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Dynamic layer-specific processing in the
prefrontal cortex during working memory
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The dorsolateral prefrontal cortex (dlPFC) is reliably engaged in workingmemory (WM) and comprises
different cytoarchitectonic layers, yet their functional role in human WM is unclear. Here, participants
completed a delayed-match-to-sample task while undergoing functional magnetic resonance
imaging (fMRI) at ultra-high resolution.We examine layer-specific activity tomanipulations inWM load
andmotor response. Superficial layers exhibit a preferential response toWM load during the delay and
retrieval periods of a WM task, indicating a lamina-specific activation of the frontoparietal network.
Multivariate patterns encoding WM load in the superficial layer dynamically change across the three
periods of the task. Last, superficial and deep layers are non-differentially involved in the motor
response, challenging earlier findings of a preferential deep layer activation. Taken together, our
results provide new insights into the functional laminar circuitry of the dlPFC duringWMand support a
dynamic account of dlPFC coding.

The prefrontal cortex (PFC) is critical for a diverse range of higher-level
cognitive processes includingworkingmemory (WM)1. Early work onWM
focused on the neural instantiation of stimulus-specific WM activity in the
PFC of non-human primates2,3, with later studies finding content-specific
signals across multiple areas of the human cortex4–7. In a parallel line of
work, instead of elucidatingWM contents, studies examined neural activity
related to WM load8–11 (the number of remembered items) and WM
manipulation (the reordering of stored information)12. These studies found
a positive relationship between PFC activation and task demand forWMas
well as other cognitive processes, suggesting that the PFCplays a critical role
in the multiple-demand system, a frontoparietal network that commonly
responds to a particular diverse range of different cognitively challenging
tasks13,14. More recent studies have shown thatmultivariate activity patterns
of the PFC dynamically change depending on WM demands15, with these
changes potentially being driven by altered coupling between the PFC and
other key brain regions that process WM load16,17.

Despite the PFC’s importance to WM, the role of its laminar circuitry
in relation to human cognition remains unclear. Evidence fromnon-human

primates indicates that the PFC has cytoarchitectonic layers that play dis-
tinct roles inWM18,19. Superficial layers have been hypothesized to underlie
the maintenance of WM20, while deep layers are considered the output
layers that send signals away from the PFC towards motor and premotor
areas21,22. Recent advances in high spatial resolution functional MRI (fMRI)
at ultra-high field strength have enabled the study of lamina-specific
responses in human participants in a non-invasive manner with studies
predominantly investigating sensory regions23–28, and only recently the left
dorsolateral PFC (dlPFC)29. In a double-dissociation, Finn et al. 29. found
that superficial layers of the dlPFC were preferentially activated by the
manipulation of verbalWMcompared to itsmaintenance,while deep layers
responded to a motor response manipulation.

Here, we expand on these human laminar fMRIfindings by addressing
several openquestions about the superficial anddeep layers of frontal cortex,
while focusing on the aforementioned left dlPFC. First, wemanipulateWM
load to see whether the superficial layer result from Finn et al. 29. generalizes
to other demanding high-level cognitive tasks. Second, we seek to replicate
thepreferential activationof deep layers to amotor response.Third, drawing
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from prior research on the impact of WM load on the strength and direc-
tionality of couplingbetween thedlPFCandotherbrain areas16,17, we explore
whether WM load induces layer-specific neural activity pattern alterations
by investigating the multivariate code underlying WM load in superficial
and deep layers. Fourth, we investigate the stability of this code across the
entire duration of the trial, aiming to discern whether well-established
dynamic coding properties of the PFC30–34 localize to specific layers.

While dynamic codingmore commonly refers to changes of the coding
format of WM content4,30,31,34, a broader definition of the concept has been
used in the past to investigate dynamic changes in multivariate activity
underlying different trial types31 or to characterize different WM control
processes at different trial stages15. Here, we follow this broader notion of
dynamic coding and employ multivariate decoding of WM load to inves-
tigateWMcontrol processes across three periods of theWMtask (encoding,
delay, retrieval) with the aim to understand whether the multivariate pat-
terns underlying these control processes change in a layer-specific manner.

To preview, we found thatWM load preferentially activated superficial
layers compared to deep layers during the delay period, and we observed
higher load decoding accuracy in superficial layers during the retrieval
period.Wedid notfind a significant difference between deep and superficial
layers to the motor response manipulation. Finally, we observed that mul-
tivariate patterns underlying load at different periods of the WM task
changed across time in the superficial layers of the left dlPFC.

Results
Nine participants were scanned at 7 T field strength using a GE-BOLD
sequence and used their right hand to complete a WM delayed match-to-
sample task, where in two of the four runs we manipulated WM load. Parti-
cipants had to remember either four or one item and had to always respond
during the retrieval period (Fig. 1a). In the other half of the runs the motor
response was manipulated: participants had to always remember four items
and during the retrieval period they were asked to respond or abstain from
responding to apresentedprobe (Fig. 1a). Participants accurately remembered
the stimulus in both the low load (mean = 95.5% correct, standard deviation
(SD) = 6.34%) and high load condition (mean = 74.3% correct, SD= 10.6%;
Supplementary Fig. 1, left panel) with the high load trials having significantly

lower accuracy (p < 0.001, t(8) = 9.44, CI95 = [16.8, 27.7], d= 3.15, two-tailed
paired t-test). During the motor manipulation, the participants followed
instructions by responding (mean = 99.3% correct, SD = 2.08%) and
abstaining to respond (mean = 97.9% correct, SD = 3.13%; Supplementary
Fig. 1, right panel) with no significant difference between motor conditions
(p= 0.35, t(8) = 1.00, CI95 = [-1.81, 4.59], d= 0.33, two-tailed paired t-test).

