

View

Online


Export
Citation

CrossMark

REVIEW ARTICLE |  OCTOBER 12 2023

Estimating fractal dimensions: A comparative review and
open source implementations 
George Datseris   ; Inga Kottlarz  ; Anton P. Braun; Ulrich Parlitz 

Chaos 33, 102101 (2023)
https://doi.org/10.1063/5.0160394

 09 N
ovem

ber 2023 10:51:33

https://pubs.aip.org/aip/cha/article/33/10/102101/2916352/Estimating-fractal-dimensions-A-comparative-review
https://pubs.aip.org/aip/cha/article/33/10/102101/2916352/Estimating-fractal-dimensions-A-comparative-review?pdfCoverIconEvent=cite
https://pubs.aip.org/aip/cha/article/33/10/102101/2916352/Estimating-fractal-dimensions-A-comparative-review?pdfCoverIconEvent=crossmark
javascript:;
https://orcid.org/0000-0002-6427-2385
javascript:;
https://orcid.org/0000-0003-1539-3735
javascript:;
javascript:;
https://orcid.org/0000-0003-3058-1435
javascript:;
https://doi.org/10.1063/5.0160394
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2100974&setID=592934&channelID=0&CID=768787&banID=521069223&PID=0&textadID=0&tc=1&scheduleID=2025884&adSize=1640x440&data_keys=%7B%22%22%3A%22%22%7D&matches=%5B%22inurl%3A%5C%2Fcha%22%5D&mt=1699527093634861&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Fcha%2Farticle-pdf%2Fdoi%2F10.1063%2F5.0160394%2F18167477%2F102101_1_5.0160394.pdf&hc=2482ce16501e556e21311cafda17debaf196e87a&location=


Chaos REVIEW pubs.aip.org/aip/cha

Estimating fractal dimensions: A comparative
review and open source implementations

Cite as: Chaos 33, 102101 (2023); doi: 10.1063/5.0160394

Submitted: 1 June 2023 · Accepted: 23 August 2023 ·
Published Online: 12 October 2023 View Online Export Citation CrossMark

George Datseris,1,a) Inga Kottlarz,2,3,4 Anton P. Braun,2,4 and Ulrich Parlitz2,4

AFFILIATIONS

1Department of Mathematics and Statistics, University of Exeter, EX4 4QF Exeter, United Kingdom
2Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077 Göttingen, Germany
3Department of Pharmacology and Toxicology, University Medical Center Göttingen (UMG), Robert-Koch-Str. 40,

37075 Göttingen, Germany
4Institute for the Dynamics of Complex Systems, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany

a)Author to whom correspondence should be addressed: g.datseris@exeter.ac.uk

ABSTRACT

The fractal dimension is a central quantity in nonlinear dynamics and can be estimated via several different numerical techniques. In this
review paper, we present a self-contained and comprehensive introduction to the fractal dimension. We collect and present various numeri-
cal estimators and focus on the three most promising ones: generalized entropy, correlation sum, and extreme value theory. We then perform
an extensive quantitative evaluation of these estimators, comparing their performance and precision using different datasets and comparing
the impact of features like length, noise, embedding dimension, and falsify-ability, among many others. Our analysis shows that for syn-
thetic noiseless data, the correlation sum is the best estimator with extreme value theory following closely. For real experimental data, we
found the correlation sum to be more strongly affected by noise vs the entropy and extreme value theory. The recent extreme value theory
estimator seems powerful as it has some of the advantages of both alternative methods. However, using four different ways for checking
for significance, we found that the method yielded “significant” low-dimensional results for inappropriate data like stock market timeseries.
This fact, combined with some ambiguities we found in the literature of the method applications, has implications for both previous and
future real-world applications using the extreme value theory approach, as, for example, the argument for small effective dimensionality in
the data cannot come from the method itself. All algorithms discussed are implemented as performant and easy to use open source code via
the DynamicalSystems.jl library.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0160394

When chaotic dynamical systems evolve in time, they typically
create sets in the state space that have fractal properties. One
of the major ways to characterize these chaotic sets is through
a computationally feasible version of a fractal dimension (FD).
In the field of nonlinear dynamics, the correlation sum and
the generalized (Rényi) entropy are the two most commonly
used approaches. One attempts to find a scaling exponent of
these quantities vs a size parameter, and this exponent approx-
imates the fractal dimension. A third method based on extreme
value theory is a promising alternative, but it has been devel-
oped only recently and, hence, has not undergone the same
amount of scrutiny as the previous two methods. Here, we pro-
vide a comprehensive, up to date, and self-contained analysis of
available methods, comparing across every conceivable scenario.

We also provide open source implementations to compute each
method.

I. INTRODUCTION

Fractal geometry deals with geometric objects (or sets) called
fractals,1,2 which are “irregular” in terms of traditional Euclidean
geometry. Their most striking property arguably is that they possess
structure at all scales, which typically remains invariant in one form
or another, no matter how much one zooms into the set. Because
of this, the traditional topological dimension is not fit to describe
these sets adequately (Chap. 5 of Ref. 3). The concept of a fractal
dimension, a generally non-integer number, is, therefore, employed

Chaos 33, 102101 (2023); doi: 10.1063/5.0160394 33, 102101-1

© Author(s) 2023

 09 N
ovem

ber 2023 10:51:33

https://pubs.aip.org/aip/cha
https://doi.org/10.1063/5.0160394
https://doi.org/10.1063/5.0160394
https://pubs.aip.org/aip/cha/action/showCitFormats?type=show&doi=10.1063/5.0160394
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0160394&domain=pdf&date_stamp=2023-10-12
https://orcid.org/0000-0002-6427-2385
https://orcid.org/0000-0003-1539-3735
https://orcid.org/0000-0003-3058-1435
mailto:g.datseris@exeter.ac.uk
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/5.0160394


Chaos REVIEW pubs.aip.org/aip/cha

to characterize such objects.2,4 The fractal dimension, which will be
shortened to FD in the rest of the article, can be used to quantify the
complexity of the geometry, its scaling properties and self-similarity,
and the effective ratio of surface areas to volumes.2 It has been
applied in a vast array of different scenarios, from the archety-
pal measurement of coastlines5,6 to being suggested as a tool for
validating abstract art, e.g., that of Pollock.7,8

The evolution of chaotic dynamical systems results in sets in
the state space that are typically fractal4,9 and, thus, can be character-
ized by a FD,10–16 done to our knowledge for the first time by Russell
et al.17 For dissipative systems, these sets are called strange or chaotic
attractors17,18 (boundaries of basins of attraction and chaotic saddles
can also be fractal19,20). For conservative systems, they often have
special properties and are (typically) called fat fractals.21 For fractal
sets resulting from evolving dynamical systems, an estimate of FD
provides the additional crucial information of the effective degrees
of freedom of the time evolution. This means that calculating the FD
for an experimentally obtained dataset can be used to guide the mod-
eling process,3,22,23 as the ceiling of the FD is the minimum number
of independent variables that can model the system. Alternatively, if
one has a model that confidently approximates the real system, due
to physical arguments, then the FD of the model output can be used
to tune model parameters: since FD is a dynamic invariant,3,22 one
can compare FDs of the model simulations to the FD obtained by
observed data and change parameters until those two values match.

These reasons have motivated many researchers to compute
the FD of many real-world systems by delay embedding measured
timeseries.22 Examples include global climate,24–26 physiology,27 and
lasers,28 but many more exist. Unfortunately, some of these studies
have been challenged, because calculating the fractal dimension in
practice is a difficult, error prone process, with limited means of
providing confidence to the obtained result. This is, for example,
highlighted well in the controversy of estimating FDs of “climate
attractors” (see, e.g., Ref. 26, and references therein), where FD esti-
mates were incorrectly used to claim very low FD of ≈ 3 for the
whole climate system. Researchers, thus, often need to interpret
results partly subjectively, due to the lack of objective measures.

In this paper, we compare as many computationally feasible
estimators of FDs as possible, in as objective manner as possible,
and across as many scenarios as possible. With this, we provide an
objective baseline with which researchers can check against their
results, reducing the amount of interpretation and subjectivity. It is
important to stress the separation between computing the FD of “the
deterministic dynamics,” i.e., the dynamic invariant characterizing
the flow in the state space, and the FD of “the graph of a timeseries
f(t) vs t.” The latter is relevant for stochastic perspectives, is often
related with the Hurst exponent,29,30 and is typically used as a quan-
tifier of timeseries more suitable for classification tasks vs typical
statistics-based quantifiers (see, e.g., Refs. 31 and 32). These two FD
versions are very different and unrelated in the general sense. Our
paper focuses exclusively on the first version.

Hence, our main operating assumption is that we have a mul-
tivariate (sometimes also called multidimensional) dataset, obtained
from a dynamical system from which we do not know the dynamic
rule (equations of motion). If one has a timeseries, it first must be
reconstructed into a state space set via delay embedding or other
means.3,22,23 Our operating assumption is on the one hand motivated

by the increase of interest in observed or measured multivariate
data, and higher accessibility of sensors and experimental data in
preparation for a nonlinear-dynamics-based analysis.33 On the other
hand, there is also noticeable recent progress regarding better attrac-
tor reconstruction techniques based on delay embeddings, which
can also utilize multivariate measurements, yielding a higher qual-
ity reconstruction overall (see, e.g., Refs. 34 and 35 by Kraemer
et al., and references therein). We point out that our goal here is
estimating FDs of chaotic sets knowing that these exist, in order to
separate the problem of the FD estimation from the scientific ques-
tions surrounding the interpretation of the data. The latter requires
following best practices, e.g., various data pre- and post- processing,
de-noising, or surrogate tests comparing the FD value of the real
data with those of surrogates. These steps are entirely skipped here,
and the reader can find more information in standard timeseries
analysis textbooks or review articles, such as Refs. 23 and 28.

Since the first review on the topic of FD by Theiler in 1990,16

computers and software have improved and several new algorithms
to estimate fractal dimensions have been proposed. It is, thus, timely
to revisit the subject, and, here, we will provide a comparison and
evaluation of FD estimators across a range of topics much larger
than what has been done so far. Beyond comparing and evalu-
ating various fractal dimension estimators, we provide optimized,
easy-to-use, extensively tested, open source implementations for
all algorithms discussed in this review in the DynamicalSystems.jl
software library.36

This review and comparison paper is structured as follows (and
see also Fig. 1 for a summary of the paper). In Sec. II, we provide a
self-contained concise definition of the major methods used to com-
pute FDs and how they relate with the natural density and with each
other. Connected with this section is Appendix A, which presents
all (computationally feasible) algorithms we have found for estimat-
ing a fractal dimension. The core of the paper are Secs. III and IV,
which compare in detail the three best and most popular estima-
tors of FDs: scaling of entropy, scaling of correlation sum, and an
extreme value theory approach. We compare across data dimension-
ality, data length, different kinds of dynamical systems, noise levels,
real-world data, various embeddings of timeseries, and the order q of
the fractal dimension, among others. We close the paper with a sum-
mary of our findings in Sec. VI. Every result, plot, and method that
we present in this paper is fully reproducible via open source code
and adjustable to other input datasets (see Appendix B for details).

II. STATE OF THE ART

An easy to understand introduction and review regarding the
fractal dimension was given by Theiler in 1990.16 The theoreti-
cal background of the fractal dimension and the methods (known
until 1990) to compute it are summarized, and a plethora of his-
toric references is given there. A more recent publication on fractal
dimensions in a style of a review is given by Lopes and Betrouni in
2009.37 However, it is focused on image analysis and pattern recogni-
tion and does not do any quantitative comparison. The most recent
detailed source that provides quantitative information on the limi-
tations and pitfalls of fractal dimension estimates is the well known
textbook by Kantz and Schreiber.22
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FIG. 1. Summary and overview of this paper. Section II A discusses top-left panel. Sections II B–II D discuss bottom left panel. Sections III and IV discuss top right panel
and lead to the results summarized in the table of the bottom right panel (which are also stated in Sec. VI).

