
Distinguishing between- from within-site

phase-amplitude coupling using antisymmetrized

bispectra

Franziska Pellegrinia,b, Tien Dung Nguyena,1, Taliana Herreraa, Vadim
Nikulinf, Guido Noltee, Stefan Haufec,d,a,b,∗
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Abstract

Phase-amplitude coupling (PAC) is a form of cross-frequency coupling in

which the amplitude of a fast oscillation is locked to the phase of a slow

oscillation. PAC has been proposed as a mechanism for integrating slow

large-scale networks with fast-oscillating local processes in the brain. On

a signal level, PAC can be observed in single time series, reflecting local

dynamics, or between two time series, potentially reflecting a functional in-

teraction between distinct brain sites. To investigate the role of PAC as

a mechanism of brain signalling, it is important to distinguish these two

cases. However, when mixtures of underlying signals are observed, between-

site PAC can spuriously emerge even if the true interaction is only local
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(within-site). This problem arises in electrophysiological recordings where

mixing occurs due to volume conduction or the presence of a shared electri-

cal reference. To address this problem, we propose to estimate PAC using

the anti-symmetrized bispectrum (ASB-PAC). It has previously been shown

that the cross-bispectrum can be used to measure PAC while efficiently sup-

pressing Gaussian noise, and that the anti-symmetrized bispectra vanish for

mixtures of independent sources. However, ASB-PAC has so far not been

used to assess the presence of genuine between-site PAC. Using simulations,

we here investigate the performance of different algorithms to detect PAC

in a mixed signal setting as well as the performance of the same methods

to distinguish genuine between-site PAC from within-site PAC. This is done

in a minimal two-channel setup as well as in a more complex setting that

assesses PAC on reconstructions of simulated EEG sources. We observe that

bispectral PAC methods are considerably better at detecting simulated PAC

in the volume conduction setting than three conventional PAC estimators.

ASB-PAC achieves the highest performance in detecting genuine between-

site PAC interactions while detecting the fewest spurious interactions. Using

the ASB-PAC could therefore greatly facilitate the interpretation of future

PAC studies when discriminating local from remote effects.

We demonstrate the application of ASB-PAC on EEG data from a motor

imagery experiment. Additionally, we present an upgraded version of the

free ROIconnect plugin for the EEGLAB toolbox, which includes PAC and

ASB-PAC metriscs based on bispectra.

Keywords: Electroencephalography, Simulation, Phase-amplitude coupling,

Bispectrum, Anti-symmetrization, Motor Imagery
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1. Introduction

Phase-amplitude coupling (PAC) is a form of cross-frequency coupling in

which the amplitude of a fast oscillation is correlated with the phase of a slow

oscillation (e.g., Canolty et al., 2006; Tort et al., 2010; Hyafil et al., 2015). It

has been suggested that PAC facilitates the coordination of neural activity

across various spatial and temporal scales by decomposing neural computa-

tions into discrete units of activity for cognitive processes like memory, atten-

tion, and learning (Canolty and Knight, 2010; Hyafil et al., 2015).These units

are aligned with rhythmic external sensory and motor activities (Canolty and

Knight, 2010). Further, it has been suggested that functional PAC may be

pathologically increased in patients with movement disorders (De Hemptinne

et al., 2013; Yin et al., 2022).

Historically, research focused on the detection of PAC within a single sig-

nal (e.g., Osipova et al., 2008; Cohen et al., 2009; Voytek et al., 2010; Florin

and Baillet, 2015; Watrous et al., 2015; Yin et al., 2022). However, other

studies also aimed to investigate the coupling between the phase of a slow

oscillation (SO) in one signal and the fast oscillation (FO) of another signal,

originating from two spatially different locations (e.g., Voytek et al., 2015;

Daitch et al., 2016; Nandi et al., 2019). Tort et al. (2008) report a coupling

between the phase of striatal theta and the amplitude of high-frequency os-

cillations in the hippocampus, and vice versa, in local field potential (LFP)

recordings. Maris et al. (2011) showed the presence of PAC between different

intracranial electroencephalography (EEG) electrodes. Others have reported

functional PAC between different channels of scalp EEG (Schack et al., 2002;

Isler et al., 2008; Jirsa and Müller, 2013). In addition, an EEG study (Gong
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et al., 2021) reported that only PAC between different ICA components was

clinically relevant compared to PAC from the same ICA component. These

studies suggest that between-site PAC could serve as a mechanism for the

integration of spatially distributed neuronal activity (Jirsa and Müller, 2013;

Hyafil et al., 2015). Further, it has been suggested that between-site PAC

could serve as a gating mechanism that enables spatially distributed networks

to coordinate and operate in parallel (van der Meij et al., 2012).

There have been multiple suggestions on how to measure PAC (e.g.,

Canolty et al., 2006; Penny et al., 2008; Tort et al., 2010; Özkurt and Schnit-

zler, 2011; Canolty and Knight, 2010; Kovach et al., 2018; Zandvoort and

Nolte, 2021). Traditional metrics are based on a process that first extracts

the slow and fast oscillation by bandpass-filtering the original signal in the

respective low and high frequency bands. Then, the amplitude of the fast

oscillation is extracted, e.g., by calculating its envelope with the Hilbert

transform. The relation between the phase of the slow oscillation and the

envelope of the fast oscillation is then assessed by calculating either the co-

herence (Colgin et al., 2009), phase-locking value (Lachaux et al., 1999),

or correlation (Bruns and Eckhorn, 2004) between the slow oscillation and

the amplitude of the fast oscillation. Alternatively, dependencies between

phase and amplitudes can be assessed non-parametrically by either calcu-

lating the mean vector length modulation index (MI Canolty et al., 2006),

or by comparing their joint distribution to a uniform distribution using the

Kullback-Leibler Modulation Index (Tort et al., 2010). A downside of all of

these metrics is that they heavily depend on filtering parameters in the pre-

processing step (Aru et al., 2015; Kovach et al., 2018; Zandvoort and Nolte,
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2021). More recent studies have pointed out that the cross-bispectrum or

cross-bicoherence can also be employed to assess PAC (e.g., Hyafil, 2015;

Kovach et al., 2018; Zandvoort and Nolte, 2021). Indeed, Hyafil (2015) clar-

ified that bicoherence represents phase–phase coupling between three phases

and thus essentially corresponds to PAC. Zandvoort and Nolte (2021) further

showed theoretically that bispectra closely correspond to conventional PAC

metrics for specific filter settings. These studies highlight that metrics based

on the bispectrum have two advantages: First, unlike most other PAC met-

rics, they do not depend of filter settings. And second, the cross-bispectrum

efficiently suppresses Gaussian noise (e.g., Nikias and Pan, 1988).

Electrophysiological recordings like intracranial or scalp electroencephalog-

raphy (EEG), as well as Magnetoencephalography (MEG), are well suited to

study PAC because of their high temporal resolution. However, EEG/MEG

recordings are often corrupted by noise and signal mixing (Nolte et al., 2004;

Haufe et al., 2013; Bastos and Schoffelen, 2016; Schaworonkow and Nikulin,

2021). In case of sensor-level MEG and scalp EEG, mixing arises due to

volume conduction, i.e., the superposition of underlying brain sources on the

sensors (e.g., Schaworonkow and Nikulin, 2021). To reconstruct the underly-

ing neuronal sources, it is common practice to use inverse models that project

sensor-level activity to source locations in the brain (e.g., Baillet et al., 2001).

However, since inverse algorithms are in general unable to reconstruct sources

perfectly, signal mixing is not entirely eliminated. This phenomenon is called

source leakage (Schoffelen and Gross, 2009). Source mixing can also occur

in intracranial EEG recordings, like local field potentials (LFP), e.g., due to

volume conduction and a shared electrical reference being used for different
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recording sites (Bastos and Schoffelen, 2016).

Signal mixing can degrade the statistical power for detecting PAC within

a single channel of measured or reconstructed activity but it cannot lead

to spurious PAC. However, when the goal is to study genuine between-site

PAC, i.e., coupling between the phase of a slow oscillation coming from one

brain location, and the amplitude of a fast oscillation coming from a different

brain location, signal mixing can be a confounding factor. In this case, one

may erroneously interpret within-site PAC as between-site PAC when slow

and fast oscillation signal components leak into both studied channels (Fig-

ure 2). This raises the question: how can we distinguish genuine between-site

PAC from spurious between-site PAC arising from signal leakage of sources

exhibiting within-site PAC? Note that we use the term ‘between-site’ here

to refer to the presence of two anatomically distinct neural current sources

projecting to M/EEG sensors with different topographies. This would entail

cases where sources are physically close to another but currents have distinct

spatial orientations either due to a sharp folding of the cortical mantle in the

vicinity of the sources or due to recruitment of different neural subpopula-

tions.

There have been various suggestions on how to solve the problem of sig-

nal leakage in the context of functional connectivity (FC). For example, Col-

clough et al. (2015) proposed a symmetric orthogonalization of the time-

domain signals before estimating FC metrics. Shahbazi et al. (2010) sug-

gested to compare FC metrics against a null distribution, generated from

permuted independent components (IC surrogate approach). And Chella

et al. (2014) suggested to use an anti-symmetrization of the cross-bispectrum
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to eliminate the effects of mixing artifacts on the bispectrum and illustrated

that the anti-symmetrized bispectrum (ASB) vanishes for mixtures of in-

dependent sources. To date, however, anti-symmetrized bispectra have not

been used to define metrics for genuine between-site PAC (ASB-PAC).

Previous research has established that PAC can be quantified using tra-

ditional measures like the MI or through third-order cumulants, such as the

bispectrum. However, it remains unclear if these methods can also be used to

identify the presence of genuine between-site PAC. Moreover, these metrics

are vulnerable to signal mixing (e.g., Chella et al., 2014). In this study, we

test three strategies aimed at enhancing the robustness of PAC metrics to

signal mixing. These strategies include ASB-PAC, MI based PAC calculated

on orthogonalized time series, and the IC surrogate approach. We address

the following main questions:

• Are the bispectrum and the MI suitable methods to identify genuine

between-site as opposed to within-site PAC?

• Is ASB-PAC a valid measure of between-site PAC?

• Can orthogonalization or the IC surrogate approach be used to make

MI basec PAC robust against signal mixing?

In addition to these questions, we are interested in the impact of the signal-

to-noise ratio and the number of underlying ground-truth interactions on the

accuracy of detection. By answering these questions, we aim at finding an

analysis approach that ensures a reliable detection of between-site PAC, even

in the presence of mixed noise.
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To this end, we first quantify the performance of different algorithms with

respect to their ability to detect PAC in a mixed signal setting. Second, we

investigate the performance of these methods to distinguish genuine between-

site PAC from within-site PAC in the mixed signal setting. We first conduct

a set of simple experiments involving only two channels in different signal-

and noise settings. These experiments resemble a recording setup of two,

potentially invasive, single electrodes. Next, we translate the simulation to

an advanced whole-brain setup, reflecting a scalp EEG recording. Finally, we

investigate the presence of robust between-site PAC during motor imagery

using real scalp-EEG data (Sannelli et al., 2019).

2. Methods

2.1. Univariate PAC

PAC refers to the coupling between a slow and a fast oscillation. For

a given univariate time series x(t) ∈ R, t = 1, . . . , Nt, with Nt denoting the

number of time points, the goal is to determine whether there is PAC between

the two frequency bands l and h. If xl(t) = al(t) ∗ expiψl(t) and xh(t) =

ah(t) ∗ expiψh(t) denote the low and high-frequency parts of the univariate

signal, with a(t) ∈ R denoting the amplitude and ψ(t) ∈ R denoting the

phase of the complex-valued signal, PAC refers to the relation between the

phase of in the low frequency band ψl(t) and the amplitude envelope of the

high frequency band ah(t).

