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A B S T R A C T   

Based on the idea that neural entrainment establishes regular attentional fluctuations that facilitate hierarchical 
processing in both music and language, we hypothesized that individual differences in syntactic (grammatical) 
skills will be partly explained by patterns of neural responses to musical rhythm. To test this hypothesis, we 
recorded neural activity using electroencephalography (EEG) while children (N = 25) listened passively to 
rhythmic patterns that induced different beat percepts. Analysis of evoked beta and gamma activity revealed that 
individual differences in the magnitude of neural responses to rhythm explained variance in six-year-olds’ 
expressive grammar abilities, beyond and complementarily to their performance in a behavioral rhythm 
perception task. These results reinforce the idea that mechanisms of neural beat entrainment may be a shared 
neural resource supporting hierarchical processing across music and language and suggest a relevant marker of 
the relationship between rhythm processing and grammar abilities in elementary-school-age children, previously 
observed only behaviorally.   

1. Introduction 

1.1. Commonalities between rhythm and grammar: features, evolutionary 
basis, and underlying mechanisms 

Recent studies have shown commonalities between musical rhythm 
and grammar. Children who demonstrate better rhythmic perception 
skills tend to show enhanced performance in syntactic tasks (Gordon, 
Shivers, et al., 2015; Nitin et al., 2023; Politimou et al., 2019; Swami-
nathan & Schellenberg, 2019; cf. Ozernov-Palchik et al., 2018), 

especially when complex syntactic structures are involved (Gordon, 
Jacobs, et al., 2015; Lee et al., 2020). Moreover, rhythmic structure 
affects the processing of grammatical structure in speech in adults (Kotz 
et al., 2009; Schmidt-Kassow & Kotz, 2008). Rhythmic priming para-
digms have also shown that grammar performance is positively affected 
by brief exposure to metrically regular rhythmic musical primes (Can-
ette et al., 2019; Chern et al., 2018; Ladányi et al., 2021; Przybylski 
et al., 2013). Such relations between rhythm and grammar have been 
explained as the result of shared cognitive processes that are recruited 
when hierarchical structures are processed in both language and music 
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(Fitch, 2013; Fitch & Martins, 2014; Ladányi, Persici, et al., 2020). Both 
rhythm and grammar are organized in tree-like structures in which 
lower levels are incorporated into higher levels and elements are or-
dered according to specific rules (Fitch, 2017). In music, listeners 
generally utilize regularly timed basic units (whether accented or not) to 
extract the underlying pulse, or beat, which serves as an anchor “around 
which other [rhythmic] events are organized” (Iversen, Repp, & Patel, 
2009:58). Beats, in turn, are perceptually grouped and organized into a 
hierarchical structure called ‘meter’ (Lerdahl & Jackendoff, 1983), 
which allows to interpret the music input as patterns of strong and weak 
beats. Language is also constituted of elements that are ordered 
following a hierarchical structure and specific rules (Lashley, 1951), 
with words combining to form phrases and smaller phrases combining 
and/or moving to form larger phrases. Thus, grammar perception and 
production also require perception and manipulation of stimuli that 
unfold serially but that are organized hierarchically. 

The ability to perform these operations in rhythm may have an 
evolutionary basis. Animal studies have shown that perceptually 
extracting the beat is an ability shared by birds and mammals (Kotz 
et al., 2018). The pervasive nature of music across cultures (Mehr et al., 
2019; Ravignani et al., 2017; Savage et al., 2015) and the finding that 
engaging in rhythmic activities enhances prosocial behavior and social 
interaction and bonding (Cirelli et al., 2014; Lang et al., 2017; Pearce 
et al., 2015; Tarr et al., 2016) have led to the hypothesis that the ability 
to perceive and synchronize with rhythms may have evolved in humans 
to facilitate communication and foster group cohesion (Honing, 2018; 
Patel & Iversen, 2014; Savage et al., 2020). Developmentally, it has been 
proposed that rhythmic processing guides speech segmentation and 
comprehension and grammar learning in children (Beier & Ferreira, 
2018; Dilley & McAuley, 2008; Kotz et al., 2018; Kotz & Schwartze, 
2010, 2016). Research has shown that sensitivity to rhythmic cues in 
speech such as stress patterns is already present at birth (Mehler et al., 
1988; Morgan et al., 1987). Processing of auditory beat and meter has 
been demonstrated in premature newborns with a mean gestational age 
of 33 weeks (Edalati et al., 2023). The ability to perceive these cues is 
thought to facilitate the segmentation of speech input (Morgan et al., 
1987) and to provide infants with an efficient mechanism for processing 
language across the lifespan (Gordon, Jacobs, et al., 2015). 

A recent quantitative meta-analysis (Heard & Lee, 2020) provided 
evidence suggesting overlapping neural structures recruited in rhythm 
and grammar tasks, specifically in the brain areas involved in temporal 
hierarchy processing and potentially in predictive coding, or the act of 
generating predictions on what will occur (Friston, 2005). Such pro-
cesses are likely implicated in rhythm and grammar processing: both 
domains entail the hierarchical organization of serial temporal input and 
the listener’s active prediction of the next item to efficiently process 
upcoming events (Kuperberg & Jaeger, 2016; Persici et al., 2019; Vuust 
& Vitek, 2014). Moreover, research has shown that the ability to predict 
upcoming input is facilitated by rhythmic regularities (Andreou et al., 
2011; Jones et al., 2002; Jones & Boltz, 1989; Large & Jones, 1999; 
Repp, 2005; Repp & Su, 2013). Crucially, both temporal hierarchy 
processing and predictive coding may be subserved by the neural 
tracking of rhythms (Arnal & Giraud, 2012; Fiveash et al., 2021; 
Ladányi, Persici, et al., 2020), a mechanism that we here term ‘neural 
entrainment’. 

Neural oscillations, produced by networks of neurons firing syn-
chronously (Luo et al., 2006), are found to be entrained (i.e., synchro-
nized) by the rhythms of higher-level structures such as meter (Fujioka 
et al., 2015) and syntactic phrases (Ding, Melloni, et al., 2017). This 
entrainment, which is already evident to beat and meter in 6- and 7- 
month-old infants (Cirelli et al., 2016; Flaten et al., 2022), is thought 
to be important for rhythm processing (Fujioka et al., 2015), but also for 
speech decoding, processing, and comprehension (Ahissar et al., 2001; 
Ding, Patel, et al., 2017; Ghitza, 2012; Luo & Poeppel, 2007), as well as 
for other processes including visual attention (see also Obleser & Kayser, 
2019). 

According to the Dynamic Attending Theory (DAT: Jones, 2019; 
Jones & Boltz, 1989; Large & Jones, 1999), auditory rhythms entrain 
attention rhythms, such that there are increases in attention at time 
points in the stimulus that are temporally regular and predictable (e.g., 
beats in music or stress in language). These attention rhythms may 
depend on the neural entrainment of multiple nested oscillations (Jones, 
2019). Such nested entrainment has been observed in language pro-
cessing. As shown by Ding, Melloni, Zhang, Tian, and Poeppel (2016), 
when English and Mandarin adult speakers hear a series of spoken 
sentences that contain elements that are presented at a fixed rate, peaks 
of spectral energy are produced at multiple levels: in correspondence to 
the word rate, to the phrasal unit rate, and to the sentence rate. This 
suggests that the brain not only responds to surface features of the 
acoustic waveform but also encodes syntactic units (see also Ding, 
Melloni, et al., 2017). These findings suggest commonalities in how the 
brain processes musical and linguistic structure. 

1.2. Neural activity during rhythmic and syntactic processing in the beta 
and gamma frequencies 

If neural entrainment subserves both rhythmic and syntactic pro-
cessing (Ladányi, Persici, et al., 2020), individual differences in neural 
activity during rhythmic listening should also correspond to individual 
differences in hierarchical processing in language. To investigate neural 
responses to hierarchically-organized auditory rhythms, Iversen, Repp, 
and Patel (2009) examined adult participants’ processing of rhythmic 
structures of two tones and one rest varying in accent placement—and 
thus, perceived beat structure—while they underwent magnetoen-
cephalography (MEG). Experimental conditions in Iversen et al. (2009) 
included listening to two types of rhythmic sequences that varied in the 
location of intensity accents marking the beat (i.e., in whether the first 
or the second tone of the sequence were played louder), and two other 
conditions in which the participants were asked to imagine the same 
intensity accents. Both oscillatory responses in the beta and gamma 
frequency bands, and Event-Related Fields (ERF; the magnetic coun-
terpart of event-related potentials; ERPs), were found to be enhanced at 
time points that corresponded to sounds that were heard (or imagined) 
as the beat, which suggests that brain responses are sensitive to beat 
interpretation. 