A number of ways to estimate a FD, which are applicable to
dynamical systems, have been devised in the literature. For this
comparison, we found, implemented, and compared the methods
that we briefly summarize in Table I. From these, our main anal-
ysis focuses on the three most prominent ones. In the rest of this
section, we will provide a concise, yet self-contained, summary of
the concept of a fractal dimension in dynamical systems. Then, we
introduce the three main estimators that we use in the extensive

comparisons done in Secs. III and IV and illustrate how the differ-
ent estimators connect to the natural density and with each other.
In the following, we assume that we have a set X that contains
N D-dimensional points representing a (possibly observed) multi-
variate timeseries of a dynamical system. We will use the letter 1
to denote various versions of a fractal dimension, and we will use
a superscript in parenthesis, such as 1(S) to denote the particular
estimator used to estimate1.

TABLE I. Description of various estimators for fractal dimension considered in this paper (see also Appendix A).

Estimator Brief description Main Refs.

Natural measure entropy Scaling of generalized entropy Hq of amplitude binning, vs box size 17
Molteno’s histogram optimization Optimized algorithm for amplitude binning with restricted size ε 38
Correlation sum Scaling of correlation sum Cq vs radius ε 10 and 39
Box/prism-assisted correlation sum Optimized algorithm to calculate the correlation sum 40
Performance-optimized box size Optimized for performance box-assisted algorithm 41
Logarithmic correction Better converging fit instead of the standard least square fit of log (C2) vs log(ε) 42
Takens’ estimator Maximum likelihood estimation of scaling exponent, C2(ε) ∝ ε1 for ε ∈ (0, εmax] 13 and 43
Judd’s estimator Binned MLE with additional degrees of freedom from polynomial 44 and 45
Mean return times Logarithmic scaling of mean return time to an ε-sphere, vs ε 46 and 16
Lyapunov dimension Kaplan and Yorke’s linear interpolation for sum of Lyapunov exponents = 0 47
Lyapunov dimension via fits Higher-order interpolations and other fits for sum of Lyapunov exponents = 0 48
Extreme value theory based Rare events follow a Pareto distribution whose parameter is the fractal dim. 49
Persistent homology Quantify how the topology of shape changes as it is thickened 50
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A. What does a fractal dimension really quantify?

In the introduction, we discussed how the FD is useful for
practical matters and, hence, worthy of being estimated. However,
before discussing any estimators for a FD, it is useful to conceptual-
ize what the FD truly characterizes, as this is the origin of all practical
estimations.

For this discussion, we ignore the presence of noise existing
in real data, and the fact that observed timeseries need to be delay
embedded to yield higher dimensional data. The starting assump-
tion, therefore, is that the set X = {x1, . . . , xN} we have at hand
is a faithful sampling of some sort of D-dimensional invariant set
(typically a chaotic attractor) of a dynamical system, i.e., X ⊂ A.
A is itself characterized by its natural, or invariant, measure µ(x),
which defines a probability space on top of A by requiringµ(A) = 1.
Equivalently, we may use the natural density ρ(x)dx = dµ, which in
practical terms is the D-dimensional histogram of X. To learn more
on the natural measure, one should consult various textbooks on
nonlinear dynamics3,18,21 or the review by Theiler.16 In essence, while
the samples xi ∈ X form a time sequence of points with determin-
istic origin, they can be also be thought of as points sampled “at
random” from A according to the measure µ. Note that through-
out this FD description, we make the fundamental assumption that
A (with measure µ) is ergodic.

A FD is a number characterizing the scaling of µ with the
“scale” one looks at µ at. Let B(x, ε) be a D-dimensional sphere51

centered at x with radius ε. For sufficiently small ε, and for almost
all xi ∈ A, it is assumed that the scaling ofµwith ε is exponential, so
that

µ (B(xi, ε)) ∼ ε1i ⇒
(1)

1i = lim
ε→0

logµ (B(xi, ε))

log ε
.

Here, 1i is labeled the local dimension at xi, and by construction
1i ≤ D. The assumption in Eq. (1) is a reflection of our intu-
itive notion of dimension, which describes that the “bulk” or the
“amount” of a set scales with a linear size (scale) exponentiated to
the dimension, e.g., the amount of a cube scales with its side length
to the third power. Here, we measure “amount” of a subset of A by its
natural measure, i.e., its relative probability mass. From 1i a fractal
dimension characterizing A as a whole can be obtained as the mean,

1 =
∫

A

1i dµ. (2)

This intuition-based definition of a local and attractor dimen-
sion is further motivated by Theiler in his review article on the basis
of the Hausdorff dimension.16 Equation (1), however, is noncom-
putable becauseµ is unknown, since in practice, we have only partial
knowledge of µ due to the finite observations of X ⊂ A. In addi-
tion, for the overwhelming majority of dynamical systems, µ does
not have an analytic expression anyway, irrespectively of finite data.
An estimator of a FD, therefore, attempts to measure either the local
scaling of Eq. (1) or the global scaling by averaging in Eq. (2).

Before going into specific estimators, we need to stress that
none of the estimators we considered in this review yield the Haus-
dorff dimension.2,52 Often in the literature, researchers use the term

“Hausdorff dimension” to refer to the output of the estimators, but
no one has provided any formal proof of the equivalence between the
estimates and the Hausdorff dimension (which itself has a very pre-
cise and rigorous mathematical definition). This is especially so for
the box-counting dimension, where it is easy to prove that it cannot
be the same as the Hausdorff dimension.53

B. Entropy of natural density

The first way to define and compute 1 is based on an approx-
imation of the natural density ρ of the set. By discretizing the state
space in boxes of size ε one can assign a probability pi, i = 1, . . . , M
to each box, which is simply the count of points in the box divided
by the total amount of points N. These probabilities approximate ρ,
and from there, the Rényi (also called generalized) entropy can be
obtained as54

Hq = 1

1 − q
log

(

M
∑

i=1

p
q
i

)

. (3)

Here, q is the order of the entropy, and it allows putting more
(q < 1) or less (q > 1) weight to boxes with relatively smaller vis-
itation frequency by the trajectory (and, hence, smaller pi). For
q = 1, Hq reduces to the known Shannon entropy while for q = 0, it
becomes log(M) with M the minimum number of non-overlapping
boxes needed to cover the set X. More than one way exists for
estimating the probabilities pi (see Appendix A). In the main com-
parison of Sec. III, we will use the algorithm Sec. 1 of Appendix A,
which works for any values of D, N, ε while having performance
scaling of D · N · log(N).

To connect Hq with µ, we re-write
∑

i p
q
i =

∑

i pip
(q−1)
i . This

is a weighted average, equaling to 〈p(q−1)〉, since
∑

pi = 1. We note
that 〈p〉 is our notion of “amount,” as we measure the amount by the
probability mass. Regularizing the expression by its exponent, the
quantity 〈p(q−1)〉1/(q−1) ≡ exp(−Hq) is the “average bulk” or “average
amount” in a hypercube of linear size (i.e., scale) ε. The number q
settles the way we average: for q = 2, we have the arithmetic (typical)
average; for q = 3, a root mean square; and for q → 1, a geometric
average.

By following the same intuition that led to Eq. (1) (that
“amount” ∼ scale ˆ exponent), the so-called generalized dimension
of order q,55,56 is defined as

1(H)
q = lim

N→∞
lim
ε→0

(−Hq(ε)

log ε

)

. (4)

This definition was used, to our knowledge, for the first time for
q = 1 by Russell et al.17 1

(H)
0 is called the box counting or capacity

dimension, while1(H)
1 is called the information dimension. The box-

counting dimension can also be thought as the fractal dimension of
the support of the attractor, as it disregards the values of µ.

In Eq. (4), both limits are theoretical and cannot be realized in
practice. As a result,1(H)

q is estimated by plotting −Hq vs log(ε) and
estimating the slope of a linear scaling region (for sufficiently large
N, more on this in Sec. III I).

If the fractal dimension depends on q, the set is called multi-
fractal. This is the case when the natural measure underlying the
attractor is strongly non-uniform. Large positive values of q then
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put more emphasis on regions of the attractor with a higher nat-
ural measure. In dynamical systems theory, almost all chaotic sets
are multi-fractal.14 The dependence of 1(H)

q on q is connected with
another concept, the so-called singularity spectrum, or multifractal-
ity spectrum f(α); however, we will not be calculating f(α) here and
refer to other sources for more (see, e.g., Chap. 9 of Ref. 18 by Ott).

C. Correlation sum

The second way of defining and estimating a fractal dimen-
sion uses the correlation sum.10 The correlation sum is an alternative
way of estimating the average amount at a given scale, based on the
points nearby a given point. Specifically, we associate an amount S
at point xi ∈ X and at scale ε as

S(xi, ε) = 1

N − 1

∑

j6=i

B
(∥

∥xi − xj

∥

∥ < ε
)

, (5)

with || · || some distance norm (here always the Euclidean, but dif-
ferent norms have little practical impact and theoretically exactly no
impact) and B(·) = 1 if its argument is true and 0 otherwise, i.e.,
we count the ε-close neighbors of xi in X. The exponential scal-
ing of S(xi, ε) vs ε is called the pointwise (local) dimension.57 The
average “amount” S over X is called the correlation sum, given by
C(ε) =

∑

i S(xi, ε)/N.
Using the same reasoning as in Sec. II B, this average amount

is expected to scale with the linear size ε exponentiated to the FD.
Again, similarly with Sec. II, we do not have to limit ourselves to
the typical arithmetic average when defining the correlation sum,
but can introduce an order q that adjusts how we are averaging the
“amount.” This leads to the definition of the q-order correlation
sum,11,22,39

Cq(ε) =









N
∑

i=1

Ni









N
∑

j=1
|i−j|>w

B
(

||xi − xj|| < ε
)









q−1







1/(q−1)

,

(6)

Ni = 1

N (max(N − w, i)− min(w + 1, i))q−1 .

Here, we also added w ≥ 0, the correction by Theiler58 (known
as Theiler window), which excludes as neighbors points that are
temporally close. This removes spurious correlations due to dense
sampling of continuous dynamical systems. We choose w as follows:
for each timeseries present in the multi-dimensional input dataset
X, we calculate the first minimum of its self-mutual information.3

The maximum of the time shifts corresponding to these minima is
chosen as w.

Originally, the version explicitly having q = 2 was used to
define the correlation dimension,10 and the process of defining a
FD was, in fact, the same as in Hq for any q. A linear scaling
region is estimated from the curve of log(Cq) vs log(ε). Then, the
correlation-sum-based FD1(C)

q is the slope of that linear region.
We may leverage two potential improvements here. First, to

calculate Cq(ε), we used a box-assisted method.40,41 We modify this
method as discussed in Sec. 4 of Appendix A, because otherwise it
fails for data with even a small amount of noise (see discussions in

Sec. III F and Sec. 4 of Appendix A). Second, in addition to the stan-
dard least squares fit log

(

Cq

)

∼ a +1(C)
q log(ε), we also used the

correction by Sprott and Rowlands42 when possible (i.e., when at
least half the range has log(ε) < 0). Reference 42 optimizes the fit

log(C2) ∼ a +1
(C)
2 log(ε)+ b log(− log(ε))

(

a, b are parameters to

be optimized in parallel with 1(C)
2

)

. It is intended to give better fits

for sets that have a slowly converging fractal dimension estimate, but
as we will show later, it is best to not use it in practice.