2.2. Within-site and between-site PAC

PAC can occur either between two oscillations within the same signal

x(t) (within-site PAC), or between two oscillations coming from two different
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signals or sites x(t) and y(t) ∈ R (between-site PAC). In the latter case, PAC

is defined as a relation between the phase of signal xl(t) in the low frequency

band ψlx(t) and the amplitude envelope of signal yh(t) in the high frequency

band ahy(t).

When measuring PAC between sites in a setting with source mixing,

we need to distinguish between three scenarios: Scenario I): There is no

PAC between ψlx(t) and ahy(t). Scenario II): There is PAC between ψlx(t)

and ahy(t) that arises from signal mixing, e.g., x(t) = c ∗ s(t) + n1(t) and

y(t) = b ∗ s(t) + n2(t), with c and b ∈ R representing two scaling factors,

s(t) ∈ R denoting a time series containing univariate PAC, and n1(t) and

n2(t) ∈ R representing two noise time series. Scenario III): There is genuine

PAC between x(t) and y(t), i.e., PAC that cannot be explained by signal

mixing: x(t) = c ∗ slow(t) + n1(t) and y(t) = b ∗ shigh(t) + n2(t), with slow(t)

and shigh(t) ∈ R representing two signals that are phase–amplitude coupled.

2.3. Methods that estimate PAC

2.3.1. Conventional metrics

Modulation Index. The idea behind conventional PACmetrics (Canolty et al.,

2006; Tort et al., 2010; Özkurt and Schnitzler, 2011) is to assess the statistical

dependence between a phase and an amplitude time series. First, they esti-

mate the distributions of the phase of a time series xs(t) and the amplitude

of a second time series xf(t), which are hypothesized to contain PA-coupled

slow and fast oscillations, respectively. In practice, it might not be known

a-priori at what frequencies a given pair of time series exhibits PAC. There-

fore, exploratory analyses might sweep through a range of sensible frequency

combinations, thereby also swapping the roles of the two time series as slow
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or fast oscillations. The slow and fast signal components xs(t) and xf(t) are

extracted by filtering x(t) in the low and high frequency bands, respectively.

In the next step, the time-dependent phase of the slow signal ψs(t) is ob-

tained through a Hilbert transform of xs(t) = as(t) ∗ expiψs(t). Likewise, the

amplitude (envelope) time course of the fast signal, af(t), is obtained through

a Hilbert transform of xf(t) = af(t) ∗ expiψf(t).

To obtain the mean vector length MI (Canolty et al., 2006), the two time

series are combined into a composite complex-valued signal:

z(t) = af(t)e
iψs(t) (1)

Finally, the MI is obtained as the mean of the absolute value of z across time.

MIk,m(fslow, ffast) = | 1
Nt

Nt∑
t

zt|. (2)

Note that other versions of the MI have been introduced (Tort et al., 2010;

Özkurt and Schnitzler, 2011). In brief, the metric proposed by Tort et al.

(2010) assesses the degree of the coupling by calculating the Kullback-Leibler

distance of the observed phase-amplitude distribution from a uniform distri-

bution. The metric proposed by Özkurt and Schnitzler (2011) extends the

original MI by a normalization with the power of the amplitude vector.

Variants of the MI have been used to investigate both within- and between-

site PAC; however, it is unclear whether they can distinguish genuine between-

site PAC from PAC arising from mixtures of signals exhibiting within-site

PAC.

Bispectral PAC estimation. The cross-bispectrum belongs to the class of

higher-order poly-spectra. Precisely, it is the two-dimensional third-order

10

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 30, 2023. ; https://doi.org/10.1101/2023.10.26.564193doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.26.564193
http://creativecommons.org/licenses/by/4.0/


statistical moment in frequency domain. To estimate the bispectrum, the

time series are cut into epochs e ∈ 1, . . . , Ne, and Fourier-transformed. In its

most general form, it is calculated for a combination of three channels x̃k,

x̃m, and x̃n, and between two frequencies f1 and f2:

Bk,m,n(f1, f2) =
1

Ne

Ne∑
e

x̃k,e(f1)x̃m,e(f2)x̃
∗
n,e(f1 + f2) ∈ C , (3)

where .∗ denotes the complex conjugation.

Recent works have pointed out that PAC can also be estimated from

the bispectrum (Kovach et al., 2018; Zandvoort and Nolte, 2021). To this

end, the bispectrum B is calculated between channel k at frequency f1 and

channelm at frequencies f2 and f1+f2, where x̃m,e(f) denotes the e-th epoch

of the Fourier-transformed data of channel m at frequency f :

Bk,m,m(f1, f2) =
1

Ne

Ne∑
e

x̃k,e(f1)x̃m,e(f2)x̃
∗
m,e(f1 + f2) ∈ C . (4)

While some works (Kovach et al., 2018; Zandvoort and Nolte, 2021) have

shown analytically that the bispectrum is a suitable measure for PAC, it has

not been extensively and systematically tested. Moreover, it has not been

tested yet whether bispectra can be used to assess genuine between-site PAC

not explained by within-site PAC.

Filter settings. As discussed by Zandvoort and Nolte (2021), PAC between

a slow and a fast oscillation with respective peak frequencies fslow and ffast

corresponds to bispectral interactions at frequency triples (f1 = fslow, f
a
2 =

ffast − fslow, f
a
3 = fa1 + fa2 = ffast) and (f1 = fslow, f

b
2 = ffast, f

b
3 = f b1 +

f b2 = ffast + fslow) (see Figure 2). Note that the relevance of the “sidelobe”

frequencies fa2 = ffast − fslow and f b3 = ffast + fslow in PAC arises from the
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multiplicative modulation of the fast signal by the amplitude of the slow

signal, which amounts to a convolution in frequency domain. As a result,

fa2 and f b3 are visible also as additional peaks of spectral power (sidelobes)

around the peak of the fast oscillation.

For conventional metrics such as the MI, there have been discussions

about how to correctly set the filter parameters, and especially the band

width to obtain the fast oscillation (e.g., Berman et al., 2012; Aru et al.,

2015; Zandvoort and Nolte, 2021). For example, some works have recom-

mended to set the filter broad enough to include both side lobes fa2 and

f b3 . However, Zandvoort and Nolte (2021) pointed out that this leads to a

smeared estimation of PAC and instead recommend to include only ffast and

one of the two side lobes. Here we propose a third alternative—analogous

to the bispectral estimate—namely to estimate PAC twice, once with filter

settings that include fa2 and ffast, and with filter settings that include ffast

and f b3 .

Note, however, that the notations typically used for bispectral and con-

ventional PAC metrics are not consistent (Zandvoort and Nolte, 2021): while

the bispectrum is written as a function of two frequencies f1 and f2, implying

that the third frequency is fixed at f1 + f2, the MI is typically written as a

function of the slow frequency and the center frequency of the fast oscillation,

assuming a symmetrical filter around it. Thus, bispectral PAC at [fslow, ffast]

corresponds to MI-PAC at [fslow, ffast + 0.5fslow].

Based on these considerations, and following the conventional notation,

the final bispectral PAC estimates in this study are obtained as

PACB
k,m(fslow, ffast) = 0.5 · |Bk,m,m(f1, f

a
2 )|+ 0.5 · |Bk,m,m(f1, f

b
2)| (5)
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and the final MI-PAC estimates are obtained as

PACMI
k,m(fslow, ffast) = 0.5 · |MIk,m(f1, f

a
2 + 0.5f1)|+ 0.5 · |MIk,m(f1, f

b
2 + 0.5f1)| ,

(6)

where the band width of the fast-frequency filter is not much larger than

ffast − fslow (see Section 3).

2.4. Statistical testing

To statistically assess whether an observed MI is statistically significant,

the true MI can be compared against an empirical null distribution. Samples

consistent with the null hypothesis of no PAC being present can be obtained

by randomly permuting the order of the epochs of one of the time series and

subsequently recalculating PAC on the permuted epochs:

MIpik,m(fslow, ffast) = | 1
Nt

Nt∑
t

af,pi(e)(t)e
iψs,e(t)|. (7)

for the ith iteration with i = 1, . . . , S, where pi(e) is a random permutation

of the epochs e = 1, ..., Ne.

Analogously, for the bispectral method, the epochs of the Fourier-domain

data x̃m,e can be permuted to obtain a null distribution for statistical testing:

Bpi
k,m,m(f1, f2) =

1

Ne

Ne∑
e

x̃k,e(f1)x̃m,pi(e)(f2)x̃
∗
m,pi(e)

(f1 + f2) ∈ C (8)

This procedure is repeated S times to obtain the desired surrogate distribu-

tion. P-values are then calculated as follows:

p =

∑S
s=1 cs
S

, with cs =

1, if PACsurr > PAC

0, otherwise

(9)
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2.5. Conventional metrics and between-site PAC

Neither the bispectrum nor the MI are not able to distinguish genuine

between-site PAC from spurious PAC arising from signal mixing (Scenario II

vs. Scenario III described in Section 2.2). That is, neither metric is able

to identify whether observed PAC originates from a single underlying source

that has leaked into the two time series, or from two different underlying

sources. Similarly, the permutation-based statistical assessment that we pro-

pose to test whether the MI or bispectrum is significant is unable to dif-

ferentiate between within-site PAC and between-site PAC. This is because

permutations disrupt all data interactions, including those caused by mixed

sources. As a consequence also interactions from the type of Scenario II are

tested significant. To address this limitation, alternative methods are essen-

tial. In the following, we summarize three approaches that are candidates to

solve this problem.

2.6. Anti-symmetrization

For the bispectrum, anti-symmetrization has been proposed to correct

for effects that arise from signal mixing (Chella et al., 2014). Based on

anti-symmetrized bispectra, we can define the following PAC metric whose

expected value for mixtures of independent (potentially within-site PAC cou-

pled) signals is zero:

PACASB
k,m (fslow, ffast) = B[k,m,m](f1, f2)

= 0.5 · (Bk,m,m(f1, f
a
2 )−Bm,k,m(f1, f

a
2 ))

+ 0.5 ·
(
Bk,m,m(f1, f

b
2)−Bm,k,m(f1, f

b
2)
)

(10)
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If the slow and fast oscillations originate from two distinct sites, implying

a genuine between-site interaction, then we would expect to observe the

slow oscillation solely at one site and the fast oscillation at the other site.

Contrarily, if the PAC interaction is derived from a single source that leaks to

two sites, then both the slow and fast oscillations should be present at each

site. Taking advantage of this fact, we can discern genuine interactions based

on their anti-symmetric nature by subtracting the symmetric part of the

interaction. However, it is unclear whether this leakage-corrected bispectrum

can still be interpreted as PAC. Therefore a systematic evaluation whether

the ASB-PAC can be used to estimate between-site PAC is needed.

2.7. Orthogonalization

An equivalent technique to anti-symmetrization for bispectra is not avail-

able for the MI. However, several methods have been proposed in the liter-

ature as general solutions to remove the effect of source mixing from data

or from statistical contrasts against null distributions. First, a multivari-

ate symmetric orthogonalization technique has been proposed by Colclough

et al. (2015). This technique removes instantaneous correlations between

multivariate time series, which is proposed as a general correction for source

leakage effects in functional connectivity analyses. The authors demonstrate

its usability in a simulation where partial correlations between power en-

velopes are analyzed, as well as in a real resting-state MEG data example.

Thus, even though symmetric orthogonalization is not specifically designed

for PAC problems, it may be suitable to solve the source mixing problem

also for between-site PAC.

The advantage of the symmetric orthogonalization over similar decor-
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relation schemes (e.g., Hipp et al., 2012; Brookes et al., 2012) is that the

result is not dependent on the ordering of the region time series, and that

the resulting time series are as close as possible (in the least-squares sense)

to the original time series. This orthogonalization scheme is based on the

Löwdin method (Löwdin, 1950) and can be implemented using a singular

value decomposition (Colclough et al., 2015; Annavarapu, 2013):

X = UDV⊤ (11)

X̃ = U(V⊤), (12)

where X ∈ RNt×R contains R time series to be orthogonalized. R indicates

the number of time series that are investigated, andV⊤ denotes the transpose

of V. Using the ’economy version’ of the SVD, U ∈ RNt×R is a matrix

of orthonormal time courses, V ∈ RR×R is a matrix of singular vectors,

D ∈ RR×R is a matrix of singular values, and X̃ ∈ RNt×R is the matrix of

symmetrically orthogonalized time courses.