Neural activity in the beta and gamma frequency appears also rele-
vant for rhythmic processing in subsequent studies. Beta oscillations 
were found to be linked to beat anticipation and processing (Fujioka 
et al., 2009, 2012; Kasdan et al., 2020) and thought to index meter 
representation (Fujioka et al., 2015) and to reflect the coupling of brain 
activity originated in distant brain regions, such as the auditory and 
motor cortices (Bartolo et al., 2014). As beta activity rebounds prior to 
the next stimulus and peaks are found in correspondence to expected 
events (Fujioka et al., 2012), this frequency band is also believed to play 
a role in predictive processes (Arnal & Giraud, 2012; Leventhal et al., 
2012), which are important for efficient rhythmic processing, given the 
periodicity and regularity of most rhythmic patterns (Kotz et al., 2018). 
Gamma band activity is also thought to be involved in rhythmic pro-
cessing: peaks in evoked (phase-locked) gamma activity are found after 
the onset of expected tones, with power changes that are modulated in 
response to strong and weak beats (Zanto et al., 2005). Moreover, peaks 
in induced (non-phase-locked) gamma persist even when expected tones 
are omitted (Zanto et al., 2005). These findings have been interpreted as 
suggesting a role of gamma in the formation of temporal expectancies, in 
internal anticipatory timing, and thus in beat perception (Fujioka et al., 
2009; Zanto et al., 2005; Zanto et al., 2005). 

Both bands were also found to be implicated in grammar processing. 
Bastiaansen, Magyari, and Hagoort (2010) showed with MEG that a 
power increase in the beta frequency band occurs in correspondence to 
the timing of unification operations, that is, the process of combining 
individual word information into the representation of the whole ut-
terance in adults. These results are consistent with the idea that beta is 
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also involved in the transmission of content-specific predictions (and 
thus, in predictive coding; Arnal & Giraud, 2012). Gamma has also been 
associated with language skills involving hierarchical processing in the 
study by Ding and colleagues (2016) mentioned above: the peaks in 
activity found at the syllable, phrasal, and sentential level suggest the 
existence of cortical networks supporting the concurrent encoding of 
multiple linguistic structures, including phrases and sentences. 

1.3. The present study 

In the present study we adapted Iversen et al. (2009)’s paradigm by 
presenting six-year-old children with rhythmic tone-tone-rest sequences 
differing in placement of an intensity accent marking the beat, while 
recording electroencephalography (EEG). The placement of an intensity 
accent either on the first or on the second tone of the sequence was 
expected to generate two distinct beat percepts. This expectation was 
based on prior results, using the same paradigm with typically- 
developed adults (Iversen et al., 2009) and adults with a neuro-
developmental disorder associated with atypical sensory processing and 
attentional difficulties called Williams syndrome (Kasdan et al., 2020), 
and on research showing that neural responses to the beat are already 
detectable in infancy (Cirelli et al., 2016; Winkler et al., 2009). 

As mentioned above, beat perception entails processing of temporal 
information in a hierarchical fashion and is thus an example of hierar-
chical processing in the music domain. In line with previous studies (e. 
g., Iversen et al., 2009; Kasdan et al., 2020), we assumed that greater 
efficiency in capturing differences in temporal patterns would reflect 
better beat processing and encoding. The same children were adminis-
tered standardized tests of rhythm discrimination abilities and grammar 
skills. The aim was to investigate whether enhanced tracking of hier-
archical structures in rhythm resulted in better manipulation of 
hiearchical structures in language. More specifically, we aimed to 
examine whether individual differences in neural responses to the beat 
were associated with and concurrently predicted individual differences 
in grammar task performance over and above behavioral rhythm 
discrimination performance (an effect previously shown in Gordon, 
Shivers, et al., 2015; Gordon, Jacobs, Schuele, & McAuley, 2015, as 
mentioned above). Children in this age range are an interesting popu-
lation because they are still in the process of developing their grammar 
(Arndt & Schuele, 2013) and beat perception (Nave-Blodgett et al., 
2021) abilities. Although they have reached peak cortical grey matter 
volume, they are still undergoing important changes in brain develop-
ment (Bethlehem al., 2022). Investigating how individual differences in 
one domain relate to individual differences in the other domain in this 
population is particularly important for our understanding of the 
mechanisms underlying language development. 

Children’s neural activity was recorded while they listened passively 
to the auditory stimuli. Given the associations found between rhythm 
and language in other work (e.g., Chern et al., 2018; Gordon, Shivers, 
et al., 2015; Nitin et al., 2023) and the hypothesized shared mechanism 
for hierarchical processing between the two domains (Heard & Lee, 
2020; Ladányi, Persici, et al., 2020), we expected individual differences 
in the magnitude of neural responses to these rhythms to relate to in-
dividual differences in grammar task performance, based on the 
assumption that greater neural responses represent more effective 
encoding of the rhythms. Neural responses were quantified by looking at 
each individual child’s neural differentiation of different accent pat-
terns, in beta and gamma bands, in order to arrive at EEG-based metrics 
of their effectiveness of differentiating beat patterns. In particular, we 
explored whether these evoked beta and gamma EEG patterns could 
explain variance in children’s proficiency in two grammatical cate-
gories, Complex Syntax and Transformation over and above perfor-
mance in a behavioral rhythm task. The use of EEG measures is 
theoretically and pragmatically justified. First, measuring rhythmic 
processing passively with EEG while participants watch a muted video 
should focus their attention on the video rather than the rhythm that 

they listen to. Consequently, this indirect measure of rhythmic pro-
cessing might give clear insight into rhythm discrimination than a task- 
driven behavioral approach. Secondly, if neural measures recorded 
passively were found to explain significant variance in grammar per-
formance, these findings would motivate the use of such paradigms in 
infants and toddlers for the examination of their grammatical develop-
ment and the early identification of language difficulties (Ladányi, 
Persici, et al., 2020). 

The term ‘Complex Syntax’ refers to sentences that contain multiple 
clauses and thus have complex structural dependency relations (e.g., 
relative clauses: “the woman ate the fish that her husband caught in the 
river”). These utterances that include subordinate, infinite, complement, 
and relative clauses, are acquired between the ages of two and three 
years (Bloom et al., 1984). However, as opposed to simpler structures 
(Vasilyeva et al., 2008), growth in complex syntax continues throughout 
the school years (Arndt & Schuele, 2013). The term ‘Transformation’ 
(related to the syntactic operation called Movement; Radford, 1988) 
refers to uni-clausal sentences with a non-canonical word order (e.g., 
wh-interrogatives in English: “what did the woman eat?”), requiring the 
reordering of sentence elements before responding. Thus, both Trans-
formation and Complex Syntax require individuals to perform complex 
grammatical operations. However, these operations are of greater 
complexity in the case of Complex Syntax, which comprises multi- 
clausal sentences with longer structural dependencies than Trans-
formation (Diessel, 2004). See Fig. 1 for a visual depiction of these de-
pendencies. The ability to perform such operations is fundamental for 
efficient language processing and development (Diessel, 2004). Rhythm 
discrimination abilities were tested in two tasks in which children were 
required to judge whether multiple successive presentations of a rhythm 
were the same or different. Note that these tasks tapping into children’s 
general rhythm perception abilities rely on sequence learning and 
memory-based skills (Fiveash et al., 2022) and may potentially tap into a 
separable rhythm sequence-based construct from the beat perception 
task assessed with EEG. 

Prior behavioral studies with school-aged children have shown that 
rhythmic processing skills relate to spoken grammar performance, both 
in general (Gordon, Shivers, et al., 2015) and in the two above- 
mentioned specific sub-categories (Gordon, Jacobs, et al., 2015; Lee 
et al., 2020). As discussed above, this link between rhythm perception 
and language production abilities may be due to shared biology via 
partially overlapping brain networks (Heard & Lee, 2020). According to 
recent theoretical accounts, behavioral (phenotypic) associations be-
tween musical and language traits may also partly result from genetic 
pleiotropy, or underlying common genetic architecture, among those 
traits (Fiveash et al., 2021; Ladányi, Persici, et al., 2020; Nayak et al., 
2022). The possibility of uncovering overlapping underlying neurobi-
ology across distinct skills/tasks is a particular motivation for the pre-
sent work. Behaviorally, individual differences in hierarchical rhythmic 
ability may be associated with an advantage in spoken tasks. If hierar-
chical processing in both domains is subserved by neural entrainment, 
we hypothesize that individual differences in neural responses to 
musical rhythm (manifesting in peaks in beta and gamma at the onset of 
the beat) will correspond to individual differences in grammar ability, 
especially in the case of sentences that require more refined grammatical 
operations, i.e., in Complex Syntax. 