In the rest of the manuscript, we will use Hq or Cq to refer to the
methods of estimating FD via the (generalized) entropy or (general-
ized) correlation sum. We will explicitly use a subscript H2, C2 when
we make statements that apply only to this particular order q = 2.

D. Extreme value theory

The third major way of defining and estimating a FD from a
set X is based on extreme value theory (EVT) applied to dynami-
cal systems.49 The method estimates a local dimension 1(E)

i , as in
Eq. (1), and then provides the FD as the average. Interestingly, the
method utilizes exactly the same information as the correlation sum:
all inter-point distances. However,1(E)

i is not estimated directly via
an exponential scaling relationship in contrast to the generalized
entropy and correlation sum methods.

To the best of our knowledge, the method has been developed
using progress across several papers59–64 (see also Chaps. 4 and 9
of Ref. 49). Even though relatively recent, this method has been
applied already to a plethora of real-world cases (see, e.g., Refs. 65–74)
and many more (see Ref. 75 for a summary of recent applications).
Despite this plethora of applications, we have noticed that some
applications have ambiguities with the basic theory that connects
EVT with FD, and we discuss these issues in Sec. 10 of Appendix A.

First, let us summarize the computational algorithm to estimate
a FD via EVT and then discuss how it connects to the natural mea-
sure µ. Let g(ε) = − log(ε) be a function of a distance (or radius) in
state space. For the ith point in X, we estimate

gi = − log
(
∣

∣

∣

∣xi − xj

∣

∣

∣

∣

)

∀j 6= i, (7)

with || · || the Euclidean distance. Note that gi is a real-valued vector
of length N − 1. Next, we choose an “extreme” probability p for a
quantile of the distribution of gi (e.g., p = 0.99). We found no refer-
ence that clarified what “extreme” means in a mathematically precise
way, but we discuss in high detail how the choice of p impacts the
results in Sec. IV B.

In any case, we then compute gp as the p quantile of gi. Then,
we collect the exceedances of gi, defined as

Ei =
{

gi − gp : gi ≥ gp

}

, (8)

i.e., all values of gi larger or equal to gp, also shifted by gp. Ei is also a
real-valued vector with n = bN(1 − p)c values in total. Now, accord-
ing to extreme value theory,62,76 in the limit N → ∞, p → 1, and for
the particularly chosen form of the function g, the values Ei follow
a generalized Pareto distribution (GPD) with parameters σ , ξ and
shift parameter 0 (see Sec. 10 of Appendix A for more on GPD).
However, if the measure µ and attractor A satisfy the criterion of
Eq. (1), then the GPD is reduced to an exponential distribution
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(EXPD) with parameter σ , E ∼ exp(E/σ). Within this extreme value
theory approach, the local dimension 1(E)

i assigned to state space
point xi is given by the inverse of the σi parameter of the EXPD fit to
the exceedances, i.e.,

1
(E)
i = 1/σi,

σi = Ēi = (N − 1)/
∑

Ei.
(9)

In the above expression, we explicitly used the maximum likelihood
estimator for fitting the σ parameter, which is simply the sam-
ple mean for an exponential distribution. Additionally, the above
expression places one additional assumption on the local scaling of
the natural measure µ, see discussion below around Eq. (13). The
FD for A follows as the arithmetic mean,

1(E) = 1

N

N
∑

i=1

1
(E)
i , (10)

which means that the EVT FD corresponds to a FD of order q = 2.
Let us now discuss how this theory connects to Eq. (1) and,

hence, relates 1i to the σi parameter. Due to the invertibility of the
g function, the exceedances Ei correspond to when the orbit of the
dynamical system comes closer than ε∗ to the reference point x0,
with ε∗ = exp(−gp). This clarifies why we focus on extremes of gi:
we are interested in what happens around a small radius ε around
a reference point x0, in order to connect with the fundamental
definition of the local dimension of Eq. (1).

Now, let us discuss the probability πi(E) that given that an
exceedance has occurred (i.e., a state xj is at least ε∗-close to x),
there is an exceedance of E. This probability is by construction
given by 1 minus the cumulative distribution function of the fitted
EXPD, i.e., πi(E) = exp(−E/σi). However, the same probability can
be constructed in terms of the natural measure µ to be

πi(E) = µ (B(xi, ε))

µ (B(xi, ε∗))
, (11)

with

ε = exp(−gp − E) ≤ ε∗ = exp(−gp). (12)

We can relate1i with σi if we place one more assumption on µ. We
assume that locally around xi,

µ (B(xi, ε)) = fi(ε)ε
1i , (13)

where fi(ε) is a slowly varying function of ε as ε → 0, which may
or may not depend on reference point xi. With this assumption,
both numerator and denominator of Eq. (11) scale exponentially
with 1i and the remaining factors cancel out even though ε 6= ε∗.
By taking into account also the expressions of Eq. (12), and that
πi(E) = exp(−E/σi), we put everything together and have

exp(−E/σi) = (ε/ε∗)1i = exp(−(gp + E)1i)

exp(−gp1i)
= exp(−E1i) (14)

from which1i = 1/σi.

E. Lyapunov (Kaplan–Yorke) dimension

Last, a FD estimate proposed by Kaplan and Yorke47 is based
on the Lyapunov exponents characterizing an attractor. Let {λi}
denote the Lyapunov spectrum, with λ1 ≥ λ2 ≥ · · · ≥ λD. Then, the
Lyapunov dimension is defined as

1(L) = `+
∑`

i=1 λi

|λ`+1|
, ` = max

j

[

j
∑

i=1

λi > 0

]

. (15)

In simple terms, it is the (linearly interpolated) index value where the
sum of the Lyapunov exponents of the set first crosses zero. Table II
provides estimates for the systems we use in this paper. It is con-
jectured that 1(L) ≈ 1

(H)
1 (see also Ref. 77) and generally one does

find similar values in practice; however, there is no formal proof yet.
An extension to Eq. (15) has been proposed in Ref. 48 that is not
included in the main comparison but discussed in Appendix A. Keep
in mind that Eq. (15) is defined only for dissipative systems, where
∑

λi < 0. Applying it to conservative systems does not make much
sense, e.g., Hamiltonian systems satisfy λi = −λD−i+1 and obtain
1(L) = D always, even though the motion might happen in a lower-
dimensional manifold. For the 4D Hénon–Heiles system (Fig. 3),
energy conservation limits the dynamics in a 3D manifold, and, thus,
its FD cannot be greater than 3.

1(L) has a huge advantage when compared to the previous
definitions of fractal dimensions: it can be computed with very
high precision, even for high-dimensional systems (where the other
methods typically suffer from accuracy, as we will show below).
However, it also has a huge disadvantage: practically, it can be com-
puted only if the dynamic rule (equations of motion) is known. Only
using the dynamical rule and its linearization one can estimate the
entire Lyapunov spectrum with satisfactory precision, for example,
by means of the known algorithm due Shimada and Nagashima78

and Benettin et al.79 From a finite, and often noisy real-world dataset,
calculating the entire spectrum of exponents is a very challenging
task that requires for higher-dimensional attractors very large data
sets.80 Therefore, one is in most cases better off calculating a fractal

TABLE II. Lyapunov (Kaplan–Yorke) dimensions for systems with known dynamic

rule (listed in Table III).

System D 1(L)

Lorenz96 4 2.99
Lorenz96 6 4.93
Lorenz96 8 6.91
Lorenz96 10 8.59
Lorenz96 12 10.35
Lorenz96 14 12.10
Lorenz96 32 27.68
Rössler (chaotic) 3 1.9
Hénon map 2 1.26
Kaplan–Yorke map 2 1.43
Towel map 3 2.24
Coupled logistic maps 8 8
Kuramoto–Sivashinsky 101 31.76
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dimension directly from data, or instead fit an explicit model to the
data, e.g., Ref. 81.

Unfortunately, it is not straightforward to connect 1(L) to
Eq. (1). One may find some intuition in Sec. 11.5.2 of Ref. 22, but this
discussion relies on expansion and contraction rates in state space
and, hence, falls outside the scope of this review.

III. CORRELATION SUM VS ENTROPY

In this section, we perform a quantitatively rigorous and
exhaustive comparison of the methods based on entropy Hq and
correlation sum Cq. Even though fundamentally different, both rely
on estimating the scaling of some quantity vs some size ε. For a
given q, they both (in theory) approximate the same quantity, the
exponential scaling of the q-average of “amount” of measure vs the
scale, as we illustrated in Sec. II. To compute Hq, we use the method
Sec. 1 of Appendix A, and for Cq the method Sec. 4 of Appendix A
for most cases, and the straightforward implementation Sec. 3 of
Appendix A for very high-dimensional data. For C2, we also tested
the logarithmic correction of Ref. 42. The motivation of choosing
these methods, and why an exhaustive comparison of other methods
is not presented, is explained in Appendix A. Before any numerical
analysis, we normalize input data X so that each of its columns is
transformed to have 0 mean and standard deviation of 1. This linear
transformation leaves dynamic invariants (like the FD) unaffected,
however, makes all numerical methods more accurate and faster to
converge.

In Secs. III A–III I, all results will be presented with the same
plot type, as, e.g., shown in Fig. 2. The legend shows the different
datasets used in the plot and a description of the plot’s purpose. The
top panel is the entropy estimate while the bottom is the correlation

FIG. 2. Fractal dimension estimates of 1
(H)

2 and 1
(C)

2 for sets with analytically
known fractal dimension. The figure title maps colors to set names. The legends
within each axismap colors to two numbers whichmean the (5%, 95%) confidence
intervals corresponding to the estimation of the fractal dimension (curve slope).
Themarkers on the curves denote the start and end of the estimated linear region.

sum. To estimate 1(H)
q ,1(C)

q , for each curve, we identify automati-
cally, and objectively, a linear scaling region as discussed in Sec. III I.
This region is denoted by markers of the same color on each curve.
The secondary legends inside the panels provide the 5%–95% confi-
dence intervals for the estimated slopes of these segments. Unless
otherwise stated, all datasets used have length N = 105, which is
for many experiments a typical upper bound for the amount of
data one has access to. Continuous time systems are sampled with
approximately 10 points per characteristic oscillation period.

A. Benchmark sets with known dimensions

The best place to start is a simple sanity and accuracy test
of the two main estimators for sets whose fractal dimension can
be computed analytically in a straightforward manner. This is
shown in Fig. 2. We use a periodic orbit from the Rössler system
(1 = 1), a quasiperiodic orbit of order 2 from the Hénon–Heiles
system (1 = 2), the Koch snowflake (1 = log(4)/ log(3) ≈ 1.262),
the Kaplan–Yorke map (1 = 1 − log(2)/ log(0.2) ≈ 1.4306), a uni-
form filling of the 3D sphere (1 = 3) and a chaotic trajectory of the
Standard Map (SM) for very high k = 64, which covers uniformly
the state space and, thus, has1 = 2.

Some results that will be repeatedly seen throughout this
section become clear. For noiseless data, the correlation sum method
is clearly better for three reasons. First, its linear scaling region cov-
ers a wider range of scales, while H2 saturates much more quickly to
flatness for small ε. Notice that log(C2) cannot saturate for small ε,
but instead diverges to −∞, but we can never reach this point due to
the process that chooses the appropriate overall range of ε (Sec. III I).
Both curves would in principle saturate to flatness for very large ε,
specifically exceeding the total size of X, but we again do not reach
this threshold based on the choice of the range of ε.

Second, within the linear scaling region, the curves of log(C2)

fluctuate less than those of H2, resulting in a narrower confidence
interval. Comparing confidence intervals is only meaningful if the
same method is used to extract them. That is why specifically for
Fig. 2, we used the standard least squares fit for log(C2) instead of
the aforementioned correction of Ref. 42. Third, the actual numbers
we obtain for 1 from the correlation sum method are closer to the
analytically expected values than those of the entropy-based method.
In particular, for sets that should have an integer fractal dimension,
the correlation sum method is much closer to the actual result.

