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Hydrocarbons (HCs) fulfil indispensable functions in insects, protecting
against desiccation and serving chemical communication. However, the link
between composition and function, and the selection pressures shaping HC
profiles remain poorly understood. Beewolf digger wasps (Hymenoptera:
Crabronidae) use an antennal gland secretion rich in linear unsaturated HCs
to form a hydrophobic barrier around their defensive bacterial symbiont, pro-
tecting it from brood cell fumigation by toxic egg-produced nitric oxide (NO).
Virtually identical HC compositions mediate desiccation protection and prey
preservation from moulding in underground beewolf brood cells. It is
unknown whether this composition presents an optimized adaptation to all
functions, or a compromise due to conflicting selection pressures. Here, we
reconstitute the NO barrier with single and binary combinations of synthetic
linear saturated and unsaturated HCs, corresponding to HCs found in bee-
wolves. The results show that pure alkanes as well as 3 : 1 mixtures of
alkanes and alkenes resembling the composition of beewolf HCs form efficient
protective barriers against NO, indicating that protection can be achieved by
different mixtures of HCs. Since in vitro assays with symbiont cultures from
different beewolf hosts indicate widespread NO sensitivity, HC-mediated pro-
tection fromNO is likely important across Philanthini wasps.We conclude that
HC-mediated protection of the symbiont from NO does not exert a conflicting
selection pressure on the multifunctional HC profile of beewolves.
1. Introduction
Cuticular hydrocarbons (CHCs) protect insects from desiccation, and have often
evolved secondary functions, e.g. intra- and interspecific communication in social
and solitary insects [1–3]. Constituents of insect CHC profiles include n-alkanes,
methyl-branched alkanes, alkenes and alkadienes of different chain lengths [2],
forming complex compositions with up to more than 100 different components
[1]. The chemical composition influences the function of the profile [3]. Oneprofile
frequently fulfills multiple functions, e.g. cuticle lubrication [4], prey protection
from pathogens [5,6] and enhancing tarsal adhesion [7], posing potentially
conflicting requirements on the CHC composition [3]. However, due to its com-
plexity, it remains poorly understood how composition influences function,
and how natural selection shapes composition considering the functional
constraints [3].

An intriguing multifunctional hydrocarbon (HC) profile has recently been
reported for a group of solitary digger wasps [6,8]. These beewolves (Hymenop-
tera: Crabronidae, Philanthus triangulum) construct brood cells in sandy soil and
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Figure 1. Nitric oxide (NO) sensitivity of ‘S. philanthi’ biovariations and free-living Streptomyces at different NO concentrations. Symbionts ( purple) were more
sensitive to NO than free-living Streptomyces (off-white) (ANOVA, χ2 = 103.5, d.f. = 2, p < 2.2 × 10−16), and growth inhibition increased with NO concentration
(ANOVA, χ2 = 200.3, d.f. = 2, p < 2.2 × 10−16). In addition, the strains varied in their NO sensitivity (ANOVA, χ2 = 155.4, d.f. = 40, p = 1.618 × 10−15). The sizes
of the circles indicate the number of replicates in the different growth categories. See electronic supplementary material, table S2 for strain designations.
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mass-provision their offspring with paralysed honeybee
workers (Apis mellifera) [9–11]. Females embalm the bees in an
alkene-rich HC secretion from their postpharyngeal gland
(PPG), which preventswater condensation and thereby reduces
fungal infestation [5,6,12]. Two further adaptations to protect
the offspring have evolved in beewolves: first, females secrete
defensive ‘Streptomyces philanthi’ symbionts from specialized
antennal gland reservoirs into the brood cell [13,14]. After inte-
gration into the larval cocoon [13], symbiont-produced
antibiotics provide efficient long-termprotection against oppor-
tunistic microbes [13,15]. Second, the beewolf egg sanitizes the
brood cellwith toxic nitric oxide (NO) [16], preventingpathogen
growthwithout harming the symbionts present in the brood cell
during NO fumigation [8]. Recently, the HCs in the antennal
gland secretion (AGS) [17] were found to form a hydrophobic
barrier against NO around ‘S. philanthi’ [8].

