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Abstract
Robust carbon monitoring systems are needed for land managers to assess and mitigate the
changing effects of ecosystem stress on western United States forests, where most aboveground
carbon is stored in mountainous areas. Atmospheric carbon uptake via gross primary productivity
(GPP) is an important indicator of ecosystem function and is particularly relevant to carbon
monitoring systems. However, limited ground-based observations in remote areas with complex
topography represent a significant challenge for tracking regional-scale GPP. Satellite observations
can help bridge these monitoring gaps, but the accuracy of remote sensing methods for inferring
GPP is still limited in montane evergreen needleleaf biomes, where (a) photosynthetic activity is
largely decoupled from canopy structure and chlorophyll content, and (b) strong heterogeneity in
phenology and atmospheric conditions is difficult to resolve in space and time. Using monthly
solar-induced chlorophyll fluorescence (SIF) sampled at∼4 km from the TROPOspheric
Monitoring Instrument (TROPOMI), we show that high-resolution satellite-observed SIF followed
ecological expectations of seasonal and elevational patterns of GPP across a 3000 m elevation
gradient in the Sierra Nevada mountains of California. After accounting for the effects of high
reflected radiance in TROPOMI SIF due to snow cover, the seasonal and elevational patterns of SIF
were well correlated with GPP estimates from a machine-learning model (FLUXCOM) and a land
surface model (CLM5.0-SP), outperforming other spectral vegetation indices. Differences in the
seasonality of TROPOMI SIF and GPP estimates were likely attributed to misrepresentation of
moisture limitation and winter photosynthetic activity in FLUXCOM and CLM5.0 respectively, as
indicated by discrepancies with GPP derived from eddy covariance observations in the southern
Sierra Nevada. These results suggest that satellite-observed SIF can serve as a useful diagnostic and
constraint to improve upon estimates of GPP toward multiscale carbon monitoring systems in
montane, evergreen conifer biomes at regional scales.
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1. Introduction

Temperate forests play a critical role in the terrestrial
carbon cycle, accounting for 25% of the world’s fores-
ted area and 37% of the global carbon uptake (Adams
et al 2019). In the coming decades, warming and
drying trends are expected to continue in temper-
ate regions, including the western United States (US)
(IPCC 2023), suggesting dramatic changes to veget-
ation water and nutrient cycling over relatively short
ecological timescales. Yet, the implications for forest
carbon reserves are still unclear, particularly within
heterogeneous montane environments (Rotach et al
2014), which hold the majority of aboveground bio-
mass in the western US (Schimel et al 2002, Schimel
and Braswell 2005). Higher mean temperatures and
atmospheric CO2 concentrations generally enhance
gross carbon uptake. However, increased water lim-
itations may negate these effects (e.g. Angert et al
2005) while increasing the susceptibility of forests
to drought-induced disturbance. This is particu-
larly relevant in the western US mountains, where
a 25% decline in total snowpack is expected by
2050, presaging a possible ‘low-to-no-snow’ future,
which would involve critical changes to vegetation
water use and physiological demands along topo-
graphic gradients (Siirila-Woodburn et al 2021). The
impact on carbon cyclemodeling, forestmanagement
and development along the wildland urban interface
would be highly consequential, given the increasing
interactions between drought, insect outbreaks and
wildfires in the western US (Clark et al 2016, Fettig
et al 2021).

Monitoring the forest carbon cycle is essential
to understand the functional changes that accom-
pany increasing water stress and shifting disturb-
ance regimes. Gross primary productivity (GPP;
gross photosynthetic carbon uptake by plants) rep-
resents a key monitoring indicator of ecosystem
health and function. Eddy covariance (EC) towers,
which measure land–atmosphere carbon exchange,
are currently the most effective method for estim-
ating GPP at the canopy scale (Baldocchi 2008),
representing an average fetch of several hundred
meters (Chu et al 2021). However, resource limit-
ations have led to the spatial underrepresentation
of flux measurement sites in the remote, temporally
variable and heterogeneous terrain of many western
US forests. Considering this and other challenges of
the EC technique in complex topography, ground-
based measurements alone do not constitute a suf-
ficient regional monitoring strategy in the western
US.

Satellite observations can provide more complete
information at the landscape scale, particularly when
used in concert with ground-based tower measure-
ments. In remote sensing, GPP is often quantified

using the light use efficiency (LUE) model (Monteith
1972):

GPP= APAR ∗ LUE (1)

where the photosynthetically active radiation
absorbed by the plant leaf (APAR) may be estim-
ated using ratios of surface reflectance, and the
LUE of carbon assimilation is inferred empiric-
ally based on plant functional type. Traditional
reflectance-based methods, such as the Normalized
Difference Vegetation Index (NDVI) and the
Enhanced Vegetation Index (EVI), rely on the linkage
of APAR to chlorophyll content and forest canopy
structure (seasonality of green leaf area) to infer GPP.
However, over 90% of the forests in the western US
are predominantly evergreen needleleaf forest (ENF)
(Oswalt et al 2019), for which the chlorophyll con-
tent and canopy structure are seasonally invariant,
rendering these models ineffective for observing tem-
poral changes in GPP over these regions (Magney
et al 2019, Pierrat et al in review).