B. Different dynamical systems

In the following, we cross-compare with the value obtained
from the Lyapunov (Kaplan–Yorke) 1(L) dimension, which for all
systems of interest used in this paper is found in Table II. We note
that 1(L) is conjectured to equate to the q = 1 version of dimen-
sions; however, here we use q = 2. That is, because the correlation
sum algorithm does not apply to q = 1, unless one uses a fixed mass
approach, but we explain in Sec. 5 of Appendix A why we do not.
We assume that the differences between the two estimators, when
compared to 1(L), should not depend much when changing q = 1
to q = 2; hence, the following results remain valid.

In Fig. 3, we compare three discrete and three continuous
dynamical systems of different input dimensionality (systems are
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FIG. 3. Fractal dimension estimates1
(H)

2 and1
(C)

2 for sets coming from different
dynamical systems with known dynamical rule. CLM stands for Coupled Logistic
Maps. We are not sure why H2 of CLM yields a jagged curve instead of a clear
linear slope, but the focus of this paper is not individual systems, so we leave this
for further study.

defined in detail in Appendix C). We confirm the result of Sec. II,
i.e., the correlation sum method is more accurate than the entropy
one because it is much closer to the values expected from the
Lyapunov dimension (Kaplan–Yorke conjecture). Furthermore, the
entropy method seems to underestimate the fractal dimension more
strongly as the state space dimensionality increases. This is expected
given the fact that the entropy method works via a histogram
approximation of the natural density, and it is well known that the
higher dimensional the data, the less accurate producing a histogram
for them becomes (i.e., space is covered more sparsely by N points
as D increases).

This figure also allows us to indeed confirm that the logarith-
mic correction to the correlation sum by Sprott and Rowlands42 can
be impactful, especially for high-dimensional sets where the conver-
gence is the slowest. For example, the standard linear regression fit
would give confidence intervals (6.44, 6.6) for the eight-dimensional
Lorenz96 model and (5.78, 6) for the eight coupled logistic maps.
These values are closer to the entropy-based estimates but further
away from the1(L) estimates of Table II.

C. Data length

Keeping the dimensionality constant but varying data length
leads us to an interesting observation in Fig. 4. The entropy-based
method performs very poorly for small N and clearly should never
be used with small datasets. In contrast, the correlation dimen-
sion is much more robust and yields already useful lower bounds
for 1(C)

2 for very short timeseries like N = 500. Eckmann and
Ruelle82 discussed the data requirements for estimating the corre-
lation dimension and pointed out that the minimal number Nmin of
data points needed to estimate a dimension 1(C)

2 quickly increases
like log(Nmin) ∝ 1

(C)
2 . Assuming linear scaling for ε = ρE, where E

FIG. 4. Dependence of estimators on data length N. The plot in the top panel
shows results for data from an eight-dimensional Lorenz96 system and the bottom
plot for the experimental dataset “electroch. 1” from Fig. 8. The curves have been
vertically offset for visual clarity. For these plots, we have used the automatic ε
range estimation described in Sec. III I only for the largest datasets and use the
same range for the rest. As a result log(C2) cuts off to −∞ as N decreases and
curves are truncated correspondingly.

denotes the diameter of the set (largest pointwise distance) and ρ is
a small number like 0.1, Eckmann and Ruelle state that for N data
points the estimation of1(C)

2 will not provide values larger than

1
(C)
2 max(N) = 2 log N

log(1/ρ)
. (16)

For ρ = 0.1, the upper limits for N = 500, 1000, 10 000, 100 000 are
1
(C)
2 max(N) = 5.4, 6, 8, 10, respectively. In this context, other choices

of ρ may also be justified and will decrease (for ρ < 0.1) or increase
(for ρ > 0.1) the upper limit 1(C)

2 max(N). The method for detecting
linear scaling regions used in this study, for example, starts searching
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at ε-values corresponding to ρ ≈ 1/e ≈ 0.368 (see Sec. III I). There-
fore, depending on the data, in some cases, linear scaling may occur
for ρ > 0.1 resulting in larger upper limits1(C)

2 max(N).
The results for the 8D Lorenz96 model shown in Fig. 4

are essentially consistent with the estimates of Eckmann and
Ruelle. For N = 500 the (5%, 95%) confidence interval of the slope
is (5.57, 5.94), i.e., slightly larger than 1

(C)
2 max(N) = 5.4 assum-

ing ρ = 0.1
(

a value of ρ = 0.113, for example, would provide

1
(C)
2max(N) = 5.7

)

. With increasing N, the estimated slopes converge

toward the value1(L) = 6.91 of the Kaplan–Yorke dimension of the
8D Lorenz96 system, a value that is already included in the inter-
val (5.51, 7.46) obtained with N = 10 000, a number of points large
enough to estimate correlation dimensions up to 1

(C)
2 max(N) = 8

according to the Eckmann–Ruelle limit.
The bottom panel of Fig. 4 shows log–log plots of C2 for real-

world experimental data (see Sec. III G for a description). The
dimension estimates1(C)

2 for different lengths N are all about 3 and
only the corresponding confidence intervals shrink for increasing N.
This is also in agreement with the Eckmann–Ruelle bound, because
dimensions1(C)

2 ≈ 3 can, in principle, be achieved with N = 500 or
larger.

On the other hand, Tsonis et al.,26 using the results of Neren-
berg and Essex,83 argue that the minimum number of points Nmin

to estimate a dimension x with 95% confidence is scaling like
Nmin ∼ 102+0.4x. In our example, assuming true value x ≈ 7, it would
require at least Nmin = 63 095 points, which is too high compared to
what we can estimate from Fig. 4. However, the estimate presented
by Tsonis et al. is surrounded by its fair share of ambiguity, because
it involves deciding a priori a scaling region extent, and it does not
say whether the dimension x in the expression should be the embed-
ding dimension or the actual fractal dimension (that is unknown).
We will discuss this topic again in Sec. III H.

If only small data sets are available, finite sample corrections
derived by Grassberger84 could be used to improved estimates of
Hq or Cq.

D. q-order dimensions (multi-fractality)

Here, we examine how well the estimators capture multi-fractal
properties, i.e., the dependence of 1q on q, or the absence of multi-
fractality, i.e., results that should be invariant to q. This dependence
on q was discussed in the review by Theiler,16 but we think an even
better reference is in the book by Rosenberg.85 A known theoretical
result is that 1q is a non-increasing function of q, 1q2 ≤ 1q1 for
q2 > q1 (see, e.g., Ref. 11).

Here, we will use two examples. The first is the Koch snowflake,
which has an (approximately) uniform density and, thus, its FD
should have no dependence on q whatsoever. The second is the
Hénon map, which has a strongly non-uniform natural measure,
giving the expectation of a clear decrease of 1q with increasing q.
The results are shown in Fig. 5.

Both the entropy and correlation sum approaches perfectly
capture the absence of multi-fractality, giving identical curves for
all q for the Koch snowflake. For the Hénon map estimates, both
methods satisfy the criterion of a decreasing 1q with q. But there is

FIG. 5. Impact of order q on the fractal dimension. We used the standard least
squares fit for log(Cq) as Ref. 42 does not discuss q 6= 2. The curves have been
vertically offset for visual clarity.

a problem. For the correlation sum method and for q 6= 2, the func-
tion log(Cq) vs log(ε) is no longer a straight line but is composed
of two linear regions with significantly different slope, making the
results ambiguous. It is also not obvious why the slopes change at
the given ε value, or why the slopes below that indicate a signif-
icantly lower dimension value. The slopes change at log ε ≈ −10
and for q = 3 the left slope becomes ≈ 0.58 while for q = 4, the left
slope becomes ≈ 0.39 (right slopes are shown in figure legend). We
observed this behavior of log(Cq) having two slopes in practically all
example sets with a non-uniform measure.

We could not find anything in the literature about this obser-
vation, and, in fact, we could not find a single figure in the literature
plotting Cq vs ε for q 6= 2, even though the correlation sum for q 6= 2
is provided in several publications,11,22,39 which report a value for
1
(C)
q6=2 (but it is unclear whether they have encountered the same

problem as we have or not). We have extensively tested our code
and we are confident that the implementation of Eq. (6) is correct.

For multi-fractal analysis, we are (typically) interested in quan-
tifying the most fine properties of the fractal. Perhaps then one
should determine the slope of the linear region at the smallest ε
values, instead of the slope of the linear region covering the largest
range of ε (but for very small ε, the statistics becomes worse for finite
data sets). However, the slopes of the smallest ε are clearly incorrect;
the correct slopes are the ones of the largest ε values (those also high-
lighted in Fig. 5). In any case, using the slope of the largest ε values
gives the correct results, but this strong dependence of slope with ε
when q 6= 2 is worrisome and indicates that more clarity regarding
Cq6=2 must be established in the literature.

E. Dimension (delay embedding)

This section examines the impact of varying state space dimen-
sionality D of input data, which is common case when delay-
embedding timeseries22,86,87 (because there one increases D and
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FIG. 6. Effect of increasing input dimensionality of an input timeseries from
a set of known fractal dimension utilizing delay embeddings of dimension d.
The timeseries used is the first variable of a chaotic Hénon–Heiles trajectory.

searches for convergence of 1). In principle, provided the condi-
tion d > 1

(H)
0 is met, with d ∈ N the embedding dimension, then

the reconstructed set has the same fractal dimension as the origi-
nal set the timeseries was recorded from Ref. 88. In Fig. 6, we check
how the methods fare with this statement, and whether their accu-
racy decreases with increasing input dimensionality, i.e., embedding
dimension.

In Fig. 6, we used a chaotic timeseries from the Hénon–Heiles
system. This has 1 = 3, and as such, we expect convergence of the
fractal dimension estimates to a value around 3 for d ≥ 4. We see
in Fig. 6 that this is indeed the case. 1(C2) does not seem to drop in
performance with increasing d, besides a very small decrease in the
overall range of order of magnitudes the linear scaling region covers.
The same results were obtained using a timeseries from the chaotic
Rössler system with1 ≈ 2 or a chaotic Lorenz96 system with D = 4,
which also has 1 ≈ 3. 1(H)

2 seems to perform poorer with increas-
ing d by either significantly reducing the linear scaling region or
being less accurate in the dimension estimates. However, how much
poorer it performs depends on the dataset: for the Hénon–Heiles,
it is still decent, while for Lorenz96, it performs much worse (not
shown). Hence, we conclude that 1(C2)

2 performs much better as
the state space dimensionality of data increases (while keeping data
length and other aspects constant) vs 1(H)

2 , which is somewhat
already evident from Fig. 3.

F. Noise

Real-world data are always accompanied by noise, and, there-
fore, the impact of noise on the calculation is highly important for
the choice of the method. As it is well known, the presence of noise
in the data makes estimating a fractal dimension harder, as the frac-
tal dimension of the noise is equal to that of the state space and,
hence, almost always larger than the fractal dimension of the clean

FIG. 7. Impact of noise using the (chaotic) Rössler system as an example.
The noise percentages approximately indicate the ratio of the std. of the noise
divided by the std. of the deterministic dynamics. See Sec. 4 of Appendix A for a
discussion of the vertical dotted line.

data. Figure 7 shows results for various kinds, and amount, of noise
added to the (normalized) chaotic Rössler attractor. On purpose for
this plot, we have used ζ = 1 (see Sec. III I), and the standard linear
regression method for log(C2), because the logarithmic correction
of Ref. 42 overestimates 1 > 3 for noisy data (the input dataset is
three-dimensional and, thus, cannot have1> 3).

