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The application of Zooarchaeology by Mass Spectrometry (ZooMS) on
Pleistocene sites in Europe and northern Asia has resulted in the discovery
of important new hominin fossils and has expanded the range of identified
fauna. However, no systematic, large-scale application of ZooMS on
Palaeolithic sites in East Asia has been attempted thus far. Here, we analyse
866 morphologically non-diagnostic bones from Jinsitai Cave in northeast
China and Yumidong Cave in South China, from archaeological horizons
dating to 150–10 ka BP. Bones from both sites revealed a high degree of
collagen preservation and potentially time-related deamidation patterns,
despite being located in very distinct environmental settings. At Jinsitai,
we identified 31 camel bones, five of which were radiocarbon dated to
37–20 ka BP. All dated specimens correspond to colder periods of Marine
Isotope Stages 3 and 2. We regard the presence of camels at Jinsitai as
evidence of wild camels being a megafauna taxon targeted, most likely by
early modern humans, during their expansion across northeast Asia. This
large-scale application of ZooMS in China highlights the potential of the
method for furthering our knowledge of the palaeoanthropological and
zooarchaeological records of East Asia.
1. Introduction
Significant new archaeological and palaeoanthropological discoveries from East
Asia have highlighted the region’s importance in understanding late human
evolution [1–5]. However, our knowledge of human presence and adaptation
to these, often extreme, territories are limited, although some multi-period
sites with long stratigraphies offer such potential (e.g. [6]).

Recent developments in ancient DNA (aDNA) research including the extrac-
tion of aDNA from sedimentary deposits and bone remains, have opened new
exciting possibilities worldwide [7,8]. However, aDNA preservation is challen-
ging in some regions of East Asia, particularly in warm and humid areas.
Ancient proteins are an alternative group of biomolecules that often preserve
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Figure 1. Map with location of sampled sites in this study. (a) Location of Yumidong Cave and Jinsitai Cave shown with yellow dots; (b) view towards Jinsitai Cave;
(c) the entrance of Yumidong Cave. Base map from https://www.naturalearthdata.com/.
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better and can help address research questions in palaeoan-
thropology and zooarchaeology [9,10]. Peptide mass
fingerprinting of collagen, also known as zooarchaeology by
mass spectrometry (ZooMS), is a powerful palaeoproteomic
method for the taxonomic identification of collagenous
materials such as bone, ivory and leather [11–14]. ZooMS
involves the extraction of Type I collagen (COL1) and the gen-
eration of tryptic-digested peptide mass fingerprints using
matrix-assisted laser desorption ionization time-of-flight
mass spectrometry (MALDI-TOF-MS). COL1, the major
organic component (approx. 90%) in the bone of vertebrates,
is a highly durable biomolecule, and peptides as old as 3.5
Myr have been extracted from bone remains [15].

ZooMS is particularly valuable analytical tool for screen-
ing highly fragmented bones that lack diagnostic features and
therefore are not suitable for traditional zooarchaeological
analyses [16–21]. The method performs well on bones from
cold environments, while its success rates for bones from
temperate, tropical and subtropical zones are generally
lower [22].

In this work, we investigate the applicability of ZooMS in
East Asia as part of a larger-scale, study involving numerous
Pleistocene-age sites from across Eurasia (FINDER Project).
The aims of our work in China were threefold. First, we
wanted to examine whether the application of ZooMS on
various Chinese sites—where the method had not been
applied on a large scale before—would be successful and
whether site location and age would be a major contributing
factor to success or failure rates. Assuming a degree of suc-
cessful collagen extraction, the second aim of this project
revolved around the identification of new hominin remains
and, finally, the third aim was an attempt to expand the mor-
phology-based faunal identifications using ZooMS. While
our initial goal was to include a large number of sites and
bone material from different periods and depositional
environments, the pandemic prevented us from studying a
larger number of sites. Despite this limitation, this work,
designed as a feasibility study for the recovery of ancient pro-
teins from different locations in China, represents the largest
application of ZooMS in East Asia to date.
2. Material and methods
We applied ZooMS to 866 unidentified bones from two Palaeo-
lithic sites in China: Yumidong Cave in the south and Jinsitai
Cave in the north (figure 1). Information about the sites, the
analysed material and methods of analyses are detailed below.

(a) Studied sites
The two analysed sites are located in regions with distinct ecologi-
cal and climatic settings, (assumed) biomolecular preservation
conditions and research histories.

