high-dimensional dense reconstructions of electron-micros-

copy data [30–32].

SBI’s dependency on simulated data and neural network training also entails several limita-

tions: the inferred posterior distributions are only approximations of the unknown actual pos-

terior distribution. Therefore, applying SBI requires careful evaluation of every problem at

hand. In theory, SBI does recover the unknown posterior distribution when given enough

training data [27]. In practice, however, the accuracy and reliability of SBI strongly depend on

the complexity of the inference problem, e.g., on the number of model parameters, the com-

plexity of the data, and the simulation time. Previous studies have successfully applied SBI in

scenarios where the simulator has a runtime on the order of seconds and up to thirty parame-

ters [26, 54, 74], but these numbers strongly depend on the problem and available computa-

tional resources.

Another limitation of SBI is the problem of model misspecification. SBI generally assumes

that the generative model is well-specified, i.e., that it can simulate data that is very similar to

the measured data. If this is not the case, then the inferred posterior can be substantially biased

[75, 76]. We recommend performing prior predictive checks to detect model misspecification,

i.e., generating a large set of simulated data with parameters sampled from the prior distribu-

tion and checking whether the measured data lies inside the distribution of simulated data, as

demonstrated in the wiring rule example (Fig 2D, see S1 Text for details). Recent methodologi-

cal work in SBI addresses this problem, e.g., by automatically detecting model misspecification

[77] or by explicitly incorporating the model mismatch into the generative model [78].

More generally, applying SBI to new inference problems requires several choices by the

practitioner, from prior predictive checks and model-checking to selecting suitable neural net-

work architectures and validating the inferred posterior distribution. As a general guideline,

we recommend following the steps we performed for the wiring rule example: First, we investi-

gated the accuracy of SBI and estimated the required number of training simulations by testing

it in a scenario with a known reference solution. Second, we ensured that the inferred posterior

distribution has well-calibrated uncertainty estimates using simulation-based calibration [40].

Third, we checked whether the parameter values identified by SBI accurately reproduced the
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measured data (see Methods & materials for details). Additionally, we recommend guiding

hyperparameter choices by resorting to well-tested heuristics and default settings available in

open-source software packages developed and maintained by the community. We performed

all our experiments, evaluation steps, and visualization using the sbi toolkit [33].

Conclusion

We present SBI as a method for constraining the parameters of generative models in computa-

tional connectomics with measured connectivity data. The key idea of our approach is to ini-

tially define a probability distribution over many possible model parameters and then use

Bayesian parameter inference to identify all those parameter values that reproduce the mea-

sured data. We thereby replace the iterative refinement of individual model configurations

with the systematic inference of all data-compatible solutions. Our approach will be applicable

to many generative modeling scenarios in computational connectomics, providing researchers

with a quantitative tool to evaluate and explore hypotheses about the connectome.

Methods & materials

Bayesian inference for computational connectomics

We introduced Bayesian inference as a tool to identify model parameters of generative models

in computational connectomics, given experimentally observed data. Bayesian inference takes

a probabilistic view and defines the model parameters and data as random variables. It aims to

infer the conditional probability distribution of the model parameters conditioned on the

observed data, i.e., the posterior distribution. Bayes’ rule defines the posterior distribution as

pðθjxobsÞ ¼
pðxobsjθÞ pðθÞ
pðxobsÞ

; ð5Þ

where p(xobs|θ) is the likelihood of the data given model parameters, p(θ) is the prior distribu-

tion over model parameters and pðxÞ ¼
R

θpðxjθÞpðθÞdθ is the so-called evidence. Thus, per-

forming Bayesian inference requires three components:

1. Experimentally observed data xobs.

2. A likelihood p(xobs|θ), which defines the relationship between model parameters and data.

In our setting, the likelihood is implicitly defined by the computational model, i.e., by the

simulator generating connectomics data x given model parameters θ. The simulator needs

to be stochastic, i.e., when repeatedly executed with a fixed parameter θ, it should generate

varying data. Technically, given a fixed parameter value θ, the likelihood defines a probabil-

ity distribution over x, and simulating data corresponds to sampling x* p(x|θ).

3. A prior distribution p(θ). The prior incorporates prior knowledge about the parameters θ,

e.g., biologically plausible parameter ranges or known parameter correlations.

The posterior distribution p(θ| xobs) inferred through Bayes’ rule characterizes all model

parameters likely to reproduce the observed data. For example, model parameters with a high

probability under the posterior distribution will result in data close to the observed data. In

contrast, parameters from low probability density regions will likely generate data different

from the observed data.