An alternative observation method exploits a
mechanistic linkage between photochemical yield
and the emission of chlorophyll fluorescence,
as detected by spaceborne spectrometers (‘solar-
induced fluorescence’ (SIF)):

GPP= SIF ∗ LUE

Φ F × fesc
(2)

where Φ F is the effective fluorescence yield, and f esc
is the escape ratio of SIF from the canopy (Guanter
et al 2014, Zeng et al 2019). A strong empirical rela-
tionship between SIF and GPP in ENF ecosystems has
been documented from tower (Magney et al 2019) to
regional scales (Frankenberg et al 2011, Walther et al
2016, Sun et al 2017, Zuromski et al 2018), where
recent advances in satellite remote sensing have given
way to high-resolution SIF datasets (Köhler et al 2018,
Sun et al 2018). At scales of a few kilometers, satel-
lite SIF has been shown to be insensitive to spatial
variations in surface reflectance over complex surface
geometries (Cheng et al 2022a), indicating a prom-
ising utility of SIF to explore spatial, seasonal and
interannual patterns of photosynthesis in heterogen-
eous mountain terrain.

Despite strong evidence for SIF as an effective
proxy for GPP, questions remain about the nature
of the SIF–GPP relationship within complex terrain.
Recent studies of ENF biomes have highlighted the
nonuniformity of SIF–GPP scaling across seasons
(Pierrat et al 2022, Yang et al 2022) and elevation-
dependent land cover (Cheng et al 2022b). There is
considerable debate surrounding the utility of SIF
observations to detect changes in GPP due to sea-
sonal or interannual drought (Sun et al 2015, Helm
et al 2020, Marrs et al 2020, Butterfield et al 2023).
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Figure 1. Expected ecological limitations to photosynthesis
over elevational and seasonal gradients in the Sierra
Nevada. The expectation is that the maximum
photosynthetic uptake will coincide with the ideal
environmental conditions in green. Patterns are informed
by climate model datasets (see section 2.2) and
satellite-estimated LAI and forest cover, as well as past
studies of vegetation distribution (Potter 1998, Goulden
et al 2012), plant water use (Trujillo et al 2012, Kelly and
Goulden 2016, O’Geen et al 2018, Rungee et al 2019) and
in situ EC fluxes (Goulden et al 2012, Kelly and Goulden
2016). Note that at low to mid-elevations, winter ‘light
limitation’ is coupled with a seasonally low density of
deciduous understory vegetation.

For large mountain regions that span multiple cli-
mate zones and biome types, these uncertainties have
yet to be investigated for their impact on regional
estimates. However, understanding the limitations
imposed by mountain topography on SIF–GPP rela-
tionships could better inform the scale at which
biogeochemical stress indicators and disturbance pre-
cursors can be detected by satellites.

California’s Sierra Nevada mountain range (‘the
Sierra Nevada’) is an ideal domain to explore these
questions, where conifer forests spanning over
3000 m in elevation have long been the focus of
hydrological, biogeochemical and disturbance stud-
ies. Here, a mosaic of grass, shrub and low-density
woodlands at low elevations gives way to dense,
closed-canopymixed conifer stands atmid-elevations
(high leaf area index (LAI)), with reduced dens-
ity near the high-elevation timberline (lower LAI)
(Potter 1998, Goulden et al 2012). Sierra Nevada
ecosystems exhibit summer water limitation below
approximately 2000 m elevation and winter energy
limitation above this elevation threshold (Trujillo
et al 2012), with year-round photosynthesis occur-
ring around the 2000 m elevation threshold, sup-
ported by deep-rooting regolith access (Kelly and
Goulden 2016, O’Geen et al 2018, Rungee et al 2019).
The timing of peak GPP in the Sierra Nevada has
been shown to follow these patterns, ranging from
spring at low elevations to mid-summer at high
elevations (Goulden et al 2012, Kelly and Goulden
2016). Figure 1 synthesizes findings from past studies,

summarizing the ecological expectations of GPP
across seasonal and elevational gradients in the Sierra
Nevada, as shaped by climatological and structural
controls.

In this study, we evaluate the utility of high-
resolution satellite-observed SIF in detecting GPP
across the seasonal and elevational gradients of the
Sierra Nevada. We seek to assess SIF against the eco-
logical expectations of photosynthesis by comparing
SIF with GPP from EC flux towers, a gridded model-
data product (FLUXCOM) and a land surface model
(CLM5.0). We discuss the limitations of SIF and GPP
estimates while highlighting the advantages of SIF
over other vegetation indices, presenting opportun-
ities for the use of SIF in the carbon monitoring of
montane ENFs.