To allow a systematic comparison with the findings reported by Finn
et al.29, all our analyses focused on the left dlPFC (Fig. 1b). To assess the
specificity of our results, we additionally looked at a set of anatomically
adjacent frontal regions in the left hemisphere from the cingulo-opercular
network as a control (Fig. 1b).We also report results from the right dlPFC in
the Supplementary Material due to its involvement in WM processing and
as it was covered in our fMRI acquisition slab. As a control for the right
dlPFC, we also report results from right-lateralized frontal regions from the
cingulo-opercular network. Please note though, that we a priori decided to
specifically investigate the left dlPFC and as such optimized our signal in the
left hemisphere (see Methods). We found no significant difference in the
number of voxels per layer within a given ROI (Supplementary Fig. 4),
allowing comparability of our results across different layers and regions.

All results in the main text are presented for trial periods that are
adjusted for a hemodynamic delay of 6 s while “true” trial timings (without
taking into account the hemodynamic delay) are additionally indicated in
Figs. 2 and 3.

Superficial layerspreferentiallyactivate tohigherWMloadduring
the delay period
Our first goal was to examine the influence of WM load on the superficial
and deep layer activity of the left dlPFC (Fig. 1b, c). We predicted that
superficial layers would be preferentially influenced byWM load. Trial time
courses were estimated for each load condition in each layer in the dlPFC
and frontal control regions (Fig. 2a, c). To examine the load effect, we
subtracted the low load time course from the high load for a given layer in a
given region and examined two trial periods of interest: middle of the delay
period (11.3–15.1 s), which was after the encoding peak and before the
response probe, and retrieval (20.7–24.5 s; indicated as two gray shaded
rectangles in Fig. 2a, c), which was after the presentation of the probe.

Fig. 1 | Trial design and ROIs. a Trial design. In
load runs (left), participants performed a delayed
match-to-sample task, where they had to remember
a presented high or low load stimulus (four vs. one
item) and had to indicate whether the probe pre-
sented at the end of the trial was a part of the sti-
mulus array or not. In motor runs (right),
participants were always presented with four items.
If an ‘X’was presented during the probe, they had to
abstain from answering. High load stimulus depicts
four outdoor scenes. Low load stimulus depicts one
outdoor scene and three masks. b Regions of inter-
est. The left dlPFC was defined as four parcels from
the frontoparietal network: 8 C, IFJp, IFSa, p9-
46v76,83. The left control regions were defined as four
parcels from the cingulo-opercular network anato-
mically adjacent to the left dlPFC: FEF, 6r, 46,
FOP576,83 (for full description of ROIs see Methods).
c Three equidistant gray matter layers (only super-
ficial and deep layers were used for analyses) defined
in the space of the functional images were projected
onto an anatomical T1 and functional T2* image of
an example participant.
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We found a higher load effect across participants in superficial as
compared to deep layers during the delay period within the left dlPFC
(p = 0.0072, t(8) = 3.58, CI95 = [0.040, 0.188], d = 1.19, two-tailed paired t-
test), but no significant difference during the response (p = 0.072,
t(8) = 2.07, CI95 = [-0.024, 0.46],d = 0.69) (Fig. 2b). In left control regionswe
found no difference between layers for the load effect in either the delay
(p = 0.55, t(8) = 0.630, CI95 = [-0.14, 0.24], d = 0.21) or the retrieval period
(p = 0.83, t(8) = -0.223, CI95 = [-0.20, 0.16], d = -0.07) (Fig. 2d). Preferential
superficial layer activation to high WM load during the delay and retrieval
periodswas significant in the right dlPFC (Supplementary Fig. 2b) and right
control regions (Supplementary Fig. 2d).

No differential layer activation to motor response in
retrieval period
Additionally, we examined the motor effect during the retrieval period
(20.7–24.5 s). We expected to replicate higher activation of the deep
layers29. Similarly to the load effect, we subtracted the abstain from the

response time course for each layer in each ROI (Fig. 2a, c). However, we
found no significant difference between superficial and deep layers either
in the dlPFC (p = 0.30, t(8) = -1.11, CI95 = [-0.268, 0.094], d = -0.37)
(Fig. 2b) or in the control regions (p = 0.18, t(8) = -1.452, CI95 = [-0.20,
0.045], d = -0.48) (Fig. 2d). We also found no significant motor effect
difference between layers in the right dlPFC or right control regions
(Supplementary Fig. 2b, d).

Superficial layers preferentially code for WM load in
retrieval period
Univariate analyses demonstrate changes in average signal between layers;
however, individual voxel responses within each layer are not necessarily
homogeneous. To be more sensitive to such patterns we used multivariate
decoding analyses (for examples in GE-BOLD see refs. 25,35,36) using trial
normalization (seeMethods) thatmitigated the effect of differences inmean
univariate response between the conditionswhichmight drive the decoding
results. This analysis allowed us to investigate multivariate activation

Fig. 2 | Layer-specific univariate BOLD responses. a Univariate trial time courses
averaged across all voxels from the superficial (top) and deep (bottom) layers in the
left dlPFC for load trials (high and low conditions; left plots) and motor trials
(response and abstain conditions; right plots). The vertical gray transparent rec-
tangles indicate the two trial periods of interest (adjusted for the hemodynamic delay
of 6 s): the delay (11.3–15.1 s) and the retrieval period (20.7–24.5 s). The shaded area
indicates standard errors across participants. The horizontal colored transparent
rectangles at the bottom of the figure indicate “true” trial periods (without taking
hemodynamic delay into account) in the following order: stimulus presentation

(light blue), delay period (blue), probe presentation and retrieval period (gray).
bThe layer-specific load effect (top) andmotor effect (bottom) in the superficial and
deep layers of the left dlPFC for the delay and retrieval time periods. The load effect
was calculated per subject by subtracting the low from the high load time course and
averaging time points associated with the trial periods of interest. The motor effect
was calculated per subject by subtracting the abstain from the motor response time
course and averaging time points in the retrieval period. The stars indicate p < 0.01
(two-tailed paired t-test). Error bars indicate ±SEM. c same as (a) but for left control
regions. d Same as (b) but for left control regions.
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patterns of different layers to load andmotor conditions as well as potential
differences in responsepatternsover the course of the trial. Therefore, unlike
in the univariate analysiswherewe compared responses averaged overdelay
and retrieval periods of the task, here we ran the classification in an
exploratory manner across the length of the trial, encompassing the
encoding, delay, and retrieval periods.

