
Dynamic layer-specific processing in the prefrontal
cortex during working memory

Jonas Karolis Degutis1,2,3 , Denis Chaimow4, Daniel Haenelt4, Moataz Assem5, John Duncan5,
John-Dylan Haynes1,2,3,6,7,8, Nikolaus Weiskopf1,4,9,10, Romy Lorenz11,4

1. Max Planck School of Cognition, Stephanstrasse 1a, Leipzig, Germany.
2. Bernstein Center for Computational Neuroscience Berlin and Berlin Center for Advanced

Neuroimaging, Charité Universitätsmedizin Berlin, corporate member of the Freie
Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin,
Germany.

3. Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany.
4. Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain

Sciences, Leipzig, Germany.
5. MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge,

Cambridgeshire, UK.
6. Research Training Group “Extrospection” and Berlin School of Mind and Brain,

Humboldt-Universität zu Berlin, Berlin, Germany.
7. Research Cluster of Excellence “Science of Intelligence”, Technische Universität Berlin,

Berlin, Germany.
8. Collaborative Research Center “Volition and Cognitive Control”, Technische Universität

Dresden, Dresden, Germany.
9. Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences,

Leipzig University, Leipzig, Germany.
10. Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College

London, 12 Queen Square, London WC1N 3AR, UK
11. Max Planck Institute for Biological Cybernetics, Tübingen, Germany

Short title: Dynamic laminar working memory processing in the prefrontal cortex

Correspondence to: j.karolis.degutis@maxplanckschools.de & romy.lorenz@tuebingen.mpg.de

Keywords: working memory, high-resolution fMRI, cortical layers, prefrontal cortex, human

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2023. ; https://doi.org/10.1101/2023.10.27.564330doi: bioRxiv preprint 

mailto:j.karolis.degutis@maxplanckschools.de
mailto:romy.lorenz@tuebingen.mpg.de
https://doi.org/10.1101/2023.10.27.564330
http://creativecommons.org/licenses/by/4.0/


1

Abstract:

The dorsolateral prefrontal cortex (dlPFC) is reliably engaged in working memory (WM).
Evidence from non-human primates indicates that the dlPFC comprises different
cytoarchitectonic layers that play distinct roles in WM subprocesses; yet the functional role of
the dlPFC’s laminar circuitry in human WM is not well understood. In this study, participants
completed a delayed-match-to-sample WM task while undergoing functional magnetic
resonance imaging (fMRI) at ultra-high resolution, which allowed us to examine layer-specific
responses of the dlPFC to manipulations in WM load and motor response. We conducted
univariate and multivariate analyses across all periods of the WM task: encoding, delay and
retrieval. First, we observed that superficial layers activate stronger than deep layers to higher
WM load during the delay period. This aligns with earlier work showing preferential superficial
layer activation to WM manipulation and as such may indicate lamina-specific activation of the
frontoparietal network to heightened task demands more generally. Second, we found that
superficial layers show higher decoding of WM load differences than deep layers during the
retrieval period. In this context, we could show that decoding of WM load in the superficial layer
exhibited dynamic changes across the encoding, delay and retrieval period of the task,
indicative of separate WM control processes that occur on the WM content. Last, we found that
superficial and deep layers are both non-differentially involved in the motor response,
contradicting earlier findings of a preferential deep layer activation in humans. Taken together,
our results provide new insights into the functional laminar circuitry of the dlPFC during WM and
provide further support for a dynamic account of dlPFC coding.
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Introduction

The prefrontal cortex (PFC) is critical for a diverse range of higher-level cognitive processes
including working memory (WM) (1). Early work on WM focused on the neural instantiation of
stimulus-specific WM activity in the PFC of non-human primates (2,3), with later studies finding
content-specific signals across multiple areas of the human cortex (4–7). In a parallel line of
work, instead of elucidating WM contents, studies examined neural activity related to WM load
(8–11) (the number of remembered items) and WM manipulation (12), showing a positive
relationship between PFC activation and task demand in both WM and other cognitive
processes, suggesting that the PFC has a critical role in the multiple-demand system, a
frontoparietal network that commonly responds to a particular diverse range of different
cognitively challenging tasks (13,14).

Despite the PFC’s importance to WM, the role of its laminar circuitry in relation to human
cognition remains unclear. Evidence from non-human primates indicates that the PFC has
cytoarchitectonic layers that play distinct roles in WM (15,16). Superficial layers have been
hypothesized to underlie the maintenance of WM (17), while deep layers are considered the
output layers that send signals away from the PFC towards motor and premotor areas (18,19).
Recent advances in high spatial resolution functional MRI (fMRI) at ultra-high field strength have
enabled the study of lamina-specific responses in human participants in a non-invasive manner
with studies predominantly investigating sensory regions (20–25), and only recently the left
dorsolateral PFC (dlPFC) (26). In a double-dissociation, Finn et al. (26) found that superficial
layers of the dlPFC preferentially activated to the manipulation of verbal WM compared to its
maintenance, while deep layers responded to a motor response manipulation.