To test the statistical significance of the resulting PAC, surrogate data

without PAC are constructed. To this end, the epochs of one times series

are permuted and concatenated back to form a time series. Then the sym-

metric orthogonalization is applied to the concatenated time series, and PAC

PACMI
surr is estimated on the surrogate data. Finally the p-value is calculated

as described above.

2.8. Surrogate data using independent component analysis

Another general approach to account for artifacts of source mixing is to

generate a null distribution by permuting the epochs of independent compo-

nent (IC) time series (Shahbazi et al., 2010). In this study, this method will
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be called IC surrogate analysis (IC-surr). The idea of this approach is to con-

struct surrogate data that are statistically as close as possible to the original

data, but are still physically realistic mixtures of independent sources rather

than being completely independent. The comparison of the observed FC to

the distribution of FC obtained from surrogate data can then reveal whether

observed FC is a genuine effect that cannot explained by source mixing alone.

The authors demonstrate the usablility for the linear measures coherence and

imaginary part of coherency, 1:2 phase coupling, and Granger causality in

simulated and real EEG data. They show that results obtained with the ro-

bust FC measure imaginary coherency cannot be explained by the surrogate

data. Further, for Granger Causality, a non-robust measure, they observe

that the ground-truth interactions that they simulated were attenuated but

not removed in the surrogate data. The authors propose that the IC-surr

approach is applicable to other interaction measures as well. Therefore, we

also include this approach in our study and test whether it can be used to

target the between-site PAC estimation problem.

We here describe the approach exemplarily for a setting with Ns chan-

nels. The first step in the IC surrogate analysis is to perform independent

component analysis (ICA) of the time series matrix X ∈ RNt×Ns . In brief,

ICA finds a weighting matrix W ∈ RNs×Ns that unmixes the sensor data into

ICs that are minimally statistically dependent according to some criterion:

S = XW ∈ RNt×Ns . (13)

In the present study, we use the Infomax ICA algorithm (Bell and Sejnowski,

1995) as implemented by the runica.m function of the EEGlab package

(Delorme and Makeig, 2004), but other algorithms are conceivable. Sub-
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sequently, the ICs are permuted by temporally shifting them randomly with

respect to each other. Finally, the concatenated component time series are

projected back to the original space:

Xshuf = SshufA , (14)

with A = W−1 ∈ RNs×Ns denoting the ICA mixing matrix. From Xshuf , the

MI can be calculated again. The p-value is then calculated by comparing the

original MI against the IC-surrogate MI distribution.

3. Experiments

To test whether the various PAC metrics and robustification approaches

are able to distinguish genuine between-site PAC while rejecting contribu-

tions from within-site PAC, we performed a number of experiments, which

are described below.

First, to ensure that performance differences between the MI- and bispectrum-

based PAC metrics cannot be attributed to different performances in the

detection of univariate PAC, we conducted a small baseline experiment. To

this end, we simulated univariate PAC within a single channel, added noise

with varying signal-to-noise ratios (SNRs), and measured PAC between the

phase of the slow oscillation and the amplitude of the fast oscillation within

the single channel.

We then conducted two experiments involving only Ns = 2 channels,

which allow us to quantify the performance of different analysis pipelines in

different SNR settings. In 2CHAN-BI (c.f. Table 1), we simulated true bi-

variate PAC between the two channels. These experiments allow us to study
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the sensitivity of our analysis pipelines with respect to detecting ground-

truth between-channel interactions as a function of SNR. In the 2CHAN-UNI

experiments, we simulated two univariate phase–amplitude coupled signals

mixed into each of the two channels. This setup enables us to assess false-

positive rates of the different approaches. Please note that we here use the

term bivariate PAC to describe ground-truth between-region or between-

channel PAC, reflecting a true interaction between a slow oscillation in one

brain source and a fast oscillation in another brain source. In contrast, we use

the term univariate PAC describing ground-truth within-region or within-

channel PAC, reflecting PAC between a slow and a fast oscillation within the

same source site.

Subsequently, we considered a whole-brain scalp-EEG setting. From this

setting, we expect to gain insights beyond the minimal two-channel setup into

how well the methods might work on EEG data in practice. Again, we sim-

ulated two cases. In Experiment EEG-BI (c.f. 2), three true bivariate PAC

interactions between six randomly selected regions of the brain were mod-

eled, while all other regions emitted only independent brain noise activity.

This experiment allows us to study the sensitivity of the tested approaches

in a setting with realistic signal mixing. In Experiment EEG-UNI, we con-

sidered three active regions containing independent univariate within-region

PAC, while again all other regions elicit independent brain noise only. This

experiment is important to test the suitability of the approaches in elimi-

nating spurious PAC detection in a setting with realistic signal mixing. In

the following, we first describe two-channel experiments before moving on to

more complex whole-brain EEG experiments. Matlab code to reproduce all
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Simulation Interaction Evaluation

1CHAN-UNI Single-channel

baseline

Univariate PAC within

a single channel.

TPR

2CHAN-BI-IND Two-channel

bivariate,

independent

Bivariate PAC between

two channels.

TPR

2CHAN-BI-MIX Mixed

2CHAN-UNI-IND Two-channel

univariate,

independent

Two channels with two

univariate PAC time

series.

TNR

2CHAN-UNI-MIX Mixed

Table 1: Overview of the univariate baseline experiment (1CHAN-UNI) and the

differences between the four 2CHAN experimental settings: modeled interaction and

performance evaluation (TPR: true positive rate, TNR: true negative rate).

experiments is provided1. The implementation for the bispectra is based on

the open-source METH toolbox2.

3.1. Baseline experiment on univariate PAC detection

3.1.1. Data generation

We generated time series at a sampling rate of 200 Hz with a recording

length of Nt = 120 000 samples amounting to a duration of 10 minutes.

The signal was generated as random white Gaussian noise filtered in the

low frequency band (defined here as ranging from 9 to 11 Hz) for the slow

1https://github.com/fpellegrini/PAC
2https://www.nitrc.org/projects/meth/
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Simulation Interaction Evaluation

EEG-BI Whole-brain EEG

bivariate

Three bivariate interac-

tions between six regions.

Other regions contain in-

dependent brain noise.

PR

EEG-BI-SNR Varying SNR Three bivariate interac-

tions between six regions.

EEG-BI-INT Varying NI−bi One, three, or five bivari-

ate interactions.

EEG-UNI Whole-brain EEG

univariate

One univariate PAC time

series.

Other regions contain in-

dependent brain noise.

gFPR

EEG-UNI-SNR Varying SNR One univariate PAC time

series.

EEG-UNI-INT Varying NI−uni One, three, or five uni-

variate PAC time series.

Table 2: Overview of the differences between the six whole-brain EEG experimental

settings: modeled interaction and performance evaluation (SNR: signal-to-noise ratio,

NI−bi number of bivariate interactions, NI−uni number of univariate interactions, PR:

percentile rank, gFPR: global false positive rate).
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oscillation, denoted xs(t) with t ∈ {1, ..., Nt}, and in the high frequency band

(ranging from 58 to 62 Hz) for the fast oscillation, xf-raw(t). Throughout, we

used zero-phase forward and reverse second-order digital Butterworth band-

pass filters. The PAC interaction was modeled as coupling between the phase

of the slow oscillation and the amplitude of the fast oscillation. To achieve

this, we extracted the phase of the slow oscillation ψs(t) and the phase of

the fast oscillation ψf(t) by means of the Hilbert transform, from which we

calculated the modulated fast oscillating signal xf :

xf(t) = R
[
(1− cos(ψs(t))e

iψf(t)
]
, (15)

with R[x] denoting the real part of x. We divided both the slow and the

fast oscillating signal by their 2-norms for normalization: xfn = xf

||xf ||2
∈ RNt

and xsn = xs

||xs||2
∈ RNt , where xf = [xf(1), . . . , xf(Nt)]

⊤ ∈ RNt and xs =

[xs(1), . . . , xs(Nt)]
⊤ ∈ RNt are the concatenated values of xf(t) and xs(t) at

all time points, respectively. Finally, we summed up the slow and the fast

oscillation to yield the univariate PAC signal:

p1 = xfn + xsn, (16)

and then divided the signal by its Frobenius norm: p1 n = p1

||p1||2 .

We generated a time series c1 ∈ RNt , representing channel noise, as ran-

dom white noise. The channel noise time series was then also divided by

its 2-norm: c1 n = c1
||c1||2

. Finally, we formed a weighted sum of signal and

channel noise:

p1 c = θp1 n + (1− θ)c1 n ∈ RNt , (17)
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where the parameter θ ∈ [0, 1] defines the signal-to-noise ratio on channel

level (SNRc), which can be expressed in decibel (dB) as: SNRcθ = 20 ∗

log10(
θ

1−θ ) dB. We compared the performance of various MI variants and the

bispectrum without anti-symmetrization in detecting the univariate PAC for

the following SNRc values: noise only (θ = 0), -19 dB (θ = 0.1), -12 dB

(θ = 0.2), -7 dB (θ = 0.3), and -4 dB (θ = 0.4).

3.1.2. PAC analysis

To estimate PAC, we first cut the time series into epochs. PAC estimation

based on the MI requires one to cut both signals into long epochs (Tort et al.,

2010). That is, for MI-based metrics, we split the data into Ne = 60 epochs

of length Le = 2000 = 10 sec. For bispectral PAC metrics, we cut the time

series into Ne = 300 epochs of 2 seconds length (i.e., 400 samples).

To estimate the MI, we filtered the epoched time series in the low and

high frequency bands. Since we modelled the ground-truth interaction at

fslow = 10 Hz and ffast = 60 Hz, we calculated the MI once between the slow

signal xs(t) filtered between 9 and 11 Hz and the fast signal xf(t) filtered

between 49 and 61 Hz, and once between the slow signal and the fast signal

filtered between 59 and 71 Hz (c.f. Section 2.3.1 for a detailed explanation

on filter settings). Subsequently, the two MI estimates were averaged.

To estimate the bispectral metrics, we Fourier-transformed every epoch

after multiplying it with a 400-point symmetric Hanning window. After-

wards, we estimated the bispectra once at (f1 = 10 Hz, fa2 = 50 Hz, f1+f
a
2 =

60 Hz) and once at (f1 = 10 Hz, f b2 = 60 Hz, f1+f
b
2 = 70 Hz). Subsequently,

the two estimates were averaged.

For the baseline experiment, we also assessed the performance of addi-
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tional variants of the MI as introduced by Tort et al. (2010) and Özkurt and

Schnitzler (2011). Tort et al. (2010) tested their MI metric against other

measures of PAC, like, e.g., the phase locking value, and found that it is

suitable to measure univariate PAC. Özkurt and Schnitzler (2011) also com-

pared their proposed MI metric to other PAC measures like the general linear

model approach and showed that it is superior to them.

To assess the statistical significance of the PAC estimate, we generated

a surrogate distribution with S = 1000 samples, from which we calculate a

p-value as described in Section 2.4.

3.1.3. Performance evaluation

The experiment was repeated D = 100 times to obtain 100 p-values pd.

PAC was considered statistically significant for p-values below an α-level of

0.05. To assess whether the studied PAC detection pipelines are able to

correctly detect the presence of PAC, we evaluated the true positive rate

(TPR):

TPR =
1

D

D∑
d=1

cd, with cd =

1, if pd < α

0, otherwise

(18)

(19)

3.2. Two-channel experiments

In the two-channel experiments (Figure 1), we generated either two un-

derlying time series exhibiting a true bivariate PAC interaction (referred to as

2CHAN-BI), or two independent time series each exhibiting univariate PAC

(referred to as 2CHAN-UNI, see Section 3.2.1). The underlying signals were
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then further linearly mixed into two measurement channels (see Figure 2 for

an overview of the generated signals). The objective of the two-channel setup

is to provide a simplified context for showcasing the characteristics of the dif-

ferent PAC estimation approaches. We expect that all non-robust metrics

are not capable of distinguishing within- from between-site PAC. Conversely,

the ASB-PAC should be able to distinguish these. However, it is unclear how

the orthogonalization approach (Colclough et al., 2015) and the IC surrogate

method (Shahbazi et al., 2010) might perform. The two-channel setup offers

a good way to analyze their behavior in a simple controlled setup.