Previous studies have usedmultivariate decoding to investigate control
processes ofWMmemoryusing load15,31,37–40.Herewe followed these studies
and trained a binary classifier to differentiate between high and low load
trials independently for each layer within each ROI and statistically com-
pared decoding results against permutation-derived null distributions as
well as between layers. For superficial layers of the left dlPFC, we found two
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above-chance temporal decoding clusters during the encoding and early
delay period (8-12 s,p = 0.0035,dcluster X̄ = 0.86, one-tailed permutation test)
as well as at retrieval (22-24 s, p = 0.0027, dcluster X̄ = 1.34, one-tailed per-
mutation test) (Fig. 3a, filled gray diamonds) while two above-chance time
points during the late delay failed to reach significance on the temporal
cluster-level (16-18 s, p = 0.077, dcluster X̄ = 0.67, one-tailed permutation test)
(Fig. 3a, hollow gray diamonds). For deep layers of the dlPFC, two above-
chance time points during the encoding and early delay period trended
towards temporal cluster significance (8-10 s,p = 0.058,dcluster X̄ = 0.75,one-
tailed permutation test; Fig. 3a, hollow red diamonds). For between layer
comparison, we found two time points during the encoding and early delay
period (10-12 s) where the superficial layer showed stronger WM load
decoding than the deep layer, with this time period trending towards sig-
nificance at a temporal cluster level (p = 0.059, dcluster X̄ = 0.85, two-tailed
permutation test; Fig. 3a, black hollow diamonds). Interestingly, we found
one cluster that showed a significantly higher decoding of WM load in the
superficial compared to the deep layer during the retrieval period (22-24 s,
p = 0.023, dcluster X̄ = 1.08, two-tailed permutation test; Fig. 3a, black filled
diamonds) even though the bottom-up sensory input at retrieval was
completely identical between the two conditions and consisted of a single
probed image (Fig. 1a, response probe). These results were not driven by
differences in accuracy (Supplementary Fig. 3a) and reaction time (Sup-
plementary Fig. 3b) between low and high load trials.Moreover, we found a
significant interaction between the three task periods of encoding (8–12 s),
delay (14–20 s), and retrieval (22–24 s) and superficial anddeep layers of the
left dlPFC (p = 0.034, η2 = 0.35, non-parametric repeated-mea-
sures ANOVA).

For the left control regionswe foundabove-chancedecoding clusters in
the superficial (8–10 s, p = 0.046, dcluster X̄ = 0.77, one-tailed permutation
test) and deep layers (10-12 s, p = 0.0043, dcluster X̄ = 0.95, one-tailed per-
mutation test) during the encoding and early delay period (Fig. 3b), but no
differences between layers nor an interaction between the three trial periods
and layers (p = 0.70, η2 = 0.04, non-parametric repeated-measures
ANOVA). We also decoded WM load from the encoding and early delay
period in the superficial layers and deep layers of the right dlPFC and found
a difference between layers with higher superficial layer decoding, but no
interaction between the three trials periods (p = 0.97, η2 = 0.005, non-
parametric repeated-measures ANOVA) (Supplementary Fig. 2e). We also
decoded load from the right control regions during the encoding and early
delay period but found no interaction between the three trial periods and
layers (p = 0.083, η2 = 0.27, non-parametric repeated-measures ANOVA)
(Supplementary Fig. 2f).

Both superficial and deep layers non-preferentially code for
motor response in retrieval period
To detect patterns associated with the motor effect, we trained a binary
classifier to distinguish between response and abstain trials. Since the par-
ticipants only foundout about the type of trial during the presentation of the
probe, as expected, there was no significant decoding prior, either in the left
dlPFC or left control regions. We found a single above-chance cluster each

in the superficial (p = 0.0054, dcluster X̄ = 1.27, one-tailed permutation test)
and deep layers (p = 0.015, dcluster X̄ = 1.18, one-tailed permutation test)
during the retrieval period (24-26 s; Fig. 3a, gray and red diamonds).
However, there was no significant difference between the two layers. These
results agree with our univariate findings showing no difference between
superficial and deep layers during the motor retrieval period. The right
dlPFC and right control region showed similar motor decoding results.
Motor trial decoding was significant in both layers of the right dlPFC and
right control regions during the retrieval period (Supplementary Fig. 2f).

Dynamic coding of WM load in superficial layers
We sought to determine whether the multivariate pattern sustaining load
information is stable across time. To do so, we used temporal cross-
decoding, as previously done to investigate the stability of WM content in
humans and non-human primates30,31,41,42.We trained on a given time point
and tested on all time points in turn. This analysis provided us with two
distinct types of elements within the cross-decoding matrix: the diagonal,
which indicates the amount of information coding for load within a given
time point, and the off-diagonal, which provides the generalization between
two time points. If the trained classifier generalizes to other time points (i.e.,
high decoding accuracies of the off-diagonal elements of the decoding
matrix), the analysis reveals that the multivariate pattern sustaining load
information (i.e., “coding”) is stable across time. However, when the diag-
onal of thematrix, representing training and testingon the same timepoints,
shows higher decoding accuracies than the off-diagonal elements, then we
can conclude from this lack of cross-generalization of the decoder, that the
multivariate activity is dynamic and varies across time. We examined the
generalization of multivariate patterns in response to load in the superficial
and deep layers of the dlPFC.