Here, we expand on these human laminar fMRI findings by addressing several open questions
about the superficial and deep layers of frontal cortex, while focusing on the aforementioned left
dlPFC. First, we manipulate WM load to see whether the superficial layer result from Finn et al.
generalizes to other demanding high-level cognitive tasks. Second, we seek to replicate the
preferential activation of deep layers to a motor response. Third, we examine the layer-specific
multivariate code underlying WM load and investigate the stability of this coding across the
entire duration of the trial. Critically, unlike previous studies that have looked at whether the
stimulus-specific multivariate activity changes dynamically across time (4,27–29), we examine
the multivariate population code underlying WM load conditions. This allows us to investigate
whether the coding format changes in a layer-specific manner across three periods of the WM
task: encoding, delay, and retrieval.

To preview, we found that WM load preferentially activated superficial layers compared to deep
layers during the delay period, while the retrieval period showed a more significant multivariate
load decoding accuracy in superficial layers compared to deep layers. We did not find a
significant difference between deep and superficial layers to the motor response manipulation.
Finally, we observed dynamic coding between different periods of the WM task in superficial
layers of the left dlPFC when decoding WM load.
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Figure 1: Trial design and ROIs. a) Trial design. In load runs, participants performed a
delayed match-to-sample task, where they had to remember a presented high or low
load stimulus (four vs. one item) and had to indicate whether the probe presented at the
end of the trial was a part of the stimulus array or not. In motor runs, participants were
always presented with four items. If an ‘X’ was presented during the probe, they had to
abstain from answering. High load stimulus depicts four outdoor scenes. Low load
stimulus depicts one outdoor scene and three masks. b) Regions of interest. The left
dlPFC was defined as four parcels from the frontoparietal network: 8C, IFJp, IFSa,
p9-46v (30,31). The left control regions were defined as four parcels from the
cingulo-opercular network anatomically adjacent to the left dlPFC: FEF, 6r, 46, FOP5
(30,31) (for full description of ROIs see Methods). c) Three equidistant gray matter
layers (only superficial and deep layers were used for analyses) defined in the space of
the functional images were projected onto an anatomical T1 and functional T2* image of
an example participant.
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Results

Nine participants were scanned at 7T field strength using a GE-BOLD sequence and used their
right hand to complete a WM delayed match-to-sample task, where in two of the four runs we
manipulated WM load; participants had to remember either four or one item and had to always
respond during the retrieval period (Fig 1a). In the other half of the runs the motor response was
manipulated; participants had to always remember four items and during the retrieval period
they were asked to respond or abstain from responding to a presented probe (Fig 1a).
Participants accurately remembered the stimulus in both the low load (mean = 95.5% correct,
standard deviation (SD) = 6.34%) and high load condition (mean = 74.3% correct, SD = 10.6%;
Fig. S1, left panel) with the high load trials having significantly lower accuracy (p = 1.31e-05,
t(8) = 9.44, CI95 = [16.8, 27.7], two-tailed paired t-test). During the motor manipulation, the
participants followed instructions by responding (mean = 99.3% correct, SD = 2.08%) and
abstaining to respond (mean = 97.9% correct, SD = 3.13%; Fig. S1, right panel) with no
significant difference between motor conditions (p = 0.35, t(8) = 1.00, CI95 = [-1.81, 4.59],
two-tailed paired t-test). All results in the main text are presented for trial periods that are
adjusted for a hemodynamic delay of 6 s while “true” trial timings (without taking into account
the hemodynamic delay) are additionally indicated in Figure 2 and Figure 3.

Superficial layers preferentially activate to higher WM load during the delay period

Our first goal was to examine the influence of WM load on the superficial and deep layer activity
of the left dlPFC (Fig 1b-c). We predicted that superficial layers would be preferentially
influenced by WM load. In addition, we looked at a set of anatomically adjacent frontal regions
from the cingulo-opercular network as a control (Fig 1b).

Trial time courses were estimated for each load condition in each layer in the dlPFC and frontal
control regions (Fig 2a, 2c). To examine the load effect, we subtracted the low load time course
from the high load for a given layer in a given region and examined two trial periods of interest:
middle of the delay period (11.3 s - 15.1 s), which was after the encoding peak and before the
response probe, and retrieval (20.7 s - 24.5 s; indicated as two gray shaded rectangles in Fig
2a, 2c), which was after the presentation of the probe.

We found a higher load effect across participants in superficial as compared to deep layers
during the delay period within the dlPFC (p = 0.0072, t(8) = 3.58, CI95 = [0.0177, 0.206],
two-tailed paired t-test), but no significant difference during the response (p = 0.072, t(8) = 2.07,
CI95 = [-0.0989, 0.534]) (Fig 2b). In control regions we found no difference between layers for
the load effect in either the delay (p = 0.55, t(8) = 0.630, CI95 = [-0.193, 0.295]) or the response
period (p = 0.83, t(8) = -0.223, CI95 = [-0.251, 0.217]) (Fig 2d). Preferential superficial layer
activation to high WM load during the delay and response periods was absent in right control
regions (Fig. S2d) and right dlPFC (Fig. S2b).
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No differential layer activation to motor response in retrieval period

Additionally, we examined the motor effect during the retrieval period (20.7 s - 24.5 s). We
expected higher activity in the deep layers, as previously seen in (26). Similarly to the load
effect, we subtracted the abstain from the response time course for each layer in each ROI (Fig
2a, 2c). However, we found no significant difference between superficial and deep layers either
in the dlPFC (p = 0.30, t(8) = -1.11, CI95 = [-0.324, 0.149]) (Fig 2b) or in the control regions (p =
0.18, t(8) = -1.452, CI95 = [-0.238, 0.083]) (Fig 2d). We also found no significant motor effect
difference between layers in the right dlPFC or right control regions (Fig. S2b, S2d).