2. Methods 

2.1. Participants 

This study reports EEG data of a cohort of participants for whom 
behavioral scores were previously reported (Gordon, Shivers, et al., 
2015). Detailed participant characteristics and behavioral scores of the 
25 children who participated (12 females, 13 males; 21 right-handed, 4 
left-handed), ages between 5;11 and 7;1 years (mean: 6;6 years, SD = 4 
months), are reported in Table 1. All data were collected on the same 
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day for each child; participants were first tested in the EEG paradigm 
and then in the behavioral tests. All were native speakers of American 
English and, as reported by their parents, had normal hearing, normal 
neurological health, and typical language, cognitive, and emotional 
development. Mean maternal education (used as proxy for socio- 
economic status (SES)) corresponded to three or four years of under-
graduate education; children had little music experience, on average 
corresponding to a year of music class in school. Non-verbal intelligence 
was measured using the Primary Test of Nonverbal Intelligence (PTONI; 
Ehrler & McGhee, 2008). See Table 1 for more information. 

A sensitivity analysis was conducted in G*Power 3.1 (Faul et al., 
2009) to examine the smallest effect size that our study was powered to 
detect with 80 % certainty, given our sample size and an alpha of 0.05. 
This test revealed that our study was powered to reliably detect an effect 
size of f2 = 0.35, traditionally considered to be large (Cohen, 1988), in 
regression models with five to six predictors. 

The study was approved by the Institutional Review Board of Van-
derbilt University (Nashville, TN, United States of America), in agree-
ment with the Declaration of Helsinki. Written informed consent and 
verbal assent were obtained from the parent and child respectively. 

2.2. Behavioral assessments 

2.2.1. Expressive grammar skills 
Grammar ability was tested with the Structured Photographic 

Expressive Language Test (SPELT-3; Dawson et al., 2003), in which 
children are presented with various photographs and asked questions 
designed to elicit specific syntactic constructions such as relative or 
interrogative clauses. For example, in one test item, children are shown 
a picture and prompted with the sentence, ‘The lady has some cookies. 
What is she asking the children?’; children are expected to answer, ‘Do 
you want some cookies?’. In another test item, children are shown a 
picture of two girls and prompted with the sentence ‘One sister went to 
school early and one left home late. Who did not arrive on time?’, and 
are expected to answer: ‘The girl who was late/who left home late/that 
was late’. Appropriate responses thus require both efficient compre-
hension of the verbal probe delivered by the experimenter and devel-
oped expressive abilities. Standard (age-normed) total scores and 
grammatical category mean scores for Complex Syntax and Trans-
formation items are reported in Gordon, Jacobs, et al. (2015) and in 
Table 1. Standard (age-normed) total scores showed a performance 
within the normal range for all participants (mean: 114.16; SD = 6.87, 
range: 98–125, indicating typical development). 

2.2.2. Musical rhythm skills 
Rhythm discrimination abilities were tested with two computer- 

based games: the children’s beat-based advantage assessment (BBA; 
originally adapted from adult work on beat perception by Grahn & Brett, 
2009), and the rhythm section of the Primary Measures of Music Audi-
ation (PMMA; Gordon, 1979). In both tests children were asked to judge 
whether multiple successive rhythm presentations were the same or 
different. BBA includes 28 test trials, including both simple and complex 
rhythms; PMMA includes 40 test trials. Both tasks were used because of 
their unique attributes: only PMMA is a standardized test of music 
aptitude; on the other hand, BBA addresses beat perception specifically 
(e.g., Fiveash et al., 2022, Grahn and Brett, 2009, and Niarchou et al., 
2022, for previous papers using this task), whereas PMMA includes 
stimuli with more varied metrical structures (see Gordon, Shivers, et al., 
2015 for more details on the two tasks). A behavioral Rhythm Composite 
score was calculated by averaging z-transformed d́ scores on the BBA 
assessment (commonly used in signal detection studies; Macmillan & 
Creelman, 2005) and z-transformed PMMA percent correct scores (note 
that the BBA and PMMA z-transformed scores were moderately and 
significantly correlated; r = 0.43, p =.030). The Rhythm Composite 
measure previously reported in Gordon, Shivers, et al. (2015) was ob-
tained by averaging percent correct scores from both tests. Here we 
decided to use d́ scores for the BBA assessment, because these scores are 
unaffected by response bias and thus convey a more precise measure of 
participants’ beat perception skills compared to percent correct scores. 
The new variable was highly correlated with the previously reported 
Rhythm Composite measure (r = 0.99, p <.001). See Gordon, Shivers, 

Fig. 1. Syntactic trees of sentence examples of simple syntax, transformation, and complex syntax.  

Table 1 
Participants’ characteristics and results of the behavioral tests as reported in 
Gordon, Shivers et al., 2015.   

Mean 
(SD) 

Percent correct 
(SD) 

N 25 / 
Age 6;6 (0;4) / 
Males: females 13:12 / 
Maternal education level (9 levels) 7.32 

(0.83) 
/ 

Music experience (years) 1.08 
(0.81) 

/ 

Nonverbal intelligence (standard PTONI 
score) 

110 (22.7) / 

SPELT-3 standard score 114 (6.87) / 
Transformation score (11 items) 9.52 

(1.55) 
86.54 (14.16) 

Complex Syntax score (12 items) 9.6 (1.61) 81.33 (13.45) 
BBA behavioral rhythm test (d’prime) 1.10 

(0.76) 
/ 

PMMA behavioral rhythm test / 70.9 (12.6)  
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et al. (2015) for more details on the assessments. 

2.3. Electroencephalography 

2.3.1. Stimuli 
The auditory sequences in the EEG paradigm were adapted from the 

physical accent conditions used in Iversen, Repp, and Patel (2009); see 
Fig. 2. This paradigm was chosen because it has proven successful in 
yielding neural responses to the beat in the beta and gamma frequency 
ranges in previous research on adults (Iversen et al., 2009; Kasdan et al., 
2020). Here the aim was to investigate whether the same paradigm 
could be applied to children. In this study we did not include the 
imagined beat conditions (for which top-down control is important) 
used in Iversen et al.’s study for theoretical and practical purposes. Most 
importantly, we expected each of physical accent condition patterns to 
elicit different beat percepts (i.e., perception of patterns with different 
beat positions). This would be the case if children’s early latency neural 
responses to rhythms are affected by physical stimuli, a phenomenon 
that has been previously shown using the same paradigm with typically 
developed adults (Iversen et al., 2009) and with adults with Williams 
syndrome (Kasdan et al., 2020). We thus predicted that fluctuations in 
early ERP sensory responses and in beta and gamma evoked activity 
would reflect differentiation between the two rhythmic sequences. 
Second, a shorter experiment with only implicit listening allowed 
keeping the session at a duration that reduced variance in children’s 
ability to follow task demands. In each of the two physical accent con-
ditions, tones had a frequency of 1000 Hz, a duration of 50 ms, an in-
tensity of 58 dB, and an inter-onset interval of 200 ms between the first 
and second tone in each pair (the tone-tone-rest pattern thus had a 
duration of 600 ms). In the Accent1 condition, sequences had a 
strong–weak-rest pattern: the accent, conveyed by increasing the in-
tensity of the sound by 10 dB, occurred on the first tone; in the Accent2 
condition, the accent occurred on the second tone, thus creating a weak- 
strong-rest pattern (see Fig. 2). Each block consisted of 50 repetitions of 
the same pattern for a duration of 30 s and was presented nine times per 
condition in random order (for an overall task duration of nine minutes). 
In the analyses, we excluded the first two trials in each block and 
analyzed only the following forty-eight repetitions, for a total of 864 
trials for analysis. 