In most practical applications, it is hard to obtain an analytical solution to Bayes’ rule

because the evidence p(x) =
R
p(x|θ)p(θ)dθ is challenging to calculate. There exists a large set of

methods to perform approximate inference, e.g., Markov Chain Monte Carlo sampling
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(MCMC, [79, 80]). MCMC methods can be used to obtain samples from the posterior distri-

bution. However, they require evaluation of the likelihood function of the model, and compu-

tational models in connectomics are usually defined as scientific simulators for which no

analytical form of the underlying likelihood is available or numerical approximations are com-

putationally expensive.

Simulation-based inference. Simulation-based inference (SBI, [25]) allows us to perform

Bayesian inference without numerical evaluation of the likelihood by requiring only access to

simulations from the model. The idea of SBI is to generate a large set of pairs of model parame-

ters and corresponding simulated data and use it as training data for artificial neural networks

(ANN). The employed ANNs are designed to approximate complex probability distributions.

Thus, they can be used to approximate the likelihood to then obtain posterior samples via

MCMC [81–84] or the posterior distribution directly [27–29]. Once trained, the neural net-

works are applied to the experimentally observed data to obtain the approximate posterior. In

our work, we used an SBI approach called sequential neural posterior estimation (SNPE, [27,

29]).

Neural posterior estimation. Neural posterior estimation (NPE) uses an artificial neural

network F(x) to learn an approximation of the posterior from training data pairs fðθi; xiÞg
N
i¼1

,

where θ is sampled from a prior θi* p(θ), and x is simulated from the model xi* simulator

(θi). The density estimator F(x) is trained to construct a distribution that directly approximates

the posterior. It is usually defined as a parametric family qϕ with parameters ϕ, e.g., a mixture

density network (MDN, [85]), or a normalizing flow [63]. For example, suppose q is a mixture

of Gaussians, then F would take the data as input and predict the parameters ϕ, ϕ = F(x),

where ϕ contains the means, the covariance matrix, and the mixture weight of each mixture

component. F(x) is trained to predict the parameters ϕ from x by minimizing

�
1

N

XN

i¼1

log q�¼FðxiÞðθijxoÞ:

This training loss implicitly minimizes the Kullback-Leibler divergence between the true

posterior and the approximation qϕ(θ|x). It will converge to zero, i.e., NPE will infer the true

posterior, in the limit of infinite training data and given density estimator that is flexible

enough [27, 62]. Algorithm 1 summarizes the algorithmic steps of NPE; see [29] for details.

Once NPE is trained on simulated data, it can be applied to the actual observed data xobs,

e.g., ϕ = F(xobs), to obtain an approximation to the desired posterior:

q�ðθjxobsÞ � pðθjxobsÞ: ð6Þ

Importantly, NPE applies to any newly observed data without retraining the density estima-

tor, i.e., the inference with NPE is amortized. There is also a sequential variant of NPE called

SNPE, where the training is performed over several rounds to focus the density estimator on a

specific observation xobs. In each new round of SNPE, the new training data is not generated

with parameters sampled from the prior but from the posterior estimate of the previous

round. While the sequential approach can be substantially more sampling-efficient compared

to NPE, i.e., requiring fewer training simulations to obtain a good posterior approximation for

a given xobs [42], it comes with two caveats. First, it requires retraining for every new xobs. Sec-

ond, using a proposal distribution different from the prior for simulating new data requires a

correction, resulting in additional algorithmic choices and challenges. Over the last few years,

different approaches have been proposed to perform this correction [27–29, 86]. We used

SNPE with the correction proposed by [29].

Algorithm 1: Single round Neural Posterior Estimation as in [27]
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input simulator p(x|θ), prior p(θ), observed data xobs
for j = 1 : N do
Sample θi * p(θ)
Simulate xi * p(x|θi)

end
x argmin � 1=N

PN
i log qFðxi ;ϕÞðθiÞ

Set p̂ðθjxoÞ ¼ qFðxobs ;ϕÞ
ðθÞ

return Samples from p̂ðθjxobsÞ; density estimator qF(x,ϕ) (θ)
Posterior validation. In theory and with unlimited training data, NPE will converge to

the true (unknown) posterior distribution. However, training data is limited in practice, and

the underlying posteriors can be high-dimensional and complex. Thus, it is essential to vali-

date the approximate posterior. There are two common techniques for validating SBI even in

the absence of a reference posterior: predictive checks [87] and calibration checks, e.g., simula-

tion-based calibration (SBC, [40, 88]).