Figure 2: Layer-specific univariate BOLD responses a) Univariate trial time courses
averaged across all voxels from the superficial (left) and deep (right) layers in the left
dlPFC for load trials (high and low conditions; top plots) and motor trials (response and
abstain conditions; bottom plots). The vertical gray transparent rectangles indicate the
two trial periods of interest (adjusted for the hemodynamic delay of 6 s): the delay (11.3 s
- 15.1 s) and the retrieval period (20.7 s - 24.5 s). The shaded area indicates standard
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errors across participants. The horizontal colored transparent rectangles at the bottom of
the figure indicate “true” trial periods (without taking hemodynamic delay into account) in
the following order: stimulus presentation (light blue), delay period (blue), probe
presentation and response period (gray). b) The layer-specific load effect (top) and
motor effect (bottom) in the superficial and deep layers of the left dlPFC for the delay
and retrieval time periods. The load effect was calculated per subject by subtracting the
low from the high load time course and averaging time points associated with the trial
periods of interest. The motor effect was calculated per subject by subtracting the
abstain from the motor response time course and averaging time points in the retrieval
period. The stars indicate p < 0.01 (two-tailed paired t-test). Error bars indicate ±SEM.
c) same as a) but for left control regions. d) same as b) but for left control regions.

Superficial layers preferentially code for WM load in retrieval period

Univariate analyses demonstrate changes in average signal between layers; however, individual
voxel responses within each layer are not necessarily homogeneous. To be more sensitive to
such patterns we used multivariate decoding analyses (for examples in GE-BOLD see
(22,32,33)) using trial normalization (see Methods) that mitigated the effect of differences in
mean univariate response between the conditions which might drive the decoding results. This
more sensitive analysis allowed us to investigate multivariate activation patterns of different
layers to load and motor conditions as well as potential differences in response patterns over
the course of the trial. Therefore, unlike in the univariate analysis where we compared
responses averaged over delay and motor response periods of the task, here we ran the
classification in an exploratory manner across the length of the trial, encompassing the
encoding, delay, and retrieval periods.

We trained a binary classifier to differentiate between high and low load trials independently for
each layer within each ROI and statistically compared decoding results against
permutation-derived null distributions as well as between layers. For superficial layers of the left
dlPFC, we found two above-chance temporal decoding clusters during the encoding and early
delay period (8-12 s, p = 0.0035, one-tailed permutation test) as well as at retrieval (22-24 s, p =
0.0027, one-tailed permutation test) (Fig 3a, filled dark brown diamonds) while two
above-chance timepoints during the late delay failed to reach significance on the temporal
cluster-level (16-18 s, p = 0.077, one-tailed permutation test) (Fig 3a, hollow dark brown
diamonds). For deep layers of the dlPFC, two above-chance timepoints during the encoding and
early delay period trended towards temporal cluster significance (8-10 s, p = 0.058, one-tailed
permutation test; Fig 3a, hollow light brown diamonds). For between layer comparison, we
found two above-chance timepoints during the encoding and early delay period (10-12 s) where
the superficial layer showed stronger WM load decoding than the deep layer, however this time
period did not reach significance at a temporal cluster level (p = 0.059, two-tailed permutation
test; Fig 3a, black hollow diamonds). Interestingly though, we found one cluster that showed a
significantly higher decoding of WM load in the superficial compared to the deep layer during
the retrieval period (22-24 s, p = 0.023, two-tailed permutation test; Fig 3a, black filled
diamonds) even though the bottom-up sensory input at retrieval was completely identical
between the two conditions and consisted of a single probed image (Fig. 1a, response probe).
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We ran the same analyses on the left and right control regions and on the right dlPFC. We
found above-chance decoding clusters in the superficial (8-10 s, p = 0.046, one-tailed
permutation test) and deep layers (10-12 s, p = 0.0043, one-tailed permutation test) of the left
control regions during the encoding and early delay period (Fig. 3b), but no differences between
layers. We also decoded WM load from the encoding and early delay period in the superficial
layers and deep layers of the right dlPFC and found a difference between layers with higher
superficial layer decoding (Fig. S2e). We also decoded load from the right control regions during
the encoding and early delay period (Fig. S2f).

Both superficial and deep layers non-preferentially code for motor response in retrieval period

To detect patterns associated with the motor effect, we trained a binary classifier to distinguish
between response and abstain trials. Since the participants only found out about the type of trial
during the presentation of the probe, as expected, there was no significant decoding prior, either
in the left dlPFC or left control regions. We found a single above-chance cluster each in the
superficial (p = 0.0054, one-tailed permutation test) and deep layers (p = 0.015, one-tailed
permutation test) during the response period (24-26 s; Fig. 3a, dark and light purple diamonds).
However, there was no significant difference between the two layers. These results agree with
our univariate findings showing no difference between superficial and deep layers during the
motor response period. The right dlPFC and right control region showed similar motor decoding
results. Motor trial decoding was significant in both layers of the right dlFPC and control regions
during the retrieval period (Fig. S2f).

Dynamic coding of WM load in superficial layers

Both univariate and multivariate analyses indicated that superficial and deep layers differentially
activate in response to high and low WM load conditions. Hence, we sought to determine
whether the multivariate pattern sustaining load information is stable across time. To do so, we
used temporal cross-decoding, as previously done to investigate the stability of WM content in
humans and non-human primates (27,28,34,35). We trained on a given time point and tested on
all time points in turn.