2.4. Procedure 

2.4.1. EEG acquisition 
Participants’ EEG recordings were collected individually in a sound- 

dampened room at the EEG Lab at the Vanderbilt Kennedy Center in 
Nashville, Tennessee (USA). Brain activity was recorded continuously 
using 128 Ag/AgCl electrodes embedded in soft sponges (EGI Geodesic 
Sensor Net, Eugene, OR, USA). Lower eye channels were only available 
on some sizes of the EEG nets and consequently were excluded from 
further analyses. EEG signals were sampled at 500 Hz for temporal 
precision (the data of two participants were inadvertently sampled at 
250 Hz and then later upsampled to 500 Hz). Data was acquired in Net 
Station 4.4 with high-impedance amplifier NetAmps 200 and with a 
Butterworth hardware filter of 0.1 to 200 Hz; impedances were adjusted 

to below 40 kΩ before the start of the paradigm. Stimuli were presented 
at 72 dB through a single speaker placed above the participant’s head. 
EEG was recorded while participants listened passively to the auditory 
stimuli; no behavioral responses were required. To keep participants 
engaged but still during data acquisition, an age-appropriate video with 
muted sound was shown. Participants were asked to watch the video and 
stay still and that they would “hear some sounds”; no further in-
structions were given. The entire session lasted about 45 min and 
included an additional experiment for a separate project. 

2.4.2. EEG data preprocessing 
Data processing was performed using the EEGLAB toolbox (Delorme 

& Makeig, 2004) in MATLAB R2017b (The Mathworks Inc, 2017). Sig-
nals were smoothed using a 100-Hz low-pass filter and a 0.5-Hz high- 
pass filter to eliminate non-brain-related frequencies. Line noise was 
cleaned using the pop_cleanline function. Bad electrodes characterized 
by consistently high noise levels were identified using the Artifact 
Subspace Reconstruction (ASR) approach and interpolated using the 
spherical spline interpolation algorithm (Perrin et al., 1989). Data were 
re-referenced to the average of all channels. 

Artifacts in the data were identified using Independent Component 
Analysis (ICA); the type of artifact was identified with the help of 
ICLabel (Pion-Tonachini et al., 2019). Cardiac and ocular artifacts were 
manually removed (range: 0–3 components (heart, eye blink or side-
ways eye movement) per participant; mean = 1.48). Next, data were 
divided into 1600-ms epochs with the interval of [-400, +1200], time- 
locked to the onset of the first tone (tone-tone-rest, in both condi-
tions); a wide window is needed for time–frequency analyses to avoid 
window-edge artifacts (Roach & Mathalon, 2008). Epochs were rejected 
if they exceeded a − 100/+100 µV threshold, as in Kasdan et al. (2020). 
An average of 7.38 % (SD = 10.25 %) of epochs were rejected. A tech-
nical error caused a subset of n = 13 participants to have received an 
extra two blocks of trials during data acquisition; these were retained 
during data clean-up to improve ICA reliability (Debener et al., 2010) 
and then discarded in the following way. First, we computed the number 
of epochs kept after cleaning of the n = 12 that received the correct 
number of trials and found that it was 407 trials for Accent1 and 406 
trials for Accent2. To prevent the other n = 13 subset of data from having 
a disproportionate impact on the signal-to-noise ratio, we removed the 
last 75 clean epochs from 12 of those 13 participants for further analysis 
(the remaining 13th participant had only 291 and 220 trials remaining 
after artifact rejection respectively and thus no further trials were 
removed). In the final dataset of N = 25, the mean number of epochs was 
not different between conditions (t(24) = 0.605, p =.551, SD = 19.84; 
for Accent1: mean trials = 409 (SD = 33) and Accent2: mean trials = 407 
(SD = 46)). Note that analysis including extra epochs, for the purpose of 
comparison, did not significantly affect any of the final results; p-values 
and cluster latencies were virtually identical (see Table 5S in the Sup-
plementary materials). 

2.4.3. Data analysis 
Similar to prior work using this paradigm (Iversen et al., 2009; 

Kasdan et al., 2020), we conducted ERP and time–frequency analysis on 
the EEG data using the FieldTrip Toolbox (Oostenveld et al., 2011). 

Fig. 2. Stimulus conditions in the EEG paradigm (used with permission from Kasdan et al., 2020).  
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Statistical analyses on brain-behavior relationships were carried out 
using R (R Core Team, 2022). 

2.4.3.1. Event-related potentials (ERPs). Event-related potential (ERPs) 
were generated from the average across trials for each condition and 
utilized for evoked time–frequency analyses (see below). ERPs were 
then trimmed to [-100 to 700 ms], baseline-corrected with a baseline of 
[-100, 0] ms and low-pass filtered with a Butterworth filter of 30 Hz for 
subsequent ERP analyses. Line noise was further removed with the DFT 
filter. 

2.4.3.2. Time-frequency representations (TFRs). Evoked (phase-locked) 
activity for each condition was obtained by convolving the average ERP 
waveform with a family of Morlet wavelets with a width of six cycles, 
from 12 Hz to 50 Hz, with a frequency step of 1 Hz and a time step of 2 
ms in the time window [-200, +800], with zero being the onset of each 
tone-tone-rest pattern (see Tallon-Baudry et al., 1996, and Herrmann 
et al., 2005, for more details on this analysis). Note that this wide 
window was only used for TFR calculation; overlapping latencies were 
not tested statistically (see below). Power values for the resulting time 
frequency representations (TFRs) were then normalized (baseline-cor-
rected) at each time point, frequency, and channel as relative power 
change in relation to the mean total power averaged across time points 
and across both conditions separately for each frequency and channel, to 
compensate for inter-individual variability in absolute power. 

2.4.3.3. Cluster-based permutation statistical analyses. Statistical ana-
lyses were conducted in FieldTrip, using a cluster randomization pro-
cedure to identify consistent trends in activity in clusters of channels and 
using cluster-based permutation tests coded for within-subjects design to 
test for differences in activity between conditions (Maris & Oostenveld, 
2007). For ERPs, the Accent1 vs. Accent2 conditions were compared in 
the time window [-100, +500] (to avoid testing overlapping latencies) 
at each time point and channel using a dependent-samples t-test. All the 
data points from adjacent channels with significant t-values at p <.025 
(two-tailed) were used to generate clusters; all the other data points 
were zeroed. Adjacency was determined via the distance between 
neighboring channels using the FieldTrip triangulation parameter, and a 
minimum of two neighboring channels at a given time point and channel 
were required for that data point to be included in a cluster (i.e., three 
channels were the minimum to meet the adjacency criteria). The cluster- 
level test statistic for each cluster was then calculated by summing all 
the t-values within that cluster. The significance of each cluster was 
assessed using a Monte Carlo method: randomly permuted values from 
both conditions were taken and pooled together to form two new subsets 
(simulated dummy conditions), which were used to obtain a dummy 
cluster test statistic. The same process was repeated 5,000 times, to 
obtain 5,000 dummy clusters. The resulting cluster p-values are the 
proportions of permutations in which the true cluster statistic exceeds 
the simulated cluster (dummy) statistic. Clusters with a cluster p <.05 
were considered statistically significant. The same procedure was used 
for time–frequency representations (TFRs) of Accent1 vs. Accent2, for 
average power within two frequency bands: 13–23 Hz for beta, 24–50 
Hz for gamma. 

2.4.3.4. Individual differences and brain-behavior correlations. Variables 
representing the difference of neural activity between conditions were 
obtained for TFRs in each frequency band, using a method previously 
reported by Lense et al. (2014): power values (for time–frequency data) 
of the difference between conditions at each time point and channel in 
the latency band (for clusters that surpassed group-level statistical sig-
nificance) are summed for each participant. In other words, the group- 
level cluster parameters for the spatial and temporal distribution of 
the cluster were applied to the individual data at each participant and 
the sum of the difference of values at each time and point and condition 

are computed. Thus, for each participant this procedure resulted in a 
single value for each of the four cluster-sums (i.e., for the beta and 
gamma clusters for the Beat1 and Beat2 effects). Potential differences in 
the magnitude of activity between cluster-sums within the same fre-
quency band were investigated using paired t-tests. 