Predictive checks. Predictive checks can be applied to either the prior or the posterior.

The prior predictive check is applied before the inference. It checks whether the model can pro-

duce data close to the experimentally observed data xobs, i.e., that the distribution obtained by

sampling from the prior and simulating the corresponding data contains xobs. If this is not the

case, the model or the prior could be misspecified and should be refined before applying SBI.

We performed the prior predictive check for the DSO rule simulator by sampling 100,000

parameters from the prior and ensuring that the resulting distribution of simulated connection

probabilities covers the seven measured values (see S1 Text for details).

The posterior predictive check tests the predictive performance of the posterior. It should

be applied after the inference by simulating data using parameters sampled from the posterior:

xp � simulatorðθpÞ where θp � pðθjxobsÞ:

The simulated data should cluster around the observed data with a variance on the order of

the variance expected from the simulator. We performed this check for all inferred wiring

rules by simulating 1,000 data points using 1,000 parameters sampled from the corresponding

SBI posterior.

Simulation-based calibration. The variance of the posterior distribution expresses the

uncertainty in the parameters. Simulation-based calibration (SBC) provides a way to check

whether these uncertainties are, on average, well-calibrated, i.e., that the posterior is (on aver-

age) neither too broad (under-confident) nor too narrow (over-confident). The basic idea of

SBC is the following. Suppose one uses an SBI method to obtain i = 1, . . ., N different posteri-

ors p(θ|xi) for different observations xi generated from different parameters θi sampled from

the prior. If one determines the rank of each parameter θi among samples from its correspond-

ing posterior p(θ|xi), then the posteriors obtained with this SBI method have well-calibrated

uncertainties if the collection of all N ranks follows a uniform distribution [40]. To check

whether the posterior obtained with SBI is well-calibrated, we repeated the inference with NPE

N = 1000 times (no retraining required), using data generated from the simulator with param-

eters sampled from the prior. Subsequently, we performed a visual check for uniformity of the

corresponding SBC ranks by comparing their empirical cumulative density function against

that of a uniform distribution.

A generative structural model of the rat barrel cortex

We demonstrated the utility of SBI for computational connectomics by constraining wiring

rules in a structural model of the rat barrel cortex with connectivity measurements. To fulfill

the prerequisites of Bayesian inference defined above, we set up a simulation-based model for
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simulating wiring rules in the barrel cortex model. The wiring rule simulator has three

components:

1. a structural model that provides features (Fig 2A),

2. a parametrized wiring rule that is applied to the features to simulate a connectome (Fig 2B),

3. calculation of summary statistics from the simulated connectome to match the available

measurements (Fig 2C).

The structural model. The structural model is a digital reconstruction of the rat barrel

cortex constructed from detailed measurements of cell types and their morphologies, loca-

tions, and sub-cellular features, including single boutons and dendrites, obtained from several

animals [19–23, 89]. These measurements and their digital reconstructions were copied and

arranged according to measured cell type distributions in all cortical layers to obtain a realistic

estimate of the structural composition of a large part of the entire barrel cortex. The model

contains around 477,000 excitatory and 77,000 inhibitory neurons, resulting in more than 5.5

billion synaptic sites. Furthermore, it incorporates the projections from the ventral posterior

medial nucleus (VPM) of the thalamus to all cortical layers. The model gives access to several

cellular and subcellular structural features, including presynaptic boutons and postsynaptic

target counts (spine densities). These features were collected for every neuron segment in

every subvolume of the model. The model does not contain synaptic connections but only the

structural features. Thus, it allows simulating the effect of different wiring rules by applying

the rule to the structural features and comparing the resulting connectome to experimental

measurements [19].

Dense structural overlap wiring rule. We applied a wiring rule to the structural model to

turn it into a simulation-based model that can generate simulated connectomes of the rat bar-

rel cortex. As a wiring rule, we used the dense structural overlap (DSO) rule introduced by [19,

23], which proposes that two neurons form a synapse depending on their locally available

structural subcellular features summarized as DSO. The DSO is the product of the numbers of

pre- and postsynaptic structures, pre and post, that a presynaptic neuron i and a postsynaptic

neuron j contribute to a subvolume k relative to the total number of postsynaptic structures

contributed by all neurons, postAll (Fig 2B):

DSOi; j; k ¼
prei � postj
postAllk

: ð7Þ

We assumed that the number of connections between any neuron pair (i,j) within a subvo-

lume k is given by a Poisson distribution with the DSO as the rate parameter (Fig 2C, [23]):

cijk � PoissonðDSOi;j;kÞ:

The DSO rule is stochastic, i.e., it samples different synapse counts every time it is applied

to the structural model. However, the contribution of each structural feature to the DSO is

fixed. To allow for more flexibility in the relative weighting of each feature, we generalized the

DSO rule by introducing three scaling parameters for the three structural features, θpre, θpost,
and θpostAll:

DSOi;j;kðθÞ ¼
preyprei � post

ypost
j

postAllypostAllk

: ð8Þ
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We rewrote the parametrized rule as a Poisson generalized linear model (GLM, [90]) by

transforming the features to the logarithmic space, stacking them as column vectors in a fea-

ture matrix Xijk = [log pre(i, k); log post(j, k); − log postAll(k)] and arranging the scaling param-

eters in a vector θ:

DSOi;j;kðθÞ ¼ exp log
preyprei � post

ypost
j

postAllypostAllk

 ! !

¼ expðypre log prei þ ypost log postj � ypostAll log post AllkÞ

¼ expðθ>XijkÞ

cijkðθÞ � Poissonðexpðθ>XijkÞÞ:

The generalized version of the DSO rule takes parameter combination θ and generates sim-

ulated connectomes in the format of synapse counts. Each new parameter setting corresponds

to a different variant of the DSO rule that could have generated the measured data. Note that

setting θ = [1, 1, 1]> would result in the expression introduced in Eqs 7 and 8.

Mapping from simulated connectomes to measured connectivity data. The generalized

DSO rule and the chosen prior distribution jointly define a space of simulated connectomes

associated with the DSO rule. The last step for constructing a simulation-based model is to

map the simulated connectomes to the type of data that can be measured empirically. The

measurements available for the barrel cortex are connection probabilities estimated from pair-

wise recordings between neurons in the ventral posterior medial nucleus (VPM) of the thala-

mus and different layers and cell types in the cortex: to layer 4 (L4), layer 4 septum (L4SEP),

layer 4 star pyramidal cells (L4SP), and layer 4 spiny stellate cells (L4SS) [34], layer 5 slender-

tufted intratelencephalic cells (L5IT), layer 5 thick-tufted pyramidal tract cells (L5PT), and

layer 6 [35].

While the simulated connectome provided access to all neuron-pair-subvolume combina-

tions in the structural model, the measurements were given only as estimated connection

probabilities for different cell types. To calculate these connection probabilities from the simu-

lated connectome, we identified the pairs from the presynaptic and postsynaptic neuron popu-

lations used in the experiments and calculated the connection probabilities from the

corresponding simulated synapse counts. The number of probed neuron pairs was relatively

small in the experiments, e.g., around 50 [34]. We tried to mimic this experimental setting in

the simulation by selecting a random sample of 50 pairs from the thousands of possible pairs

available in the simulated connectome. We then checked how many of those neuron pairs con-

nected with at least one synapse for each of the seven populations. Algorithm 2 summarizes

the steps for calculating the summary statistics.

Algorithm 2: Wiring rule simulator and summary statistics calculation
input structural model S, wiring rule R(θ), parameter θ * p(θ), mea-
sured connectivity data xobs
Simulate:
generate synapse counts for each neuron-pair i, j in each subvolume k:
cijk * simulator(S,R,θ)
Summarize:
for each population m measured in xobs do
Find index set of neuron pairs Πm belonging to population m
Sample 50 random neuron-pair indices π * Πm
Estimate population connection probability as average over connected

pairs:
P
ði;jÞ2p

Iði!jÞ
jpj

end
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return simulated connectivity data x

Overall, this provided us with a setup to perform Bayesian inference as defined above, to

constrain the parameters of a hypothesized wiring rule in the rat barrel cortex:

1. observed data xobs given by seven measured connection probabilities between VPM and

barrel cortex

2. a stochastic simulation-based model that generates simulated data x according to the

hypothesized DSO rule, given parameters θ

3. a prior over model parameters θ

This setup readily extends to other observed data, other simulation-based models, or priors.

Experimental settings

Simulation and SBI settings. For performing SBI on the DSO rule parameters, we used a

Gaussian prior over the three parameters:

θ � N ðm0 ¼ ½1; 1; 1�
>
;S0 ¼ 0:05 IÞ: ð9Þ

We chose the variance of the prior such that the distribution of simulated connection prob-

abilities covered the range [0, 1] densely (see S1 Text for details).