If the trained classifier generalizes to other time points (i.e. high decoding accuracies of the
off-diagonal elements of the decoding matrix), the analysis reveals that the multivariate pattern
sustaining load information (i.e. “coding”) is stable across time. However, when the diagonal of
the matrix, representing training and testing on the same time points, shows higher decoding
accuracies than the off-diagonal elements, then the multivariate activity is dynamic and varies
across time. We examined the generalization of multivariate patterns in response to load in the
superficial and deep layers of the dlPFC.
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Figure 3: Layer-specific decoding accuracy. a) Top: decoding accuracy (linear SVM)
of high vs. low load conditions across time from the superficial (dark brown) and deep
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layers (light brown) of the left dlPFC. Bottom: decoding accuracy of response vs. abstain
motor conditions across time from the superficial (dark purple) and deep (light purple)
layers of the dlPFC. Diamonds indicate above-chance decoding significance of
superficial and deep layers (in their corresponding color) and comparison between layers
(black). Filled diamonds depict significance of p < 0.05, (cluster-permutation test). Hollow
diamonds depict p < 0.1, (cluster-permutation test). The shaded rectangles indicate the
trial periods in the following order: stimulus presentation (light blue), delay period (blue),
probe presentation and response period (gray). “True” trial periods (without accounting
for hemodynamic delay) are displayed at the bottom and trial periods adjusted for a 6 s
hemodynamic delay are displayed on top. b) same as a) but for left control regions. c)
Temporal cross-decoding of load from the superficial and deep layers of the dlPFC. Top:
superficial layers. Bottom: deep layers. A classifier trained on each time point was tested
on itself and all other time points. The matrix diagonal corresponds to the classification
accuracy of load in a). The black outline denotes all above-chance clusters within a layer
(cluster-permutation against null). The red outline signifies all dynamic clusters
(conjunction of two cluster-permutation tests; see Methods: Temporal cross-decoding) d)
Selected columns from c) visualized in 2D as decoding time courses: accuracy across
the trial when trained on the encoding (top plot; 10 s), delay (middle plot; 16 s), and
retrieval (bottom plot; 24 s) trial periods and tested on all time points in turn. Columns at
10 s, 16 s, and 24 s in c) correspond to the top, middle, and bottom time courses,
respectively. Shaded area depicts ±SEM. To increase signal-to-noise, all decoding points
were averaged with their preceding one in a moving average manner.

Within the superficial layers of the dlPFC, we identified two above-chance decoding clusters
(Fig. 3c, black dashed line). The first decoding cluster spanned both the encoding and delay
period (p = 0.001, one-tailed permutation test), while the second cluster was isolated to the
retrieval period (23-25 s; p = 0.003, one-tailed permutation test). Looking more closely into the
first decoding cluster, we observed that the classifier trained on the encoding period (8-10 s)
generalized to the middle of the delay period (16 s), and the classifier trained on the delay
period (14-18 s) generalized to the late delay period (up to 22 s). Importantly though, the
classifier trained on the encoding period did not generalize to the late delay period and vice
versa, indicating a differential multivariate pattern sustaining load information in those two
periods of the trial. To visualize these results, we plotted the columns from Fig. 3c as time
courses (Fig. 3d, top panel), which depict that the classifier trained on 10 s had high decoding
during the encoding and early delay, but the decoding accuracy waned in the second half of the
trial. Similarly, the classifier trained on 16 s had the highest decoding during the late delay
period (Fig. 3d, middle panel). With respect to the second decoding cluster identified at
retrieval, we observe that it only generalizes to its surrounding time points, indicating that the
multivariate pattern reflecting load during the retrieval period was distinct from encoding and
delay (bottom time course in Fig. 3d).

Within the deep layers of the dlPFC, a single above-chance cluster (Fig. 3c, black dashed line)
was found during the encoding period (8-10 s) which generalized to the delay (18 s). Plotting the
column of Fig. 3c as a time course (Fig. 3d, top panel), we see that the deep layer results follow
a similar trend as the superficial layer results: the classifier trained on 10 s had high decoding
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during the encoding and early delay, but the decoding accuracy waned in the second half of the
trial. Similarly, the classifier trained on 16 s had the highest decoding during the late delay
period (Fig. 3d, middle panel).

To empirically check the lack of generalization between the above-chance clusters, we identified
dynamic elements within the cross-decoding matrices. Dynamic elements denote parts of the
matrix where, despite there being information about the load condition at two different time
points (on the diagonal of the matrix), the code does not generalize from one time point to the
other. Three clusters were found in the superficial layers of the dlPFC: two off-diagonal elements
at the intersection of the encoding and early delay (train) and retrieval (test) periods, two
elements at the intersection of the middle delay (train) and encoding and early delay (test)
periods, and four elements at the intersection of encoding and early delay (train) and retrieval
(test) periods (Fig. 3c).

To summarize, our cross-decoding results showed three differential multivariate response
patterns sustaining load in the superficial layers during the encoding, delay, and retrieval
periods, indicative of dynamic coding between trial periods.