To determine if neural responses to rhythm were associated with 
individual differences in spoken grammar skill, we performed Spearman 
correlations between significant beta and gamma evoked clusters and 
the total SPELT-3 score or the scores in each of the two SPELT-3 sub-
categories of interest (all z-scored), controlling for age, non-verbal in-
telligence, music experience, and maternal education (as a proxy for 
SES) and with p-values adjusted for multiple comparisons (Benjamini- 
Hochberg correction). Note that the Beat1 effect clusters correspond to 
increased neural responses around the onset of the first tone (for Accent1 
versus Accent2), and the Beat2 effect clusters correspond to larger 
neural responses around the onset of the second tone (for Accent2 versus 
Accent1). We focused on beta and gamma TFRs in relation to language 
task performance, given prior literature on the role of beta and gamma 
in rhythmic attending (see Introduction). The correlations between beta 
and gamma activity and between Beat1 and Beat2 effect clusters are 
reported in Table 3S in the Supplementary materials. 

Hierarchical regressions were then used to assess the potential 
contribution of neural markers of beat processing to grammar over and 
above the variance explained by behavioral musical rhythm (which was 
previously reported in Gordon, Shivers, et al., 2015; Gordon, Jacobs, 
Schuele, & McAuley, 2015). Models were compared using F-tests (Field, 
Miles, & Field, 2012). The variance explained by each model was 
examined by looking at Adjusted R2 values. The analysis of individual 
differences in ERP amplitude (calculated following the same procedure 
as for TFRs) and of their relationship with syntactic scores was carried 
out as exploratory work and is reported in the Supplementary materials. 

3. Results 

3.1. Cluster-based analysis of ERPs 

Results of cluster-based permutation tests revealed two significant 
clusters in correspondence to Accent1 vs. Accent2 at the onset of the first 
tone (“Beat1 effect”; see Fig. 3) and three significant clusters in corre-
spondence to Accent2 versus Accent1 at the onset of the second tone 
(“Beat2 effect”; see Fig. 3). Detailed ERP cluster results are reported in 
Table 2. Specifically, we found a negative ERP deflection in the neural 
activity over frontal regions of the scalp when the accent was on the first 
tone (ERP-Beat1effect-early-negativity-frontal: from − 46 to 54 ms, 
cluster p =.009; Fig. 3A), and a posterior positive effect around the same 
time window (ERP-Beat1effect-early-positivity-posterior; from − 30 to 
50 ms, cluster p =.024; Fig. 3B). Given that the clusters occur at the same 
latencies and display nearly identical waveforms with opposite polar-
ities, they might be two extremes of the same dipole. We also found three 
significant clusters showing a Beat2 effect: a frontal negative effect 
(ERP-Beat2effect-late-negativity-frontal1 from 222 to 462 ms, cluster p 
<.001; Fig. 3C), a posterior positive effect (ERP-Beat2effect-late-pos-
tivity-posterior from 214 and 410 ms, p <.001; Fig. 3D), and, finally, a 
negative frontal effect (ERP-Beat2effect-late-negativity-frontal2) in the 
time window between 424 and 500 ms, cluster p =.032 (Fig. 3E). 
Following the same reasoning stated above, we interpret the first two 
Beat2 effect clusters as the two extremes of the same dipole, and thus 
likely reflecting the same cortical source. The similar topographies of the 
two frontal Beat2 effect clusters also suggest that they might be the same 
brain source. Taken together, the early latencies of four out of five of the 
ERP clusters (with respect to beat onset) suggest that early sensory re-
sponses are modulated by beat perception. 

3.2. Cluster-based analysis of TFRs 

Results of cluster-based permutation tests revealed significant 
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evoked beta and gamma activity in correspondence to the beat onset in 
each condition, which was greater for the accented beat. Specifically, 
significantly greater neural activity in beta band with a widespread scalp 
distribution (EEG-beta-Beat1effect cluster p <.001; Fig. 4A) and in 
gamma band with a posterior-central distribution (EEG-gamma-Bea-
t1effect cluster p =.033; Fig. 4B) were found in correspondence to the 
first tone of the Accent1 versus Accent2 condition (Beat1 effect). Simi-
larly, greater activity in the beta band (cluster p =.006; Fig. 5A) and in 
gamma band (cluster p =.028; Fig. 5B), with both clusters distributed 
over fronto-central regions, were found in correspondence to the second 
tone in the Accent2 condition versus Accent1 condition (Beat2 effect; see 
Fig. 5). Cluster latencies are reported in Table 3. 

Paired t-tests showed that beta activity was significantly larger in the 

Beat1 effect cluster than in the Beat2 effect cluster (t(24) = 3.975, p 
<.001). Gamma activity was not significantly different between clusters 
(p >.05). 

3.3. Brain-behavior relationships 

3.3.1. Neural markers of beat processing and expressive language ability: 
Correlations 

The analysis of beta and gamma activity yielded significant associ-
ations with language scores, as reported on Table 3 and as shown in 
Fig. 6. For the beta band, the results showed strong and significant 
correlations between the EEG-beta-Beat1effect cluster and SPELT-3 total 
(Fig. 6A), and also with both the Transformation (Fig. 6B) and Complex 
Syntax (Fig. 6C) sub-scores. 

In the gamma band, a strong and significant correlation was also 
found between the EEG-gamma-Beat1effect cluster and Complex Syntax 
(Fig. 6D). No significant correlations were found between the EEG-beta- 
Beat2effect cluster and SPELT-3 (whether total or in each subcategory; 
SPELT-3 total: p =.838; Transformation: p =.838; Complex Syntax: p 
=.759), between the EEG-gamma-Beat1effect cluster and SPELT-3 total 
(p =.107) or Transformation (p =.195), or between the EEG-gamma- 
Beat2effect cluster and any of the SPELT-3 categories (SPELT-3 total: 
p =.107; Transformation: p =.303) or Complex Syntax (p =.324). 

To summarize, a larger Beat1 effect (suggesting enhanced neural 
responses to the first tone when it was accented) was positively associ-
ated with language scores, in alignment with our hypothesis. Yet, a 
larger Beat2 effect (suggesting enhanced neural responses to the second 
tone when it was accented) was not significantly associated with lan-
guage scores, contrary to our hypothesis. We then turned to examine 

Fig. 3. Grand average ERP (N = 25) Beat 1 (A, B) and Beat 2 (C, D, E) effects. The dotted lines indicate the start and end latencies of the significant clusters found in 
correspondence to the first beat (Beat1 effect; onset of the sequence at 0 ms) or in correspondence to the second beat (Beat2 effect; onset of the sequence at 0 ms). 
ERPs for condition Accent1 (strong–weak-rest) are denoted in blue, and ERPs for condition Accent2 (weak-strong-rest) are in red. ERP plots (on the left of each panel) 
show amplitude in microvolts averaged over all the channels belonging to the significant cluster (y-axis) with negative up by convention, and time in ms (x-axis). 
Topographic plots (on the right) show scalp distribution of amplitude at time points indicated, which were chosen to correspond to peaks within the cluster window. 
Channels belonging to the significant cluster are indicated with asterisks. Panel A shows the ERP-Beat1effect-early-negativity-frontal cluster over fronto-central 
regions (cluster p =.009). Panel B shows ERP-Beat2effect-early-positivity-posterior cluster over posterior central regions (cluster p =.024). Panel C shows the 
ERP-Beat2effect-late-negativity-frontal1 cluster over fronto-central regions (cluster p <.001). Panel D shows the ERP-Beat2effect-late-positivity-posterior cluster over 
posterior central regions (cluster p <.001). Panel E shows the ERP-Beat2effect-late-negativity-frontal2 cluster over fronto-central regions (cluster p =.032). (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Characteristics of the significant clusters identified by cluster-based permutation 
tests of Event-Related Potentials (ERP).  

Cluster label Latency Scalp 
distribution 

Cluster p- 
value 

ERP-Beat1effect-early- 
negativity-frontal 

− 46 to 54 
ms 

Frontal  0.009 

ERP-Beat1effect-early- 
positivity-posterior 

− 30 to 50 
ms 

Posterior  0.024 

ERP-Beat2effect-late- 
negativity-frontal1 

222 to 462 
ms 

Frontal  < 0.001 

ERP-Beat2effect-late- 
positivity-posterior 

214 to 410 
ms 

Posterior  < 0.001 

ERP-Beat2effect-late- 
negativity-frontal2 

424 to 500 
ms 

Frontal  0.032  
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effects of brain variables on grammar scores over and above variances 
accounted for by rhythm behavioral variables. 