The Three Gorges region is a hub for archaeological and
paleoanthropological research, with many sites having been dis-
covered in recent decades. Yumidong Cave is a recently found
karst cave in this region [23]. It consists of a large and nearly
horizontal chamber, 70 m in length and 12–20 m in width. A
3 m in diameter vertical skylight provides air circulation and
light, making the cave particularly attractive to human occu-
pation. Excavations began in 2011 and focused on the area
between the roof skylight and the cave entrance. Approximately
150 m² of surface area has been exposed thus far. The stratigra-
phy consists of a 6 m depth sequence divided in 18 distinct
layers; the bedrock has not been reached (electronic supplemen-
tary material, appendix and figure S1). The excavations have
yielded thousands of lithics and fauna remains, including 113
worked bones. Large limestone tools make up 97% of the lithic
assemblage and belong to the cobble industry that prevailed in
southern China during the Pleistocene. The faunal remains are
attributed to the Ailuropoda-Stegodon fauna complex of Southeast
Asia. Multiple dating methods have been applied to the site, and
Bayesian analysis of 48 determinations established a geological
and archaeological record spanning approximately 300 ka for
Yumidong Cave [24].

Jinsitai Cave, located at the eastern end of the mid-latitude,
semi-arid Eurasian belt, on the China-Mongolia border, is a
rare Palaeolithic cave site with stratified sequence in northern
China. The granite cave covers an area of nearly 120 m2. Initial
excavations in 2000–2001 depleted the deposit extensively, and
subsequent excavations focused on the limited remaining sedi-
ment [24]. Around 5000 lithic artefacts, 3000 faunal remains
and three hearths were discovered at the site, in nine strati-
graphic layers (electronic supplementary material, appendix
and figure S2). The upper layers contained a Late Upper

https://www.naturalearthdata.com/
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Palaeolithic assemblage of microblades and bifacially thinned
points, alongside the traditional core-and-flake (small flakes)
industry which is typical in contemporaneous sites in northern
China. The lower layers were dominated by core-and-flake
industry, while some distinctive Levallois flakes were described
as Mousterian-like artefacts [25,26]. Some researchers regard
the presence of this Mousterian-like industry at Jinsitai as evi-
dence of a population dispersal or technological diffusion
from the west. The lithic industry from the Mongolian site
Tsagaan Agui was recently compared with the Jinsitai Levallois
Mousterian [27] but more comparative techno-typological work
needs to be done. The Jinsitai fauna is attributed to the
Mammuthus–Coelodonta faunal complex, although no mammoths
are included in the assemblage. Radiocarbon dating on bone
collagen suggests human occupation of the cave from around
47–44 ka BP until the Holocene [26].

(b) Materials
For Yumidong Cave, we randomly selected 121 non-
diagnostic bone fragments (no teeth or antler) from layer 2 to
layer 9, all of which were excavated in 2013. We limited our
sampling to bones from the uppermost Middle Pleistocene and
Late Pleistocene layers, due to concerns of collagen preservation.
The average size of the sampled bone fragments was approxi-
mately 4 cm.

For Jinsitai Cave, we analysed all 745 unidentifiable bones
from the site. They were excavated during the 2000–2001
fieldwork but lack exact contextual information. This is because
while all bones were collected and grouped during excavation
by layers, after the zooarchaeological analysis, fragments
lacking morphological characteristics from every layer were
mixed together. We used this mixed ‘unidentified’ assemblage
for our ZooMS work. During sampling, we noted the presence
of glue on the bones from Jinsitai, verified as polyvinyl acetate
applied to the bones shortly after excavation. The glue has
aged, cracked and concealed possible modifications on the
bone surface. The analysed specimens, most of which were
long shafts, varied in size, and we recorded their weight before
sampling.

(c) Sampling and data generating
Each bone was subsampled using a circular diamond saw blade.
To eliminate surface contaminants such as glue and sediment, a
small area of the bone was sandblasted before removing a chip of
approximately 20 mg for ZooMS analysis, or approximately
600 mg for radiocarbon dating.

We used the ZooMS acid-insoluble protocol [22,28] for 866
samples. Seven bones from Jinsitai were submitted to the
Oxford Radiocarbon Accelerator Unit and were dated using rou-
tine ultrafiltration methodologies [29]. More details can be found
in the electronic supplementary material, appendix.

(d) Data processing
The calculation of glutamine deamidation is based on Wilson
et al. [30]. The amino acid glutamine (Q) in collagen peptides
may undergo post-mortem deamidation, resulting in a mass
shift of 0.984 Da. COL1ɑ1 508–519 (GVQGPPGPAGPR) (marker
P1 or cet1 from previous research [31]) contains a single gluta-
mine site identified at m/z 1105.5 (non-deamidated) and m/z
1106.5 (deamidated). Theoretically, deamidation values range
from 0 to 1. A value of 1 indicates no or negligible deamidation
in COL1α1 508–519 peptides, while 0 indicates nearly complete
deamidation. Values greater than 1 may also be observed due
to baseline noise, which can distort the relative intensity.