Within the superficial layers of the dlPFC, we identified two above-
chance decoding clusters (Fig. 3c, black dashed line). The first decoding
cluster spanned both the encoding and delay period (p = 0.001,
dcluster X̄ = 1.04, one-tailed permutation test), while the second cluster was
isolated to the retrieval period (23–25 s; p = 0.003, dcluster X̄ = 1.15, one-tailed
permutation test). Looking more closely into the first decoding cluster, we
observed that the classifier trained on the encoding period (8–10 s) gen-
eralized to themiddle of the delay period (16 s), and the classifier trained on
the delay period (14–18 s) generalized to the late delay period (up to 22 s).
Importantly though, the classifier trained on the encoding period did not
generalize to the late delay period and vice versa, indicating a differential
multivariate pattern sustaining load information in those two periods of the
trial. To visualize these results, we plotted the columns from Fig. 3c as time
courses (Fig. 3d, top panel), which depict that the classifier trained on 10 s
had high decoding during the encoding and early delay, but the decoding
accuracywaned in the secondhalf of the trial. Similarly, the classifier trained
on 16 s had the highest decoding during the late delay period (Fig. 3d,
middle panel). With respect to the second decoding cluster identified at
retrieval, we observe that it only generalizes to its surrounding time points,
indicating that the multivariate pattern reflecting load during the retrieval
periodwasdistinct fromencoding anddelay (bottomtimecourse inFig. 3d).

Fig. 3 | Layer-specific decoding accuracy. aTop: decoding accuracy (linear SVM) of
high vs. low load conditions across time from the superficial (gray) and deep layers
(red) of the left dlPFC. Bottom: decoding accuracy of response vs. abstain motor
conditions across time from the superficial (gray) and deep (red) layers of the dlPFC.
Diamonds indicate above-chance decoding significance of superficial and deep
layers (in their corresponding color) and comparison between layers (black). Filled
diamonds depict significance of p < 0.05, (cluster-permutation test). Hollow dia-
monds depict p < 0.1, (cluster-permutation test). The shaded rectangles indicate the
trial periods in the following order: stimulus presentation (light blue), delay period
(blue), probe presentation and retrieval period (gray). “True” trial periods (without
accounting for hemodynamic delay) are displayed at the bottom and trial periods
adjusted for a 6 s hemodynamic delay are displayed on top. b same as (a) but for left
control regions. c Temporal cross-decoding of load from the superficial and deep
layers of the dlPFC. Top: superficial layers. Bottom: deep layers. A classifier trained

on each time point was tested on itself and all other time points. Thematrix diagonal
corresponds to the classification accuracy of load in (a). The black outline denotes all
above-chance clusters within a layer (nonparametric cluster-permutation test
against null, p < 0.05). The red outline signifies all dynamic clusters (conjunction of
two nonparametric cluster-permutation tests, p < 0.05; seeMethods: Temporal cross-
decoding). d Selected columns from (c) visualized in 2D as decoding time courses:
accuracy across the trial when trained on the encoding (top plot; 10 s), delay (middle
plot; 16 s), and retrieval (bottom plot; 24 s) trial periods and tested on all time points
in turn. Columns at 10 s, 16 s, and 24 s in (c) correspond to the top, middle, and
bottom time courses, respectively. Transparent gray vertical bars indicate the time
points that the classifier was trained on. Shaded area depicts ± SEM. To increase
signal-to-noise, all decoding points were averaged with their preceding one in a
moving average manner.
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Within the deep layers of the dlPFC, a single above-chance cluster
(Fig. 3c, blackdashed line, p = 0.002, dcluster X̄ = 1.10, one-tailed permutation
test)was foundduring the encodingperiod (8-10 s)which generalized to the
delay (18 s). Plotting the column of Fig. 3c as a time course (Fig. 3d, top
panel), we see that the deep layer results follow a similar trend as the
superficial layer results: the classifier trained on 10 s had high decoding
during the encoding andearlydelay, but thedecoding accuracywaned in the
secondhalf of the trial. Similarly, the classifier trainedon16 shad thehighest
decoding during the late delay period (Fig. 3d, middle panel).

To empirically check the lack of generalization between the above-
chance clusters, we identified dynamic elements within the cross-decoding
matrices. Dynamic elements were calculated as a conjunction of above-
chance elements surviving two cluster permutation tests (see Methods for
details). Three clusters were found in the superficial layers of the left dlPFC:
two off-diagonal elements at the intersection of the encoding and early delay
(train) and retrieval (test) periods, two elements at the intersection of the
middle delay (train) and encoding and early delay (test) periods, and four
elements at the intersection of retrieval (train) and encoding and early delay
(test) periods (Fig. 3c).

To summarize, our cross-decoding results showed three differential
multivariate response patterns sustaining load in the superficial layers
during the encoding, delay, and retrieval periods, indicative of dynamic
coding between trial periods.

Discussion
We scanned participants at ultra-high field strength performing a delayed
match-to-sample taskwherewemanipulatedWMload andmotor response
while measuring responses from the superficial and deep layers of the
dlPFC. In the left dlPFC, we found a higher superficial compared to deep
layer activation in response to increased working memory (WM) load
during the delay period; however, we did not find a differential laminar
response to a motor manipulation. To examine the multivariate response
across the length of a trial, we decoded load and motor trial types from the
layers of the left dlPFC.We found that superficial layers preferentially code
for difference in WM load during the retrieval period. With respect to the
motor trials, we found that both superficial and deep layers code for the
motor response in the retrieval period but failed to find any significant
laminar difference. Finally, we also found that the multivariate code
underlyingWM load in the superficial layers dynamically changed between
the encoding, delay, and retrieval periods.

Our results replicate early non-human primate studies showing per-
sistent spiking in the lateral PFC in all periods of a WM task2 by showing
sustained univariate activity in both superficial and deep layers during high
load trials.Ourwork also corroboratesfindings showinghigher activationof
the lateral PFC to higher task demands, as previously seen in univariate
human fMRI work on WM load8,9 and the manipulation of WM
information12. Additionally, our results expand on previous WM literature
that has used multivariate decoding to investigate neural mechanisms of
WM5,6,41–44.