The nearly identical HC profiles of the cuticle, the PPG
and the AGS of P. triangulum are characterized by an approxi-
mately 3 : 1 alkene–alkane ratio, with compounds ranging
from C21 to C31 in chain length [17–20]. Tricosane (C23)
represents the most abundant alkane [17–20], and either
pentacosene (C25 : 1) or heptacosene (C27 : 1) constitute the
most abundant alkene [17,19,20]. Together with tricosane,
C25 : 1 or C27 : 1 account for 51–92% of HCs [17–20]. Thus,
desiccation protection, prey preservation and symbiont pro-
tection are realized by virtually the same profile (electronic
supplementary material, table S1, figure S1) [17–20]. How-
ever, it remains unclear whether the alkene-rich HC profile
presents an adaptation to all three functions, or a compromise
arising from conflicting selection pressures. Here we tested
single and binary mixtures of synthetic linear saturated and
unsaturated HCs, corresponding to those found in beewolves,
for their effectiveness in blocking NO. We demonstrate that a
range of individual HCs, and mixtures of alkenes and alkanes
resembling beewolf HC extracts, are effective NO barriers in
vitro. Additionally, we show that symbiont strains from mul-
tiple different host species are susceptible to NO in vitro in
the absence of HCs, and that CHC profiles across different
beewolf species have similar compositions, indicating a wide-
spread HC-based protection of defensive symbionts across
Philanthini. While our findings support the important function
of HCs in the AGS, we argue that AGS-mediated symbiont
protection does not exert a conflicting selection pressure on
the multifunctional HC profile and thus does not constrain
its composition.
2. Results and discussion
We assessed NO sensitivity of five ‘S. philanthi’ biovariations
from all host genera [21] and six free-living Streptomyces
species (electronic supplementary material, table S2) to five
NO concentrations. Survivalwas assessed as a trinary response
(no growth, growing slower than control (without NO), grow-
ing as quickly as control). Most of the symbiont strains were
already affected by low NO concentrations, with growth com-
pletely ceasing at 1% NO. By contrast, most free-living strains
were unaffected at concentrations below 1% and still grew at
1%NO. In the statistical analysis, our final model retained ‘bac-
terial category/strain’ and ‘NO concentration’ as independent
variables (electronic supplementary material, methods). Sym-
bionts were significantly more sensitive to NO than free-
living Streptomyces (ANOVA factor ‘bacterial category’, χ2 =
103.5, d.f. = 2, p < 2.2 × 10−16, figure 1), and strains varied in
their NO sensitivity (ANOVA factor ‘bacterial category/
strain’, χ2 = 155.4, d.f. = 40, p = 1.618 × 10−15). Expectedly, the
impact ofNO on bacterial growth increasedwith concentration
(ANOVA factor ‘NO concentration’, χ2 = 200.3, d.f. = 2, p <
2.2 × 10−16). Given the symbionts’ sensitivity towards NO, we
hypothesize that other beewolf hosts beyond P. triangulum
may use their HCs in the AGS to protect their symbionts
from NO fumigation.

To examine the link between HC composition and NO
barrier function, we tested synthetic binary alkene–alkane
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Figure 2. Reconstitution of the nitric oxide (NO) barrier effect with single and binary combinations of synthetic hydrocarbons (HCs). A total of 100 µg of HCs was
applied for all treatments. Effectivity of HCs in blocking NO was measured as the change in coloration in an NO indicator solution, with higher OD540 values indi-
cating stronger oxidation and thus less protection against NO by the HC layer (see representative images on the top; for all images see electronic supplementary
material, figure S4). Beewolf CHC extracts served as positive, and hexane as negative control. All HCs and the alkene–alkane ratio of binary combinations are found in
P. triangulum AGS and HC extracts (electronic supplementary material, table S1, figure S1). Letters indicate significant differences (Tukey’s HSD, n = 8, p < 0.05).
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(3 : 1) mixtures mimicking the AGS composition of P. triangu-
lum, and their individual constituents for their ability to
protect an NO indicator solution against oxidation. CHC
extracts of P. triangulum (56–349 µg CHCs, x̅ = 161.0 µg)
served as positive controls. Their alkene–alkane ratio diverged
slightly from previous reports (electronic supplementary
material, table S1, figure S1). Expectedly, beewolf extracts pro-
tected the indicator solution from oxidation. The degree of
protection was not correlated with CHC amounts (Spearman’s
rank correlation, n = 19, rho =−0.335, S = 1522, p = 0.161; elec-
tronic supplementary material, figure S2), as they probably
fell into the maximal range of protection. The combination of
(Z)-9-pentacosene (C25 : 1) and heptacosane (C27)was as effec-
tive as the extracts (Tukey’sHSD, n = 8, p < 0.05, figure 2), while
C27, C23, and C25 : 1 + C23 (Tukey’s HSD, n = 8, p < 0.05,
figure 2) exhibited attenuated protection. The effect was still
observed after a 10-fold reduction of the applied amounts of
HCs (electronic supplementary material, figure S3). C25 : 1
did not prevent NO from reacting with the indicator solution
(Tukey’s HSD, n = 8, p < 0.05, figure 2).