We start with the case of additive noise. There, it is known that
there is some distance εσ called the “noise level,” below which the
slope of log(C2) changes from being the fractal dimension of the
chaotic set to that of the noise,89 This fact can be used to actually esti-
mate the noise level of the data.22 In Fig. 7, we see how quickly this
really happens for log(C2). Even for 5% additive noise, the curve is
already dominated with the noise slope (which has1 ≈ 3 for three-
dimensional additive noise), and only a small segment of the curve
at large ε values where the slope becomes the deterministic value.
The entropy curve does not have this property and remains hav-
ing a single slope throughout (except the saturation part of course),
while the slope value is an average between the purely determinis-
tic 1 and that of the noise. On one hand, this may be considered
a downside, because it does not allow estimation of noise level. On
the other hand, we should note the majority of the log(C2) curve
is already reflecting the noise slope. Thus, if we estimated the aver-
age slope of the log(C2) curve, it would be much larger than that of
H2, i.e., it puts much more weight on the noise dimension than the
deterministic data. These results regarding additive noise are typical
and do not seem to strongly depend on the system considered. Note
that in the case of delay reconstruction, the slope of the noise should
increase with increasing embedding dimension. The slope corre-
sponding to the FD of the deterministic set should remain constant
for embedding dimensions larger than a minimum value required
for successful reconstruction of the state space of the dynamical
system generating the data.
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For dynamic noise, we turned the ordinary differential
equation (ODE) of the Rössler system into a stochastic differen-
tial equation by adding a Wiener process term ηdW in the second
equation. For small amount of dynamic noise (which here reflects
a proportionality of η with the expected size of the x variable), the
fractal dimension increases slightly as expected, but does not have
any noticeable change in its numerical value up to 10% noise. When
one turns up the dynamic noise more, the dynamics collapse and
there is no “chaotic” attractor anymore (not shown). Both entropy
and correlation sum methods perform equally well vs this kind of
noise, and there is no noise radius or change of slope discernible in
the correlation sum case. We also looked at low-resolution data, by
rounding Röessler timeseries to 2 digits after the decimal. This obvi-
ously decreases the valid ε-ranges one can do the computation for
(see Sec. III I). For 1(C)

2 , this also significantly changes the result to
a value smaller than “correct,” while for1(H)

2 , it has no impact. This
means that 1(H)

2 performs better for rounded data, which makes
sense given the way it is computed (as long as points are in the same
box, it does not matter how close they are to each other).

G. Real-world data

In Fig. 8, we show fractal dimension estimates for real-world
experimental data. We focused specifically in experiments that are
relatively clean (large signal-to-noise ratio) and where the underlying
dynamics is well known to display low dimensional deterministic
chaos. This is important, because for this review, we do not want
to mix the scientific question of whether an observed system accom-
modates a low-dimensional deterministic representation, with the
technical/computational question of whether an estimator would
actually detect that.

In Sec. III H, we further discuss what happens with real-world
data where neither of these two conditions apply. We limited densely
sampled experimental data to at most N = 50 000, with sampling of

FIG. 8. Fractal dimension estimates for experimental systems known to be
underlined by low-dimensional nonlinear dynamics.

about ten samples per characteristic timescale. Because of the obser-
vations of Sec. III H, we have used ζ = 1 and the standard linear
regression method for log(C2) instead of the logarithmic correction
of Ref. 42.

The datasets are as follows: two electrochemical oscillator
datasets (the second being more chaotic than the first);34 timeseries
from a circuit replicating the dynamics of the Shinriki oscillator;90

the mean field of a network of 28 circuits following Rössler dynamics
from Ref. 91; data from a mechanical double pendulum from Ref. 92;
and ECG recordings during a pacing experiment of healthy individ-
ual from Ref. 32. All experimental timeseries were delay embedded
using the recent automated method due to Kraemer et al.34 (see
Appendix D for the embedding parameters). The method yielded
embedding space of seven or less for all experimental timeseries, giv-
ing even more confidence that the data may display low-dimensional
deterministic chaos.

For dataset “Rössler Net,” the curve (log(ε), log(C2)) con-
tinuously changes its slope instead of having one, or at most
two, constant-slope segments. This makes deducing a single frac-
tal dimension ambiguous. Slight curving can be observed also in
“electroch. 1,” “electroch. 2” and “ECG IBI” but it is a weak enough
effect that two scaling regions can nevertheless be extracted (for
“ECG IBI,” Fig. 8 reports the slope of the noise). On the other hand,
the entropy-based approach does not suffer from this problem and,
besides the expected saturation for small ε, seems to be described
quite accurately by a single slope and, thus, a specific FD value. The
results shown in Fig. 8 are from five to six-dimensional embeddings
yet both H2, C2 yield FDs that are less than the embedding dimen-
sions (excluding the “Rössler Net” case for C2 where a FD cannot
be estimated). Hence, we can assume that the FD of the underly-
ing dynamics has to be somewhere between the low bounds of1(H)

2

and1(C)
2 .

The “constant slope curving” of C2 is something we have not
seen before with synthetic data. From the discussion of Sec. III F, the
problem may be because realistic noise may be neither white nor sta-
tionary, or because a too high of a noise level in the data. Indeed, we
saw that for 5%–10% relative noise, the slopes of C2 already reflect
the noise FD. In Fig. 8, C2 yields consistently higher FD than H2,
even though we know that an underlying low-dimensional represen-
tation exists. To extract this lower FD value from C2, one, therefore,
must focus on the larger scales ε and try to find this consistent
smaller slope by increasing embedding dimension (as is standard
practice22). We show such an analysis in Appendix F. Neverthe-
less, it appears true that C2 is more strongly affected by noise when
compared to H.

H. Extreme cases

In this subsection, we examine the result of applying the afore-
mentioned methods to ill-conditioned data, which may be non-
deterministic or non-stationary, or to extremely high-dimensional
data, where there exists this notion in the literature that the meth-
ods used so far are unlikely to succeed. For the first dataset, we
used data from the Lorenz-96 model, with D = 6, while having the
F parameter increase linearly during the time evolution from 1.0
(periodic motion) to 24.0 (chaotic motion with1 ≈ 5). The second
dataset is the concatenation of a periodic trajectory from the Rössler
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FIG. 9. Fractal dimension estimates for extreme cases.

system with noise uniformly distributed on the 3D sphere. The third
dataset is paleoclimate temperature timeseries from the Vostok Ice
core, embedded in eight-dimensional space, which is unlikely to be
stationary or to accommodate a low-dimensional representation.25

The fourth dataset is a stock market timeseries for the “nifty50”
index embedded in six-dimensional space, which is definitely non-
stationary and rather unlikely to be deterministic. The last two
datasets are extremely high-dimensional data of the Lorenz96 and
the Kuramoto–Sivashinsky spatiotemporal system (the latter having
101 dimensions after discretization). The results of the dimension
estimation are shown in Fig. 9.

Generally speaking, in Fig. 9, the results of the first four
datasets show that something is “wrong.” There is a large miss-
match between the estimates of the entropy and correlation sum
methods and the curves do not seem to be composed of a single
slope. Oddly, for the non-stationary Lorenz96 data, the correlation
sum has a clear straight slope with fractal dimension somewhere
between the extreme values. The Vostok data, in particular, are
plagued both by a continuous change in slope, especially in log(C2),
but also, the resulting FD values do not converge when increasing
the embedding dimension (not shown). Additionally, the FD values
obtained from H2 or C2 are very different. Notice that in all cases,
our automated algorithm finds a value for1 nevertheless. This only
serves to highlight how careful one should be, and to always plot the
curves of H2, log(C2).

Although in the literature there exist several tests for non-
stationarity using, e.g., permutation entropy or other methods, we
will now describe a simple, fractal-dimension-based scheme. One
can divide the data into m equal parts in two ways: Making m seg-
ments of length N/m of successive points, or by choosing every
mth point, each time starting from point 1 to m − 1. For these
subsets, the same fractal dimension estimation is done. If there is
non-stationarity, the first kind of selection will show significantly
different estimates across its sub-datasets, while the second will show
approximately the same estimates.

Let us now consider the last two datasets of Fig. 9
(32-dimensional Lorenz96 and Kuramoto–Sivashinsky). Surpris-
ingly, C2 shows a rather clear linear scaling region that has a very
high slope, but not as high as the expected dimension values 1(L)

(28 and 32, respectively). This is consistent with the upper bound
equation (16) of Eckmann and Ruelle with 1(C)

2 max(100 000) ≈ 10
for ρ = 0.1 or 1(C)

2 max(100 000) ≈ 23 for ρ = 1/e, because even in
cases where linear scaling occurs already for relatively large values
ε = ρE it cannot be expected to obtain slopes of size 28 or 32 with
N = 100 000 data points, only. Furthermore, Fig. 9 shows that for
these data the range of scales covered by the linear region is very
small: only one e. Increasing the amount of data also increases the
linear scaling region and the resulting confidence intervals shrink as
we get more data points in the linear region (not shown here).

As discussed already in Sec. III C, these examples show again
that with high-dimensional data, one needs much longer timeseries
to properly cover the (typically high-dimensional) chaotic set, and
this affects any kind of estimate of dynamical properties; it is not
a problem specific to the correlation dimension. Additionally, one
needs a very low signal-to-noise ratio, because due to the coverage
of a very small range of scaling factors ε, even a small amount of
noise may ruin the estimation. However, if one does have such a
clean high-dimensional dataset, 1(C)

2 may still provide a useful esti-
mator at least for a lower bound of the correlation dimension of
that data set, where the value obtained should always be compared
with 1(C)

2 max(N) for the available amount of data N and dimension
estimates of surrogate data (see Sec. V) to avoid wrong conclusions.

I. Estimation of slopes and sizes ε

To estimate the value of 1(Hq) or 1(Cq) we need to find the
slope of −Hq or log(Cq) vs log(ε). This matter is typically resolved
in a context-specific manner, where each plot is carefully examined
and the “linear region” is decided by the practitioner by eye. This
approach cannot work in an objective comparison. Here, we formu-
late an entirely objective and sensible (but not flawless) automated
process that is separated into two parts: the choice of which sizes ε
to calculate −Hq or log(Cq) for, and how to estimate a linear scaling
region from the respective curves. Once the linear scaling region is
identified, actually obtaining the fractal dimension is a simple least
squares fit. Note that small deviations from a straight line for densely
sampled values of ε may occur due to lacunarity of fractal sets.126–130

While we can also observe this for very densely sampled ε, this effect
is so miniscule that we consider it irrelevant for almost all data sets
in practice. These oscillations are not suitable for the quantifica-
tion of lacunarity in fractal sets, but other measures exist for this
purpose.131,132

The range of ε is always decided with generating formula
ε = ex where x are k linearly spaced values from log(εmin)+ ψ to
log(εmax)− ζ , i.e., the values of ε are exponentially ranged in base
e. εmin is the smallest inter-point distance existing in the set and
εmax the average of the lengths along each of the variables of the set,
and ψ , ζ constants. Unless stated otherwise, we have used k = 16,
ψ = 1, ζ = 1 in Sec. III. In essence, we are limiting ε to be one order
of magnitude (in base e) larger than the smallest inter-point dis-
tance and one order of magnitude smaller than εmax. If the resulting
ε range does not cover at least two orders of magnitude (common
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case in high-dimensional data), we use ζ = 0 instead. This choice of
εmax brings very good performance in the box-assisted algorithm for
the correlation sum (Sec. 4 of Appendix A) but it is not so small as
to make the computation meaningless for realistic and/or noisy data.
Notice that the automated fractal dimension estimates can be sensi-
tive on k, ζ ,ψ . In practice, we would recommend producing several
estimates by varying these parameters and obtaining the median
of1.