Discussion

We scanned participants at ultra-high field strength performing a delayed match-to-sample task
where we manipulated WM load and motor response while measuring responses from the
superficial and deep layers of the dlPFC. In the left dlPFC, we found a higher superficial
compared to deep layer activation in response to increased WM load during the delay period;
however, we did not find a differential laminar response to a motor manipulation. In order to
examine the multivariate response across the length of a trial, we decoded load and motor trial
types from the layers of the left dlPFC. We found that superficial layers preferentially code for
difference in WM load during the retrieval period. With respect to the motor trials, we found that
both superficial and deep layers code for the motor response in the retrieval period but failed to
find any significant laminar difference. Finally, we also found that the multivariate code
underlying WM load in the superficial layers dynamically changed between the encoding, delay,
and retrieval periods.

Our results expand on previous WM literature that has used multivariate decoding to investigate
neural mechanisms of working memory (5,6,36–38). Additionally, we replicate early non-human
primate studies showing persistent spiking in the lateral PFC in all periods of a WM task (2) by
showing sustained univariate activity in both superficial and deep layers during high load trials.
Our work also corroborates findings showing higher activation of the lateral PFC to higher task
demands, as previously seen in univariate human fMRI work on WM load (8,9) and the
manipulation of WM information (12).

Greater neural processing associated with working memory load in superficial layers compared
to deep throughout the delay and retrieval periods might indicate activity related to more general
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task demands; these demands increase as a result of higher WM load, possibly by both
recruiting new neural populations (e.g. in retrieval) and by increasing univariate activity (e.g. in
delay). These WM control processes might correspond to the updating of content during
encoding, the monitoring or contents throughout the delay period (39), compression or
reorganization of WM contents as a result of increased load demand (40), or an activation of a
larger number of content-independent pointers (41), that might project to parietal and sensory
cortices where the maintained memoranda is thought to be stored (7,42,43). Interestingly, there
was a preferential univariate response of the superficial compared to deep layers to high load
during the delay period, but no laminar difference in decoding. Superficial layers might utilize the
same neural population underlying one or several control processes to a higher degree; this
would result in higher univariate activity, but lower decodability, since univariate contributions
were minimized through trial normalization. Taking into account results from Finn et al. (26),
preferential response in the superficial layers to both WM manipulation and higher WM load
might point towards a lamina-specific (i.e., superficial layer) activation of the frontoparietal
multiple demand system (13) for heightened task demands more generally. However, it is
essential to underscore the necessity for future investigations to systematically examine the
layer-specific activation of the frontoparietal network across a diverse spectrum of cognitive
tasks with varying demands; as can be accomplished employing novel real-time fMRI
approaches utilizing neuroadaptive Bayesian optimization (44–46).

We also provide new insights into the mesoscale functional architecture of the dlPFC in
response to WM load. Previous studies have established that recurrent connections within
superficial layers of the PFC support sensory input-specific gamma-band activity, while deep
layer alpha and beta oscillations modulate this superficial layer activity (15,47). In turn, the
interaction between deep and superficial layers might act as a gating mechanism for sensory
information to enter the PFC and WM storage (48,49). In our study, both superficial layers and
deep layers had above-chance temporal cross-decoding clusters during the encoding of WM
information. Deep layer coding for WM load during the encoding period might correspond to the
opening of the gate, which allows for the encoding of new WM information within the superficial
layers. Based on our results, we can only speculate whether deep layers drive superficial layer
activity. It should be noted that deep layer coding was significant in the right dlPFC and only
trended towards significance in our temporal cluster analysis of the left dlPFC. This might
indicate a lateralization in the WM encoding control process to the right hemisphere (50);
however, further studies are needed to corroborate these results and unravel any causal laminar
relationships in both hemispheres.

For the retrieval period, we found significantly higher superficial compared to deep layer
decoding of WM load which might indicate increased demands during the probe’s comparison to
the stored memory (1 vs. 4 items) despite the presentation of identical response probes in low
and high WM load conditions. The comparison process seems to happen within the superficial
layers, which might multiplex both the novel sensory probe stimulus and the remembered
memoranda; in order to achieve this at high load, additional neural populations within the
superficial layers might be recruited, thus driving the multivariate decoding. Superficial layer
decoding relates to previous findings showing ramping gamma-band activity at the end of
memory delays (51), as a consequence of its disinhibition resulting from the drop of alpha/beta
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power to allow a successful read-out of information from WM (52). Intriguingly, load decoding
peaked prior to motor decoding, which might denote the sequence of computations in the
dlPFC: a comparison of the probe to the WM set before the initialization of a motor response.

The canonical model of the WM suggests that that information coded within the PFC is stable
and firing is persistent across the delay period (3,53). However, evidence has emerged that WM
is both rhythmical and non-persistent in activation and the format of the coded information
dynamically varies across time (47,54). Studies using temporal cross-decoding have observed a
dynamic code between the encoding period and delay activity in the PFC of non-human
primates and humans (27–29), and across the visual hierarchy in humans (4,35). We find three
non-generalizing sub-clusters within the span of the trial; each sub-cluster corresponding to
either the encoding, delay, or retrieval periods. Previous studies argued that dynamic coding
indicates a point where transient sensory stimuli are transformed into a more stable
representation (27); however, since we were decoding load and not the contents of WM, the
decoding sub-clusters might underlie separate WM control processes that occur on the WM
content within the same layer.