Our experiments revealed that the hydrophobic NO barrier
can be reconstituted by single and binary HC combinations
and is not specific to certain HCs, implying a general effect.
As previously observed in phase behaviour [22], binary combi-
nations did not behave as predicted from individual HCs:
While ineffective individually, C25 : 1 enhanced the effect of
C27, but not of C23. C25 : 1 did not provide a barrier to NO,
but C23 : 1-covered ‘S. philanthi’ survived an otherwise lethal
NO exposure [8]. This may be explained by the difference in
the HC amount applied in both experiments resulting from
the need to apply the HCwithout a harmful solvent in the pre-
vious study. Interestingly, C25 : 1 + C27 protected better from
NO than C25 : 1 + C23, although the latter more closely
resembles P. triangulum CHC extracts [17].
Assuming a common site of production and/or a shared
pathway for HC biosynthesis for the AGS, PPG, and cuticle,
the HC composition is likely shaped by selection acting simul-
taneously on symbiont protection (AGS), prey preservation
(PPG), and desiccation resistance (cuticle). The more complex
profile of the AGS (as well as the cuticle and the PPG)—as
opposed to a simpler mixture of C25 : 1 and C27—might be
explained by the wider melting range of a more complex com-
position ensuring adequate viscosity or establishing a biphasic
secretion under varying environmental conditions [23].
Furthermore, less abundantHCsmay serve a role in AGS local-
ization by the larva or as nutrients for ‘S. philanthi’ [17,24–26].
Alternatively, unspecific enzymes in the HC biosynthesis may
produce a homologous HC series as a byproduct, without the
minor HCs being selectively favoured [3].

In addition to P. triangulum, NO defence has been
observed for the North American P. gibbosus and P. basilaris
(M Kaltenpoth & T Engl, personal observation), suggesting
a widespread distribution across Philanthini. Therefore, we
assessed new and previously published HC profiles from
available host species to speculate on their potential for sym-
biont protection from NO. CHC extracts of P. histrio were
quantified using gas chromatography–mass spectrometry
(GC-MS) and consisted of 76% alkenes/alkadienes, and
24% alkanes. Tritriacontene (C33 : 1), hentriacontene (C31 : 1)
and hentriacontadiene (C31 : 2) accounted for approximately
67% of CHCs. Heptacosane (C27) and pentacosane (C25)
(approx. 9% each) were the most abundant alkanes (electronic
supplementary material, table S3, figure S5). Chain lengths of
the dominant HCs varied across species (electronic sup-
plementary material, table S3, figure S5). The alkene/
alkadiene–alkane ratio of P. histrio resembled previously
published profiles of Trachypus elongatus (64%/36%; elec-
tronic supplementary material, table S3, figure S5) [27].
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Assuming that alkenes and alkadienes have similar physico-
chemical properties, it is also comparable to previously
published alkene/alkane ratios of P. triangulum (C25
chemotype: 76%/23%; C27 chemotype: 72%/26%) [17] and
P. gibbosus (87%/13%) [28].

Their equally alkene- and alkene/alkadiene-rich HC pro-
files may qualify other beewolves to provide a hydrophobic
NO barrier to protect their symbionts if they fumigate their
brood cells. The reported NO fumigation in P. triangulum,
P. gibbosus and P. basilaris, and the ecology shared among
beewolves renders a widespread NO fumigation across
Philanthini wasps plausible.

Apart from blocking NO, similar HC profiles mediate prey
preservation [5,6,12] and protect P. triangulum from desicca-
tion. Previous studies indicate a selection for alkene-rich
profiles in Philanthinae digger wasps, including beewolves
(Philanthini) and part of the Cercerini, to efficiently preserve
decay-prone Hymenopteran prey (e.g. Apidae and Halictidae)
[29]. By contrast, basal Cercerini providing unembalmed
Coleoptera possess diversifying HC profiles, with often lower
amounts of alkenes [29]. Furthermore, Aphilanthopini are unli-
kely to embalm their ant prey, which is presumably less
susceptible to microbial threats [28]. Thus, prey preservation
likely evolved independently in the derived Hymenoptera–
hunting Cercerini and in the ancestor of the Philanthini, the
latter probably coinciding with the acquisition of defensive
symbionts about 68 mya [30]. Although additional evidence
is needed, we speculate that the evolutionary origin of NO
fumigation and the HC-mediated protection of the symbionts
may have coincided with the origins of symbiosis and prey
embalming (electronic supplementary material, figure S6).