To estimate the linear region, we proceed as follows. We scan
the local slopes of each one of the k − 1 segments of the curve y vs
log(ε) starting from the leftmost one (here y = −Hq or log(Cq)).
If the local slope of the preceding segment is approximately equal
to that of the next one with relative tolerance tol, i.e., |si−1 − si|
≤ tol · max(si−1, si), then these two segments belong to the same
linear region. We move to the next segment and compare it in
the same way with the first segment belonging to the same linear
region. When we find a mismatch, we start a new linear region. This
way we have segmented the curve y vs log(ε) into approximately
linear regions. We then choose the linear region which spans the
largest amount of the log(ε) axis, and label it “the” linear region. We
finally perform a least squares fit there and report the 5-95% confi-
dence interval of the fitted slope. In Fig. 10, we visually demonstrate
the process. We also compare it with another standard way fractal
dimension related plots are presented: the successive local slopes δ1

of each point of the curves and the same slopes δ5 but fitted in a five-
long data window. Our linear regions approach is equivalent with
finding the largest plateau in the local slopes plots.

Notice that there is a clear pitfall here. This algorithm will
deduce a linear region no matter what. In many scenarios, this
region might be meaningless, being too small to be of actual value,
or could even be the scaling of the noise in noisy data, as shown in
Sec. III F. So after all, careful consideration of the result is always
necessary.

FIG. 10. Demonstration of the algorithm estimating fractal dimensions from the
curves of H2, log(C2). Shaded intervals are the estimated linear scaling regions.
See text for the definition of δ1, δ5 (differences of the top panels).

In addition to the algorithm presented here, also worth men-
tioning is recent work by Deshmukh et al.93 that offers an alternative
way to estimate a slope. All possible slopes that could be estimated
from the curve (by choosing all possible segments of length more
than a specified minimum) are estimated. These are weighted by
their length and by their inverse error and compose a distribution.
The mean of the distribution is presented as the slope, while the
quantiles of the distribution can be used as confidence intervals.
For the work presented here, we believe our approach is more fit-
ting, because how large a scaling region is also part of the accuracy
of a FD estimator. Furthermore, we still wanted to display prob-
lems in the presence of two scaling regions (as in, e.g., Sec. III F),
while the approach of Deshmukh et al. transforms the “looking
at the curve y(x) for two scaling regions” problem into “looking
at the distribution of all possible slopes for two peaks,” which,
while easier to resolve, still would add more information content in
our already extensive article. Nevertheless, the approach Deshmukh
et al. is most likely better suited to use in practice, when estimat-
ing a fractal dimension from experimental data, as the authors have
extended their method to also provide convergence criteria of fractal
dimension estimates in Ref. 94.

IV. EXTREME VALUE THEORY ANALYSIS

In this section, we thoroughly analyze the power and short-
comings of the extreme value theory based FD 1(E) introduced in
Sec. II D for computing FDs under a similar lens as the compari-
son of Sec. III. Unless stated otherwise, we use N = 105 as the data
length, standardize all input sets before any computations, and use
p = 0.99 as the quantile probability of Sec. II D (due to the discus-
sion in Sec. IV B). Since 1(E) is obtained via an arithmetic mean, it
can be compared to 1(H)

2 and 1(C)
2 , which is what is used by most

plots in Sec. III.

A. Exemplary sets

We start with Fig. 11, which shows 1(E) computed for exem-
plary sets. The figure should be compared with Figs. 2 and 3. The
figure style is typical for the rest of this section and shows the dimen-
sion estimates as distributions, with dashed white lines indicating
the mean, and dotted white lines indicating the “expected” value,
for which we use 1(L) if possible, otherwise 1(C)

2 . Small horizontal
red lines cap the strict limit that the dimension estimates should not
exceed, i.e., the state space dimensionality. The inner legend in the
plot displays information about the distribution: the mean, and in
parenthesis the percentage of values that exceed the dimensionality
limit cap (the red line).

All in all, the1(E) estimates seem to match well those obtained
by1(C)

2 with two notable exceptions: the method performs “poorly”
for a quasiperiodic (1 = 2) trajectory of the Hénon–Heiles system,
for the chaotic attractor of the Hénon map and for the Lorenz-96
chaotic attractor. Here, “poorly” means significant inaccuracy in the
first decimal digit. It is not clear exactly why the EVT method is not
particularly accurate for these systems; however, we can speculate
the respective reasons. For quasiperiodic trajectories, the sampling
time may be near-commensurate with one of the two periods, mak-
ing some points very rarely visited in the finite set, even if they
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FIG. 11. Fractal dimension estimates for exemplary systems using the extreme

value theory method. Shown are the distributions of 1
(E)

i for each system.
The inner legends display the mean of the distribution and in brackets the percent-
age of the distribution outside a strict cutoff value (the state space dimensionality).
For the two eight-dimensional systems (Lorenz96, coupled logistic maps), we
divide dimension values by 4 for visual purposes. More details in Sec. IV A.

would be uniformly visited in the limit N → ∞. As the method
assigns a higher dimension value to a point according to its vis-
itation frequency, these rarely visited points on the quasiperiodic
orbit get higher dimension values than they should (within the EVT
framework, the lower the visitation frequency of a state space point,
the higher its local FD). For the Hénon map, the only thing to note
is that the attractor natural density is extremely singular and the
assumption of Eq. (13) likely does not hold. For the Lorenz96 and
the coupled logistic maps, the thing to note is that the attractors have
a high “expected” (here Lyapunov) FD, which means that for given
amount of data and high underlying FD, the EVT underestimates
the FD more than C2.

B. Quantile probability

Unlike the entropy and correlation sum methods for comput-
ing FD presented so far, the EVT one is parametric:95 it requires the
choice of an “extreme” probability value p for which to extract the
quantile of gi when calculating the exceedances Ei in Eq. (8). There-
fore, before performing any further evaluation of the method, we
must examine how it depends on its parameter p. We have found no
formal mathematical definition of an “extreme” in the literature of
this EVT methodology, or how to practically compute an “optimal”
value for p, or whether an optimal value exists at all. Reference 65
provides some methodology for checking whether the chosen p is
inappropriate that we evaluate in Sec. IV C.

In this subsection, we examine the impact of choices of p. This
choice is somewhat linked with the data length N, as the local dimen-
sion estimation for each state space point is done based on N(1 − p)
points. In Fig. 12 we, therefore, vary p with fixed N but also co-vary
N, p with fixed N(1 − p).

The results show that increasing p increases1(E). It also appears
that not only the mean of the distribution of 1(E)

i depends on p but

FIG. 12. Impact of choice for extreme probability p when estimating a quantile for
Eq. (7). Top: under fixed data length, bottom: under fixed length of exceedances.
D = 8 is used for Lorenz96 and1(E) for it is divided by 4 as in other plots.

the shape of the distribution as well. On one hand, it is somewhat
reassuring than once a fixed N(1 − p) is chosen, the results do not
vary as wildly as when N is fixed, provided that N(1 − p) is large
enough. However, we also noticed that under fixed N(1 − p), the
estimated dimension seems to monotonically decrease further and
further away from the expected value when p is decreased.

On the other hand, in most real-world applications, it is N that
is fixed, and, hence, the results of the top panel of Fig. 12 are what is
of most interest. In addition, even if it was possible to co-vary N, p
in a realistic application, we still cannot provide instructions of what
the best choice should be for p: while Fig. 12 reveals the dependence
on p, it does not lead to any obvious conclusions on what p should
be. A saving grace here is that while there is a clear dependence on
p, the mean value1(E) does not change significantly (i.e., differences
span less than one integer, which is anyways the accuracy we are
interested in practice), provided that p remains in a range so that
N(1 − p) ≥ 100–1000.

C. Quantifying significance

The entropy or correlation sum approaches provide a relatively
straightforward way to check for the significance of results: there
should a single slope covering several orders of magnitude ε. The
larger the range of magnitudes, the more significant the results.
Such a simple visual significant check does not exist for the EVT
approach. In this section, we examine possible ways to test for the
significance of the EVT results based on what has been suggested in
the literature or with alternative means we devised while composing
this review.

In practical applications as in Ref. 65, the authors identify a
range of p values that are appropriate using a statistical hypothesis
test of whether Ei follows an exponential distribution (EXPD).
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Examples of such statistical tests are the Anderson–Darling96 or the
Kolmogorov–Smirnov.97 Here, we used the Kolmogorov–Smirnov
exact one sample test. The test proceeds as follows: for a given p,
each of the Ei are first fitted to a EXPD. Then, the fitted EXPD is used
in a statistical test for the null hypothesis: “the data coming from the
given GPD.” The test yields a p-value. Typically, if the p-value is very
small, e.g., p<0.05, the null hypothesis can be rejected, which may
mean unsuitable data altogether, or not enough data (e.g., quantile
probability p was chosen too high). In practice, one hopes that the
majority of the p-values (each for each Ei) is significantly larger than
some low threshold of, e.g., 0.05.

Formally speaking however, a p-value greater than some
threshold does not mean we can accept the null hypothesis; only
that we fail to reject it. Any other distribution may have generated
the data equally well. Hence, the convincing power of this line of
argumentation (checking for large p-values) is weak from a statis-
tical inference point of view. An alternative test mentioned in the
literature is to check how stable the distributions for σ of the fitted
EXPDs are when varying p; but we did not find this argument con-
vincing (stability of parameters does not mean significant fit), so we
ignored it.

A third way that one may judge the significance of the results
is to directly estimate the error of the EXD fit for each exceedances
vector Ei. To do this, we use a form of a normalized mean squarer
error given by

NRMSE =

√

√

√

√

∑k
j=1 (Pj − Gj)

2

∑k
j=1 (Pj − U)2

. (17)

Here, Pj is the empirical probability density of the measured Ei val-
ues at their jth bin (i.e., the jth bin’s histogram height). Gj is the
fitted EXPD estimated at the bin’s midpoint. U is the same as Gj but
assuming a uniform distribution fitted to data instead of a EXPD
(hence, U does not depend on j). The denominator normalizes the
measure so that the error of the EXPD fit is measured with respect
to the error of the uniform distribution (and hence, it is meaningful
to compare NRMSEs across different Ei). If NRMSE > 1, the uni-
form distribution is a better distribution model. We have used this
error measure in the past in varying scenarios and noticed that val-
ues <0.5 correspond to a visually relatively correct fit98,99 (without
any mathematical guarantee of course).

In Fig. 13, we show distributions of p-values and NRMSEs for
a chaotic trajectory of the towel map. We provide more similar such
plots in Appendix E, which establish that our observations do not
depend at all on the input set X.

The results are very surprising. It appears that the p-value based
test is unhelpful and/or misleading. For example, it shows that quan-
tile p = 0.95 is a bad choice, because the overwhelming majority of
p-values are ≤0.05, eluding to a rejection of the hypothesis “the data
come from a EXPD.” Yet, if we look at the actual fitted data to the
right of the top panel, we do not observe “bad quality” fits at all. This
is further established by the distribution of NRMSE values, which
has all of its mass in low values. We are not sure why the hypothesis
test behaves this way in this scenario.

On the other extreme of p = 0.999, the p-value based test is
again misleading. This is the case where most of the p-values are

FIG. 13. Distributions of p-values of the statistical hypothesis test of whether the
data are coming from a EXPD, and the relative error of the EXPD fits normalized
by the error of a uniform distribution. Inner legends show the distribution medi-
ans. The figure is divided into three rows for three quantile probabilities p. Next
to the distributions of p-values and NRMSE, there are three exemplary plots of
the distributions of the exceedances Ei and with black line the fitted EXPD (the
text indicates the corresponding p-value and NRMSE). The bottom panel has the
NRMSE distribution clamped in [0, 1]. The input dataset X is a chaotic trajectory
of the towel map. See discussion in Sec. IV C for more.