2. Data andmethods

A summary of the datasets and processing methods
used in this study is presented in table 1. Additional
information concerning the datasets and their ana-
lysis is presented as follows.

2.1. Sierra Nevada study domain and land cover
Our study domain encompassed 28 700 km2 of
ENF within California’s Central and Southern
Sierra Nevada, covering an altitudinal gradient ran-
ging from 300 to 3400 m above sea level (NOAA
ETOPO1 elevation model shown in figure 2(a)).
The climate is montane Mediterranean; most annual
precipitation falls during winter when rain–snow
transitions are around 2000–2500 m in elevation
(Shulgina et al 2023). The European Space Agency’s
(ESA) Climate Change Initiative land cover dataset
(Hollman et al 2013) was used to define the ENF
domain boundaries; areas of other prevailing land
cover types were omitted from this analysis (see
table 1).

2.2. Gridded SIF, GPP, modeled climate and
vegetation indices
Individual SIF retrievals from TROPOMI (the single
payload of the ESA Sentinel-5 Precursor satellite)
soundings were gridded to a monthly time resolu-
tion and 0.04◦ spatial resolution, which oversampled
the native 7 × 5 km resolution. Instantaneous SIF
values at 740 nm were scaled to daily mean values
(often denoted as SIFdc but herein denoted as SIF
for simplicity), as described by Köhler et al (2018).
The SIF data were further corrected to account for
the effects of surface geometry on solar incidence
angle (Cheng et al 2022a), which are minimal on
average (3% mean difference over domain) but can
reach up to 92% for some grid cells in the winter
months. To minimize noise from high reflected radi-
ance over snowy surfaces, we used MODIS monthly
snow cover (MOD10CM) to filter out pixels with high
snow cover. The spatial pattern of the mean annual
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Figure 2. Gridded time-averaged datasets over the Sierra Nevada domain, filtered for evergreen forest mask. (a) elevation, (b)
mean annual TROPOMI SIF, (c) mean annual FLUXCOM GPP, (d) mean annual GRIDMET temperature, (e) mean annual
TerraClimate CWD (i.e. potential minus actual evapotranspiration) and (f) peak season (July) MODIS LAI. Flux tower sites are
represented as black triangles and labeled by elevation in panel (a). Panels (b), (c) and (f) are filtered for 2018–2020 when the
availability of TROPOMI SIF, FLUXCOM GPP and MODIS LAI overlap.

SIF over the region is shown in figure 2(b). To match
the grid resolution of TROPOMI SIF, all other grid-
ded data in this study were re-gridded to 0.04◦ resolu-
tion via bilinear interpolation, resulting in a negligible
impact on seasonal and elevation patterns across the
domain.

We used monthly gridded estimates of GPP from
the FLUXCOM-RS ensemble remote-sensing carbon
flux product (‘FLUXCOM’; Jung et al 2020), dis-
tributed natively at 1/12◦ (∼0.0833◦) resolution.
FLUXCOM is the median of 18 ensemble members,
where nine machine-learning methods were used to
predict two flux-partitioning variants for GPP. The
models were trained using 8-daily MODIS vegetation
and moisture reflectance indices along with land sur-
face temperature and radiation as input, as well as
data from >200 FLUXNET EC towers (Tramontana
et al 2016, Pastorello et al 2020), excluding the Sierra
Nevada sites used in this study.

Daily mean temperature and CWD (defined as
reference evapotranspiration minus actual evapo-
transpiration) were estimated using the GRIDMET
and TerraClimate models (Abatzoglou 2013,
Abatzoglou et al 2018) to serve as additional dia-
gnostics for the temperature andmoisture limitations
of GPP.

We compared the patterns of SIF and GPP to
those of five spectral reflectance-based vegetation
indices (NDVI, kNDVI, EVI, EVI2 and near-infrared
reflectance of vegetation (NIRv)) from the MODIS
satellite instrument. Details of these comparisons and
the datasets used are summarized in appendix A.

2.3. EC flux tower data
EC measurements of net ecosystem exchange (NEE)
were taken along with meteorological data from four
flux towers along an elevational gradient in the south-
ern Sierra Nevada. These include the AmeriFlux sites

6
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US-CZ2 (1160 m), US-CZ3 (2015 m) and US-CZ4
(2700 m), and the National Ecological Observatory
Network’s (NEON) TEAK site (2147 m) (table 1 and
figure 2(a)).