MALDI-TOF spectra were converted from t2d files to
mzXML files using T2D converter [32] and processed using the
mMass 5.5.0 [33]. Previously published COL1 peptide markers
were used for ZooMS-based taxonomic identifications
[15,18,28,34–36]. The raw radiocarbon data were calibrated to
calendar years using OxCal v. 4.4.4 [37] and the IntCal20 cali-
bration curve [38]. Statistical analysis and visualization were
conducted in R [39] with the ggplot2 package [40].
3. Results and discussion
(a) Deamidation
To investigate the influence of local environmental condi-
tions and age on bone collagen preservation and overall
ZooMS performance, we analysed the proteomic profiles
using glutamine deamidation observed in the peptide
COL1ɑ1 508–519. This peptide sequence is conserved across
mammalian species and has been used in previous studies
as a proxy for the relative ‘thermal age’ of samples or
to detect intrusive bones of different ages in an in situ
deposit [41,42].

Deamidation values for both sites deviated from a normal
distribution (electronic supplementary material, appendix
and figure S3–S5). Therefore, we used non-parametric
Kernel density estimation to assess the overall deamidation
patterns (figure 2, insert). The two sites had distinct deamida-
tion patterns. The average deamidation value at Yumidong
was lower and less variable than Jinsitai. Despite their wide
variation, the median deamidation value for the Jinsitai data-
set was 0.62, whereas the value for Yumidong was
significantly lower at approximately 0.15. This suggests
that, in general, bones from Jinsitai were less deamidated,
which agrees well with the higher ZooMS identification
rate (see next section), as well as the younger overall age of
Jinsitai. Based on the published chronology for each site,
the deepest layer at Jinsitai post-dates 50 ka BP. Therefore,
the entire Jinsitai deposit corresponds only to the upper
part of layer 2 (63–14 ka BP) of Yumidong (electronic sup-
plementary material, figures S1 and S2) [24,26]. To explore
further whether the deamidation patterns in both sites were
linked to time, we plotted the deamidation values against
the ZooMS taxa of Jinsitai (labels in yellow) and the strati-
graphic layers of Yumidong (labels in purple) on the same
figure (figure 2). While most taxa in Jinsitai presented
broad and overlapping ranges of deamidation, an indirect
time-related pattern can be observed when comparing the
deamidation values of Sus sp. (pig/wild boar) and Rhinocer-
otidae (woolly rhinoceros), whose deamidation ranges hardly
overlap. The two taxa are thought to be separated temporally
at the site. Zooarchaeological study of the Jinsitai fauna
reported pigs/wild boars (n = 2) exclusively in layer 2,
whereas woolly rhinoceros (n = 123) were only found in
layers 3–8 (data in electronic supplementary material, appen-
dix, table S2) [43]. Layer 2 corresponds to the Holocene, as
evidenced by pottery sherds found there, while woolly rhino-
ceros pre-date the Holocene and are believed to have gone
extinct in East Asia around the Allerød oscillation approxi-
mately 13 ka [25,44]. The outlier JST 285 (triplicate) in the
Rhinocerotidae group in figure 2 suggests a well-preserved
specimen, possibly of a younger age. In Yumidong, most
of the deamidation variation occurred in the two upper
layers, while deamidation levels in layers 4–9 were close to
0. There was one exception, YMD 113 (Cervidae/Antilopinae)
from layer 9, which exhibited a deamidation value of
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Figure 2. Visualization of deamidation levels at Yumidong and Jinsitai. Insert panel: kernel density estimate of deamidation value on ZooMS identifiable mammals.
Main figure: violin plot on deamidation levels for Jinsitai (in yellow, around 47–44 ka BP to the Holocene) grouped by ZooMS-identified taxa, and Yumidong (in
purple, Middle and Late Pleistocene) grouped by archaeological layers. The plotted data for Jinsitai includes Sus sp., n = 4; Rodentia, n = 28; Cervid/Bovid, n = 47;
Hyaenidae/Mustelidae, n = 40; Ursus sp., n = 4; Antilopinae_1, n = 9; Equus sp., n = 189; Cervidae/Antilopinae, n = 53; Camelus sp., n = 31; Bison sp., n = 125;
Antilopinae_2, n = 19; Rhinocerotidae, n = 121, shown in descending order on the basis of their median deamidation values. The Yumidong dataset includes ZooMS
identifiable specimens from layer 2, n = 13; layer 3, n = 16; layer 4, n = 9; layer 5, n = 10; layer 6, n = 15; layer 7, n = 15; layer 8, n = 14; layer 9, n = 8, totally
100 (data in appendix, electronic supplementary material, table S1). Chronological data for Yumidong from [24].
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around 0.5. This outlier might indicate either an intrusion or
extraordinarily well-preserved collagen.