We also provide insights into the mesoscale functional architecture of
the dlPFC in response to WM load. Greater neural processing associated
withWM load in superficial layers compared to deep throughout the delay
and retrieval periods might indicate activity related to more general task
demands; these demands increase as a result of higherWMload, possibly by
both recruiting new neural populations (e.g., in retrieval) and by increasing
univariate activity (e.g., in delay). These WM control processes might cor-
respond to the updating of content during encoding, the monitoring or
contents throughout the delay period45, or the compression or reorganiza-
tion of WM contents as a result of increased load demand46. Interestingly,
there was a preferential univariate response of the superficial compared to
deep layers tohigh loadduring the delay period, but no laminar difference in
decoding. Superficial layers might utilize the same neural population
underlying one or several control processes to a higher degree. This would
result in higher univariate activity, but lower decodability since univariate
contributions were minimized through trial normalization. Taking into

account results from Finn et al.29., preferential response in the superficial
layers to bothWMmanipulation and higherWM loadmight point towards
a lamina-specific (i.e., superficial layer) activation of the frontoparietal
multiple demand system13 for heightened task demands more generally.
However, it is essential to underscore the necessity for future investigations
to systematically examine the layer-specific activation of the frontoparietal
network across a diverse spectrum of cognitive tasks with varying demands;
as can be accomplished employing novel real-time fMRI approaches uti-
lizing neuroadaptive Bayesian optimization47–49.

Previous studies have established that recurrent connections within
superficial layers of the PFC support sensory input-specific gamma-band
activity, while deep layer alpha and beta oscillations modulate this super-
ficial layer activity18,33. In turn, the interaction between deep and superficial
layers might act as a gatingmechanism for sensory information to enter the
PFC and WM storage50,51. In our study, both superficial layers and deep
layers had above-chance temporal cross-decoding clusters during the
encoding of WM information. Deep layer coding for WM load during the
encoding period might correspond to the opening of the gate, which allows
for the encoding of new WM information within the superficial layers.
Based on our results, we can only speculate whether deep layers drive
superficial layer activity. It should be noted that deep layer coding was
significant in the right dlPFC and only trended towards significance in our
temporal cluster analysis of the left dlPFC. This might indicate a later-
alization in the WM encoding control process to the right hemisphere52;
however, further studies are needed to corroborate these results and unravel
any causal laminar relationships in both hemispheres.

For the retrieval period, we found significantly higher superficial
compared to deep layer decoding of WM load which might indicate
increased demands during the probe’s comparison to the stored memory
(1 vs. 4 items) despite the presentation of identical response probes in low
and high WM load conditions. The comparison process seems to happen
within the superficial layers, which might multiplex both the novel sensory
probe stimulus and the remembered memoranda; to achieve this at high
load, additional neural populations within the superficial layers might be
recruited, thus driving themultivariate decoding. Superficial layer decoding
relates to previous findings showing ramping gamma-band activity at the
end ofmemory delays53, as a consequence of its disinhibition resulting from
the drop of alpha/beta power to allow a successful read-out of information
from WM54. Intriguingly, load decoding peaked prior to motor decoding,
which might denote the sequence of computations in the dlPFC: a com-
parison of the probe to the WM set before the initialization of a motor
response.

Our results show multivariate laminar activity patterns related to load
that are specific to the dlPFC. For the left dlPFC, we find that superficial
layers show a significant decoding during the encoding and retrieval period
and trend towards significance during the delay period. We find a higher
superficial compared todeep layer decoding in the responseperiod aswell as
trending towards significance in the encoding period.When comparing this
to the left control regions, we only find above-chance decoding during the
encoding period, but no effects for other trial periods.More importantly, no
layer-specific results were identified in the left control region.We also find a
significant interaction effect between the three trial periods and layers in the
left dlPFC.The results fromthe right dlPFC showapreferential involvement
of superficial layers during the encoding period. Despite the similar result
seen in the right control regions, the laminar difference emerges before the
onset of the encoding period and seems to be driven by the single negative
time point in deep layers, which likely negates its significance.

Our findings of WM load-induced layer-specific changes in neural
activity patterns in the left dlPFC can be contextualized by previous research
in non-human primates and human fMRI studies. More specifically, it has
been shown that increasedWMload changes the strength anddirectionality
of neuronal coupling between the prefrontal cortex, the frontal eye fields,
and lateral intraparietal cortex16, and influences both between-network and
within-network coupling among frontoparietal, ventral attention, and
default mode networks17, which are reflected in a change in multivariate
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pattern. This altered network coupling in the left dlPFCmay result in subtle
variations in neural activity patternswhenWMdemands change,whichhas
been observed before15 and which we localize to the superficial layers of the
dlPFC. This observation suggests a network-coding perspective ofWMand
aligns with the established intra-prefrontal and cortico-cortical connections
of the superficial layers in the prefrontal cortex18,33. In addition, changes in
the multivariate patterns of the superficial layers in response to WM load
mayalsobe attributed to activation spreadbeyond initially activated regions,
potentially recruiting new neural populations, although such signal spread
might also manifest in univariate activation differences. Equally, the mul-
tivariate pattern in the dlPFC could suggest content-independent pointers38

that project to parietal and sensory cortices where the maintained mem-
oranda are thought to be stored7,55,56.

The canonical model of theWM suggests that that information coded
within the PFC is stable and firing is persistent across the delay period3,57.
However, evidence has emerged that WM is both rhythmical and non-
persistent in activation and the format of the coded information dynami-
cally varies across time33,58. Studies using temporal cross-decoding have
observed a dynamic code between the encoding period and delay activity in
the PFC of non-human primates and humans30,31,34, and across the visual
hierarchy in humans4,42.We find three non-generalizing sub-clusters within
the span of the trial; each sub-cluster corresponding to either the encoding,
delay, or retrieval periods. Previous studies argued that dynamic coding
indicates a point where transient sensory stimuli are transformed into a
more stable representation30; however, since wewere decoding load and not
the contents ofWM, the decoding sub-clustersmight underlie separateWM
control processes that occur on the WM content within the same layer.