NEE data were filtered to remove calm periods
and then gap-filled using the REddyProc package ver-
sion 1.3.2 in R (Wutzler et al 2018). Ecosystem res-
piration (Reco) was estimated by fitting a temperat-
ure sensitivity function from the gap-filled nighttime
NEE (Reichstein et al 2005) following procedures
described by Wutzler et al (2018). The half-hourly
estimated Reco was subtracted from NEE to obtain
GPP and aggregated to monthly timescales to match
the timing of TROPOMI. Mismatch between spatial
scales of the EC observations (footprint<1 km2) and
gridded data (∼16 km2 pixels) is an inherent limit-
ation in heterogeneous terrains (see section 4.3). We
specifically accounted for the effects of a localized dis-
turbance event within the 1160 m EC tower foot-
print by filtering the site’s data for time periods when
the canopy structure (indicated by MODIS NIRv)
was aligned between the flux tower footprint and
TROPOMI grid cell footprint scales. A full descrip-
tion of this methodology is presented in appendix B.

2.4. Land surface model
The Community LandModel 5.0 (CLM5.0; Lawrence
et al 2019) was used to simulate GPP to serve as
both a validation and diagnostic tool for TROPOMI
SIF. Simulations were run using two different mod-
ules of CLM5.0, one with a prognostic vegetation
state and active biogeochemistry (CLM5.0-BGC),
and the other with satellite-prescribed phenology
from MODIS LAI data (CLM5.0-SP). In this study,
regional simulations were forced by GRIDMET met-
eorology following Raczka et al (2021) and centered
on the Sierra Nevada domain along with site-level
simulations at the four flux tower locations described
in section 2.3. The model setup is summarized in
table 1; configuration and diagnostic analyses are
detailed in appendix C.

2.5. Statistical methods
To compare seasonal trends between datasets, we
computed the mean seasonal cycle of monthly SIF
and GPP as the average across all years specific to
each dataset (see table 1). Flux tower GPP was com-
pared against CLM5.0 point simulations as well as
gridded TROPOMI SIF and FLUXCOM GPP extrac-
ted over the flux tower locations. GPP estimates were
averaged monthly to match the monthly SIF obser-
vations. We computed the difference in the timing of
the peak EC GPP with that of the peak TROPOMI
SIF (tEC_peak − tSIF_peak) and FLUXCOM and CLM5.0
GPP (tEC_peak − tGPP_peak), including both CLM-BGC
and -SP model configurations. A positive (negative)
difference indicates that the EC peak occurred later
(earlier) than the comparison dataset.

To assess the synchronicity of the seasonal pat-
terns in SIF and GPP, we performed cross-correlation
analyses to obtain the time-lag shift (in months)
of the maximum correlation between cycles at each
flux tower site (denoted as tEC_cycle − tSIF_cycle for
TROPOMI and tEC_cycle − tGPP_cycle for FLUXCOM
and CLM5.0). SIF was compared with EC GPP by
expressing both quantities as fractions relative to
their respective maxima across sites. The coefficient
of determination (R2) was computed for each cycle
comparison after applying the time lag.

Seasonal and elevational trends were determined
by aggregatingmonthly average gridded SIF, GPP and
climatology datasets into 100 m elevation bins from
the elevation model to represent the average gridded
value for that elevation band. We also computed the
domain-aggregated relative distribution across eleva-
tion or season by averaging all gridded SIF and GPPs
in elevation (or time), calculating the rolling average
using a 100 m (or 2 week) window and dividing by
the maximum window-mean value.

3. Results

3.1. Seasonal and elevational patterns of gridded
SIF and GPP
The annual mean distributions of TROPOMI SIF and
FLUXCOMGPP (figures 2(b) and (c)) followed sim-
ilar spatial patterns throughout the Sierra Nevada,
both resembling the spatial pattern of MODIS LAI
(figure 2(f)). The majority of SIF and GPP activity
was located in the northern third of the domain (38◦–
39◦ N, figures 2(b) and (c)), where elevations are
mostly below 2000 m and LAI is high.

Seasonal and elevational trends of SIF and GPP
are shown in figures 3(a)–(d), and trends of temper-
ature and CWD are shown in figures 3(e) and (f).
The peak TROPOMI SIF occurred in June at mid-
elevations (1000–1500 m), with a smaller April peak
at low elevations influenced by the spring growth of
herbs, grasses and deciduous shrubs. SIF consistently
decreased with elevation above these peak zones and
decreased from early summer to fall andwinter across
all elevations. Tracing the elevation and timing of the
90th percentile range of SIF to theGRIDMET temper-
ature (figure 3(e)) gave a corresponding daily mean
range of 18 ◦C–19 ◦C for the June peak.

Elevational trends of FLUXCOM GPP resembled
those of TROPOMI SIF, with a maximum around
1300–1500 m; however, FLUXCOM GPP peaked
slightly later than SIF (June–July) and remained
high throughout the summer (figure 3(b)). The
GRIDMET temperature corresponding to the 90th
percentile of FLUXCOM GPP ranged from 17 ◦C to
24 ◦C, which is considerably warmer than the cor-
responding temperature range for TROPOMI SIF’s
90th percentile. Below 750 m, seasonal GPP was
reduced after May (similar to TROPOMI); however,
FLUXCOM GPP showed more sustained patterns
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Figure 3. Patterns of gridded datasets and model output over elevation and mean seasonality for (a) TROPOMI SIF, (b)
FLUXCOM GPP, (c) simulated CLM5.0-SP GPP, (d) simulated CLM5.0-BGC GPP, (e) GRIDMET model mean temperature and
(f) TerraClimate modeled CWD (reference ET—actual ET).

throughout the summer than SIF, extending signific-
ant GPP through September at mid-elevations.