In contrast to superficial layers of the PFC, the deep layers are considered to be the output - or
top-down - layers of the cortical area and have neurons modulated by D2 dopamine receptors
(18,19). Finn et al. (26) found that a motor modulation only activated the deep layers of the
prefrontal cortex, while superficial layers stayed at baseline. We do not find a preferential
activation of either superficial or deep layers of the left dlPFC to the motor manipulation either in
univariate activity or in multivariate decoding. The discrepancy between (26) and our results
may be related to a difference in paradigm and/or a difference in scanning sequences.

Finn et al. (26) contrasted trials in which participants either had to respond after the presentation
of a probe or had to not respond when a probe was not presented. This resulted in a change of
two factors between conditions: the presence or absence of the probe stimulus and the motor
response. Our paradigm always included the presentation of the probe and participants were
asked to either respond or abstain from responding based on a presented cue. If the deep layer
modulates the information that enters the superficial layer of the dlPFC, then that computation
could provide an additional deep layer response. Thus, higher activation of the deep layers in
(26) might not be a result of the output, but rather of the opening of the gate by the deep layers
to let in the probe for subsequent comparison in the superficial layers. This probe input signal
would have been absent when comparing between conditions in our paradigm. As a
consequence and based on our results, we might conclude that the superficial and deep layers
are both non-differentially involved in the output of a motor signal. Further research is needed to
distinguish between the input and output hypotheses by possibly extending the time between
the presentation of the probe and motor initiation.

An additional difference between the two studies was the pulse sequence used to measure
signals from the layers. We used conventional GE-BOLD, while (26) used both BOLD and
cerebral blood volume (CBV), which resulted in an SS-SI-vascular space occupancy (VASO)
contrast (55,56). The BOLD signal has poorer spatial specificity, but higher sensitivity, as a
larger part of the signal comes from larger veins present in the pial surface (57) resulting in a
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broader point-spread function of the signal in both columns (58) and layers (59) compared to
more spatially precise scanning sequences. VASO has a smaller contrast-to-noise ratio, but
localizes activity to both superficial and deep layers, with less bias from large draining veins
(55). The main concern in GE-BOLD are interdependencies in the signal between different
layers of the cortex, as a result of the blood draining from deep layers towards superficial layers
(60,61). The superficial layers might thus contain signals from the deep layers as well. One
strategy of mitigating the effects of draining veins is to compare differences of tasks, as in the
case of our study (high load compared to low load and response compared to abstain trials) and
as done in previous GE-BOLD studies; a subtraction of conditions would theoretically remove a
linear draining effect (20,21,23,25,62). Despite employing this method, both superficial and deep
layers activated to the motor manipulation. Thus, the linear detrend might have not completely
removed the draining vein signal, thus future work can employ more sophisticated models to
account for the superficial layer blurring (59,63); however, preferential deep layer activation has
been previously observed in GE-BOLD studies that have not employed these models
(20,21,23,64,65).

In summary, we show that superficial layers of the dlPFC are not only crucial for WM
maintenance, but in fact are involved in various WM subprocesses by dynamically adapting to
current task demands. In addition, we highlight that deep layers seem to have a more complex
role in WM than previously understood. Our findings offer new insights into the neural
mechanisms of WM and try to bridge the gap between the human and non-human primate WM
literature.

Methods

Participants

We scanned nine participants (ages 23-36 years, three female) that were recruited from the Max
Planck Institute for Human Cognitive and Brain Sciences (MPI CBS) subject database. The
sample size was comparable to previous laminar fMRI studies (22,62,66). All participants gave
written informed consent and received monetary compensation for their participation. The study
was approved by the ethics committee of the University of Leipzig (441/20-ek).

Stimuli and procedure

Following the design of (26), participants completed four runs of a delayed match-to-sample
task (Fig. 1a). In two runs we manipulated the task difficulty by changing the WM load (from
now on referred to as the load runs). In the other two runs we manipulated the motor response
during the retrieval period (from now on referred to as the motor runs). Each trial began with the
presentation of the sample for 3.5 s which consisted of a four-square array where each square
was equidistant from the center. A fixation cross was presented centrally. In the load runs either
one (low load) or four (high load) items were presented within the squares as the
to-be-remembered sample. The items consisted of faces (subcategory: male and female) or
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scenes (subcategory: indoor and outdoor). The face and scene stimuli were retrieved from the
Face-Place database (67). Faces had neutral emotional expressions. The scenes included
indoor and outdoor pictures of houses. All stimuli were converted to grayscale. For each trial the
category and subcategory of the items within the array were the same (e.g. only female faces).
In the case of a low load condition, the remaining three squares consisted of Fourier-scrambled
items from the same category, in order to preserve the low-level visual features of the overall
sample array. Visual masks consisting of Fourier-scrambled images were presented for 200 ms
at the location of the four squares after sample presentation (not shown in Fig. 1a). All
scrambled images were from the same category as the sample. Motor runs always had four
items (i.e. high load) as the sample.

A WM delay period of 13 s followed during which the participants had to remember the sample.
At the end of the delay period a probe image (same size as one of the sample squares)
appeared centrally with a question mark placed above for 1.2 s. The probe was always from the
same category and subcategory as the sample. Participants had 4.2 s to respond using their
index and middle finger of their right hand to indicate whether the presented probe was part of
the remembered sample. Motor runs consisted of two trial types: response and abstain trials.
During an abstain trial the probe was still presented; however, an ‘X’ was placed above instead
of a question mark cueing the participants to abstain from responding. If a subject responded
during this period on an abstain trial, this was marked as a miss-trial. An inter-trial-interval of 10
s followed the response period.