3.3.2. Hierarchical regressions 
As reported in Gordon, Shivers, et al. (2015) and Gordon, Jacobs, 

Schuele, and McAuley (2015), the Rhythm Composite score (calculated 
here as the mean of the z-scored BBA d’ and PMMA percent correct) 
explained unique variance in SPELT-3 scores, whether total or within 
the Transformation and Complex Syntax subcategories. Here, we added 
the significant beta and gamma evoked clusters to see if additional 

Fig. 4. Beat 1 effect. Time-frequency representations (TFRs) and topographies for grand average (N = 25), showing normalized power changes in EEG evoked beta 
(panel A) and gamma (panel B) neural activity relative to the first tone (Beat1 effect). TFRs are shown on the left side of each panel and are the average of all the 
channels belonging to the cluster; the black dashed box indicates the time and frequency boundaries of the significant clusters. Representative topographies (on the 
right side of each panel) are shown at the indicated latencies within the clusters. Color scale represents the percent change from baseline (i.e., normalized power). 
Significant channels are marked with black asterisks. As signaled by the darker red colors, increased beta and gamma neural activity is found at the first tone when 
this was accented (in the Accent1 condition (top row) as compared to the Accent2 condition (bottom row)). (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 

Fig. 5. Beat 2 effect. TFRs and topographies for EEG evoked beta (panel A) and gamma (panel B) neural activity relative to the second tone (Beat2 effect). See Fig. 4 
for description of representation. Increased beta and gamma neural activity is found for the second tone when this was accented (in the Accent2 condition (bottom 
row) as compared to the Accent1 condition (top row)). 
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variance in the grammar scores of our participants could be explained by 
their neural responses to rhythm over and above that explained by 
rhythm behavior. 

Table 4 shows the fit and the results of the base models and of the 
models in which a significant effect of our neural measures was found. 

Table 3 
Characteristics of the significant clusters identified by cluster-based permutation tests of beta and gamma evoked activity during the EEG rhythm task, and their 
significant associations with individual differences in language skills.  

Cluster label Latency Scalp distribution Cluster p-value Significant association with language skills     

Grammar category r(s) p 

EEG-beta-Beat1 effect − 92 to 146 ms Widely distributed < 0.001  SPELT-3 total  0.60  0.018 
Transformation  0.56  0.030 
Complex Syntax  0.63  0.014 

EEG-beta-Beat2 effect 214 to 352 ms Fronto-central 0.006 – 
EEG-gamma-Beat1 effect 50 to 120 ms Posterior-central 0.033 Complex Syntax  0.62  0.014 
EEG-gamma-Beat2 effect 238 to 306 ms Fronto-central 0.028    

Note. P-values were adjusted for multiple comparisons using the Benjamini-Hochberg correction. 

Fig. 6. Statistically significant partial correlations between Z-transformed expressive grammar scores on the SPELT-3 and evoked variables, controlling for age, 
nonverbal IQ, music experience, and maternal education. All partial correlations are graphed as the correlation between the residuals of two linear regression models 
with the covariates as predictors and the expressive grammar score or evoked cluster of interest as dependent variable. Panels A, B, and C show the significant partial 
correlations between the EEG-beta-Beat1effect and SPELT-3, Transformation, and Complex Syntax, respectively. Panel D shows the significant partial correlation 
between EEG-gamma-Beat1effect and Complex Syntax. Note that the Beat1effect corresponds to larger responses near the onset of the first tone in Accent1. Thus, 
higher, positive numbers indicate larger neural activity. See Methods and Results for more detail. *p <.05, **p <.01, ***p <.001. 
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The full results of these analyses1 are reported in Table 4S in the Sup-
plementary materials. Adding the EEG-beta-Beat1effect cluster to the 
base model (i.e., Model 1, which included age, non-verbal intelligence, 
music experience, maternal education, and the behavioral rhythm score 
as predictors) increased significantly the ability of the model to fit the 
data (F(1, 18) = 18.373, p <.001; see Table 4 for AIC and BIC values). 
The more complex model (i.e., Model 2) explained 26.6 % more variance 
in the total SPELT-3 score than Model 1 (the Adjusted R2 value changed 
from 0.442 in Model 1 to 0.708 in Model 2). Although the EEG-beta- 
Beat1effect cluster (β = 0.512) had less impact on the total SPELT-3 
scores than the Rhythm Composite score (β = 0.615) in Model 2, its 
addition still contributed to significantly increase the amount of vari-
ance explained in the grammatical scores. Adding the EEG-gamma- 
Beat1effect cluster to the base model also improved significantly 
model fit (F(1, 18) = 11.021, p =.004). The variance explained in the 
total SPELT-3 scores this time was larger by 19.3 % (the Adjusted R2 

value changed from 0.442 in Model 1 to 0.635 in Model 4). Again, in the 
final model, the Rhythm Composite score was the most influential pre-
dictor (β = 0.566; β of the EEG-gamma-Beat1effect cluster = 0.468). On 
the contrary, the EEG-beta-Beat2effect and EEG-gamma-Beat2effect 
clusters did not significantly contribute to explain unique variance in 
these scores (beta: p =.409, gamma: p =.376). See Fig. 7 to see the 
standardized beta coefficients and their 95 % confidence intervals in 
these models. 

Similar results were found for the Complex Syntax scores as for total 
SPELT-3 scores. Complex Syntax results showed significant (p =.001) 
and unique variance (28.3 %; the Adjusted R2 value changed from 0.308 
in Model 1 to 0.591 in Model 2) explained by the EEG-beta-Beat1effect 

cluster (F(1, 18) = 14.118, p =.001). In this model, the added neural 
variable was also the most influential (β = 0.532; Rhythm Composite 
score β = 0.231). Adding the EEG-gamma-Beat1effect cluster to the base 
model also increased significantly (F(1, 18) = 14.846, p =.001) the 
proportion of variance explained, this time by 29.2 % (Adjusted R2 value 
change from 0.308 in Model 1 to 0.600 in Model 4). Again, the added 
neural variable was the most influential predictor of the children’s 
Complex Syntax scores (β = 0.569; Rhythm Composite score β = 0.164). 
No significant results were found when adding the EEG-beta-Beat2effect 
(p =.243) or EEG-gamma-Beat2effect (p =.533) clusters. 

For the Transformation scores, results showed that the EEG-beta- 
Beat1effect cluster explained significant (p =.007) and 19 % unique 
variance (the R2 value changed from 0.380 in Model 1 to 0.570 in Model 
2; F(1, 18) = 9.419, p =.007). The effect of the EEG-beta-Beat1effect 
cluster (β = 0.445) on the Transformation scores was stronger than 
that of the Rhythm Composite score (β = 0.380). However, none of the 
other evoked variables significantly contributed to explain unique 
variance in these scores (the EEG-beta-Beat2effect: p =.189; EEG- 
gamma-Beat1effect: p =.094; EEG-gamma-Beat2effect: p =.821). 

4. Discussion 

The aim of the present study was to identify neural oscillatory 
markers of beat processing that may relate to individual differences in 
language performance in children. We hypothesized that the strength of 
neural responses to the beat would be linked to individual differences in 
language skills, especially in hierarchical processing, based on previous 
behavioral findings indicating that musical rhythm discrimination skills 
relate to expressive and receptive grammar performance (Gordon, 
Shivers, et al., 2015; Gordon, Jacobs, Schuele, & McAuley, 2015; Swa-
minathan & Schellenberg, 2019). Neural responses to the beat point to 
processes of neural entrainment, which are crucial for hierarchical 
processing in both rhythm and language (Ahissar et al., 2001; Ding, 

Table 4 
Model fit and summary of the hierarchical regression base models and of the models showing a significant effect of the neural variables.  