CLM5.0-SP simulations also exhibited seasonal
and elevational GPP patterns similar to those of
FLUXCOMandTROPOMI SIF (figure 3(c)), whereas
CLM5.0-BGC simulations differed significantly in
magnitude and elevational patterns (figure 3(d)).
The CLM5.0-SP peak GPP was lower in magnitude
than FLUXCOM GPP, occurring earlier (April–May)
but at a similar elevation range (1200–1700 m).
CLM5.0-BGC showed a strong, early seasonal GPP
peak around March–May at a high elevation band
around 1500–2000m, concomitantwith strong, high-
elevation patterns in themodel LAI (see appendix C).
The corresponding mean GRIDMET temperature at

the 90th percentile model GPP ranged from 7 ◦C to
14 ◦C for CLM5.0-SP and from 4 ◦C to 12 ◦C for
CLM5.0-BGC. For both BGC and SP simulations, the
peak GPP was slightly delayed with increasing elev-
ation. This was followed by an extensive dormant
period from July throughNovember, concurrent with
seasonally low soil moisture (appendix C).

3.2. SIF and GPP averaged across time and
elevation
Averaging gridded datasets across time allowed us
to explore the general relationship between SIF and
GPPproducts and elevationwithin the SierraNevada.
TROPOMI SIF and FLUXCOM GPP exhibited sim-
ilar elevational distributions, with most SIF and GPP

8
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Figure 4. (a) Elevational patterns of annual mean TROPOMI SIF (red), FLUXCOM GPP (yellow), simulated GPP from
CLM5.0-BGC (light green), CLM5.0-SP (dark green) and MODIS LAI (navy), separated by elevation bin and expressed as a
percentage of the maximum signal over a 100 m moving elevation window. (b) Mean seasonal cycle of spatially aggregated
TROPOMI SIF, FLUXCOM GPP, simulated GPP from CLM5.0-BGC, CLM5.0-SP and MODIS LAI (same color scheme as panel
(a)), over the full Sierra Nevada domain extent, expressed as a percentage of the maximum signal over a 2 week moving time
window.

(above a relative distribution threshold of 80%) dis-
tributed between 700 and 1700 m (figure 4(a)). This
80% relative distribution threshold occurred slightly
higher forMODIS LAI andCLM5.0-SPGPP, between
800 and 2200 m and 900 and 2400 m elevations,
respectively. CLM5.0-BGC GPP was allocated sub-
stantially higher in elevation (>80% relative distri-
bution between 1700 and 2700 m), reflecting the
impact of prognostic LAI (CLM5.0-BGC) vs. satellite-
prescribed LAI (CLM5.0-SP) upon simulated GPP
(see appendix C).

Averaged across space, we observed key
differences in the seasonality of the datasets
(figure 4(b)). Both CLM simulations exhibited a
spring increase from January to mid-April, approx-
imately 1.5 months earlier than TROPOMI SIF
and FLUXCOM GPP, which increased in near syn-
chrony from mid-February to June. CLM5.0-SP
and CLM5.0-BGC GPP declined in response to
moisture limitation from May and June, respect-
ively, until both reached seasonal minimums in
September and increased again in fall to winter.
The domain-averaged TROPOMI SIF peaked sharply
in June and then decreased steadily to a seasonal
minimum in December. FLUXCOM timing was
closely tied to MODIS vegetation indices (figure
A2) and diverged from the patterns of SIF and
CLM GPP. Both FLUXCOM GPP and LAI were sus-
tained above 75% of the maximum through October
and declined toward seasonal minimums in winter,
depicting a nearly 2.5 months longer growing sea-
son in FLUXCOM GPP than in TROPOMI SIF.
Additional MODIS vegetation indices showed little
seasonal variation relative to SIF and GPP estimates
(figure A2).

3.3. Site-level observations vs. SIF and GPP
products
Figure 5 shows the mean seasonal cycle of GPP
from the four EC sites compared with gridded SIF,
FLUXCOM GPP and CLM5.0 point simulations.
Among the models, CLM5.0-SP provided the best
match to the seasonal timing and magnitude of EC
GPP, whereas CLM5.0-BGC consistently overestim-
ated EC GPP. Both CLM model configurations inad-
equately captured winter dormancy at the higher
elevation sites (2147 and 2700m) between November
and March. Both CLM configurations also showed
more dramatic reductions in summer GPP at lower
elevations, resulting from seasonal water limitation.
FLUXCOM better captured winter dormancy at high
elevation sites compared to CLM simulations; how-
ever, it showed a positive bias compared to flux towers
during summer and fall, particularly at lower eleva-
tions. SIF mainly followed the relative patterns of EC
GPP; it did not capture winter dormancy at 2147 and
2700 m, but we assumed this to be caused by reflec-
ted radiance and thus omitted SIF during periods of
snow cover (dashed line). SIF was also low relative to
ECGPP at 2700m because of ‘dilution’ from the non-
vegetated terrain within this pixel.