3.2.1. Data generation

As in the baseline experiment, we generated a slow oscillation (9 to 11 Hz)

and a fast oscillation (58 to 62 Hz) time series at a sampling rate of 200 Hz

with a recording length of Nt = 120 000 samples = 10 minutes. As described

above, the amplitude of the fast oscillation was modulated by the phase of

the slow oscillation. Afterwards, they were normalized by their 2-norms.

We generated time series c1 and c2 ∈ RNt , representing noise in the two

channels, as random white noise. The channel noise time series were then

also divided by their 2-norms: c1 n = c1
||c1||2

and c2 n = c2
||c2||2

.

In the experimental setting comprising an underlying signal with bivariate

PAC (2CHAN-BI), we added the channel noise to the slow and the fast

oscillating signals, respectively:

xfc = θxfn + (1− θ)c1 n ∈ RNt , (20)

xsc = θxsn + (1− θ)c2 n ∈ RNt . (21)

To simulate signal mixing (MIX), we multiplied the two channel time series
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Figure 1: Structure of the two-channel experiments and data analysis consisting of the

following steps: data generation, PAC estimation and generation of surrogate

distributions, p-value calculation, performance evaluation. SO: slow oscillation, FO: fast

oscillation, M: mixing matrix, ICs: components retrieved from an independent

component analysis (ICA), W: ICA unmixing matrix, A: ICA mixing matrix, MI:

modulation index, ASB-PAC: anti-symmetrized bispectrum, TPR: true positive rate,

TNR: true negative rate.

26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 30, 2023. ; https://doi.org/10.1101/2023.10.26.564193doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.26.564193
http://creativecommons.org/licenses/by/4.0/


0  20 40 60 80 100
f2 channel1 (Hz)

0

20

40

f1
 c

ha
nn

el
2 

(H
z)

Tim
e

Po
we
r

Bi
sp
ec
tr.

AS
B

BI-IND

0  20 40 60 80 100
Frequency (Hz)

-140

-120

-100

-80

-60

-40

Po
w

er
 (d

B)

Channel1
Channel2

0   0.25
Time (s)

-5

0

5

Am
pl

itu
de

10-3

Channel1
Channel2

BI-MIX

0  20 40 60 80 100
Frequency (Hz)

-110

-100

-90

-80

-70

-60

-50

Po
w

er
 (d

B)

Channel1
Channel2

0   0.25
Time (s)

-6

-4

-2

0

2

4
Am

pl
itu

de
10-3

Channel1
Channel2

UNI-IND

0  20 40 60 80 100
Frequency (Hz)

-110

-100

-90

-80

-70

-60

-50
Po

w
er

 (d
B)

Channel1
Channel2

0   0.25
Time (s)

-6

-4

-2

0

2

4

Am
pl

itu
de

10-3

Channel1
Channel2

UNI-MIX

0  20 40 60 80 100
Frequency (Hz)

-110

-100

-90

-80

-70

-60

-50

Po
w

er
 (d

B)

Channel1
Channel2

0   0.25
Time (s)

-6

-4

-2

0

2

4

6

Am
pl

itu
de

10-3

Channel1
Channel2

0  20 40 60 80 100
f2 channel1 (Hz)

0

20

40

f1
 c

ha
nn

el
2 

(H
z)

0  20 40 60 80 100
f2 channel1 (Hz)

0

20

40

f1
 c

ha
nn

el
2 

(H
z)

0  20 40 60 80 100
f2 channel1 (Hz)

0

20

40

f1
 c

ha
nn

el
2 

(H
z)

0  20 40 60 80 100
f2 channel1 (Hz)

0

20

40

f1
 c

ha
nn

el
2 

(H
z)

0  20 40 60 80 100
f2 channel1 (Hz)

0

20

40

f1
 c

ha
nn

el
2 

(H
z)

0  20 40 60 80 100
f2 channel1 (Hz)

0

20

40

f1
 c

ha
nn

el
2 

(H
z)

0  20 40 60 80 100
f2 channel1 (Hz)

0

20

40

f1
 c

ha
nn

el
2 

(H
z)

Figure 2: Overview of signals in the 2CHAN experiments. Shown are exemplary signals

without the addition of noise. First row: excerpt of signal in time domain. Second row:

power spectrum. Third row: full bispectrum. Fourth row: full anti-symmetrized

bispectrum. Substantial bispectral energy is observed in the UNI-MIX case despite the

absence of between-site PAC interactions (black circle).
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by a mixing matrix M: dbivar = x ∗M, with x = [xfc,xsc] ∈ RNt×2, and with

M =

 1 2(β − 0.5)

2(ϵ− 0.5) 1

 ∈ R2×2, (22)

with β and ϵ representing two random parameters drawn from a uniform

distribution on the open interval (0, 1).

In the setting comprising two underlying signals with univariate PAC

(2CHAN-UNI), we generated two independent univariate PAC signals p1

and p2 ∈ RNt , representing the data of the two channels. To generate data

of the first channel, we summed up the slow and fast oscillation:

p1 = xfn + xsn, (23)

then divided the result by its Frobenius norm: p1 n = p1

||p1||2
, and finally added

channel noise:

p1 c = θp1 n + (1− θ)c1 n ∈ RNt . (24)

Data for the second channel were generated analogously. Finally, we again

mixed the two channels with the mixing matrix M: dunivar = p ∗ M, with

p = [p1 c,p2 c] ∈ RNt×2 (MIX).

We conducted experiments for the following SNRcs: noise only (θ = 0),

-12 dB (θ = 0.2), -4 dB (θ = 0.4), 4 dB (θ = 0.6), and 12 dB (θ = 0.8).

To quantify the effect of signal leakage on the different PAC metrics, we

conducted all experiments once without mixing (β = ϵ = 0.5, denoted as

2CHAN-BI-IND, 2CHAN-UNI-IND), and once with the additional random

linear mixing of the two source channels (2CHAN-BI-MIX, 2CHAN-UNI-

MIX).
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The PAC analysis of the two-channel experiments follows the simulation

flow described in Section 3.1 (1CHAN-UNI). Note that for both the true PAC

score (PAC) and the PAC scores (PACsurr) obtained from surrogate data, we

estimated the coupling between the two time series in both directions, but

always selected the larger PAC score of the two for further processing.

3.2.2. Performance evaluation

To assess whether the studied PAC detection pipelines are able to cor-

rectly detect the presence of bivariate (between-site) PAC in experimental

setting 2CHAN-BI, we evaluated the TPR. Conversely, in setting 2CHAN-

UNI, in which only univariate (within-site) PAC was simulated, we evaluated

the true negative rate (TNR) to assess whether metrics correctly reject the

hypothesis that the observed PAC originates from two different sources.

Every experiment was repeated for D = 100 times to obtain 100 p-values

pd. PAC is considered statistically significant for p-values below an α-level

of 0.05. The TPR (for θ > 0 and TNR (for θ = 0 were calculated as follows:

TPR =
1

D

D∑
d=1

cd, with cd =

1, if pd < α

0, otherwise

(25)

TNR =
1

D

D∑
d=1

1− cd . (26)

3.3. Whole-brain EEG experiments

To assess the extent to which the considered PAC estimation pipelines are

also able to distinguish between- from within-site PAC in a practical setting

involving source mixing, we next conducted a set of advanced EEG experi-

ments (Figure 3). This included the presence of noise sources, source mix-
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ing through a realistic EEG forward model, realistic preprocessing including

source reconstruction, and the application of dimensionality reduction tech-

niques. Further, we here varied the SNR and the number of ground-truth

interactions to assess their influence on the sensitivity and specificity of the

candidate PAC detection pipelines.

3.3.1. Data generation

We generated time series at a sampling rate of 200 Hz with a recording

length of Nt = 120 000 samples, amounting to 10 minutes duration. The

slow and fast oscillations xs and xf were generated as in the two-channel ex-

perimental setup (see Section 3.2.1). Additionally, to make the signal more

realistic, we here transformed xs and xf to a 1/f-shape before further pro-

cessing. To this end, the signal was first Fourier-transformed. Subsequently,

every value of the Fourier-transformed signal was divided by its correspond-

ing frequency. Afterwards, the signal was transformed back to time domain

by using an inverse Fourier transform.

In the bivariate PAC Experiments EEG-BI, we generated bivariate inter-

actions between NI−bi pairs of time series, as described in Section 3.2.1. We

then added pink (1/f scaled) background noise as follows: For every interac-

tion, we generated time series b1 and b2 ∈ RNt , representing the background

noise for the two sources. The background noise time series were then also

divided by their 2-norms: b1 n = b1

||b1||2
and b2 n = b2

||b2||2
.

We added the background noise to the slow and the fast oscillating signals,
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Figure 3: Structure of the whole-brain EEG simulation study consisting of the following

steps: data generation, source reconstruction, dimensionality reduction, PAC estimation

and generation of surrogates, p-value calculation, and performance evaluation. In case of

genuine bivariate (between-site) simulated PAC, detection performance is evaluated with

the percentile rank (PR). In the case of solely univariate (within-site) PAC, null

distributions are generated and a p-value for every region combination is calculated.

From this, we calculate the global false positive rate (global FPR).
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respectively:

xfb = γxfn + (1− γ)b1 n ∈ RNt , (27)

xsb = γxsn + (1− γ)b2 n ∈ RNt , (28)

where γ ∈ [0, 1] defines the signal-to-noise ratio on source level (SNRs) and

is fixed here to γ = 0.6.

In the univariate PAC experiments EEG-UNI, we generated NI−uni uni-

variate PAC time series by summing up the PA-coupled slow and fast os-

cillations to form a single signal, and by adding pink background noise as

described above.

In both the bivariate and univariate PAC experiments, we additionally

simulated activity of non-interacting sources—referred to as brain noise—

using mutually independent random pink noise signals only without addi-

tional activity in the alpha band or any other specific frequency band.

3.3.2. EEG signal simulation

EEG forward modeling was carried out in Brainstorm (Tadel et al., 2011)

using the ICBM152 anatomical head template, which is a non-linear average

of the magnetic resonance (MR) images of 152 healthy subjects (Mazziotta

et al., 1995). Within the ICBM152 anatomical model, Nv = 1895 dipolar

sources were placed in the cortical gray matter half-way between the white

matter—gray matter and gray matter—cerebro-spinal fluid interfaces. Each

dipole thereby models the net primary electrical current elicited by a large

population of pyramidal cortical neurons. A cortical parcellation according

to the Desikan-Killiany atlas (Desikan et al., 2006) was used to assign each

dipole to one of R = 68 regions. A set of Ns = 97 EEG sensors were placed on

32

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 30, 2023. ; https://doi.org/10.1101/2023.10.26.564193doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.26.564193
http://creativecommons.org/licenses/by/4.0/


the scalp following the standard BrainProducts ActiCap97 channel montage.

The mapping from dipolar sources to EEG sensors was calculated with a

three-shell boundary element (BEM) model using the OpenMEEG (Gramfort

et al., 2010) package with the three shells representing the brain-skull, skull-

skin and skin-air interfaces, respectively. The result is summarized in the

leadfield matrix L ∈ RNs×3Nv .