The wide range of deamidation values for the glutamine
of COL1ɑ1 508–519 in bones from Jinsitai and in layers 2
and 3 of Yumidong suggests that deamidation is still
ongoing in these deposits. By contrast, bones from layers 4
to 9 in Yumidong are fully deamidated. This agrees with
the data that these layers are considerably older, probably
pre-dating 140 ka.

While deamidation values cannot be used directly as an
indicator of age, in some cases they can serve as a relative
age indicator for chronologically separated fauna groups
within a single site. However, it is important to note that
the deamidation process is influenced by both diagenetic
and laboratory-induced factors [45]. Therefore, we ought
to stress that our findings are specific to the sampled depos-
its. The results of this study support previous research
suggesting that the deamidation may be considered an indi-
cator of collagen preservation and a thermal age proxy
among different fossil assemblages. However, achieving
chronological resolution in absolute terms is extremely
challenging—if not impossible [41,42,46,47].

(b) ZooMS taxonomic results and comparison with
zooarchaeological data

Despite the antiquity and location of Yumidong and Jinsitai
caves in the subtropical and the temperate zones of East
Asia, respectively, the ZooMS-based identification rates
were unexpectedly high. Out of the 745 bones analysed
from Jinsitai Cave, 90% had enough collagen for assignment
to the order or genus level. The success rate for Yumidong
Cave is 83%. To assess if the new data fit within the overall
zooarchaeological record for each site, we compared the
ZooMS-based identifications with the morphological
identifications.

In Yumidong Cave, 21 of the 121 analysed samples failed
to yield enough collagen. No significant correlation was
observed between stratigraphic depth and success of
ZooMS identification (electronic supplementary material,
appendix and figure S6), possibly due to the limited
number of samples included in this study.

A total of 1530 bones were recovered from the first 15
layers of Yumidong, with the majority coming from layers
2, 5, 10 and 11. About one-third of the faunal assemblage
(480 specimens) was identified morphologically, revealing a
high diversity of taxa (approx. 40) which included Stegodon
sp., Cervus sp., Muntiacus muntjac (southern red muntjac),
Caprinae, Bubalus sp. or Bos sp., Sus scrofa (wild boar),
Equus sp. (horse), Stephanorhinus sp. (two-horned rhinoceros),
Megatapirus augustus (giant tapir), Ursus thibetanus (Asian
black bear), Ailuropoda melanoleuca (giant panda), a few carni-
vore taxa and microfauna [48]. Based on the abundance of
cervids (31%) and stegodons (23%), the Yumidong fauna
belongs to the Stegodon–Ailuropoda faunal complex, a typical
fauna complex of large-bodied mammals widely distributed
from East Asia to mainland Southeast Asia during the Late
Pleistocene [49–51].
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identified specimens of mammals based on morphology and on ZooMS. Further details are provided in the electronic supplementary material, appendix and
tables S2–S4.
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Prior to comparing morphological versus ZooMS data-
sets, we removed 12 bones of microfauna taxa from the
morphological dataset, resulting in a total of 468 morphologi-
cally identified mammals [48] (electronic supplementary
material, appendix and table S2). We included rodents in
our comparison because they account for about 17% of the
morphological dataset from Yumidong, contributing to half
of the species diversity at the site.

The Yumidong ZooMS results reveal a reduced diversity
of mammals compared with the morphological data (elec-
tronic supplementary material, appendix and table S2). This
may be explained by the fact that (i) the ZooMS dataset
(n = 100) is nearly five times smaller than the morphologically
identified one (n = 468); (ii) the ZooMS-analysed bones have
an average size of 4 cm, thus most microfauna would have
been excluded during sampling; and (iii) the low resolution
in separating cervids and bovids using ZooMS could mask
the overall taxonomic diversity.

In order to compare the two datasets, we classified the
morphologically identified mammals and the ZooMS-ident-
ified mammals into five orders (Rodentia, Proboscidea,
Artiodactyla, Perissodactyla and Carnivora) (figure 3a).

The abundance of carnivores (e.g. hyenas) in caves is
often used to determine whether hominins or carnivores
were the driving force for the accumulation of an assemblage
[52–54]. The percentage of Carnivora, around 3%, is similar in
both datasets of Yumidong, falling below the 20% threshold
required for designating a fauna assemblage as carnivore
accumulation. This confirms published work on bone and
lithic artefacts analysis that highlights the dominant role of
hominins in the formation of the site [55,56].

The Perissodactyla group includes extinct regional
species, such as two-horned rhinoceros, giant tapirs and
very few horses. Rhinos and tapirs share all diagnostic pep-
tide markers [57], leading to a combined Ceratomorpha
category in our ZooMS dataset. Interestingly, the percentage
of order Perissodactyla is consistent in both ZooMS and
morphological datasets (14%) (figure 3a).