Dependent 
Variable 

Model Model Fit Predictor Standardized 
beta 

S.E. t- 
value 

p- 
value 

F df p Adjusted 
R2 

AIC BIC 

SPELT-3 total 
score 

Model 1 (base 
model) 

4.799 5, 
19 

0.005 0.442 63.509 72.041 Rhythm 
Composite Score  

0.658  0.180  3.664  0.002 

Model 2 10.719 6, 
18 

<

0.001 
0.708 47.923 57.674 Rhythm 

Composite Score  
0.615  0.130  4.723  <0.001 

EEG-beta- 
Beat1effect  

0.512  0.119  4.286  <0.001 

Model 4 7.946 6, 
18 

<

0.001 
0.635 53.568 63.319 Rhythm 

Composite Score  
0.566  0.148  3.827  0.001 

EEG-gamma- 
Beat1effect  

0.468  0.141  3.320  0.004 

Transformation 
score 

Model 1 (base 
model) 

3.940 5, 
19 

0.013 0.380 66.140 74.672 Rhythm 
Composite Score  

0.417  0.189  2.204  0.040 

Model 2 6.308 6, 
18 

0.001 0.570 57.619 67.370 Rhythm 
Composite Score  

0.380  0.158  2.403  0.027 

EEG-beta- 
Beat1effect  

0.445  0.145  3.069  0.007 

Complex Syntax 
score 

Model 1 (base 
model) 

3.135 5, 
19 

0.031 0.308 68.887 77.419 Rhythm 
Composite Score  

0.276  0.200  1.378  0.184 

Model 2 6.769 6, 
18 

0.001 0.591 56.411 66.162 Rhythm 
Composite Score  

0.231  0.154  1.495  0.152 

EEG-beta- 
Beat1effect  

0.532  0.142  3.757  0.001 

Model 4 6.990 6, 
18 

0.001 0.600 55.851 65.602 Rhythm 
Composite Score  

0.164  0.155  1.059  0.304 

EEG-gamma- 
Beat1effect  

0.569  0.148  3.853  0.001 

Note. Each base model included age, nonverbal IQ, music experience, maternal education, and the Rhythm Composite score. Model 2, 3, 4, and 5 additionally included 
one of our neural variables (EEG-beta-Beat1effect, EEG-beta-Beat2effect, EEG-gamma-Beat1effect, EEG-gamma-Beat2effect). Significant effects are in bold. Adjusted 
R2 indicates the proportion of variance explained adjusted for the number of predictors in the model. AIC = Akaike Information Criterion. BIC = Bayesian Information 
Criterion. 

1 Note that running these analyses using the scores obtained in the validated, 
standardized rhythm discrimination test (i.e., PMMA) as predictor, rather than 
Rhythm Composite scores, does not significantly affect the results relative to the 
effects of the evoked clusters. 
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Patel, et al., 2017; Ghitza, 2012; Ladányi, Persici, et al., 2020; Luo & 
Poeppel, 2007); moreover, individual differences in neural entrainment 
may bootstrap acquisition of hierarchically organized structure during 
language development. Infants and newborns can process and neurally 
track rhythmic regularities in musical stimuli (Cirelli et al., 2016; Flaten 
et al., 2022) as well as in speech (Kalashnikova et al., 2019). Optimal 
entrainment, both internally between multiple oscillators (Jones, 2019) 
and to rhythm in music and grammatical structure in language, may 
help scaffold hierarchical processing by facilitating temporal integration 
of smaller units into larger linguistic structures (Ding et al., 2016). 
Neural mechanisms of entrainment may thus account for a relative 
strength in a given child’s ability to process hierarchical structures in 
music (Large & Jones, 1999) and to handle complex sentence structures 
during language acquisition. 

Our study showed that the neural responses of six-year-old children 
peaked in correspondence to rhythmic auditory stimuli, converging with 
previous research findings in adults showing modulations of evoked 
beta, gamma, and ERF neural responses to different physically-accented 
beat patterns (e.g., Iversen et al., 2009); taken together, this reinforces 
the idea that beat perception is robust from an early age (if not innate; 
see Winkler et al., 2009). Specifically, the children showed neural re-
sponses that fluctuated in both ERPs (with components that are typical 
of auditory stimulation; Ponton et al., 2000) and evoked beta and 
gamma activity according to the beat pattern that they heard: enhanced 
neural responses were found at the strong beat (i.e., the moment that the 
tone received the physical accent). Moreover, beyond the contribution 
of behaviorally measured rhythm perception skills, our measures of the 
differentiation of the children’s neural responses in the beta and gamma 
bands between accented and unaccented beats in initial position 
(termed Beat1 effect) were found to correlate and explain variance in 
spoken syntactic abilities. This was especially the case for task items 
requiring more refined complex syntactic operations (i.e., generation of 
multi-clausal sentences with dependency relations), for which the most 
influential predictors were our beta and gamma neural measures. The 
hierarchical regression model also included age, nonverbal IQ, music 
experience, and SES variables, ruling out the possibility that these 

results are due only to general maturity and cognitive effects or to 
environmental influences. 

Our study is the first to our knowledge to show that individual dif-
ferences in expressive syntactic performance are explained by neural – 
beyond and complementarily to behavioral – measures of rhythm in 
children. The unique variance explained by the beta and gamma neural 
measures recorded around the onset of the first tone, which lies between 
19 and 29.2 %, significantly contributes to the ability of the model to 
predict the children’s concurrent syntactic performance scores, for a 
total of variance explained that reaches 70.8 % in one case (see Model 2 
on SPELT-3 total scores in Table 4). Importantly, this indicates that in-
dividual differences in grammar skills may be concurrently predicted by 
passively collected neural measures; the fact that beat perception is 
already measurable in newborns (Winkler et al., 2009) suggests that 
such paradigms may also be used to investigate grammatical develop-
ment in children from a very early age. Of note is that spoken syntactic 
performance was related to beta activity (in correspondence to accents 
on the first tone), while gamma activity appeared to be of less impact. 
We consider that these results may be linked to the fact that beat-related 
effects have been found to be stronger in the beta band as defined here 
(Fujioka et al., 2009, 2012; Iversen et al., 2009; Snyder & Large, 2005) 
and to the nature of the language task that measured children’s 
expressive language skills: beta activity has been shown to be strongly 
linked to motor processes (Salmelin et al., 1995); relations between 
neural activity and language performance would be interesting to 
explore in the context of comprehension skills (Ladányi et al., 2023). 
Moreover, larger effects of beta than gamma frequency corresponding to 
the first tone might result from the fact that we only found a first-tone 
advantage for the former one. The mean beta activity was significantly 
larger in the Beat1 effect cluster than in the Beat2 effect cluster, and no 
significant differences were found in the gamma frequency range. As 
each cluster-sum variable was obtained by subtracting activity to the 
unaccented tone from activity to the beat, these results suggest increased 
beta activity in response to the beat when it is in first vs. second position. 
These findings suggest a first-tone advantage in the beta but not gamma 
frequency range that are consistent with prior results (Iversen et al., 

Fig. 7. Standardized beta coefficients and 95% confidence intervals from the models on SPELT-3 scores. Model 1 includes age, nonverbal IQ, music experience, 
maternal education (SES), and the behavioral Rhythm Composite score as predictors. Models 2 and 4 additionally include the EEG-beta-Beat1effect and EEG-gamma- 
Beat1effect clusters, respectively. 

V. Persici et al.                                                                                                                                                                                                                                  



Brain and Language 246 (2023) 105345

12

2009). 
Contrary to our expectations, larger neural activity around the onset 

of the second tone seemed not to reflect better syntactic encoding: ac-
tivity in this latency did not significantly contribute to explain variance 
in the children’s grammar scores; moreover, the gamma results showed 
that the measures of the differentiation of the children’s neural re-
sponses between accented and unaccented beats in second position 
(termed Beat2 effect) were not significantly associated with their syn-
tactic scores. In other words, this means that those children who better 
discriminated the difference between accented and unaccented tones in 
second position did not necessarily exhibit stronger grammar abilities. 
These results, together with those showing the children’s facilitation in 
relation to the first tone, could potentially be related to the most com-
mon stress patterns found in English. The strong–weak (or trochaic) 
pattern in speech (Cutler & Carter, 1987) is preferred by English 
speakers already at infancy (Echols et al., 1997; Jusczyk et al., 1993) and 
is acquired earlier than weak-strong (iambic) patterns (Ballard et al., 
2012). Children’s ability to discriminate accent information on the 
second tone may thus be less relevant to linguistic structure processing 
in English. Another potential explanation is linked to surface-level 
characteristics of the stimuli and/or serial-order effects, which might 
have rendered Beat2 effects smaller, and the association with language 
not to emerge statistically. As mentioned above, beta responses to beats 
in second position appear to be more reduced than those to beats in first 
position. Reduced beta responses to the second tone in a sequence may 
be due to the shorter refractory time before the onset of the second tone 
(IOI: 200 ms) than before the onset of the first tone (IOI: 400 ms) and/or 
to the suppression of the neural response to the repetition of the same 
stimulus (Grill-Spector et al., 2006). Future research investigating other 
languages and manipulating metrical structures and IOIs should clarify 
the source of these findings. 