For the purpose of this simulation, a single ground-truth source time series

was placed in each of the 68 regions of the DK atlas, where the location within

each region was chosen at random. The spatial orientation of all sources was

set to be perpendicular to the cortical surface at the given location. In

the univariate PAC experiments, the regions in which the univariate PAC

sources are placed were chosen randomly. In the bivariate PAC experiments,

the region pairs in which the pairs of interacting PAC signals were placed

were also chosen randomly, where we ensured that low and high-frequency

components were not located within the same region. In all other regions of

the DK atlas, a single brain noise source was placed. The following steps were

described extensively in (Pellegrini et al., 2023). In brief, signal and brain

noise sources were separately projected to the EEG sensor space using the

lead field matrix. On sensor level, channel noise was generated as Gaussian

white noise (c.f. Section 3.2.1), and mixed with the brain noise (brain noise

to sensor noise ratio of 19 dB) to obtain the total noise. Afterwards, we

summed up signal and noise with a predefined total SNR, denotedt. We

adjusted the default total SNRt to 12 dB in the univariate PAC experiments,

and to 0 dB in the bivariate PAC experiments. These different settings were

chosen to create a challenging problem setting in both cases. As a last step,
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to make the generated data more realistic, we high-pass filtered the generated

sensor data with a cutoff of 1 Hz. The resulting time series on sensor level is

here called Q ∈ RNt×Ns .

If not indicated otherwise, all experiments with ground-truth bivariate

PAC interactions had the following default settings:

• SNRt = 0 dB

• Number of PAC interactions: NI−bi = 3 .

All experiments simulating univariate PAC sources within individual regions

had the following default settings:

• SNRt = 12 dB

• Number of PAC seed regions NI−uni = 1 .

In Experiment EEG-UNI-SNR, we assessed PAC detection performance as a

function of SNR, considering SNRs of 0 dB, 7.4 dB, and 12 dB. The SNRs for

Experiment EEG-BI-SNR was chosen to be lower to avoid ceiling effects in

the results: here, we assessed the metrics’ performances for SNRs of -7.4 dB,

0 dB, and 7.4 dB. In Experiment EEG-BI-INT and EEG-UNI-INT, we tested

the influence of the number of ground-truth interactions and show results for

1, 3, and 5 interactions.

In the EEG-BI experiments, ground-truth interacting regions (two dis-

joint sets of region indices were drawn randomly from a uniform distribution

between 1 and R in each iteration. In the EEG-UNI experiments, ground-

truth seed region(s) containing the univariate PAC signal (seed region index

uniformly drawn between 1 and R) were drawn randomly. Furthermore, the
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ground-truth active voxel(s) within regions (uniformly drawn between 1 and

the number of sources within the ground-truth region), brain noise and sen-

sor noise, as well as the signal were generated based on (filtered) random

white noise processes as described above.

3.3.3. EEG source reconstruction

The following steps and parameter choices build on the results of Pel-

legrini et al. (2023). We estimated the activity of the underlying dipolar

electrical current sources by constructing linearly-constrained minimum vari-

ance (LCMV, Van Veen et al., 1997) beamformers P ∈ RNs×3Nv and applying

them to the sensor time series:

Ĵv = QP, (29)

with Ĵv ∈ RNt×3Nv representing the source-level time series. The result is

one time series for each of the three spatial orientations of each dipole. To

aggregate the reconstructed time series of all dipolar sources within one re-

gion, we performed singular value decomposition (SVD), and selected only

the strongest SVD component for every region for further processing (c.f.

Pellegrini et al., 2023). Let Jv,r ∈ RNt×3V , r ∈ {1, . . . , R} denote the source

time courses of V sources within the r-th single region. These time courses

were aggregated into a single time series by projecting Jv,r onto its strongest

SVD component using the filter Yr ∈ R3V×1:

Jagg,r = Jv,rYr ∈ RNt×1 . (30)

Note that beamformers and PCA that were calculated on unfiltered data

comprising both slow and fast signal components in each experimental run.
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All region time courses Jagg,r, r ∈ {1, . . . , R} were then concatenated into a

matrix JR ∈ RNt×R, whose columns contain the single time courses Jagg,r of

all R regions.

3.3.4. PAC analysis

We included the same PAC metrics as in the two-channel experiments in

the comparison. In the following, we describe how PAC metrics are applied

in the bivariate and univariate whole-brain EEG experiments.

We calculated PAC scores between all region combinations. Note that for

the orthogonalization method, we symmetrically orthogonalized all 68 region

time series to each other before calculating the MI. Thus, X in Eq.(11) now

refers to the region time series JR and R = 68 denotes the number of regions.

Here we focus on the ability of the PAC estimation approaches to dis-

criminate between- from within-site PAC in the current whole-brain bivariate

PAC experiments. Therefore, we did not perform statistical testing for sig-

nificant PAC like in the two-channel experimental setting. That is, instead

of comparing PAC scores to null distributions obtained on permuted data,

we directly evaluated the detection performance of PAC metrics with the

percentile rank (PR; see Section 3.3.5). An exception was the surrogate data

method of Shahbazi et al. (2010), which relies on statistical testing against

a suitable null hypothesis, and whose usage is described in the next para-

graph. Only in the EEG-UNI experiments, we did generate null distributions

by permuting epochs, analogous to what is described for the two-channel ex-

periments. We use the null distributions to calculate a p-value to assess the

false positive rate of each approach (see Section 3.3.5).
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Application of ICA-based surrogate data in whole-brain experiments. Rather

than defining its own PAC metrics, the surrogate data approach of Shah-

bazi et al. (2010) is based on a comparison of observed FC scores against a

distribution of FC scores obtained under the specific null hypothesis of inde-

pendent sources. In order to evaluate the percentile rank for this approach,

PAC scores were standardized using the estimated mean and standard devi-

ation of the null distribution, and standardized PAC scores instead of ‘raw’

ones were compared to the ground truth. We generated a null distribution

by applying Eq. (13) to the sensor time series, epoching the data on the

independent component level, randomly permuting the order of the epochs

separately for each IC, and projecting the thereby shuffled components back

to sensor space by applying Eq. (14). Note that X in Eq. (13) now refers

to the EEG sensor time series Q. From the surrogate sensor time series,

we obtained surrogate source-level PAC scores by applying the same data

processing steps as used for the original data including LCMV source projec-

tion, within region dimensionality reduction using PCA, and between-region

PAC estimation using the MI. We repeated this procedure 100 times to ob-

tain a null distribution of 100 MI scores consistent with a null hypothesis

of zero between-site interactions. We used this null distribution in two dif-

ferent ways: in the bivariate PAC experiments, we normalized the obtained

true MI scores of every region combination by subtracting the mean of the

null distribution and dividing by its standard deviation to obtain MInorm. In

contrast, in the univariate PAC experiments, we used the null distribution

to obtain a p-value to assess the false positive rate (see Section 3.3.5). PAC

scores corresponding to p-values below α = 0.05 were considered significant.
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3.3.5. Performance evaluation

Each experiment was carried out 100 times. We use different metrics to

evaluate the performance of different PAC estimators in the EEG-BI and

EEG-UNI experiments, respectively. In the bivariate PAC experiments, we

were interested to quantify each PAC metric’s ability to detect the simu-

lated ground-truth between-site PAC interactions. In the univariate PAC

experiments, no between-site PAC was present. Here we were interested to

quantify how prone PAC metrics are to still signal false positive between-site

interactions. Please note that in both types of experiments, we only studied

across-region PAC detection and do not evaluate the PAC metrics’ abilities

to detect univariate PAC within regions.

Percentile rank. In the presence of bivariate simulated PAC, we used the

percentile rank (PR) to determine how accurately different PAC approaches

discriminate regions pairs with ground-truth bivariate PAC from other region

pairs. Every region–region combination was assigned a single real-valued FC

score from every PAC estimation pipeline. In order to assess a pipeline’s

success, we first sorted all FC scores in descending order to obtain the rank

vector r ∈ RNI−bi , where NI−bi ∈ {1, 2, 3, 4, 5} is the number of ground-truth

interactions, and where the jth position of r contains the index of the jth

ranked connection. The PR was determined using this rank vector:

PR′ =

∑NI−bi

i=1

(
1− ri

F

)
NI−bi

, (31)

with F = R2−R = 4556 denoting the total number of PAC scores. The PR′

was then normalized using the perfect-skill PR, PRps, and the no-skill PR,
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PRns, and therefore takes values between 0 and 1:

PRps =

∑NI−bi

i

(
1− i

F

)
NI−bi

(32)

PRns =

∑NI−bi

i

(
1− F−i+1

F

)
NI−bi

(33)

PR =
PR′ − PRns

PRps − PRns

. (34)

We report all PR values rounded to the second decimal.

False positive rate. To define the global FPR, we divided the number of

significant PAC interactions (across all region combinations) by the total

number of PAC scores F :

FPR =

∑F
f=1 qf

F
, with qf =

1, if pf < α

0, otherwise

(35)

. (36)

We evaluated the FPR separately for regions that are adjacent to the seed

regions with the ground-truth univariate PAC signal, and for regions that are

not adjacent to the seed regions. Further, we evaluated the two directions of

PAC interactions separately. That is, we calculated the FPR both for PAC

between the phase of the seed regions and the amplitude of the neighboring

regions, and vice versa.

4. Results

4.1. Baseline experiment on univariate PAC detection

The baseline experiment assessed the performance of different PAC met-

rics and pipelines to detect univariate PAC. With this, we wanted to ensure
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Figure 4: Result of the baseline (1CHAN-UNI) experiment on univariate PAC

detection. Sensitivity of mean vector length modulation index Canolty et al. (2006), the

two extensions of Tort et al. (2010) and Özkurt and Schnitzler (2011), and bispectrum

for the detection of phase-amplitude coupling (PAC) as a function of the signal-to-noise

ratio (SNR). PAC is simulated and measured between the slow and fast oscillation

within a single channel.

that potential differences in the detection of genuine between-site PAC are

not just due to different sensitivities to PAC per se. Figure 4 shows the result

of the baseline experiment. We see that all metrics perform similarly well in

detecting true within-channel PAC for our chosen filter settings and epoch

lengths, with the bispectrum performing slightly worse and the MI by Tort

et al. (2010) performing slightly better at -12 dB SNR. To avoid unnecessary

high computational cost, we focused on the original MI metric by Canolty

et al. (2006) in the following experiments and are not reporting results for

the variants proposed by Tort et al. (2010) and Özkurt and Schnitzler (2011).
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4.2. Two-channel experiments

We conducted two types of two-channel experiments: the first type in-

volved true bivariate PAC between the two source channels (2CHAN-BI-

IND and 2CHAN-BI-MIX) and the other type involved two source channels

containing two independent univariate PAC times series 2CHAN-UNI-IND

and 2CHAN-UNI-MIX). The ability to correctly detect the presence of PAC

was tested for the modulation index (MI), MI calculated on orthogonalized

channels (MI+ORTH), MI tested against surrogate data (MI+ICSURR), the

bispectrum (BISPEC), and the anti-symmetrized bispectrum (ASB-PAC).

In Figure 5, we observe that all PAC measures perform well in terms of

correctly detecting true bivariate PAC between the two channels. This is

also true for random mixtures of the same two channels.

As expected, all PAC metrics avoid falsely detecting PAC almost perfectly

in the univariate PAC experiment when there is no signal mixing. However,

in case of signal mixing, most metrics indicate PAC in sufficiently high SNR

environments. This could be erroneously interpreted as genuine between-

channel PAC in practice, even though the PAC interaction stems from a single

underlying source. Within the MI-based methods, MI+ICSURR performs

best with a TNR of 0.30 for an SNRt of 12 dB (TNR MI = 0.04, TNR

BISPEC = 0.04, TNR ORTHO = 0.12 at 12 dB). The only metric that is

largely unaffected by signal mixing is the ASB-PAC, which shows a TNR of

at least 0.96 throughout all SNRs.

4.3. Whole-brain experiments

To assess the ability of the studied pipelines to distinguish between- from

within-site PAC under realistic source mixing, we conducted additional ex-
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Figure 5: Performance of PAC metrics in two-channel experiments. Top: Simulation of

two underlying signals with bivariate PAC without (left) and with (right) additional

linear mixing; that is, presence of genuine across-site PAC. Bottom: Simulation of two

underlying signals with univariate PAC without (left) and with (right) additional linear

mixing; that is absence of genuine between-site PAC. TPR = true positive rate, TNR =

true negative rate.
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periments on simulated whole-brain EEG data using a realistic volume con-

ductor model.