Stimuli (across both sample and probe) did not repeat within a run. The types of trials within a
run were counterbalanced. Categories were counterbalanced for high and low load for each
load run. The position of the single item was counterbalanced across the four positions in the
low load trials for each load run. The sequence of trials was pseudorandomized for each run; a
maximum of three trials of the same type could be subsequently presented. Each trial was 30.7
seconds long. A run had 16 trials and lasted 8 minutes and 24 seconds.

Prior to entering the scanner, participants trained by completing eight load trials. To proceed to
the scanner participants had to respond correctly to at least 70% of the trials, otherwise, the
practice load run was repeated.

fMRI protocol

MRI data were acquired using a Siemens MAGNETOM Terra 7T MRI system (Siemens,
Erlangen, Germany) using a 8Tx/32Rx head coil (Nova Medical Inc., Wilmington, MA, USA).
Anatomical images were acquired using an MP2RAGE sequence (Marques et al., 2010) (TR =
5000 ms, TE = 2.27 ms, 0.75 mm isotropic voxels) at two inversion times (TI of 900 ms, 2700
ms with a flip angle of 3°, 5°, respectively) that were combined to yield a T1-weighted image.

High-resolution functional data were acquired using a T2*-weighted 2D gradient-echo EPI
sequence (TR = 2000 ms, TE = 23 ms, 0.8 mm isotropic voxels, flip angle = 80°, 35 slices).
Prior to running the high-resolution scans, a whole-brain functional localizer scan using a
T2*-weighted 2D gradient-echo EPI sequence (TR = 2000 ms, TE = 18 ms, 2 mm isotropic
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voxels, flip angle = 75°) was acquired and analyzed to subsequently position the high-resolution
partial-brain slab. During this localizer run participants performed an additional load run (see
Stimuli and procedure). The resulting peak activation defined by the contrast between delay
activity and baseline informed the positioning of the high-resolution slab around the expected
anatomical location of the dlPFC.

The procedure of the scanning was the following: participants were first scanned using the
low-resolution localizer after which the anatomical image was acquired. After semi-manual
shimming, participants performed two load runs followed by two motor runs (except for S01 who
performed load and motor runs interleaved).

Preprocessing and co-registration

To obtain accurate reconstructions of gray and white matter surfaces from structural MP2RAGE
data, a Freesurfer-based pipeline (Chaimow et al. in preparation) was applied. First, a
T1-weighted image that is spatially homogeneous yet free of extracerebral noise was generated
by bias-correcting the INV2 MP2RAGE image before multiplying with the UNI image
(MPRAGEize) (68). Next, a high-quality brainmask was computed by passing this T1-weighted
image to CAT12 (69) for segmentation and merging the resulting gray and white matter
components. Finally, the T1-weighted image was processed using Freesurfer’s recon-all
pipeline (version 7.1) using the high-resolution flag and substituting Freesurfer’s auto-generated
brain mask with the CAT12-derived brain mask.

For subsequent ROI selection (see Definition of ROI), the segmented structural surfaces of
each participant were brought into fsLR164k CIFTI space using ciftify_recon_all, which is part of
the Python-based ciftify package (70) with expert settings to register to the high-resolution 0.5
mm FSL MNI152_T1 template. Ciftify adapts the post-Freesurfer portion of the Human
Connectome Project's (HCP) minimal preprocessing pipeline to non-HCP acquired data (30)
and includes surface based alignment (MSMSulc) (71) to HCPs fs_LR space.

Registration between the Freesurfer processed T1-weighted image and the mean image of the
third functional GE-BOLD run was calculated using ANTs (72). The structural image was initially
registered using a linear affine transform and subsequently a symmetric normalization (SyN)
algorithm generated warp field for distortion correction (73).

Functional scans were motion corrected using AFNI’s 3dVolreg using Fourier interpolation to the
volume which had the minimum outlier fraction of voxels as calculated by 3dToutcount across all
runs (as per standard AFNI preprocessing) (74).

We calculated three equidistant depth bins across the anatomical cortical ribbon in functional
space using LAYNII (75). For smoother layer estimation, prior to layer generation, the
anatomical ribbon was upsampled by a factor of five. The upsampled ribbon was then used to
generate three equidistant layers. Finally, the layers were downsampled back to the functional
images’ 0.8 mm-isotropic resolution. Even though we were interested in only two layers
(superficial and deep), the middle layer was estimated as a ‘buffer’ between the deepest and
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most superficial depths, thus minimizing partial volume effects by excluding voxels where there
might have been a large overlap between superficial and deep layers. We applied the
transformation affine matrix and warp field generated by ANTs to register the layers to functional
space.