Prey preservation likely selects for high proportions of
alkenes [29], and our experiments indicate their suitability
for NO protection. For desiccation protection, the large quali-
tative variety of CHC in insects [3] suggests that this function
can be realized by very different compositions, provided they
form a biphasic layer [23]. Thus, HC-mediated protection of
the symbionts does not appear to impose a conflicting selec-
tion pressure on the composition of the beewolf AGS that
could otherwise compromise the efficiency of the same HC
profile for desiccation resistance and prey preservation.
3. Methods
(a) Bacterial cultivation
Bacterial strains were cultured in a 1 : 1 mixture of Sf-900 II SFM
medium (Gibco, Thermo Fisher Scientific, Germany) and Grace’s
insect medium (electronic supplementary material, methods;
Sigma-Aldrich, Germany) at 30°C in 24-well plates.
(b) Comparative cultivation assay
We assessed the NO sensitivity of five symbiont strains represent-
ing all three host genera and different geographic origins [21],
and six free-living Streptomyces strains obtained from DSMZ
(Braunschweig, Germany). After NO exposure (electronic sup-
plementary material, methods), we analysed the trinary growth
observation (no growth, growth observed later than in the control,
growth observed at the same time as in the control; n = 2–4) using
amultinominal regressionmodel. Growthwas examined as a func-
tion of NO concentration and bacterial category (symbiont versus
free-living Streptomyces), with ‘strain’ as a nested factor within bac-
terial category. Starting from the full factorial model, we used a
step-wise reduction of model complexity to select the best-fitting
model. Statistical analyses were performed in R i386 4.1.2 using
the ‘nnet’ [31] and ‘car’ [32] packages.

(c) Extraction and quantification of beewolf cuticular
hydrocarbons

P. triangulum females collected in Berlin, Germany, were reared
in observation cages [33]. We assessed CHC extracts from 19
females regarding their efficacy as an NO barrier. The females’
antennae were removed. One female per extract was submerged
in 1 ml hexane. After a 10 min extraction under stirring at RT, the
female was removed, and hexane was evaporated under argon
flow. CHCs were re-dissolved in 100 µl hexane. A 95 µl aliquot
of each extract was evaporated under argon flow and stored at
−20°C. The remaining 5 µl were used for GC-MS (electronic sup-
plementary material, methods). We characterized the CHC
composition of P. histrio using a single female from a collection
near Knysna, Western Cape Province, South Africa, in 2005.
After removing the head, the thorax and abdomen were
extracted for 30 min in hexane. The extract was subjected to
GC-MS (electronic supplementary material, methods).

(d) Cuticular hydrocarbon experiments
We purchased HCs from Sigma Aldrich, Germany, and Cayman
Chemical, Michigan, USA. C25 : 1 was combined with C23 or
C27 in a 3 : 1 ratio to mimic the alkene–alkane ratio found in bee-
wolves. We transferred 10 µl of hexane containing 100 µg, 50 µg
or 10 µg of each treatment (N = 7–8 each), on top of 40 µl NO
indicator solution (electronic supplementary material, methods)
in tubes (diameter = 3 mm; Biozym, Germany), respectively. As
a positive control, we transferred each beewolf CHC extract in
the same way. Indicator solutions treated with 10 µl hexane
served as negative controls (N = 8). The applied HCs form a dis-
tinct layer on top of the indicator solution due to their
hydrophobicity. After NO exposure (electronic supplementary
material, methods), the content of the tubes was centrifuged in
0.5 ml tubes at maximum speed for 30 s. We measured the
OD540 of 20 µl of the supernatant in a 384 well plate (VarioSkan
Lux, Thermo Scientific, Germany). We performed OD540 com-
parisons across all 100 µg treatments and both controls, and
within treatments, using a one-way ANOVA. The correlation
between the amount of beewolf CHCs and the OD540 was ana-
lysed using Spearman’s rank correlation. Statistical analyses
were conducted in R (V4.15).
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