For the inference on the distance-based wiring rules, we used a uniform prior over the

shared subvolume threshold parameter θthres of the neuron-level rule

ythres � Uð0; 100Þ;

and a Beta distribution prior over the synapse probability parameter θprob of the synapse level

rule

yprob � Betaða ¼ 2;b ¼ 2Þ:

The settings for generating training simulations for SBI were the same for all results: We

drew 1,000,000 parameter values from the prior and simulated the corresponding synapse

counts or neuron-level connections, followed by the summary step (except for the simulator

used for benchmarking, see below).

To perform SBI, we used (S)NPE with Neural Spline Flows (NSF, [91]) as density estimator.

The NSF hyperparameters were: five transforms, two residual blocks of 50 hidden units each,

ReLU non-linearity, and ten spline bins, all as implemented in the public sbi toolbox [33]. The

training was performed with a training batch size of 1, 000, a validation set proportion of 10%,

and a convergence criterion of 20 epochs without improvement of validation loss. We used the

different versions of NPE or SNPE as follows: For the benchmark of SBI against the MCMC

reference posterior, we compared the non-sequential (NPE) and sequential version (SNPE).

For evaluating SBI with simulated data, we used the NPE to leverage its ability to perform

inference repeatedly for many different observations without retraining as needed for running

simulation-based calibration. For the inference on the DSO rule, we used SNPE with ten

rounds to focus the posterior on the measured data. For the inference on the distance-based

rules, we used NPE.

Validating SBI on the wiring rule simulator. We performed two validation steps to

ensure that SBI performs reliably when inferring wiring rules in the structural model of the

rat barrel cortex. First, we set up a simplified version of the DSO rule simulator for which it

was possible to obtain a high-quality reference posterior. In particular, we reduced the

number of neuron-pair-subvolume combinations from 130 million available in the original
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structural model to only ten. Additionally, we omitted the summary step, such that run-

ning one simulation corresponded to applying the rule to the structural features of the ten

neuron-pair-subvolume combinations and sampling synapse counts from the correspond-

ing Poisson distribution. As a consequence, the likelihood of this simplified simulator was

accessible, i.e., it was given by the Poisson distribution, and it was possible to obtain accu-

rate posterior samples using standard approximate Bayesian inference MCMC sampling

[80].

We implemented this reduced simulator in the SBI benchmarking framework sbibm [42]

and obtained references posterior samples via slice sampling MCMC [92] using ten parallel

chains and sequential importance reweighting [42, 79], all as implemented in sbibm. We

compared three algorithms: SNPE, which estimates the posterior in multiple rounds focusing

on one specific observation; the single-round variant NPE, which works for many observations

without retraining; and a classical sequential rejection-sampling-based algorithm called

SMC-ABC [38, 39]. As a measure of posterior accuracy, we used the classifier-2-sample-test

score (C2ST, [41]), defined by the classification accuracy of an artificial-neural-network classi-

fier trained to distinguish the approximate and reference posterior samples. For running

SNPE and NPE, we used the sbi toolbox [33], and for SMC-ABC, we used the implementa-

tions provided in sbibm. Generating the training data for the SBI algorithm by simulation

data from the model can be a crucial computational factor. To investigate the simulation effi-

ciency of different SBI algorithms for our inference problem, we performed a quantitative

comparison of the number of training simulations and the resulting accuracy of the approxi-

mate posterior by repeating inference with SMC-ABC, NPE, and SNPE for a simulation bud-

get of 1,000; 10,000; 100,000 and 1,000,000 simulations.

As a second validation step, we applied SBI to the original version of the DSO rule for

which no reference posterior was available. For this setting, we tested the validity of NPE

applied to simulated observed data. First, we performed simulation-based calibration (SBC) to

check the calibration of the posterior uncertainties inferred by NPE. To run SBC, we trained

NPE once on 1,000,000 simulations and then obtained 1,000 different posteriors p(θ|xi) for dif-

ferent observations xi, where xi was generated from different parameters thetai sampled from

the prior. We then collected the individual ranks of the underlying parameter θi under their

posterior and tested whether these ranks were uniformly distributed by visually inspecting

their empirical cumulative density functions. Second, we checked whether the parameters

identified by the NPE posterior distribution could reproduce the (simulated) observed data.

To perform this check, we sampled 1,000 parameters from the posterior inferred given a simu-

lated example observation, simulated corresponding connection probabilities using the DSO

rule simulator, and compared them to the observed data.
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S1 Fig. Validating SBI over wiring rule parameters with simulated data.

(TIF)

S2 Fig. Prior and posterior predictive distributions.

(TIF)

S3 Fig. Conditional posterior distributions.

(TIF)

S4 Fig. Prior predictive distribution for the DSO rule.

(TIF)
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