Definition of ROI

We generated two regions of interest using the Human Connectome Project Multi-Modal
Parcellation version 1.0 (HCP MMP 1.0) atlas (30). This surface-based cortical parcellation has
been generated using high-resolution, multi-modal data from 210 participants. Surface parcels
were transformed from fsLR space to single subject functional space following a combined
transformation, estimated by structural-functional registration and MSMSulc surface-based
alignment to atlas space (fsLR) in each individual subject. This subject-specific surface-based
approach has been shown to substantially improve cortical area localization compared to
traditional volumetric approaches and is also superior to other surface-based approaches (76).
We focused all primary analyses on the left dlPFC, following (26). We defined the left dlPFC by
selecting four left-lateralized frontal parcels (8C, IFJp, IFSa, p9-46v) for which we had sufficient
coverage and that correspond to the frontoparietal network (31). To assess whether our findings
were specific to the dlPFC, we selected an anatomically and functionally similar control set of
four left-lateralized frontal parcels (FEF, 6r, 46, FOP5) from the cingulo-opercular network (COP)
(31). As an exploratory analysis, we also looked at the dlPFC and the control region in the right
frontal cortex, which were defined using the same corresponding parcels in the right
hemisphere.

Univariate analysis

For each layer, trial time courses were extracted by finite-impulse response modeling using
AFNI’s 3dDeconvolve with the ‘TENTzero’ basis function model. Fifteen free basis functions and
two zero basis functions in the beginning and end were fit to a trial length of 31 seconds in
addition to polynomial nuisance regressors up to the 5th order to detrend the signal. One time
course was estimated for each trial-type in each type of run (high and low load from the load
runs; response and abstain from the motor runs). We used the constant predictor to calculate
the percent signal change for each voxel in each trial-type.

Multivariate decoding

We performed two decoding analyses: high vs. low load (load decoder) using the load runs, and
response vs. abstain (motor decoder) using the motor runs. Decoding analyses were run
separately on the superficial and deep layers of the left dlPFC and on the left frontal control
regions and corresponding ROIs in the right hemisphere.

We ran the classification across the entire duration of a trial. Time courses of each voxel were
high-pass filtered and then temporally z-scored for each run independently. Since the onset of
the trial was not TR-locked, we chose the nearest rounded-down TR closest to the onset of the
trial and the following 16 TRs (32 seconds) as a single trial (resulting in a total of 17 TRs). Trial
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normalization and feature z-scoring was applied to training and testing data independently, thus
reducing the classifier’s ability to decode based on overall univariate activity differences
between classes. Additionally, to increase the signal-to-noise ratio, we averaged the data from
two adjacent TRs for each decoding time point. We used a linear support vector machine
classifier (LSVMs; libsvm: www.csie.ntu.edu.tw/~cjlin/libsvm/) with a cost parameter of c = 1.

Within a cross-validation fold, we trained on the same number of trials in order to account for the
trial transition matrix, which corrected for possible carry-over effects from the previous trial. For
example, in the motor decoding, we trained on the same number of retrieval trials where the
previous trial was a retrieval or an abstain trial, thus creating four types of trials:
retrieval-abstain, retrieval-retrieval, abstain-retrieval, and abstain-abstain. Despite the four types
of trials, we ran a binary classification where the current trial determined the label name. The
trials chosen for a given fold were randomly selected from all available trials across both runs.
The number of cross-validation folds was determined by taking the smallest number of trial
types and multiplying by four. Despite some trials being trained on more than once across folds,
each fold had a unique combination of the trials trained and tested on.

Statistical inference was done on empirically generated permuted null distributions. For each
decoding analysis, time point, and layer a null distribution was generated by running the same
procedure of classification on training data with permuted labels. The analysis was run 250
times for each participant generating a classification accuracy on each iteration. A population
null distribution (for each analysis, time point, and layer) was generated by drawing a single
sample from each subject’s null distribution (resulting in nine samples) and taking the average
resulting in a mean t-value. This was done 10,000 times. Significance was then determined
using a cluster-permutation test (77) where the summed t-value of the empirical data clusters
was compared to the summed t-value of clusters within the generated null distribution.
One-tailed tests were run to test for above-chance decoding significance, while two-tailed tests
were used for the comparison between layers.

Temporal cross-decoding

To investigate the temporal stability of the multivariate decoding across the delay period, we ran
a temporal cross-decoding classification analysis where we decoded the load condition from the
superficial and deep layers of the dlFPC. This analysis followed the same classification
procedure as the temporal decoding analysis, except each classifier trained on a given time
point was tested on data from all time points in turn. This analysis allowed us to see whether the
multivariate code at one time point generalizes to other time points and thus to determine
whether the underlying code is dynamic or stable. There was no informational overlap between
the training and testing data, since the same trials were never included in the two subsets, both
when training and testing on the same and different time points.

Above-chance decoding of the temporal cross-decoding matrix was tested using a
cluster-permutation test (77). We calculated the summed t-value of all above-chance elements
within a cluster. Within a matrix, there could have been more than one cluster. A null distribution
was generated by a sign permutation test by randomly sampling one of the decoding accuracies
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within a given element of the matrix. This was run 10,000 times. The summed t-value of the
largest above-chance cluster within the permuted data was taken as a statistic for the null
distribution. The empirical clusters were then compared to the distribution; all clusters where p <
0.05 were deemed to be above-chance.

In addition to calculating an above-chance cluster, we also identified dynamic elements within
the cross-decoding matrix. Following previous research (27,35), dynamic elements were defined
as off-diagonal elements that had lower decoding accuracies than their two corresponding
diagonal elements (e.g. aij < aii ∧ aij < ajj). Two cluster-permutation tests were run following the
above-chance cluster sign permutation method; in this case all aij elements were initially
subtracted by aii in one test and ajj in the second test. Only elements that were within clusters
from both tests were deemed dynamic. Also, the diagonal entries corresponding to a dynamic
element had to both be within an above-chance cluster.
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