In contrast to superficial layers of the PFC, the deep layers are con-
sidered to be the output - or top-down - layers of the cortical area and have
neuronsmodulated byD2 dopamine receptors21,22. Finn et al.29. found that a
motor modulation only activated the deep layers of the prefrontal cortex,
while superficial layers stayed at baseline. We do not find a preferential
activation of either superficial or deep layers of the left dlPFC to the motor
manipulation either in univariate activity or in multivariate decoding. The
discrepancy between Finn et al.29. and our results may be related to a dif-
ference in paradigm, a difference in scanning sequences, or a smaller
sample size.

Finn et al.29. contrasted trials in which participants either had to
respond after the presentation of a probe or had to not respond when a
probe was not presented. This resulted in a change of two factors between
conditions: the presence or absence of the probe stimulus and the motor
response. Our paradigm always included the presentation of the probe and
participants were asked to either respond or abstain from responding based
on a presented cue. If the deep layer modulates the information that enters
the superficial layer of the dlPFC, then that computation could provide an
additional deep layer response. Thus, higher activation of the deep layers in
Finn et al.29. might not be a result of the output, but rather of the opening of
the gate by the deep layers to let in the probe for subsequent comparison in
the superficial layers. Hence, this probe input signal would have been absent
when contrasting between conditions in our paradigm, since participants
could not predict whether a given trial required a response or not, they
would have maintained the memoranda and automatically compared it to
the presented probe. Based on our results we might conclude that the
superficial anddeep layers are bothnon-differentially involved in the output
of a motor signal. Further research is needed to distinguish between the
input and output hypotheses by possibly extending the time between the
presentation of the probe and motor initiation.

An additional difference between the two studies was the pulse
sequence used to measure signals from the layers. We used conventional
GE-BOLD, while Finn et al.29. used both BOLD and cerebral blood volume
(CBV), which resulted in an SS-SI-vascular space occupancy (VASO)
contrast59,60. The BOLD signal has poorer spatial specificity, but higher
sensitivity, as a larger part of the signal comes from larger veins present in
the pial surface61 resulting in a broader point-spread function of the signal in
both columns62 and layers63 compared to more spatially precise scanning

sequences. VASO has a smaller contrast-to-noise ratio, but localizes activity
to both superficial and deep layers, with less bias from large draining veins59.
Themain concern inGE-BOLDare interdependencies in the signal between
different layers of the cortex, as a result of the blood draining from deep
layers towards superficial layers64,65. The superficial layers might thus con-
tain signals from the deep layers as well. One strategy of mitigating the
effects of draining veins is to compare differences of tasks, as in the case of
our study (high load compared to low load and response compared to
abstain trials) and as done in previous GE-BOLD studies; a subtraction of
conditions would theoretically remove a linear draining effect23,24,26,28,66.
Despite employing thismethod, both superficial anddeep layers activated to
the motor manipulation. Thus, the linear detrend might have not com-
pletely removed the draining vein signal, thus futurework can employmore
sophisticated models to account for the superficial layer blurring63,67; how-
ever, preferential deep layer activation has been previously observed in GE-
BOLD studies that have not employed these models23,24,26,68,69.

In summary, we show that superficial layers of the dlPFC are not only
crucial for WM maintenance, but in fact are involved in various WM
subprocesses by dynamically adapting to current task demands. In addition,
we highlight that deep layers seem to have amore complex role inWMthan
previously understood. Our findings offer new insights into the neural
mechanisms ofWMand try to bridge the gap between the human and non-
human primate WM literature.

Methods
Participants
We scanned nine participants (ages 23-36 years, three female) that were
recruited from the Max Planck Institute for Human Cognitive and Brain
Sciences (MPI CBS) subject database. The sample size was comparable to
previous laminar fMRI studies25,66,70. All participants gave written informed
consent and received monetary compensation for their participation. The
study was approved by the ethics committee of the University of Leipzig
(441/20-ek). All ethical regulations relevant to human research participants
were followed.

Stimuli and procedure
Following the design of Finn et. al.29, participants completed four runs of a
delayedmatch-to-sample task (Fig. 1a). In two runswemanipulated the task
difficulty by changing the WM load (from now on referred to as the load
runs). In the other two runs wemanipulated themotor response during the
retrieval period (from now on referred to as the motor runs). Each trial
beganwith the presentationof the sample for 3.5 swhich consistedof a four-
square array where each square was equidistant from the center. A fixation
cross was presented centrally. In the load runs either one (low load) or four
(high load) items were presented within the squares as the to-be-
remembered sample. The items consisted of faces (subcategory: male and
female) or scenes (subcategory: indoor and outdoor). The face and scene
stimuli were retrieved from the Face-Place database71. Faces had neutral
emotional expressions. The scenes included indoor and outdoor pictures of
houses. All stimuli were converted to grayscale. For each trial, the category
and subcategory of the items within the array were the same (e.g., only
female faces). In the case of a low load condition, the remaining three
squares consisted of Fourier-scrambled items from the same category, in
order to preserve the low-level visual features of the overall sample array.
Visual masks consisting of Fourier-scrambled images were presented for
200ms at the location of the four squares after sample presentation (not
shown in Fig. 1a). All scrambled images were from the same category as the
sample. Motor runs always had four items (i.e., high load) as the sample.

AWMdelay period of 13 s followed duringwhich the participants had
to remember the sample. At the end of the delay period a probe image (same
size as one of the sample squares) appeared centrally with a question mark
placed above for 1.2 s. The probe was always from the same category and
subcategory as the sample. Participants had 4.2 s to respond using their
index and middle finger of their right hand to indicate whether the pre-
sented probe was part of the remembered sample. During motor runs
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participants had to maintain high-load stimuli for each trial (i.e., high-load
WM maintenance, no load manipulation) while we manipulated whether
participants had tomake amotor response (response trial) or had to abstain
from their motor response (abstain trials) during the retrieval period.
Identical to the load runs, during the response trials in the motor runs
participantshad to indicateusing their index andmiddlefingerswhether the
presented probewas part of the remembered sample.During an abstain trial
the probe was still presented; however, an ‘X’ was placed above instead of a
question mark cueing the participants to abstain from responding. If a
subject respondedduring this periodonanabstain trial, thiswasmarkedas a
miss-trial. An inter-trial-interval of 10 s followed the retrieval period.