>0.05; hence, it would be the most trustworthy in terms of the p-
value test. Yet clearly, this is the case where the actual fits are the
worst by far. We have performed extensive numerical tests and are
confident that the code implementations yielding the p-value are
correct.100,132

This leads us to conclude that the NRMSE based test is much
more trustworthy. If a practitioner wants to transform the NRMSE
data into a Boolean decision “is this p okay?,” we would argue
to check if the majority (i.e., 99%) of the mass of the NRMSE
distribution is less than 0.5. Even so, the NRMSE test may only pro-
vide a range for p where the EXPD fits are of sufficiently high quality.
It cannot instruct how to pick a p from that range. Thankfully, from
what we have seen in Sec. IV B, the fluctuations of 1(E) with p are
relatively small if p is in an appropriate range.

What made the discussion of this subsection difficult is that
we have not found any information regarding the p-values of this
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FIG. 14. Comparison of local fractal dimension estimates using the extreme value
theory (EVT) method and the pointwise dimension. Left and shaded distributions
are EVT, right and transparent are pointwise. Dashed white lines are means of
EVT, and dotted colored lines are means of pointwise.

test in the literature, despite the plethora of real-world applications
(see Appendix A 10). While it has been mentioned that the p cho-
sen in these real-world applications “satisfy” this p-value test,65 the
actual p-value distributions were not shown.

In fact, we have not found any discussions in general regarding
the significance of the EVT results. The main argument the EVT FD
literature has used in favor of significance of results is that the 1(E)

i

distributions did not change much within a range of appropriate p.
However, by itself, this argument is not convincing of the validity of
the results, only of their stability. We will discuss these aspects again
in Sec. IV H and in the conclusions. For the rest of the article, we will
be using p = 0.98–0.99, as these values seem to yield correct results
for synthetic X with lengths 104–105.

D. Comparison with pointwise dimension

In Fig. 14, we again compute 1(E) for exemplary sets as in
Sec. IV A, but now we compare it with the pointwise dimension,
i.e., the scaling of the inner sum of Eq. (6) vs ε. Our goal with this
comparison is to see how well either method captures the “spread” of
dimension values. We expect that for rather uniform fractal sets the
distribution should be narrow, and wide for sets with highly non-
uniform natural measure. Note that the average of the pointwise
dimensions of the correlation sum does not coincide with 1(C)

2 . As
is also made clear in Ref. 16,1(C)

2 gives a more accurate result for the
FD of the whole attractor because it utilizes more points to estimate
the scaling behavior.

The most important result here is that for the chosen
p = 0.99, the two methods yield very similar results, hence estab-
lishing the overall accuracy of the EVT method for synthetic data.
The pointwise dimension estimates, however, are more accurate
for the Hénon map attractor and a quasiperiodic orbit, which we
already discussed in Sec. IV A. Hence, Cq is slightly more accurate
for noiseless deterministic sets.

E. Length, dimension, sampling time

We now test the EVT approach while varying various aspects
of the input data: length, state space dimensionality (using delay
embeddings of increasing dimension as in Sec. III E) and sampling
time. The reason to judge the quality of the EVT approach vs sam-
pling time is because, unlike the correlation sum approach, which
explicitly takes into account dense time sampling via the Theiler
window w, the EVT approach is typically presented as agnostic to
the sampling time. The analysis is presented in Fig. 15.

Regarding data length, EVT scales well with decreasing N up to
a threshold. When N becomes too low, so that N(1 − p) becomes less
than 50, the results significantly lose accuracy, making the estimated
1(E) increase rapidly. Interestingly, with decreasing N, the EVT
overestimates the FD instead of underestimating it like H2 or C2.
Note that one cannot simply fix this problem by reducing p because,
as illustrated in Sec. IV B, this has its own downside of decreasing
the estimated dimension. Still, we may conclude that for the data

FIG. 15. Fractal dimension estimates using the extreme value theory (EVT)
when varying data aspects: length (top panel, using a chaotic Lorenz96 D = 8
trajectory), dimensionality (middle panel, using delay embeddings of a chaotic
Hénon–Heiles timeseries), or sampling time (bottom panel, using a chaotic
Rössler trajectory).
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considered here, with Nmax > 103 the EVT performs well, which is a
better scaling with N than H2, but worse than C2. Like with C2, this
data length Nmax should scale with the FD; however, there is no ana-
lytic treatment as to how (while for C2 analytic bounds are discussed
in Sec. III C). Given that real-world data are typically small in length,
one has to be particularly aware about this point.

As far as input dimensionality is concerned, we observe sim-
ilar results as with 1(C)

2 in Fig. 6: 1(E) seems quite robust when
increasing dimensionality.

When it comes to sampling time, the correlation sum approach
utilizes the Theiler window, which in practice shortens the distance
calculations from N to N − w. This has a negligible impact on data
length but a significant positive impact on the FD estimate in cases
where data are sampled densely in time.3 Similar results are obtained
for 1(E): for very small sampling times, the FD is biased toward
lower values. Hence, it would make sense to include a Theiler win-
dow in Eq. (7), i.e., only include j with absolute distance from index
i greater than some w like in Eq. (6). We note that Ref. 66 also con-
sidered the impact of “temporal neighbors” and reached the same
negative bias conclusion.

F. Noise

We repeat here the analysis of Sec. III F in Fig. 16 using the
Rössler system combined with various forms of noise. For additive
noise, 1(E) behaves much more similarly to 1(H)

2 because the mean
FD value of EVT is an average without focus at a specific scale. This
means that the FD value in the presence of additive noise is between
1.9 (deterministic) and 3 (state space dimensionality). Additionally,
the FD values of 1(E) are the smallest (and, hence, closest to the
deterministic FD value) out of the three (E, C2, H2). 1(E) also seems
to be completely unaffected by rounding.

These observations make sense if one considers how 1(E) is
computed (Sec. II D). The logarithms of all inter-point distances are
taken into account for the computation of the quantile of gi. Round-
ing will have a negligible effect on the distribution of inter-point

FIG. 16. Impact of noise in the fractal dimension estimates of extreme value
theory.

distances, and additive noise will have a diminished effect due to
being “averaged out” in some sense when computing the quan-
tile. These properties make 1(E) preferable in the presence of noise,
unless one wants to identify the noise radius, in which case C2 is
more suited.

Last, we mention that in the case of dynamic noise, 1(E) pro-
vides slightly higher values than H2 or C2 (but, of course, we do not
know whether any of the three is the more “correct” number). It is
worth noting nevertheless that the distribution of 1(E) for dynamic
noise is much narrower than for other types of noise, which we
found unexpected. We examined no further however, as the results
with dynamic noise depend strongly on the system used and the
exact form the noise was added, and, hence, cannot lead to any
general statements.

G. Real-world data

In Fig. 17, we use the same datasets as in Sec. III G. Because
the datasets are smaller in size than the typical length we used before
(N = 105), we used p = 0.98 instead of p = 0.99. This value for p
also satisfies the “NRMSE test” we described in Sec. IV C, in the
sense of most NRMSE values being less than 0.5.

In addition to the large extent of some of the distributions of
1
(E)
i , we do not notice any downside or incorrectness in the mean

FD values: they are comparable with those coming from H2 (and we
cannot know whether H2 or EVT are more correct in their estimate).
Given the results of the preceding Sec. IV F, this is expected due to
the better response EVT has to noise (vs C2).

H. Extreme cases

In Fig. 18, we apply 1(E) in various extreme cases as in
Sec. III H. 1(E) does a good job distinguishing that two sets of very
different dimensions have been artificially merged with each other in
the first two cases of Fig. 18, because it yields bi-modal distributions
for 1(E). However, this is mainly due to the way that the sets were
created. When compared to the case of adding noise to the data, we

FIG. 17. Fractal dimension estimates of extreme value theory for experimental
data known to accommodate a low-dimensional deterministic representation.
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FIG. 18. Application of extreme value theory fractal dimension estimates on
extreme cases. Values for Lorenz96 and Kuramoto–Sivashinsky have been
divided by 4 for visual purposes. We used p = 0.95 for the “nifty50” and “vos-
tok” data, because they are much smaller (otherwise p = 0.98). However, mean
FD values depend only weakly on p.

did not see bimodal distributions with peaks at 2 and 3 dimension
values, i.e.,1(E) cannot be used to identify a noise radius unlike1(C)

2 .
Nevertheless,1(E) could be a good tool detecting non-stationarity in
an observed set, if that non-stationarity significantly changed the FD
value over time.

Unfortunately, for the sets that do not accommodate a low-
valued FD description, like the Vostok and nifty50, a straight-
forward application of 1(E) gives a rather “clear” picture that a
low-dimensional FD value describes the data. This is especially
obvious in the nifty50 set (which we remind is a stock market time-
series), where 1(E) gives the lowest dimension values and a narrow
distribution. Surrogate testing did not help here either: generated
random-Fourier surrogates101 had consistently higher 1(E) than the
original data, enhancing the wrong conclusion that the estimated
1(E) of the data is valid. Additionally, performing the significance
tests of Sec. IV C made things worse: the resulting plots (shown
in Fig. 23) look very similar to those obtained from systems with
a legitimate low-dimensional representation, again reinforcing the
wrong conclusion. Last, we attempted to perform the standard anal-
ysis of checking whether the FD result converges with increasing
embedding dimension of the timeseries. In Appendix F, we find
that, in contrast to the H2, C2 methods, the EVT method shows
a convergence of the “nifty50” timeseries FD. Already in embed-
ding dimension d = 5, it shows a constant mean1(E) for any d ≥ 5,
which, again, re-enforces the wrong conclusion. The same results
were obtained for the “Vostok” timeseries.

It appears that four different significance testing methods (p-
values, NRMSEs, surrogate timeseries, convergence with increasing
embedding dimension) all yielded with confidence that inappro-
priate data like “vostok” or “nifty50” have a small FD, which is
incorrect. These results have major implications for both previous
and future applications of the EVT method in real-world data. We
have not found a way to test whether the FD values yielded from
the EVT method actually represent a low-dimensional deterministic

system or not, i.e., there is no way to falsify the method. Hence,
extreme care must be taken when applying the EVT method to
arbitrary real-world datasets, and whether the data accommodate
a deterministic representation must be confirmed by other means
(e.g., a self-consistent physical theory or using the correlation sum
with increasing embedding dimension as is standard practice in
nonlinear timeseries analysis22).

For extremely high-dimensional but deterministically chaotic
data, 1(E) does an excellent job in identifying a very high FD (note
the FD values are divided by 4 in the figure), which is also very close
to the expected value 1(L). This was expected, as C2 also does an
excellent job identifying a very high dimension for clean data, and, in
general, EVT and C2 perform very similarly overall when it comes to
deterministic noiseless data. For the Kuramoto–Sivashinsky exam-
ple, we see that EVT estimates higher FD than C2 (while typically
we noticed that for high-dimensional data, it underestimates the
FD when compared to C2). However, in this example, we are not
sure what the results are because EVT is indeed more accurate or
because EVT overestimates the FD due to having too small N when
compared to the expected FD value (see discussion in Sec. IV E).

V. A NOTE ON SURROGATE TIMESERIES

Surrogate timeseries have been recommended by Theiler et al.
in the early 1990s101 as a means to test for nonlinearity in noisy time-
series. It was suggested there that a discriminatory statistic for the
test can be the FD computed via the correlation sum. That requires
a bit of care. If one uses the algorithm we described here, i.e., using
Eq. (6) and then deducing the slope of the largest linear scaling
region, then the user risks estimating the fractal dimension of the
noise (already existing in the original data) instead of the “under-
lying deterministic nonlinear dynamics data” (if any exist), thus
invalidating the hypothesis testing approach in the first place. Other
discriminatory statistics should be used instead (see Ref. 102, for
example).