The Proboscidea group is the most abundant in our
ZooMS results. Stegodon, the typical species in the Stegodon–
Ailuropoda faunal complex in Southern China, represents
22% of the morphological assemblage at Yumidong Cave.
Stegodon remains, primarily consisting of cranial and foot
elements [58] have been found in all layers at Yumidong,
and over 85% were neonate and juvenile individuals. While
our current ZooMS reference library lacks stegodon, we
identified 47 bones whose spectra matched the Elephantidae
ZooMS fingerprint [35]. Since Elephas coexisted with extinct
stegodons in southern China throughout the Pleistocene,
the ZooMS-identified proboscideans from Yumidong are
assigned to Elephantoidae, a group that includes both Stego-
dontidae and Elephantidae. Elephantoidae represents 47% of
the ZooMS assemblage, making it the most abundant taxon
in the Yumiding ZooMS dataset.

The zooarchaeological studies [48,56] suggest diverse
strategies for the exploitation of large animals. The inhabi-
tants of Yumidong scavenged or hunted stegodons but only
transferred the skulls and limbs of neonate and juvenile indi-
viduals back to the cave. Two stegodon tusks from layers 2
and 5 were modified for the production of tools. The remains
of two-horned rhinoceros show a bias towards older individ-
uals and less preference on transporting body elements to
the site.

Artiodactyla (mainly cervids and bovids) is the largest
group in the morphological dataset but ranks second after
Elephantoidae in the ZooMS results. Bovids, Bos or Bubalus,
account for 13% in the morphological dataset but 31% in the
ZooMS data. ZooMS can separate Bos from Bubalus, which is
challenging morphologically. However, ZooMS cannot reach
genus-level identification for cervids (including Cervus sp. and
southern redmuntjac at the site). The fragmented ZooMS assem-
blage shows a larger percentage of Bos and Bubalus, while the
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proportion of cervid specimens decreases significantly (29%
versus 4%). This disparity may be due to body size, with large
animals better represented in the ZooMS assemblage. Two
cervid antlers were modified into tools [56].

Despite the limited and exploratory nature of the appli-
cation of ZooMS at Yumidong, our analysis provides a new
perspective on the highly fragmented bones from the site. It
complements the morphological identifications that dominantly
rely on teeth. The least abundant groups (Carnivora and
Perissodactyla) in the morphological dataset (3% and 14%)
align with the ZooMS-based dataset, while the more dominant
orders (Rodentia, Artiodactyla and Perissodactyla) show
differences in the ZooMS dataset that may be the result of
body-size effects.

In Jinsitai, out of 745 samples analysed using ZooMS, 68
had no collagen. The remaining 677 samples were success-
fully analysed, with one identified as Aves (bird) and 673
as mammals (electronic supplementary material, appendix
and table S4). Three bones were assigned to an ’unknown’
category due to unmatched peptide masses.

While all analysed bones lacked diagnostic morphological
features, not all of them were small in size. A slight corre-
lation (Cohen’s d = 0.31) was found between bone weights
and ZooMS success rate, with rates of 93% for the greater
than 10 g group, 91% for the 3–10 g group and 88% for the
less than 3 g group, resulting in an overall identification
rate of 90% (electronic supplementary material, appendix
and figure S7).

The main excavation of Jinsitai Cave yielded 2372 bones
from layers 2 to 8. In total, 778 (33%) specimens were ident-
ified morphologically to genus or species level. More than
half of the morphologically identified specimens (51%)
come from layer 4, while layers 2, 3 and 5 each yielded 11–
13%. In addition to four bird bones, 15 mammalian taxa
were identified at the site, including Myospalax aspalax
(zokor), Marmota bobak (bobak marmot), Cervus elaphus (red
deer), Procapra przewalskii, Pachygazella sp., Spirocerus sp.,
Bison sp. (bison), Equus ferus przewalskii (Przewalski horse),
Equus hemionus (Asiatic wild ass), Sus scrofa (pig/wild
boar), Coelodonta antiquitatis (woolly rhinoceros), Ursus spe-
laeus (cave bear), Crocuta crocuta ultima (hyena), Canis lupus
(wolf ) and Gulo sp. (wolverine). Minimum numbers of
individuals (MNIs) were estimated for these taxa (electronic
supplementary material, appendix and table S2) [43].

The Jinsitai fauna is attributed to the Mammuthus–
Coelodonta faunal complex despite the absence of mammoth.
The site is located in a relatively open landscape compared
with eastern regions where mammoths have been recorded
[59,60]. Although no comparable cave site exists in the
region, similar taxa, with the exception of cave bear and
bobak marmot, were found at the open-air site of Salawusu
in Inner Mongolia [61] (figure 1). Sediment pollen analysis
suggested a shift from a taiga-steppe to a less-cold steppe
ecosystem during the human occupation of Jinsitai Cave.