4.3.1. EEG-BI: detection of true between-site PAC

Experiment EEG-BI. In Experiment EEG-BI, we evaluated the performance

of five different PAC metrics in distinguishing genuine ground-truth between-

region PAC interactions from within-region PAC as well as the absence of

any PAC interactions. Figure 6 shows the results of Experiment EEG-BI.

We again see that the bispectral metrics perform slightly better than the

MI. Importantly, the ASB-PAC does not perform worse than the bispectrum

without anti-symmetrization. However, both MI extensions, MI+ORTHO

and overall ICSURR, perform worse than the original MI. We discuss this

result in Section 7. In the following experiments with bivariate ground-truth

PAC, we focus on the MI and the ASB-PAC.

Experiment EEG-BI-SNR: effect of SNR. In Experiment EEG-BI-SNR, we

investigated the effect of the SNRt on the across-region PAC detection perfor-

mance in the whole-brain EEG setting. In Figure 7, we show the percentile

rank attained by MI, BISPEC and ASB-PAC for SNRts of -7.4 dB, 0 dB,

and 7.4 dB, respectively. As expected, we see that the performance of all

metrics decreases for low SNRt.

Experiment EEG-BI-INT. How does the complexity of interaction patterns

affect between-site PAC detection performance? To investigate this, we var-

ied the number of PAC interactions in the ground-truth data in Experiment

EEG-BI-INT. In Figure 8, we see that MI, the conventional bispectrum, and
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Figure 6: Comparison of different phase–amplitude coupling (PAC) metrics in a

whole-brain EEG experiment (Experiment EEG-BI). The dataset encompasses three

ground-truth PAC interactions. Pink background noise was introduced to the

oscillations, and non-interacting sources were represented using random pink noise

signals. EEG signal simulation was conducted using the ICBM152 anatomical head

template. Ground-truth sources were allocated in 68 regions of the DK atlas and

projected to 97 EEG sensors via a forward model. The synthesized data, comprising

signal and noise, had a total SNR of 0 dB and were high-pass filtered at 1 Hz. An

LCMV beamformer and principal component analysis were applied to the data, yielding

region time courses that underwent PAC metric analysis. Performance was evaluated

based on the percentile rank (PR) for the detected bivariate PAC interactions. Red and

black lines indicate the mean and median percentile rank (PR), respectively. The boxcar

marks the 2.5th and 97.5th percentiles. Note the logarithmically spaced Y-Axis.
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(a) (b) (c)

Figure 7: Performance in correctly detecting between-site phase-amplitude coupling as

a function of signal-to-noise ratio (Experiment EEG-BI-SNR). Red and black lines

indicate the mean and median, respectively. The boxcar marks the 2.5th and 97.5th

percentile. Note the logarithmically spaced Y-Axis. It can be seen that the ability to

detect true between-site PAC deteriorates in the presence of stronger non-interacting

noise signals. MI: Modulation Index, BISPEC: Bispectrum, ASB: Anti-symmetrized

bispectrum.

ASB-PAC perform worse for many ground-truth interactions than for few

interactions.

Note that, despite using a normalized version of the PR metric, it is not

possible to objectively compare PR scores obtained for different numbers

of true interactions. While PR distributions are nearly uniform when only

one interaction is simulated, they tend to become more concentrated around

0.5 resembling Gaussian and super-Gaussian distributions with increasing

kurtosis for increasing numbers of interactions (Pellegrini et al., 2023).

4.3.2. EEG-UNI: univariate within-site PAC

In Experiments EEG-BI, we observed that bispectral methods perform

equally as or superior to the MI at detecting ground-truth bivariate between-

region PAC. In Experiment EEG-UNI, we assess the same metrics’ ability

to reject spurious between-region PAC in the univariate PAC setting within
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(a) (b) (c)

Figure 8: The performance of correctly detecting between-site phase–amplitude

coupling depends on the the number of ground-truth PAC interactions (Experiment

EEG-BI-INT). Red and black lines indicate the mean and median, respectively. The

boxcar marks the 2.5th and 97.5th percentile. Note the logarithmically spaced Y-Axis.

MI: Modulation Index, BISPEC: Bispectrum, ASB: Anti-symmetrized bispectrum.

the whole-brain EEG experimental setting.

Two directions of spurious PAC are conceivable: First, there may be PAC

between the phase of the seed region, containing the univariate within-region

PAC, and the amplitude of another region. Second, there may be spurious

PAC between the amplitude of the seed region and the phase of other regions.

It may be that the effect of signal mixing depends on the direction of the

coupling. Therefore, we here show the results for both directions.

Further, we distinguish between spurious interactions from the seed re-

gion to neighbors and to non-neighbors, since we expect a more extreme

impairment for interactions between regions that lie close together and are

therefore more affected by source leakage. In Figure 9, we show all 2x2 com-

binations of these parameters (seed = phase vs. seed = amplitude, neighbors

vs. non-neighbors).

Experiment EEG-UNI. In Experiment EEG-UNI, we compared the different

PAC metrics for the default experimental setting. In Figure 9a, we show the

46

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 30, 2023. ; https://doi.org/10.1101/2023.10.26.564193doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.26.564193
http://creativecommons.org/licenses/by/4.0/


FPR associated with the spurious detection of between-site coupling between

the phase of the ground-truth seed region containing univariate PAC and

the amplitude of the neighboring regions. We observe that the ASB-PAC

detects by far the fewest false positives. The MI and the bispectrum without

anti-symmetrization cannot eliminate the source leakage effect and detects

some false positives. While the ICSURR method seems to improve the MI,

orthogonalization results in a very high FPR.

Figure 9b shows the FPR for measuring spurious PAC between the am-

plitude of the ground-truth seed region containing univariate PAC and the

phase of neighboring regions. We see a similar pattern as in Figure 9a. How-

ever, both the MI and overall the bispectrum without anti-symmetrization

perform even worse. The ASB-PAC detects by far the fewest false positives

also in this case.

As expected, these effects are far less pronounced for interactions between

the ground-truth seed regions and non-neighboring regions (Figures 9c and

9d). This indicates that the observed differences between the robust ASB-

PAC, the non-robust MI and the bispectrum without anti-symmetrization

indeed arise from the source leakage that is most pronounced in regions that

are adjacent to each other.

Experiment EEG-UNI-SNR. In Experiment EEG-UNI-SNR, we investigated

how the FPR depends on the SNR, asking:is the ability to reject spurious

between-region PAC compromised in low-SNR settings?

In Figure 10, we show the FPR for MI, BISPEC, and ASB-PAC for SNRs

of 0 dB, 7.4 dB, and 12 dB. We see that, while the FPR is slightly elevated

at 0 dB in case of the MI and bispectrum, the high specificity of the ASB is
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(a) False-positive rate of detecting spurious

between-site PAC between low-frequency phase of

ground-truth seed regions and high-frequency

amplitude of neighboring regions.

(b) False-positive rate of detecting spurious

between-site PAC between high-frequency

amplitude of ground-truth seed regions and

low-frequency phase of neighboring regions.

(c) False-positive rate of detecting spurious

between-site PAC between low-frequency phase of

ground-truth seed regions and high-frequency

amplitude of non-neighboring regions.

(d) False-positive rate of detecting spurious

between-site PAC between high-frequency

amplitude of ground-truth seed regions and

low-frequency phase of non-neighboring regions.

Figure 9: Comparison of different phase–amplitude coupling (PAC) metrics in their

ability to avoid detecting spurious between-site PAC (Experiment EEG-UNI). (a/b)

Between seed regions and neighboring regions. (c/d) Between seed regions and

non-neighboring regions. Red and black lines indicate the mean and median percentile

rank (PR), respectively. The boxcar marks the 2.5th and 97.5th percentile.
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(a) (b) (c)

(d) (e) (f)

Figure 10: Ability of different PAC estimation pipelines to reject spurious between-site

PAC in different signal-to-noise (SNR) settings (Experiment EEG-UNI-SNR). (a) to (c):

Rate of false-positive detections of between-site PAC detections between the phase of

low-frequency signals at ground-truth seed regions and the amplitude of high-frequency

signals at neighboring regions. (d) to (f): Rate of false-positive between-site PAC

detections between the amplitude of low-frequency signals at ground-truth seed regions

and the phase of high-frequency signals at neighboring regions. Red and black lines

indicate the mean and median, respectively. The boxcar marks the 2.5th and 97.5th

percentile. MI: Modulation Index, BISPEC: Bispectrum, ASB: Anti-symmetrized

bispectrum.

not compromised at low SNR settings.

Experiment EEG-UNI-INT. In Experiment EEG-UNI-INT, we compared

the ability to avoid detecting spurious between-region PAC for different num-

bers of ground-truth univariate within-site interactions. In Figure 11, we see

that the performance of the MI and the bispectrum is slightly compromised

for multi-interaction settings. Conversely, the high performance of ASB-PAC

does not depend on the number of ground-truth interactions.
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(a) (b) (c)

(d) (e) (f)

Figure 11: Ability of different PAC estimation pipelines to reject spurious between-site

PAC for different number of ground-truth univariate PAC seed regions (Experiment

EEG-UNI-INT). (a) to (c): Rate of false-positive detections of between-site PAC

between the phase of low-frequency signals at ground-truth seed regions and the

amplitude of high-frequency signals at neighboring regions. (d) to (f): Rate of

false-positive detections of between-site PAC between the amplitude of low-frequency

signals at ground-truth seed regions and the phase of high-frequency signals at

neighboring regions. Red and black lines indicate the mean and median, respectively.

The boxcar marks the 2.5th and 97.5th percentile. MI: Modulation Index, BISPEC:

Bispectrum, ASB: Anti-symmetrized bispectrum.
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5. Exploratory analysis of PAC in motor imagery

To demonstrate the utility of the ASB-PAC in real EEG data, we present

an exploratory analysis of PAC in motor imagery. The Berlin arm of the

VitalBCI study (Blankertz et al., 2010; Sannelli et al., 2019) involved 39

participants who took part in an experiment where, among other tasks, they

imagined performing a movement with either their left or right hand (referred

to as the Motor Imagery Calibration set; MI-Cb 1-3).

Motor imagery (MI) is a mental simulation of movement (Neuper et al.,

2005). It has been shown that it induces neural activity in primary sensory

and motor areas that is similar to activity incudes by real movements and

that can be measured by EEG (Scherer and Vidaurre, 2018). Movement-

related EEG responses include event-related potentials (ERPs, e.g., Jongsma

et al., 2013) and event-related desynchronization or synchronization (ERD/S

Scherer and Vidaurre, 2018) of specific oscillations. For example, it has been

shown that motor imagery of hand movements result in an ERD in the µ and

β frequency band (Scherer and Vidaurre, 2018). Motor imagery may also be

reflected in functional connectivity patterns, as several studies have shown

(Vidaurre et al., 2020; Pellegrini et al., 2023).

It is conceivable that also PAC may emerge during motor imagery, reflect-

ing processes of cognitive integration and communication during the planning

of the movement. Technically, bivariate, between-site, PAC may also arise

from the co-occurence of both ERP and ERD/S phenomena as a response to

the presentation of a stimulus. On the other hand, univariate, within-site,

PAC could emerge as an ubiquitous phenomenon that reflects non-linear pro-

cesses in the data generation, which manifest in specific non-sinusoidal wave
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shapes of brain oscillations and non-Gaussian distributions. Such univariate

PAC coupling can also occur due to non-zero mean of oscillations where for

instance the amplitude modulation of alpha oscillations would mimic PAC

(Studenova et al., 2022). Thus, it is an interesting question whether and

between which sites PAC occurs during motor imagery. Furthermore, if PAC

is observed, one may ask whether the observed phenomenon has an interpre-

tation as an interaction between distinct brain regions (between-region PAC)

or could be explained by single individual PAC sources (within-region PAC).