Time series analyses are summarized in table 2,
showing lags in the timing of peak signals, as well
as the seasonally integrated cross-correlation lags
between full seasonal cycles. TROPOMI SIF was con-
sistently within 1month of ECGPP, considering both
peak timing and full seasonal cross correlation. (Lag
R2 values were low at high elevation sites due to
lower SIF sample size from snow cover filtering in
winter and spring.) Themodeled GPP fromCLM5.0-
SP was also consistently within 1 month of EC GPP.
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Figure 5. Comparison of mean seasonal cycles: TROPOMI
SIF (red), EC GPP (black), modeled GPP from
CLM5.0-BGC (light green), CLM5.0-SP (dark green) and
FLUXCOM GPP (yellow). Comparisons are shown at each
of the four flux tower sites along the Sierra Nevada
elevational transect. SIF is shown in dashed lines, where the
mean MODIS snow cover fraction was over 50%, to denote
periods where SIF was omitted from the analysis due to
noise from high reflected radiance. All seasonal cycles
represent the multi-year average across their respective
available time ranges listed in table 1.

FLUXCOM GPP timing was close to that of EC GPP
at high elevation sites but was up to 2months delayed
from EC GPP at lower elevations. CLM5.0-BGC was
the least synchronous with EC GPP timing, often
2 months offset from ground-based estimates.

4. Discussion

4.1. Patterns of GPP and SIF compared to expected
limitations
The elevational and seasonal trends of TROPOMI
SIF, FLUXCOM GPP and CLM5.0-SP (figures 3(a–
c)) largely align with the ecological expectations
for environmental limitations on GPP described in
figure 1 and in the climate and land cover datasets
used here.

4.1.1. Temperature limitation
The daily mean winter temperature threshold for
strong cold limitation along the Sierra Nevada flux
tower transect is likely somewhere between 2.5 ◦C
(winter-dormant 2700 m site) and 6.3 ◦C (winter-

active 2015 m site) (Goulden et al 2012). This occurs
between 1500 and 2000 m elevation in December–

January according to the GRIDMET modeled tem-
perature across the Sierra Nevada study region

(figure 3(e)). Both CLM5.0-SP and FLUXCOM GPP

suggest a significant transition between 1500 and
2000 m in winter, with negligible GPP above 2000 m
from December to March (figure 3(b)), following

Goulden et al (2012). In contrast, the modeled
GPP from CLM5.0-BGC showed virtually no winter
dormancy, except above 3000 m. Although winter-

time SIF could not be effectively analyzed due to snow
contamination, these results demonstrate consistency
between gridded GPP and the existing literature for

winter patterns in the Sierra Nevada.
During summer, the 90th percentile of gridded

SIF corresponds to the GRIDMET mean air temper-
ature (18 ◦C–19 ◦C) near or within the optimal tem-
perature range reported in global synthesis studies
(∼15 ◦C–20 ◦C per Duffy et al (2021), 18 ◦C–20 ◦C
for ENF per Chen et al (2023), and ∼13 ◦C–17 ◦C
for ENF per Huang et al (2019)). The 90th per-
centile of FLUXCOM GPP corresponds to a much
higher temperature range (17 ◦C–24 ◦C) than in
these studies, suggesting that the peak growing sea-
son in FLUXCOM is biased late into the hot summer.
Conversely, the peak modeled GPP from CLM5.0
occurs at cooler elevations and months (7 ◦C–14 ◦C
for SP and 4 ◦C–12 ◦C for BGC), which we attrib-
ute to a slight early-season bias in CLM5.0-SP and
an early-season high-elevation bias for CLM5.0-BGC
linked to patterns in simulated LAI.

4.1.2. Moisture limitation
TerraClimate-modeled CWD is strongly seasonal and
greatest in late summer (figure 3(f)); however, pat-
terns in CWD are not necessarily consistent with
observations, given that numerous studies (Goulden
et al 2012, Kelly andGoulden 2016, O’Geen et al 2018,
Rungee et al 2019) have observed the capacity of the
mid-elevation Sierra Nevada forests to maintain GPP
and ET throughout the summer. This is because roots
can reach at least 5 m deep (Kelly and Goulden 2016),
allowing consistent access to subsurfacewater storage.