Stimuli (across both sample and probe) did not repeat within a run.
The types of trials within a run were counterbalanced. Categories were
counterbalanced for high and low load for each load run. The position of the
single item was counterbalanced across the four positions in the low load
trials for each load run. The sequence of trials was pseudorandomized for
each run; a maximum of three trials of the same type could be subsequently
presented. Each trial was 30.7 seconds long. A run had 16 trials and lasted
8min and 24 s.

Prior to entering the scanner, participants trained by completing eight
load trials. To proceed to the scanner participants had to respond correctly
to at least 70% of the trials, otherwise, the practice load run was repeated.

fMRI protocol
MRI data were acquired using a Siemens MAGNETOM Terra 7 T MRI
system (Siemens, Erlangen, Germany) using an 8Tx/32Rx head coil (Nova
Medical Inc., Wilmington, MA, USA). Anatomical images were acquired
using an MP2RAGE sequence (Marques et al., 2010) (TR = 5000ms,
TE = 2.27ms, 0.75mm isotropic voxels) at two inversion times (TI of
900ms, 2700mswith a flip angle of 3°, 5°, respectively) that were combined
to yield a T1-weighted image.

High-resolution functional data were acquired using a T2*-weighted
2D gradient-echo EPI sequence (TR = 2000 ms, TE = 23ms, 0.8mm iso-
tropic voxels,flip angle = 80°, 35 slices). Prior to running the high-resolution
scans, a whole-brain functional localizer scan using a T2*-weighted 2D
gradient-echo EPI sequence (TR = 2000 ms, TE = 18ms, 2mm isotropic
voxels, flip angle = 75°) was acquired and analyzed to subsequently position
the high-resolution partial-brain slab. During this localizer run participants
performed an additional load run (see Stimuli and procedure). The resulting
peak activation defined by the contrast between delay activity and baseline
informed the positioning of the high-resolution slab around the expected
anatomical location of the dlPFC.

Theprocedureof the scanningwas the following: participantswerefirst
scanned using the low-resolution localizer afterwhich the anatomical image
was acquired. After semi-manual shimming, participants performed two
load runs followed by two motor runs (except for S01 who performed load
and motor runs interleaved).

Preprocessing and co-registration
To obtain accurate reconstructions of gray and white matter surfaces from
structural MP2RAGE data, a Freesurfer-based pipeline (Chaimow et al. in
preparation,72) was applied. First, a T1-weighted image that is spatially
homogeneous yet free of extracerebral noise was generated by bias-
correcting the INV2 MP2RAGE image before multiplying with the UNI
image (MPRAGEize)73. Next, a high-quality brainmask was computed by
passing this T1-weighted image to CAT1274 for segmentation and merging
the resulting gray and white matter components. Finally, the T1-weighted
imagewasprocessedusingFreesurfer’s recon-all pipeline (version7.1) using
the high-resolution flag and substituting Freesurfer’s auto-generated brain
mask with the CAT12-derived brain mask.

For subsequent ROI selection (see Definition of ROI), the segmented
structural surfaces of each participant were brought into fsLR164k CIFTI
space using ciftify_recon_all, which is part of the Python-based ciftify
package75 with expert settings to register to the high-resolution 0.5mm FSL
MNI152_T1 template. Ciftify adapts the post-Freesurfer portion of the

Human Connectome Project’s (HCP) minimal preprocessing pipeline to
non-HCP acquired data76 and includes surface based alignment
(MSMSulc)77 to HCPs fs_LR space.

Registration between the Freesurfer processed T1-weighted image and
the mean image of the third functional GE-BOLD run was calculated using
ANTs78. The structural image was initially registered using a linear affine
transform and subsequently a symmetric normalization (SyN) algorithm
generated warp field for distortion correction79.

Functional scans were motion corrected using AFNI’s 3dVolreg using
Fourier interpolation to the volume which had the minimum outlier frac-
tion of voxels as calculated by 3dToutcount across all runs (as per standard
AFNI preprocessing)80.

We calculated three equidistant depth bins across the anatomical
cortical ribbon in functional space using LAYNII81. For smoother layer
estimation, prior to layer generation, the anatomical ribbon was upsampled
by a factor of five. The upsampled ribbon was then used to generate three
equidistant layers. Finally, the layers were downsampled back to the func-
tional images’ 0.8mm-isotropic resolution. Even thoughwewere interested
in only two layers (superficial and deep), themiddle layer was estimated as a
‘buffer’ between the deepest and most superficial depths, thus minimizing
partial volume effects by excluding voxels where there might have been a
large overlap between superficial and deep layers. We applied the affine
transformation matrix and warp field generated by ANTs to register the
layers to functional space.

Definition of ROI
We generated two regions of interest using the Human Connectome
ProjectMulti-Modal Parcellation version 1.0 (HCPMMP 1.0) atlas76. This
surface-based cortical parcellation has been generated using high-resolu-
tion, multi-modal data from 210 participants. Surface parcels were trans-
formed from fsLR space to single subject functional space following a
combined transformation, estimated by structural-functional registration
and MSMSulc77 surface-based alignment to atlas space (fsLR) in each
individual subject. This subject-specific surface-based approach has been
shown to substantially improve cortical area localization compared to
traditional volumetric approaches and is also superior to other surface-
based approaches82. We focused all primary analyses on the left dlPFC,
following Finn el al.29. We defined the left dlPFC by selecting four left-
lateralized frontal parcels (8 C, IFJp, IFSa, p9-46v) for which we had suf-
ficient coverage and that correspond to the frontoparietal network83. To
assess whether our findings were specific to the dlPFC, we selected an
anatomically and functionally similar control set of four left-lateralized
frontal parcels (FEF, 6r, 46, FOP5) from the cingulo-opercular network
(COP)83. As an exploratory analysis, we also looked at the dlPFC and the
control region in the right frontal cortex, which were defined using the
same corresponding parcels in the right hemisphere.