The significant brain-behavior correlations observed in relation to 
the evoked time–frequency neural activity indicate that investigating 
high-frequency phase-locked oscillatory activity provides new insight 
into neural markers that could help explain behavioral associations 
between rhythm processing and grammar performance reported else-
where (Gordon, Shivers, et al., 2015; Gordon, Jacobs, Schuele, & 
McAuley, 2015; Lee et al., 2020; Politimou et al., 2019; Swaminathan & 
Schellenberg, 2019). In the context of meter, these findings align with 
prior findings of beta (which is thought to be closely related to rhythmic 
processing (Fujioka et al., 2012) and to beat perception (Cirelli et al., 
2016; Flaten et al., 2022; Fujioka et al., 2015), as well as with prior 
findings of gamma activity (which has been shown to track hierarchical 
linguistic structures: Ding et al., 2016). It should be noted that the beta 
band is also thought to play an important role in coordinating the 
entrainment of the auditory and motor cortices (Bartolo et al., 2014), 
which are important for both language and rhythm. Several neuro-
physiological processes therein may contribute to these brain- 
behavioral associations, including sensorimotor coupling in auditory- 
motor networks and fine-grained auditory processing (Fiveash et al., 
2021; Ladányi, Persici, et al., 2020). Optimal entrainment between the 
auditory and motor cortices may facilitate rhythm and language pro-
cessing, possibly by enhancing predictions about sensory events (Kotz 
et al., 2009, Kotz & Schmidt-Kassow, 2015). 

Beta and gamma neural activity have indeed both been associated 
with predictive processes regarding the timing (when) and content 
(what) of upcoming events (Arnal & Giraud, 2012; Leventhal et al., 
2012; Zanto et al., 2005), as they are thought to reflect synchronization 
of neuronal populations during sensory processing of regular, predictive 
information (Arnal & Giraud, 2012), which is possibly further shaped by 
top-down, learned modulation from the motor system (Iversen et al., 
2009; Patel & Iversen, 2014). Beyond sensory processing of the physical 
accents, it appears in the current study that more efficient synchroni-
zation and beat structure differentiation in the beta and gamma bands is 
associated with extraction and parsing of hierarchically complex struc-
tures (Ding et al., 2016). These new EEG results, and the rapid time 

course at which they unfold in tracking the onset of a musical beat, 
complement recent fMRI meta-analysis findings of overlapping neural 
resources of complex syntax and musical rhythm in adulthood (Heard & 
Lee, 2020). The findings of the current study are particularly relevant in 
consideration of the ontogeny of complex syntax use, which has a 
notably protracted developmental acquisition throughout school-age in 
children with typical development (Vasilyeva et al., 2008) and becomes 
increasingly vital for the communication of complex academic material, 
life skills, and social relationships (Brimo et al., 2017; Fujiki et al., 
1999). The link between rhythm and language via neural oscillations is 
also reinforced by the finding that musicians – who show more precise 
endogenous neural entrainment to rhythm (Stupacher et al., 2017) – 
find it easier to acquire new hierarchical structures in an artificial lan-
guage (Brod & Opitz, 2012). The association between hierarchical 
structure extraction and parsing in rhythm and language fit well in the 
context of evolutionary arguments as to the role of rhythm in human 
communication and interaction (Honing, 2018; Patel & Iversen, 2014; 
Savage et al., 2020). Humans appear to be naturally disposed to 
perceiving, producing, and appreciating rhythms across a variety of 
contexts (Savage et al., 2015), including verbal and nonverbal social 
interaction (Cirelli et al., 2018). In children, the predisposition to 
perceive, extract, and manipulate hierarchical information may guide 
language learning by facilitating scaffolding of incoming input into 
distinct language units (Flaten et al., 2022) and thus ease processing and 
manipulation of complex linguistic information. 

5. Conclusions 

To conclude, the present study showed how individual differences in 
neural markers of beat perception relate to individual differences in 
expressive grammar in six-year-old children. Individual differences in 
mastery of complex syntax structure were especially related to beta band 
activity. In line with previous research (e.g., Politimou et al., 2019; 
Swaminathan & Schellenberg, 2019; Woodruff Carr et al., 2014), the 
present findings suggest that precise neural encoding of temporally 
organized rhythmic structure may reflect a mechanism biologically 
related to typical language development and acquisition. Impairment of 
mechanisms linked to neural markers of rhythm may eventually have 
critical implications for bolstering earlier identification and treatment of 
developmental speech and language disorders (see the Atypical Rhythm 
Risk Hypothesis by Ladányi, Persici, et al., 2020). 

It is important to note that future investigations in a larger sample 
size and utilizing an in-depth, comprehensive battery of complex syntax 
language assessments, investigating both comprehension and produc-
tion, are warranted to assess the generalizability of these results. As 
indicated by a sensitivity analysis, the current study was not powered to 
reliably detect small and medium-sized effects. This suggests that more 
subtle effects may have not emerged due to its small sample size. 
Furthermore, the same analysis suggests that the effect size of the rela-
tion of beta and gamma activity in response to the first tone on the 
SPELT-3 total scores and on transformation scores, respectively, are only 
of medium size and should therefore be interpreted with caution. 

In addition, it could be argued that that the beat patterns in our EEG 
task were fairly simple compared to the hierarchical structures included 
in our grammar task; future work may include beat patterns with more 
complex hierarchical structures to investigate whether individual dif-
ferences in complex beat tasks explain even more variance in children’s 
grammar abilities. Incorporating imagined beat conditions in the future 
may also enlarge our understanding of language processes: in the pre-
sent study we only examined passive (and possibly pre-attentive) evoked 
responses, but studies have suggested that attentive and top-down pro-
cesses also contribute to the discovery of temporal structure and provide 
potential additional vistas that might reveal novel insights into the 
development of the neural underpinnings of the temporal processing of 
language. The inclusion of such conditions would also help clarify 
whether the neural responses observed in this study are partly 
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influenced by the physical properties of the stimuli. Although previous 
work suggest that these types of responses are neural correlates of beat 
tracking (Iversen et al., 2009; Kasdan et al., 2020), possible effects due 
to perception of intensity cannot be excluded and direct claims about 
predictive processing cannot be made. In addition, including conditions 
in which inter-onset-intervals are jittered to disrupt beat perception or 
are equal before the onset of the two tones, and/or conditions with 
metrical structures of varying complexity in future work may help 
disentangle the interplay between sensory and cognitive processing and 
establish whether the relationship between neural activity and grammar 
production skills observed here is driven by beat perception specifically. 

Future studies could also explore whether the same relationship 
holds if more traditional paradigms tapping into pre-attentive processes 
(such as oddball paradigms) are used to investigate children’s neural 
responses to the beat. Research with other languages may also be of help 
in investigating whether these results are language-specific or general-
izable across different languages. Importantly, the current study shows 
an association between beat and grammar processing using concurrent 
measures; to clarify whether this relationship is causal, it will be 
important to further probe if actively supporting rhythm development 
(for instance, through participation in music programs) leads to transfer 
effects in grammar development in longitudinal designs. Finally, the use 
of similar paradigms in adults may provide insight into whether hier-
archical processing is a mechanism underlying both rhythm and 
grammar processing and is not only driving language learning in 
development. While the same language test employed in the current 
study may not be sufficiently complex to highlight individual differences 
in adults, tasks requiring more sophisticated syntactic operations may 
reveal similar relations to those observed here. These expectations are 
based on prior findings of associations between activity in the beta 
(Bastiaansen et al., 2010) and gamma (Ding et al., 2016) frequency 
range and extraction and processing of syntactic structures, between 
rhythm and grammar processing in several tasks (Canette et al., 2019; 
Kotz et al., 2009; Schmidt-Kassow & Kotz, 2008), and between artificial 
grammar learning and musical expertise (Brod & Opitz, 2012). 

Nonetheless, the current study is one of the few ones so far to apply 
an individual differences approach toward understanding of children’s 
neural activity during a musical task, and furthermore to show, in a 
developmental population, evidence of a link between individual dif-
ferences in neural activity and in a trait in a different domain. These 
promising findings suggest that this approach to rhythmic neural pro-
cessing with EEG in children may not only be a passive, implicit, rapid, 
and relatively inexpensive way to assay a particular dimension of 
musical beat processing that appears to have strong links with spoken 
language development. Similar approaches may also serve as an 
important tool for predicting individual differences in complex language 
use in school-age children with a wide range of language skills. 
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