Our findings suggest thatmoisture limitationmay
still have an impact on seasonal GPP in the Sierra
Nevada, depending on the elevation. A distinct late-
season bias in FLUXCOM is apparent compared to
flux tower GPP at low to mid-elevations (figure 5,
table 2) and compared to SIF and modeled GPP
(figure 4(b)), which we suspect is caused by the
underestimation of water stress effects in FLUXCOM.
Conversely, CLM5.0-SP generally matches EC GPP
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timing (figure 5) and is well constrained by mois-
ture limitation, particularly between 1000 and 2000m
(appendix C). The lowest site (1160 m) is an excep-
tion, with higher seasonal EC GPP compared to
CLM5.0-SP, suggesting a balance between seasonal
drought and deep subsurface water access. Although
CLM5.0 represents both rooting depth and subsur-
face hydrology, it does not represent deep roots
(>1 m) that have access to water. SIF, on the other
hand,most closelymatches ECGPP timing at 1160m,
indicating that SIFmay indeed capture seasonalmois-
ture limitation.

4.1.3. Vegetation density limitation
Above themid-elevation range (∼1500m), we expect
vegetation density to be a major limitation to GPP
during peak growing season, noting a relatively con-
sistent LAI gradient of −1.1 (−38%) per kilometer
in elevation. The elevational gradients of TROPOMI
SIF, FLUXCOM GPP and CLM5.0-SP scale propor-
tionally to LAI in July at−40%,−33% and−43% per
kilometer, respectively. The model-simulated LAI in
CLM5.0-BGC caused unrealistically high GPP at high
elevations, diverging substantially from the expected
vegetation density-driven elevational patterns. Unlike
the other models, CLM5.0-BGC was not calibrated
with LAI observations for the Sierra Nevada moun-
tain range. Thus, we did not expect CLM-BGC to per-
form as well. Flux tower GPP has a slightly milder
elevational gradient in July (−28% per kilometer
elevation from 1160 to 2700 m sites), although we
speculate that the 2700mEC site likely exhibits higher
LAI than average for that elevation due to its selection
as a forest EC site. Overall, there is a strong similar-
ity between the elevational gradients of LAI, SIF and
GPP during the peak growing season, aligning with
expectations (figure 1).

4.2. Comparison of mean seasonal cycles
The timing of the spring onset and June–July peak
of TROPOMI SIF and FLUXCOM GPP (figure 4(b))
agree with previous studies of ENF GPP in the Sierra
Nevada (Goldstein et al 2000, Misson et al 2006,
Goulden et al 2012). Our findings of TROPOMI
SIF seasonality are similar to the results of Turner
et al (2020) across California, which showed peak
TROPOMI SIF from ENF between June and July.
FLUXCOMGPP seasonality generally matched other
FLUXCOM studies (Byrne et al 2018 (ENF); Sun
et al 2018), although the FLUXCOMGPP shown here
is comparatively high in fall. The most significant
deviation between TROPOMI SIF and FLUXCOM
occurred after the initial peak in June (figure 4(b)),
when SIF declined sharply and FLUXCOM GPP
remained high throughout the summer and into
the fall, during which we would expect water stress
to limit GPP to some extent (section 4.1). Similar
seasonal deviations between TROPOMI SIF and
FLUXCOM GPP have been documented (e.g. Chen

et al 2021b). We suspect that these deviations reflect
the strong coupling of FLUXCOM GPP to MODIS
vegetation indices (NDVI, EVI, NIRv, etc) dur-
ing summer and early fall (figure A2). However,
TROPOMI SIF captured the expected seasonal down-
regulation of photosynthesis much more effectively
than the other satellite-based vegetation indices. As
a result, the seasonal and elevational patterns of
TROPOMI SIF and FLUXCOM GPP were more
highly correlated than any other gridded GPP com-
parison, including comparisons with NIRv, EVI,
NDVI, etc (see appendix A).

In theory, flux tower observations should serve to
further connect these global gridded datasets to local
patterns ofGPP. Themean seasonalities of TROPOMI
SIF and CLM5.0-SP were both consistently within 1
month of the mean EC GPP seasonality, whereas the
mean seasonality of FLUXCOMGPPwas consistently
delayed from EC GPP. This helps explain the signific-
ant summer–fall deviations between the TROPOMI
and FLUXCOM signals, providing more confidence
that TROPOMI SIF appropriately tracks the timing
of GPP across the Sierra Nevada elevational gradient.