We focused our main analyses on the left dlPFC as this followed Finn
et al.29. allowing us to have a direct comparison of our results to theirs. Since
we decided a priori to focus on the left hemisphere, we also aimed to
minimize the distortion of the signal, specifically in that area. The results
from the right dlPFC are presented for transparency, as theywere part of the
acquisition slab and are involved in WM processing.

Univariate analysis
For each layer, trial time courses were extracted by finite-impulse response
modeling using AFNI’s 3dDeconvolve with the ‘TENTzero’ basis function
model. A total of 17 regressors were fit to 32 s after the onset of the stimulus.
Thefirst and lastwere zerobasis functions,while themiddlefifteen free basis
functions. We used ‘TENTzero’ to remove any possible pre-stimulus dif-
ferences between trial types. In addition, we fit polynomial nuisance
regressors up to the fifth order to detrend the signal. One time course was
estimated for each trial-type in each type of run (high and low load from the
load runs; response and abstain from themotor runs).Weused the constant
predictor to calculate the percent signal change for each voxel in each
trial-type.
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Multivariate decoding
Weperformed twodecodinganalyses: high vs. low load (loaddecoder)using
the load runs, and response vs. abstain (motor decoder) using the motor
runs. Decoding analyses were run separately on the superficial and deep
layers of the left dlPFC and on the left frontal control regions and corre-
sponding ROIs in the right hemisphere.

We ran the classification across the entire duration of a trial. Time
courses of each voxel were high-pass filtered and then temporally z-scored
for each run independently. Since the onset of the trial was not TR-locked,
we chose the nearest rounded-down TR closest to the onset of the trial and
the following 16 TRs (32 s) as a single trial (resulting in a total of 17 TRs).
Trial normalization and feature z-scoringwas applied to training and testing
data independently, thus reducing the classifier’s ability to decode based on
overall univariate activity differences between classes. Additionally, to
increase the signal-to-noise ratio, we averaged the data from two adjacent
TRs for each decoding time point.We used a linear support vectormachine
classifier (LSVMs84; libsvm:www.csie.ntu.edu.tw/~cjlin/libsvm/)with a cost
parameter of c = 1.

Within a cross-validation fold, we trainedon the same number of trials
in order to account for the trial transition matrix, which corrected for
possible carry-over effects from the previous trial. For example, in themotor
decoding, we trained on the same number of retrieval trials where the
previous trial was a retrieval or an abstain trial, thus creating four types of
trials: retrieval-abstain, retrieval-retrieval, abstain-retrieval, and abstain-
abstain. Despite the four types of trials, we ran a binary classification where
the current trial determined the labelname.The trials chosen for a given fold
were randomly selected from all available trials across both runs. The
number of cross-validation folds was determined by taking the smallest
number of trial types and multiplying them by four. Despite some trials
being trained on more than once across folds, each fold had a unique
combination of the trials trained and tested on.

Temporal cross-decoding
To investigate the temporal stability of themultivariate decoding across the
delay period, we ran a temporal cross-decoding classification analysis where
we decoded the load condition from the superficial and deep layers of the
dlPFC. This analysis followed the same classification procedure as the
temporal decoding analysis, except each classifier trained on a given time
pointwas testedondata fromall timepoints in turn.This analysis allowedus
to see whether the multivariate code at one time point generalizes to other
time points and thus to determine whether the underlying code is dynamic
or stable. There was no informational overlap between the training and
testing data, since the same trials were never included in the two subsets,
both when training and testing on the same and different time points.

Statistics and Reproducibility
Statistical inference for the multivariate analyses was done on empirically
generated permuted null distributions. For each decoding analysis, time
point, and layer a null distribution was generated by running the same
procedure of classification on training data with permuted labels. The
analysis was run 250 times for each participant generating a classification
accuracy on each iteration. Apopulation null distribution (for each analysis,
time point, and layer) was generated by drawing a single sample from each
subject’s null distribution (resulting in nine samples) and taking the average
resulting in a mean t-value. This was done 10,000 times. Significance was
then determined using a cluster-permutation test85 where the summed
t-valueof the empirical data clusterswas compared to the summed t-valueof
clusters within the generated null distribution. One-tailed tests were run to
test for above-chance decoding significance, while two-tailed tests were used
for the comparison between layers.

Above-chance decoding of the temporal cross-decoding matrix was
tested using a cluster-permutation test85.We calculated the summed t-value
of all above-chance elements within a cluster. Within a matrix, there could
have beenmore than one cluster. A null distributionwas generated by a sign
permutation test by randomly sampling one of the decoding accuracies

within a given element of the matrix. This was run 10,000 times. The
summed t-value of the largest above-chance cluster within the permuted
data was taken as a statistic for the null distribution. The empirical clusters
were then compared to the distribution; all clusters where p < 0.05 were
deemed to be above-chance.

In addition to calculating an above-chance cluster, we also identified
dynamic elements within the cross-decoding matrix. Following previous
research30,42, dynamic elements were defined as off-diagonal elements that
had lower decoding accuracies than their two corresponding diagonal ele-
ments (e.g., aij < aii ∧ aij < ajj). Two cluster-permutation tests were run
following the above-chance cluster sign permutationmethod; in this case all
aij elements were initially subtracted by aii in one test and ajj in the second
test. Only elements that were within clusters from both tests were deemed
dynamic. Also, the diagonal entries corresponding to a dynamic element
had to both be within an above-chance cluster.

Data availability
Preprocessed data for all participants and corresponding analysis code are
available on the OSF platform (https://osf.io/dtkne/).
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