To compare morphological and ZooMS-identified taxa, the
774 morphologically identified mammals [43] were categorized
into four orders (Rodentia, Artiodactyla, Perissodactyla and
Carnivora), and they were compared with the 673 ZooMS-
identified mammals, also grouped into four groups (figure 3b).

The Carnivora category in the ZooMS and the morpho-
logical datasets both represent approximately 7% of the
assemblage at Jinsitai, mainly made by cave bears and
hyenas. Among the morphologically identified specimens,
around 160 bones showed traces of burning, over 140 had
cut-marks, and less than 40 had signs of carnivore gnawing
[43]. Since only one mustelid was identified morphologically,
we hypothesize that the indistinguishable taxon Hyaenidae/
Mustelidae in ZooMS mostly contains hyenas.

In the morphological dataset, Rodentia accounted for
about 14% of the Jinsitai assemblage, represented by bobak
marmots (n = 108) and zokors (n = 3). However, in the
ZooMS assemblage, only 4% (n = 28) of the bones were
assigned to rodents, and they were almost exclusively found
in the smallest weight group (less than 3 g). Although bobak
marmot and zokor were not present in the ZooMS reference
library, the Jinsitai rodents showed closest match to the
alpine marmot (CDS: XP_015350976.1). The lower number of
rodents in the ZooMS dataset suggests that rodents were not
severely fragmented. The deamidation level of rodents indi-
cates a relatively late appearance at Jinsitai, consistent with
previous zooarchaeological studies on bobak marmots,
which were limited to layers 2 to 4 at Jinsitai and may have
been the result of burrowing activity [62]. Bobak marmot is
absent at Salawusu, in the same region [43,61].

Artiodactyla is the most diverse group in the Jinsitai
faunal assemblage and includes pigs/wild boars, red deer,
four bovids (Procapra przewalskii, Pachygazella sp., Spirocerus
sp., Bison. sp.) [43] and the newly identified Camelus sp.
(camel) (see text below). Two pig/wild boar remains were
morphologically identified both in layer 2, and their presence
was confirmed by ZooMS, albeit very infrequent (n = 4).
Bison accounted for 9% (n = 71) of the morphological dataset,
but this value doubled in the ZooMS data (18%, n = 121),
indicating a potentially higher fragmentation level for this
taxon. Although morphological and ZooMS analyses could
not determine the Jinsitai bison remains to species level, it
has been suggested that all Late Pleistocene bison remains
in the northeast China plain should be identified as Bison pris-
cus (steppe bison) due to the lack of reliably identified
alternatives [63]. Red deer is the only morphologically ident-
ified cervid at Jinsitai (n = 25), with various axial and
appendicular elements, as well as four antler fragments. By
contrast, the remaining three local Antilopinae taxa, Procapra
przewalskii, Pachygazella sp. (extinct) and Spirocerus sp.
(extinct), were exclusively identified by horn fragments (n =
17, 43 and 1, respectively), which are their most distinctive
parts. Almost half of the identified horns had cut-marks at
the roots, resulting from the removal activity on crania [43].
Using ZooMS, we were not able to identify any cervid or
Antilopinae bones to the genus level at Jinsitai, due to their
phylogenetic closeness and absence in the ZooMS reference
library. Instead, 129 specimens were grouped into five
‘ZooMS taxa’ based on distinct marker combinations (for
more details see the electronic supplementary material, appen-
dix). Of these, the ‘Cervid/Bovid’ group (n = 47) represented
the most generic assignment due to the lack of one or two
ZooMS markers. The remaining four groups (n = 82) each rep-
resented a combination of seven markers, suggesting the
presence of at least four ZooMS unidentified species at Jinsitai.
The ambivalent classification of cervids hinders further discus-
sion on the exploitation of cervids or antelopes at Jinsitai.

The order Perissodactyla includes two Equus species
(Przewalski horse and Asiatic wild ass) and woolly rhino-
ceros at Jinsitai. Woolly rhinoceros were equally represented
in the morphological and ZooMS datasets (16% versus
18%). Based on morphological identification [43], the two
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Equus species were the most abundant taxa, accounting for
42% of the Jinsitai fauna, with 220 Przewalski horse speci-
mens representing 12 individuals and 106 Asiatic wild ass
specimens representing 13 individuals. Over 90% of ident-
ified elements were teeth and distal extremities, suggesting
a possible preference by hominins for transporting skull
and lower limbs to the site. Evidence from other sites in adja-
cent regions [64] shows that Przewalski horse/Asiatic wild
ass was a substantial food resource for hominins. Using the
ZooMS trypsin-digestion protocol, the Przewalski horse and
Asiatic wild ass were indistinguishable and were identified
as a combined Equus taxon. Equus sp. accounted for 28% of
the ZooMS assemblage, much less than the morphological
dataset. The over-representation of Equus in the morphologi-
cal identifications may be attributed to the distinct
morphology of horse teeth [65,66]. At Jinsitai, 67% of the
morphologically identified Equus remains were teeth (n =
219). Interestingly, none of these teeth was from calves or
young adults (less than 4 years) [43]; instead, the horse com-
position suggests a long-term exploitation of prime and old
adults at Jinsitai.