Conversely, if PAC is observed due to a co-occurrence of ERP and ERD/S,

it is of interest whether these are potentially elicited by the same sources or

provably come from distinct generators.

In every trial of the VitalBCI experiment, a visual stimulus displaying a

fixation cross accompanied by an arrow indicating the task (i.e., left or right

motor imagery) was shown. Four seconds later, the stimulus disappeared,

and the screen remained black for 2 seconds. Subjects were asked to perform

motor imagery of the respective hand for as long as the arrow was present on

the screen. Each subject completed 75 left and 75 right MI trials. EEG data

were recorded using a 119-channel whole-head EEG system with a sampling

rate of 1000 Hz (see Blankertz et al., 2010; Sannelli et al., 2019, for further

details).

For the analysis, we used the ROIconnect plugin3 (Pellegrini et al., 2023)

in combination with EEGLAB. We used a standard set of 90 EEG channels

covering the whole head. Further, we selected 26 subjects for our analyses.

3https://github.com/sccn/roiconnect
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The subject inclusion criteria were based on previous studies that demon-

strated successful classification between left and right motor imagery condi-

tions using machine learning methods (“Category I” in Sannelli et al., 2019).

Prior to the analysis, the data underwent several preprocessing steps, includ-

ing filtering (1 Hz high-pass filter, 48–52 Hz notch filter, and 45 Hz low-pass

filter, all implemented using zero-phase forward and reverse second-order

digital Butterworth filters), as well as subsampling to 100 Hz. Artifactual

channels were identified through visual inspection of the power spectrum and

the topographical distribution of alpha power. On average, 1.19 channels

(ranging from zero to five per participant) were found to be artifactual and

were subsequently interpolated using spherical scalp spline interpolation. A

leadfield was computed using the Colin27 5003 Standard-10-5-Cap339 tem-

plate head model (5003 voxels, standard 10-5 channel positions), which is

a preexisting component of the EEGLAB toolbox. Subsequently, the data

were cut into segments ranging from 1 to 3 seconds after the start of each

stimulus presentation and separated into left and right motor imagery trials.

For further analysis, only the right-hand motor imagery trials were used. To

project sensor data to source level, we used an LCMV filter which was con-

structed on the same sensor data. Finally, we aggregated the multivariate

source time series within regions using PCA and selected the strongest PC

per region (see Pellegrini et al., 2023).

Previous research suggests that functional connectivity is modulated in

motor imagery (Vidaurre et al., 2020; Pellegrini et al., 2023) with especially

the sensori- and motor cortices being involved (Scherer and Vidaurre, 2018).

However, PAC between the different involved areas has never been inves-
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tigated before with robust metrics. In this study, we selected the left and

right pre- and post-central cortices as regions of interest, as this is where the

sensori- and motor areas are located.

In the following analysis, we addressed the following questions:

1. Is motor imagery characterized by within-site PAC during in the sensori-

and motor cortices?

2. Is motor imagery also associated with genuine between-site PAC be-

tween sensori- and motor cortices, indicating a role of PAC as a mech-

anism of distant brain communication in MI?

3. If PAC as detected by the conventional bispectrum is observed, does

it vanish when using a robust PAC metric, i.e., the ASB-PAC? We hy-

pothesized that the differences between the between-site PAC estimates

obtained by the uncorrected bispectrum and the ASB-PAC are more

pronounced for regions that lie close together, in contrast to regions

that lie on different hemispheres.

To this end, we estimated PAC in three ways:

• Within-region PAC measured with the conventional bispectrum (BIS-

PEC).

• Between-region PAC measured with the conventional bispectrum (BIS-

PEC).

• Between-region PAC measured with ASB-PAC.

Since previous research found that motor imagery is mostly reflected in the µ

and β bands, we calculated bispectra between slow oscillations of 1 to 12 Hz,
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and fast oscillations between 1 and 50 Hz (both with 1 Hz resolution). Since

Fourier coefficients can only be evaluated up to the Nyquist frequency in a

meaningful way, and the third term of the bispectrum includes the sum of

the slow and fast oscillation frequencies, our analyses had to be restricted

to frequency combinations whose sum did not exceed the Nyquist frequency.

To ensure that the fast oscillation frequency carrying the amplitude envelope

is significantly higher than the slow oscillation frequency carrying the phase,

and to avoid strong confounds by interactions of the slow oscillation with

its second and third harmonic, we constrained our analyses to fast oscilla-

tion frequencies whose frequency was at least three times higher than the

frequency of the corresponding slow oscillation.

To test whether the observed PAC scores are significantly different from

chance levels, we employed the permutation-based statistical approach as in

the simulations (see Section 2.4). In brief, for each observed PAC score, we

calculated the same bispectral metrics for randomly across epochs permuted

Fourier coefficients to obtain samples of a null distribution consistent with

the null hypothesis of no PAC interaction (see Eq. 8). We generated 5000

samples of the null distribution and subsequently evaluated for how many

of the surrogate samples the estimated PAC value exceeded the PAC value

obtained on the original data (see Eq. 9). To aggregate the resulting p-values

over subjects, we employed Stouffer’s method (Dowding and Haufe, 2018).

Figure 12a shows frequency combinations with significant PAC as esti-

mated with the conventional bispectrum without anti-symmetrization. We

observe significant within- as well as between-region PAC between the phase

of low-frequent oscillations and the amplitude of beta and gamma oscilla-
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tions across many frequency combinations and between all ROIs. This leads

to the question to what extent the observed between-region effects indeed

reflect underlying coupling between distinct brain areas as opposed to non-

linear properties of single brain sources.

Figure 12b shows corresponding results for ASB-PAC. We clearly see

that the observed PAC between regions in the same hemisphere vanishes

when employing the anti-symmetrization. This absence in comparison to

Figure 12a suggests that part of the between-region PAC implicated by the

original bispectral metric in fact cannot be explained by genuine between-site

interactions and may instead results from signal spread between the pre- and

post-central cortices of the same hemisphere. In contrast, inter-hemispheric

PAC effects were even more pronounced when assessed through ASB-PAC as

compared to the conventional bispectrum. This may speak to a favourable

cleaning effect of the anti-symmetrization by which signal contaminations

attributable to signal spread are effectively removed.

Matlab code of the analyses presented in this section is provided under4.

6. EEGlab plugin for bispectral PAC estimation

ROIconnect is a freely available open-source EEGLAB plugin that pro-

vides a suite of signal processing methods proposed in the literature to esti-

mate FC between regions of interests (ROIs). We first introduced the toolbox

in Pellegrini et al. (2023), describing basic features including source recon-

struction techniques, dimensionality reduction within regions, region-based

4https://github.com/fpellegrini/MotorImag
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(a) Within- and between-site PAC as assessed by the bispectrum without anti-symmetrization.
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(b) Between-site PAC as assessed by the anti-symmetrized bispectrum (ASB-PAC).

Figure 12: Phase-amplitude coupling (PAC) within and between left and right

postcentral and precentral cortices during motor imagery of the right hand. Displayed

are z-scores resulting from Stouffer’s method of combining subject-level p-values. In both

figures, only statistically significant (p < 0.05) effects are drawn opaque. The thumbnail

on the bottom right of (b) shows the cortical localization of the two regions of interest.
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power estimation with optional 1/f correction and estimation of region-based

1/f slope, robust inter-regional linear FC estimation, as well as various op-

tions to visualize power and FC. All functions can be accessed through the

EEGLAB GUI or the command line. As an EEGLAB plugin, ROIconnect

has access to core EEGLAB functions for importing and preprocessing EEG

data as well as for calculating the leadfield and the source model. The tool-

box is available on GitHub under5 and is installable through the EEGLAB

GUI extension manager. In the following section, we describe advanced fea-

tures and main updates to the toolbox resulting from the outcomes of this

study.

6.1. Phase-amplitude coupling

Our results suggest that the bispectrum is a suitable method to detect

PAC. Further, we observed that the ASB robustly detects between-site PAC

in the presence of volume conduction considerably better than the conven-

tional bispectrum or methods based on the Modulation Index. To this end,

we implemented functions for robust estimation of (within- and between-

region) PAC based on the bispectrum, and for between-region PAC based on

the ASB.

The pop roi connect function of ROIconnect allows users to estimate

PAC between two frequencies or frequency bands, generating bispectral esti-

mates for the required region-region-frequency-frequency combination. The

number of ROIs can be predefined by the user. Beyond PAC, this function

can also be utilized for other functional connectivity metrics calculations.

5https://github.com/sccn/roiconnect
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6.2. Statistics

A statistics mode is provided for assessing the statistical significance of the

estimated FC metrics using a permutation-based approach. For bispectral

connectivity metrics, we implemented the method used in this study, where a

surrogate distribution sample is obtained by randomly permuting the epochs

of a channel. The cross-bispectrum is then computed on the shuffled time

series.

Statistical analysis of FC metrics is available through pop roi connect

by activating the statistics mode. Additionally, the resulting p-values can

be visualized as cortical surface topographies for a selected frequency or

frequency band.

7. Discussion

In this study, we addressed potential limitations of existing PAC met-

rics, such as the MI and bispectrum, in assessing genuine between-site PAC

and their vulnerability to signal mixing. We evaluated the effectiveness of

three strategies, namely the ASB-PAC, MI with orthogonalization, and the

IC surrogate approach, to enhance the robustness of the conventional PAC

metrics. Furthermore, we explored the influence of the SNR and the number

of ground-truth interactions on PAC detection accuracy.

We introduced a minimal two-channel experimental setting, which al-

lowed us to quantify and compare the performance of various PAC metrics in

correctly distinguishing the presence of ground-truth between-channel PAC

from univariate PAC observed in the same channel pairs but originating from

single sources. We identified ASB-PAC to be the only PAC metric that is able

59

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 30, 2023. ; https://doi.org/10.1101/2023.10.26.564193doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.26.564193
http://creativecommons.org/licenses/by/4.0/


to consistently reject spurious between-channel PAC in a setting with two

independent but mixed univariate PAC time series, while also being able to

detect genuine ground-truth bivariate (between-site) interactions with high

sensitivity. In a more complex whole-brain EEG-like experimental setup, we

confirmed the excellent performance of ASB-PAC in both cases: it robustly

detected ground-truth inter-regional PAC in low to moderate noise settings.

Conversely, in the exclusive presence of univariate PAC sources, ASB-PAC

attained a low false-positive rate, whereas other metrics were characterized

by the detection of many spurious interactions.

Spurious between-site PAC is a result of local source leakage

False-positive between-site PAC was more frequently detected between

neighboring regions in comparison to non-neighboring regions. This is an

expected result since so-called source leakage occurs predominantly between

regions that lie close together. This can also be seen in Figure S1, which

shows that there is a higher correlation between the time courses of a seed

region and its neighbors compared to non-adjacent regions. This is then also

reflected in higher but spurious PAC (Figure S2).

We found more spurious PAC between the amplitude of the fast oscillation

in the seed PAC region and the phase of the slow oscillation in the neighbor-

ing regions than vice versa. This can be explained by the comparably higher

power or SNR of the univariate PAC signal at low frequencies due to the ap-

plied 1/f scaling (see Section 3.3.1). The higher power leads to more source

leakage for the slow oscillation than for the fast oscillation. Therefore, false-

positive between-region PAC is more likely to be observed between the phase

of this leaked slow oscillation and the fast oscillation-amplitude measured in
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the seed region. We investigated this in a single whole-brain experiment (uni-

variate PAC, all parameters set to default), where we assessed the correlation

between the time courses of the slow and fast oscillation of the seed region

and the corresponding slow and fast oscillation of the neighboring regions,

respectively (see Figure S1). We found a mean absolute Pearson correlation

of r = 0.42 for the slow oscillation, but a correlation of only r = 0.22 for the

fast oscillation, which shows that the slow oscillation leaked more from the

seed region into the neighboring regions than the fast oscillation due to its

higher SNRt.