4.3. Limitations and applications to carbon
monitoring systems
Functional carbon monitoring systems across the
western US will need to rely on robust connections
between ground- and satellite-based data over com-
plex terrain. In addition to SIF, other remote-sensing
and ground-based data streams will help further elu-
cidate biophysical (e.g. NDVI and NIRv), biochem-
ical (e.g. photochemical reflectance index (Gamon
et al 1997) and chlorophyll/carotenoid index (Gamon
et al 2016)) and hydrologic (e.g. soil moisture and
snow cover) processes. Nonetheless, there is burgeon-
ing scientific interest in satellite-based SIF for car-
bon monitoring and early stress detection, so far
mostly in agricultural systems (Zhang et al 2019,
2023, Peng et al 2020, Sloat et al 2021, Mohammadi
et al 2022). A growing body of evidence points toward
the linearity of the SIF–GPP relationship at seasonal
canopy scales (Frankenberg et al 2011, Yang et al
2015, Li and Xiao 2019, Magney et al 2020). Future
research is needed to determine how the time series
of SIF over ENF biomes correlate with carbon fluxes
over ecologically meaningful timescales (years to dec-
ades). To this end, several limitations are important to
consider.

4.3.1. SIF and land cover
The relatively low signal-to-noise ratio of satellite-
based SIF will remain a limitation, requiring aver-
aging in space and/or time to increase precision. We
found that snow cover was a large source of noise in
the satellite SIF, introducing a large positive bias into
the SIF signal. Highly reflective and heterogeneous
land cover also has strong effects on signal-to-noise
SIF ratios (Köhler et al 2018, Cheng et al 2022b).
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High-resolution land cover and disturbance data-
sets will be useful to help identify and separate these
influences from overall biome trends, but users must
be aware of the sub-grid scale heterogeneity and
classification uncertainty. One must also consider
the changing seasonal role of environmental drivers
(snow, soil moisture, heat and APAR), which have
been shown to have asymmetric impacts on the SIF–
GPP relationship even at the satellite scale (Chen et al
2021a).

4.3.2. GPP
Model-data estimates of GPP (e.g. FLUXCOM) are
useful for areas without significant EC data cover-
age. However, one must consider the impact of extra-
polation of these estimates to under-sampled hetero-
geneous terrain. It is also important to consider that
analyses of EC GPP in heterogeneous terrain are ulti-
mately influenced by site selection, as well as the aver-
aging period and grid resolution of the comparison
datasets. For example, the EC data at the 1160 m
site were significantly impacted by drought-induced
disturbance from 2013 to the present (Goulden and
Bales 2019, appendix B). However, typical EC foot-
prints are small relative to many satellite data scales
(e.g. <5% of the original TROPOMI sampling area).
Thus, disturbances may be impactful at the EC scale
but negligible at the satellite scale, or vice versa. This
exemplifies the challenges in tower-satellite represent-
ation, which are well described in other vegetation
remote-sensing studies (e.g. Yu and Ma 2015, Lu et al
2018, Schimel and Schneider 2019, Du et al 2023),
particularly those within complex terrain (Desai et al
2011).

4.3.3. Terrestrial biosphere models
Fully prognostic land surface models, such as CLM-
BGC, have well-documented shortcomings in cap-
turing vegetation phenology (e.g. mischaracterized
rooting depth and uncaptured winter dormancy;
Richardson et al 2012, Raczka et al 2016, 2019),
which, to some extent, we have addressed here
through the prescription of LAI observations into
CLM5-SP. In general, systematic biases in land sur-
face models due to deficiencies in process represent-
ation cannot be fully addressed through the imple-
mentation of fine-scale land surface and atmospheric
forcing data alone (Duarte et al 2022). Future work
intends to utilize model-data fusion techniques, such
as ensemble data assimilation (Raczka et al 2021), to
leverage satellite observations (SIF, leaf area and snow
cover) and recent canopy-level SIF representation in
CLM (Li et al 2022).

5. Conclusion

Satellite remote sensing of vegetation will be integ-
ral to the development of carbon flux monitoring
systems, both globally and regionally, with montane

evergreen conifer forests in the western US presenting
unique challenges to monitoring goals at these scales.
Here, we assessed the ability of high-resolution satel-
lite SIF to track the average trends of photosynthesis
across seasons and elevations in one of the largest and
most dynamic mountain ranges in the western US.
After filtering for snow-covered surfaces, TROPOMI
SIF showed strong agreement in elevational patterns
with a robust model-data GPP product (FLUXCOM)
and a data-constrained land surface model (CLM5.0-
SP) while closely matching the mean seasonal timing
of EC tower GPP across four flux monitoring sites
in the Sierra Nevada. We also found that, compared
to active biogeochemistry (CLM5.0-BGC) simula-
tions, modeled GPP constrained by satellite pheno-
logy (CLM5.0-SP) showed substantially better agree-
ment with ECGPP. The spatial mismatch between EC
and gridded satellite data, combined with localized
disturbance events, presents challenges for tower-
to-satellite-scale comparisons. Nonetheless, SIF and
FLUXCOM GPP were more highly correlated across
elevations and seasons than any other combina-
tion of gridded GPP and satellite vegetation indices.
These findings provide strong evidence that satellite-
based SIF can provide unique and valuable inform-
ation to carbon monitoring systems over moun-
tainous ENF regions, such as the western US, par-
ticularly when integrated with data assimilation
techniques.
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