The comparison between Jinsitai morphological and
ZooMS datasets reveals specific differences. For example, cer-
vids and bovids are more abundant in the ZooMS data, while
rodents and Equus are less frequently found. The two assem-
blages represent the entire fauna collection from the main
excavations of the site. Although the ZooMS data from Jinsi-
tai presented here lack stratigraphic context, the deamidation
analysis detected a few taxa (pig/wild boar and rodents) of
which the presence at the site was relatively short and
recent. Furthermore, four different ZooMS marker combi-
nations were identified on cervids/bovids, representing at
least four species. To achieve a more detailed taxonomic res-
olution, expanding the ZooMS reference with bovid species
found in East Asia is necessary to clarify the new marker
combinations [36].
(c) Camels in Jinsitai Cave
An unexpected discovery was the identification of camel
remains in the faunal assemblage of Jinsitai. Thirty-one (n =
31) camel bone fragments were discovered using ZooMS
(spectra in electronic supplementary material, appendix and
figure S8), comprising 5% of the ZooMS-identified dataset.
While ZooMS can identify two extant species in the genus
Camelus at the species level (C. bactrianus and C. dromedarius)
[15], the extinct C. knoblochi is not included in the current
reference library. It is likely that the C. knoblochi shares
most, if not all, ZooMS markers with the C. ferus (wild bac-
trian camel). The extinct ‘giant’ camel C. knoblochi was part
of the Mammuthus–Coelodonta faunal complex that inhabited
Asia for tens of thousands of years, although the exact date
of its extinction remains uncertain [67].

Traditionally, camels are not considered a targeted species
for Eurasian Palaeolithic hunter groups, and their remains are
rarely found at cave sites. Camel skeletal remains preserve
more diagnostic features than other megafauna species,
hence their morphological identification should be, in prin-
ciple, easy to achieve. Their absence, therefore, may be either
because their feral predecessors were not numerous in the
landscape thus rarely targeted, or, when hunted, transpor-
tation of body parts between killing sites and camping sites
was limited. Following ZooMS identification, the 31 camel
bones were morphologically examined; none preserved diag-
nostic features and all were heavily fractured. Seventeen
fragments were from long bones, three from flat bones and
four from irregular bones (electronic supplementary material,
appendix and table S4). Like most taxa in the Jinsitai ZooMS
assemblage, the size of camel fragments varied considerably,
and were equally identified in the less than 3 g and greater
than 10 g groups. Two camel long bone fragments showed
possible traces of burning, probably due to heating to a low
temperature since bone collagen was still present. The highly
fragmentary nature of the camel bones discovered at Jinsitai
may suggest that the camel bones underwent extensive level
of modification and damage pre- and post-deposition. It is
possible that while humans exploited camel remains, they
only transferred specific body parts to the cave. This could
explain the absence of more diagnostic bones (teeth, crania
and vertebrae).

To establish the absolute timing of camel presence at Jin-
sitai, we radiocarbon dated seven ZooMS-identified camel
bones, all of which were dense and/or large fragments. Of
these, five produced enough collagen for dating. The results
indicate that the five dated specimens represent at least four
individuals (electronic supplementary material, appendix,
table S5 and figure S9). OxA-X-3115-12 (JST 244) was pro-
duced on a low collagen bone and we cannot rule out that
this is a minimum age. Notwithstanding, camel bones were
deposited at Jinsitai during distinct periods, at 20.5 ka cal
BP, at 26 ka cal BP, at 31 ka cal BP and at approximately
36 ka cal BP (ka cal BP = calendar thousand years before pre-
sent). When plotted against the Greenland oxygen isotope
record (NGRIP) [68] these new dates fall in cold conditions
of the marine isotope stages (MIS) 3 and 2, particularly
Greenland stadials 2.1, 3, 5 and 8 [69] (figure 4). The chrono-
metric data we report here clearly indicates that camel
presence at Jinsitai was not ephemeral or a one-off encounter.
Instead, it suggests targeted and repeated exploitation of this
animal for at least 17 millennia.

The deamidation levels of the dated camel bones were also
examined. Four of the five specimens showed deamidation
values ranging from 0.4 to 0.6. The exception was JST 628
(approx. 26 ka cal BP), with an average deamidation value
of 0.95, indicating a nearly non-deamidated profile. This
specimen was not the oldest among the directly dated
bones. The inconsistency between radiocarbon age and
deamidation level cautions against using deamidation as a
molecular ‘clock’.