Physiological interpretation of ASB-PAC

Note that, while the bispectral index PACB
k,m(fslow, ffast) = 0.5·|Bk,m,m(f1, f

a
2 )|+

0.5 · |Bk,m,m(f1, f
b
2)| is a valid characterization of PAC, this is not necessarily

the case for the difference measure PACASB
k,m (fslow, ffast) = B[k,m,m](f1, f2) =

0.5 · (Bk,m,m(f1, f
a
2 )−Bm,k,m(f1, f

a
2 )) + 0.5 ·

(
Bk,m,m(f1, f

b
2)−Bm,k,m(f1, f

b
2)
)

meaning that there might in general be no real-world PAC signal whose bis-

pectrum is PACASB. Specifically, the correction terms Bm,k,m(f1, f
a
2 ) and

Bm,k,m(f1, f
b
2) correspond to interactions between a signal xm at frequencies

f1 and f1 + f
a/b
2 with another signal xk at frequencies f

a/b
2 , respectively,

which, as such, are not PAC interactions. One may thus wonder what it

means to subtract Bm,k,m from Bk,m,m, and whether the subtraction could

potentially lead to the removal or cancellation of neurophysiological informa-

tion of potential interest. Here we argue that this is unlikely, as nonlinear

interactions between Bm,k,m(f1, f
a
2 ) and Bm,k,m(f1, f

b
2) as described above are

not expected to occur regularly in the brain. On the other hand, such in-

teractions provably emerge as a result of source mixing in the presence of
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a source with within-site PAC. In such cases, it is beneficial to remove the

leakage artifact picked up by Bm,k,m(f1, f
a
2 ) and Bm,k,m(f1, f

b
2), whereas in

cases without substantial leakage, both terms are expected to be negligible

and thus their removal is not expected to influence the ASB-PAC. This con-

sideration is confirmed by our numerical experiments, where the sensitivity

(as measured by the PR) of the ASB-PAC in the bivariate PAC setting is

comparable to that of the original bispectrum while a consistently low FPR

is attained in the presence of solely univariate ground truth PAC interactions

throughout all mixing proportions and SNRs.

A situation in which what we call genuine between-site PAC, as charac-

terized by ASB-PAC, still has ambiguous interpretations is when one signal

with univariate PAC is reflected in two channels with different constant time

delays. The resulting between-channel PAC cannot be explained by linear

mixing as a volume conduction or source leakage artifact. Yet, one may argue

that the simplest and thus more likely mechanism of information transfer in

this setting is just a mere delayed forwarding of the broad-band signal than

an intricate phase-amplitude coupling between distinct frequency bands. To

test for such simpler hypotheses, it can be advisable to additionally test for

stable non-zero phase delays between channels either in the low frequency

band, the high frequency band, or both. This can be achieved using estab-

lished metrics based on the cross- or bispectrum (Nolte et al., 2004; Haufe

et al., 2013; Winkler et al., 2016).
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Orthogonalization and ICA-based surrogates cannot distinguish within- from

between-site PAC

Both orthogonalization (Colclough et al., 2015; Hipp et al., 2012) and

surrogate data approaches perturbing the data at the level of independent

components (Shahbazi et al., 2010) have been proposed as general purpose

strategies to remove artifacts of volume conduction from M/EEG data and

subsequent functional connectivity analyses. Thus, it may seem worthwhile

to assess the ability of these approaches to distinguish genuine between-site

PAC from PAC that is measured between two different sites but is inher-

ently caused by within-site PAC of a single sources whose signal leaks into

both sites. Our experimental results, however, demonstrate that both the

orthogonalization approach and the ICA-based surrogates do not improve

the performance of the MI in terms of detecting the presence of across-region

PAC. Orthogonalization even worsens the performance of the original MI

metric in the whole-brain experiments. The use of ICA based surrogates

seems to provide an improvement in certain simple setups such as the two-

channel experiments with source mixing but not in more complex scenarios

with larger numbers of channels.

Here we provide arguments for the suboptimal behavior of both meth-

ods for the studied problem. Both approaches decompose the sensor data

into components that are orthogonal and (in case of ICA-based surrogates)

“maximally” statistically independent from another. Here statistical inde-

pendence is typically achieved by maximizing non-Gaussianity based on the

argument that mixtures of independent signals (e.g. due to volume conduc-

tion) are closer to be Gaussian distributed than the unmixed signals. The
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idea of the ICA-based surrogate data approach is to remove any residual func-

tional connectivity at the component level by randomly shifting component

time course relative to each other. When projecting the shifted components

back to sensor space, surrogate data complying with the null hypothesis of

zero source-level FC are hoped to be obtained, which can be tested against.

However, this reasoning only applies to FC metrics that are strictly bi- or

multivariate. Cross-frequency interactions such as PAC, which can emerge

within single univariate time series, are likely to be retained in single inde-

pendent components, and are thus preserved even under random shifts of the

components relative to each other. We can easily understand that exactly

that happens for univariate PAC sources, whose individual slow and fast-

oscillation spectral components are Gaussian distributed by construction, but

the summation of which is (by virtue of the higher-order PAC interaction)

super-Gaussian. Thus, ICA algorithms aiming to maximize non-Gaussianity

have a strong incentive to retain univariate PAC signals in single compo-

nents rather than splitting them into slow- and fast-oscillation parts. We

confirmed this behavior by investigating power spectra of the ICs, calculated

from sensor-level activity in the EEG-UNI experiment in one simulation run.

We found that a large number of ICs contained both the low-frequency peak

and the high-frequency peak with the two side lobes (Figure S3). Conse-

quently, permuting the components does not create an adequate null distri-

bution. Spatio-spectral decomposition (SSD, Nikulin et al., 2011) could be a

more suitable approach to overcome this problem. In contrast to ICA, it is

designed for maximizing the signal power at specific frequencies while sup-

pressing signal power at other frequencies. The method could be used to force
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the slow and fast oscillation into two different components, and permutation

could then result in a more appropriate null distribution. The proposition

of SSD-based surrogates as a novel methodology is, however, beyond the

scope of this study. Using ICA decomposition and PAC estimation, Gong

et al. (2021) showed that the strength of cortical PAC between the phase of

beta oscillations and the amplitude of high-frequency gamma activity was

increased in patients with Parkinson’s disease compared to healthy partici-

pants. Moreover, PAC also predicted the severity of motor deficits measured

with the part 3 of Movement Disorder Society Unified Parkinson’s Disease

Rating Scale. Importantly, this prediction was only possible when the phase

and amplitude of the corresponding PAC oscillations was estimated with spa-

tially distinct independent components but not for the PAC within the same

components. A validation of these findings with the methods presented in

this paper, would provide further evidence for the existence of such across-

site PAC. This in turn would be important for the introduction of novel

methods for the multilocus non-invasive brain stimulation (Koponen et al.,

2018) aimed at the disruption of pathological PAC.

The orthogonalization approach of Colclough et al. (2015) aims to remove

artifacts of volume conduction by finding the set of time series that are clos-

est to the original sensor time series in the mean-squared error sense, yet are

uncorrelated. This and similar approaches are often used with the implicit

expectation that the removal of first-order correlations between orthogonal-

ized time series would also destroy higher-order interactions introduced by

the same source mixing process and enable the analysis of non-linear inter-

actions such as PAC or amplitude envelope correlations (AEC, Hipp et al.,
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2012; Colclough et al., 2015) without interference from artifacts of volume

conduction. However, this is only guaranteed if the orthogonalization indeed

recovers the original unmixed sources, which can be prohibited if the num-

ber of underlying sources is larger than the number of sensors and/or if the

mixing matrix (in the EEG setting the so-called resolution kernel composed

of the leadfield and inverse projection matrix) substantially deviates from

diagonality. In addition, slow and fast oscillation spectral components of a

PAC interaction are in general linearly uncorrelated. Thus, any orthogonal-

ization algorithm has no incentive to group slow and fast oscillation signal

parts into the same component but may just as well assign slow and fast os-

cillation parts to different components that would be uncorrelated but PAC

coupled even if the original PAC interaction was just within site. This would

lead to the emergence of spurious between-site PAC even on orthogonalized

signals.

These considerations signify that tailored solutions such as antisymmetrized

bispectra are needed to distinguish genuine between- from within-site PAC.

Similarly, simulations as performed here are advisable to critically assess the

aptitude of approaches such as orthogonalization when used to address other

novel problems in brain functional connectivity estimation.

Limitations

In this study we observed that PAC metrics based on bispectra are well

suited for detecting ground-truth PAC even in challenging SNR regimes,

and that anti-symmetrization can further robustify the estimation in the

sense that it prevents the detection of between-site PAC that can be more

trivially explained by mixtures of univariate PAC sources. However, we did
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not investigate the possibility of spurious (within- or between-site) PAC due

to other reasons. There are various additional possible pitfalls that warrant

further discussion/investigation.

First, while the bispectral indices used here do reflect PAC, they may

also be influenced by other types of coupling, like phase–frequency, ampli-

tude–frequency, and amplitude–amplitude interactions (Hyafil et al., 2015;

Jirsa and Müller, 2013). These possibilities should be carefully ruled out

when investigating PAC with bispectra.

Second, it has been shown that spurious PAC detection may arise from

physiological artifacts, like eye movements, muscle activity, or heart beat,

which can often be simultaneously observed in multiple channels (Giehl et al.,

2021). However, this would not pose a problem for ASB-PAC based PAC

estimation, which is invariant to mixtures of non-interacting sources by con-

struction (Chella et al., 2014).

And, third, spurious PAC may arise from a rhythmic non-sinusoidal sig-

nal and its higher harmonics (Hyafil, 2017; Giehl et al., 2021; Idaji et al.,

2022). Indeed, in a recent resting-state MEG study (Giehl et al., 2021), all

within-region PAC could be attributed to the present of higher harmonics

or physiological artifacts in the data. To rule out unwanted effects of higher

harmonics, a novel method, Harmoni (Idaji et al., 2022), was recently de-

veloped. Further research should investigate how Harmoni can be combined

with the ASB-PAC approach.
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8. Conclusion

Between-site PAC can spuriously emerge when a univariate PAC sig-

nal is spread to other locations. Therefore, a robust method to disentangle

genuine between-site PAC from within-site PAC is needed. In this study,

we tested the use of the anti-symmetrized bispectrum to robustly estimate

genuine between-site PAC. Previous studies have demonstrated that anti-

symmetrized bispectra vanish for mixtures of independent sources. However,

the application of ASB-PAC to assess the presence of genuine between-site

PAC has not been explored yet. To investigate the performance of differ-

ent algorithms in detecting PAC in the context of mixed signals, and, thus,

in distinguishing between genuine between-site PAC and within-site PAC,

we conducted two experiments: one using a minimal two-channel setup and

one involving a more complex EEG-like setting that mimicked the genera-

tion and reconstructions of underlying EEG sources with forward and in-

verse modeling techniques. Our findings reveal that the ASB-PAC exhibits

superior performance in detecting simulated PAC in the presence of vol-

ume conduction, outperforming conventional PAC estimators. Specifically,

the ASB-PAC approach demonstrated the highest performance in detecting

genuine between-site PAC interactions while detecting the fewest spurious

interactions in presence of signal mixing. In light of these results, the use of

ASB-PAC-based metrics could significantly enhance the interpretation of fu-

ture studies investigating PAC as a mechanism of brain communication across

macroscopic sites. By effectively addressing the issue of spurious between-

site PAC emergence in mixed signal settings, the ASB-PAC approach offers

valuable insights into the genuine functional interactions between distinct
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brain sites, thereby facilitating a more accurate understanding of PAC’s role

in brain dynamics and signaling processes.

Data and code availability

The code for the simulation can be found here: https://github.com/

fpellegrini/PAC. The code for the ROIconnect plugin can be found here:

https://github.com/sccn/roiconnect. And the code for the minimal real

data example here: https://github.com/fpellegrini/MotorImag. Data

of the real data example are available upon request.
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