In recent years, camel remains have been identified and
reported at various Palaeolithic localities in Eurasia and
Africa (figure 5). In Western Asia and North Africa, most
instances appear to belong to the Camelus thomasi (wild dro-
medary) based on findings from mostly open-air sites in
Egypt [71], Sudan [72] and Syria [73], dating to the Middle
and Late Pleistocene. In Siberia, camel aDNA has been
extracted at Denisova Cave from Middle Palaeolithic
sediments dating to 140–120 ka BP [74].

Camelid bones have been reported from early Upper
Palaeolithic sites in Uzbekistan (Samarkandskaya) [75],
Siberia (Kamenka 1) [76] and Mongolia (Otson Tsokhio)
[77,78]. These probably belong to the two-humped wild bac-
trian camel although there is still uncertainty as to its
relationship and time of extinction with Camelus knoblochi
[67]. Remains of C. knoblochi, the largest Eurasian two-
humped member of the genus Camelus, have been recently
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reported from Tsagaan Agui Cave in southern Mongolia [70].
In China, C. knoblochi bones have been previously identified
at the palaeontological locality Dabusu, possibly dating to
around 20 ka [79], and a few undated specimens were
reported from two Palaeolithic sites, Wulanmulun [80] and
Salawusu [81] in Inner Mongolia.

Interestingly, rare instances of Northern Asian parietal
cave art found in the southern Urals in Russia (Kapova

https://www.naturalearthdata.com/
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Cave or Shulgan-Tash, and Ignatievskaya Cave) and Mongo-
lia (Khoid Tsenkheriin Agui Cave), depict two-humped
camels among other taxa [82–84] (figure 5). The Urals sites
are estimated to date to approximately 20–15 ka BP, while
Khoid Tsenkher Cave is believed to pre-date the Last Glacial
Maximum. An interesting scene of camel hunting engraved
on a mammoth tusk found near River Tom in West Siberia
has been dated to minimum 13 ka BP [85].

Among these sporadic occurrences of camel bones and
camel depictions, Jinsitai has the most numerous and well-
dated camel remains so far. Camel presence there spanned
at least 17 millennia. While it is not possible to specify
which hominin species targeted camels at each site, it
seems that both archaic (Asian Neanderthals and Denisovans
perhaps, e.g. at Denisova Cave), as well as early modern
humans, were exploiting this taxon. As hunter–gatherer
populations expanded across North and Central Asia, they
encountered camelids among the diverse megafauna. The
extinction of the giant wild camel, Camelus knoblochi, prob-
ably occurred around 20 ka BP [79], which aligns well with
the age determinations at Jinsitai for JST 244 and JST 276.
However, further research at other sites is necessary to estab-
lish last appearance dates for the species with any confidence.
Ongoing studies on the genetic profile of the camel bones
discovered at Jinsitai aim to provide a better understanding
of the evolutionary history of wild camels in Asia.
4. Conclusion
ZooMS has emerged as a valuable biomolecular tool which
complements and enhances the traditional zooarchaeological
research, especially when dealing with highly fragmented
faunal assemblages. In this study, we conducted the first sys-
tematic large-scale application of ZooMS in China, analysing
nearly 900 bones from two Palaeolithic sites. The analysis of
glutamine deamidation at Jinsitai revealed an ongoing
deamidation process with a possible temporal correlation to
specific taxa. By contrast, at the much older layers of Yumi-
dong, we observed nearly complete deamidation in bones
dating back to 140–106 ka BP or before. We successfully
extracted bone collagen from Yumidong layers dating back
as far as 150 ka, in the subtropical zone of southern China.
This opens up exciting possibilities for large-scale screening
for collagen and other biomolecules in Pleistocene bones
from such latitudes.

We identified 31 camel bones at Jinistai Cave, a previously
unknown taxon at the site. Five of these bones were radiocar-
bon dated to between 37 and 20 ka cal BP; their punctuated
presence at the site so far falls in stadial conditions of MIS
3 and MIS 2. The presence of camels at Jinsitai during
colder periods provides significant insights into the broad
spectrum of animal exploitation performed by early groups
of, most likely, modern humans as they spread across the
vast ranges of northeast Asia. Such findings highlight the
advantages of using novel analytical tools, such as ZooMS,
to study non-diagnostic bone assemblages.

Our work highlights the need for the broader application
of ZooMS and other biomolecular approaches in East Asia.
As ZooMS is applied to new regions, further developmental
work is necessary. The current ZooMS reference library con-
tains mostly, if not exclusively, North Eurasian taxa which
limits meaningful identification and comparison of results.
Given the high success rates, we report here, enlarging the
reference library with extinct and extant East Asian taxa
and the broader application of collagen fingerprinting to
more archaeological assemblages promise exciting results
for the future.
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