If a fractal dimension is chosen as a discriminatory statistic nev-
ertheless, we propose the following alternatives for computing it:
(i) use Takens’ estimator (Sec. 6 of Appendix A) with the empiri-
cally good estimate εmax = 0.25std(x) with x the original timeseries.
Because Takens’ estimator performs a maximum likelihood estima-
tion instead of a linear fit and, thus, considers all regions of the
correlation sum up to some εmax, it produces an “average” fractal
dimension of the noise and the underlying data. It should be clear,
however, that the Takens estimator is used in this context (just) as
a discriminating statistics and its results must not be interpreted as
meaningful dimension estimates, or (ii) use the EVT version 1(E),
which also similarly produces an “average” of fractal dimensions of
noise and deterministic set.

VI. CONCLUSIONS

In this paper, we have analyzed many different practically rele-
vant fractal dimension (FD) estimators we found in the literature.
From all these estimators, we focused on an extensive quantita-
tive comparison between the entropy-from-histogram method Hq

(Sec. II B and Sec. 1 of Appendix A), the (potentially box-assisted)
correlation sum method C2 (Sec. II C) without any logarithmic
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corrections, and the extreme value theory method (EVT, Sec. II D).
Based on our review, these three estimators are the ones most worthy
using in practice (Appendix A).

To keep this paper within sensible limits, we have used a rela-
tively small set of possible dynamical systems and real-world data.
We cross-checked our results with different systems (not shown),
and we are confident that the results presented are robust. Never-
theless, it is impossible to guarantee their universality for all possible
input datasets. To amend this, the reader can repeat our extensive
analysis for any other dynamical system or input dataset of choice
by only changing a couple of lines of code in the provided code base
(see Appendix B).

Our conclusions are as follows (see also Fig. 1). When compar-
ing H2 with C2, we found that for synthetic (i.e., noiseless) data, C2 is
clearly superior to H2, retaining much better accuracy for decreas-
ing N (amount of points), increasing D (state space dimension), or
decreasing ε (size scale). C2 can also be used to detect the “noise
radius,” as, e.g., illustrated by Kantz and Schreiber.22 For real data,
this can become a downside, making the FD estimation using C2

ambiguous due to either an almost continuous change of slope or
the majority of the slope reflecting the slope of the noise (Sec. III G).
This can be partly alleviated by examining the behavior of C2 with
increasing embedding dimension d. In Sec. III C, we saw that, pro-
vided that a deterministic chaotic attractor is known to generate
the data, it is still quite sensible to estimate a FD of relatively small
datasets using C2, as the estimated FD remains very accurate even for
relatively small data lengths. On the other hand, Hq is very sensitive
to data length and underestimates the FD strongly even for mod-
erately small data (which is often the case in experiments). We had
difficulties making sense of correlation sum for order q 6= 2, even
though it has been mentioned several times in the literature. Cq for
q 6= 2 gives correct results only when one considers the slope at the
largest ε values and it is unclear why the slopes (i.e., FD values) at
small ε values are incorrect. As such, we suggest that when treating
multifractality, the entropy method should be preferred, or, if one
has too few data points (where Hq performs poorly), then using Cq

and recording the slope of log(Cq) at largest ε is the best alternative.
We then compared C2 with EVT. In deterministic datasets,

we found a very high degree of agreement between C2 and EVT,
confirming EVT’s accuracy. EVT performed equally well for high-
dimensional data but worse than C2 for decreasing N. Still, EVT
performs better with decreasing N, increasing D, or increasing
underlying FD when compared to H2. When it comes to noise, EVT
appears to have similar results with H2, i.e., the results are an aver-
age of the deterministic (smaller) FD and that of the noise. EVT
reports the smallest FD values when contaminated by noise, and
hence, EVT is affected less strongly by noise than C2 or H2. One
more advantage of EVT vs C2, H2 is that it foregoes the identifi-
cation, fitting, and extraction of slope from a scaling region and,
hence, does not face the same limitations when the data can cover
only very small range of magnitudes of ε. This advantage is balanced
by the disadvantage of EVT being much more of a black box method
than C2, H2.

It appears that the EVT is a promising method that combines
benefits from both H2, C2: it scales well with decreasing N or increas-
ing D and is more tolerant to noise than C2. However, we also
observed that it has a huge downside: it cannot be falsified. Or, at

least, at the moment, there does not exist a method (visual or statis-
tical) in the literature that can confidently falsify it, nor that it can
quantify its significance meaningfully. All four methods we utilized
and discussed in Sec. IV C (p-values, root-mean-squared errors,
surrogate tests, and increasing embedding dimension) failed to indi-
cate that, e.g., stock market timeseries are an inappropriate input
(despite being non-stationary and not satisfying practically any of
the assumptions underlying the EVT method). Instead, all ways to
test for significance gave big confidence that stock market timeseries
are described by a very small FD of ≈ 2.5.

Surprisingly, we found practically no discussion in the liter-
ature about falsifiability, despite the plethora of real-world appli-
cations in very varied input datasets (Sec. II D). Nevertheless, we
believe that falsifiability is important, because with it, one resolves
controversies like the fractal dimension of “global climate attractors”
(Ref. 26). The lack of falsifiability has major implications for both
previous and future real-world applications using the extreme value
theory approach: the argument for low-dimensional determinism in
the data cannot come from the EVT method itself, at least not at the
moment.

It is clear, as it was before this work, that estimating a FD is
not an easy task, and, hence, focusing on only a single number can
mislead. The best practice we feel is to calculate several versions
of 1, from different methods and with varying the parameters of
each method (including the range of ε or the quantile probability
p) and produce a median of the results. In addition, given the soft-
ware implementation we provide here, calculating all FD variants
only necessitates a couple of lines of code (see Appendix B). Fur-
thermore, plotting of the appropriate quantities −Hq, log(Cq) vs ε is
a must and can hint whether the methods are applied at inappro-
priate data. In addition, expecting more than one decimal point of
accuracy is unrealistic in most practical applications.

As an outlook, we believe there is still some future research
to be done regarding estimating FDs. In addition to the Lya-
punov dimension, which is not easily applicable to observed data,
every other estimator disregards the time-ordering information in
observed data (i.e., that the sequence of points follows the flow
in state space instead of being randomly drawn samples on the
attractor). Perhaps here is a way to make a more powerful estima-
tor by using this discarded information of the time-ordering of the
points in the dataset. For example, this time-ordering information
has been used in, e.g., estimating the transfer operator,103,104 which
can also yield the natural density, and perhaps this operator can be
utilized to create a FD estimator of higher accuracy or with better
scaling with the number of points N.

Regarding the EVT approach, we believe future research can
improve in two fronts: (1) developing a mathematically rigorous
framework for choosing p and (2) developing statistical tests for
correctness and significance of the method’s results that can success-
fully falsify the method with inappropriate data. With new statistical
indicators, the method may be applied with more confidence to data
of unknown dynamical origin.
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APPENDIX A: ALGORITHMS FOR ESTIMATING A

FRACTAL DIMENSION

1. Optimized histograms for arbitrary ε

Here, we describe an optimized method to calculate his-
tograms, which to our knowledge neither has been published before
nor could we find a faster method that works for arbitrary ε. The
process has memory allocation scaling of D · N and performance
scaling of D · N log(D · N), neither of which depends on ε. The pro-
cess is as follows. Every point in the dataset is first mapped to its
corresponding bin via the operation bi = b(xi − xmin)/εc, where
xmin is a vector containing the minimum value of the dataset along
each dimension and b·c is the floor operation. The resulting b (N in
total) are then sorted with a quick sorting algorithm, which results
in all equal bi being successive to each other. The sorting is lexi-
cographic, i.e., sorting by first dimension, then by second, and so
on. We then count the successive occurrences of equal bi ≡ bi+1,
which gives the amount of points present in the corresponding
bin and move on to the next bin (there are no actual bins being
created in memory, a bin is conceptually defined as the group of
successively equal bi). Dividing by the total amount of points gives
the probabilities that can then be plugged into Eq. (3) to yield the
entropy Hq.

2. The box-counting algorithm by Molteno

This box-counting algorithm for the generalized dimension
was introduced by Molteno38 as an improvement for the method
introduced by Grassberger.105 It claims to be of order D · N. The
algorithm partitions the data into boxes and counts the number of
points in each box to retrieve the probabilities pi necessary to cal-
culate the generalized dimension 1(H)

q . The faster runtime of the
algorithm is due to the use of integer manipulations for the division
of the data points into boxes.

To perform these manipulations, all data values are converted
to unsigned integers. These are calculated by finding the max-
ima xmax and minima xmin in each dimension to then identify the
dimension that covers the largest range X,

xInt(x) =
⌊

2Nbits−1

(

x − xmin

X

)⌋

, (A1)

where Nbits is the bit size of the unsigned integer type that was used
and b · c is the floor function.

The first box contains all indices to the array that stores the
data points, where a box refers to an array of indices. The boxes are
subsequently partitioned, until the mean number of points per filled
box falls below a threshold k0, recommended by Molteno to be 10.

The kth step of partitioning divides the previous box into 2D

new boxes with the dimension of the data D. For a data point x, the
index i of its new box is calculated as

i =
D
∑

j=1

((

xj » (Nbits − k)
)

and 1
)

· 2i. (A2)

Here, » is the logical shift operation, shifting the bit representation
of the first value to the right by the second value, and is the bit-
wise “and” operation. Thereby

(

xj »
(

Nbits − k
))

and 1 translates to
checking whether the bit at position Nbits − k + 1 is one. In a cycle
of partition, all boxes that contain more than one data point are split
up and empty ones are deleted. To retrieve the probabilities pi, the
number of data points contained in each box is counted and divided
by the total number of data points.

The algorithm provides exponentially scaled sets of values that
suit the approximation of the limit in Eq. (4) and it only needs to
compute the operation (A2) D · N times per partitioning process.
The main disadvantage is the static box size choice. It works well for
low-dimensional data sets, but for larger dimensions, the number
of boxes increases exponentially with dimension, thereby increasing
the number of points necessary to calculate the dimension exponen-
tially. This drastically limits the ε range to which the algorithm is
applied over, and for some sets makes the computation of low accu-
racy or even straight-out impossible. Given how fast our histogram
algorithm already is (all Hq curves in this paper took on average 0.1 s
to compute), we saw no reason to use the Molteno method. Also, the
Molteno method does not allow the user to decide ε values, making
it less flexible.

3. Correlation sum

The original correlation sum can be calculated as given in (6).
For q = 2, the second sum can be changed to only include indices
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higher than the current one (i),

C2(ε) = 2

(N − w)(N − w − 1)

N
∑

i=1

N
∑

j=1+w+i

B(||Xi − Xj|| < ε),

(A3)

which makes the computation twice as fast. In all cases, the cal-
culation time scales with D · N2, and, therefore, this method is
exceptionally slow for high N. Note that the version of the q-order
correlation sum given in Eq. (6) differs from the version provided by
Kantz and Schreiber22 in the exponent of 1/(q − 1). If the q-order
correlation given by Kantz and Schreiber is called C̄q(ε), it scales as

C̄q(ε) ∼ ε(q−1)1(C)q , then C̄q(ε)
1/(q−1) = Cq(ε) ∼ ε1

(C)
q and both ver-

sions are equal. In addition to the exponent, the formulation of Cq

also differs in the indices of the outer of the sums, which range from
1 to N, requiring a slightly changed normalization.

4. The box and prism-assisted correlation sum

Theiler40 proposed an improvement over the calculation of the
correlation dimension by Grassberger and Procaccia106 that divides
the data into boxes before calculating the distances between points.
Thereby, the number of distance calculations is reduced and the scal-
ing becomes faster than N2 (how much, it depends on the box size
r0). After division into boxes, the formula given in (6) is used to
calculate the correlation sum, therefore an extension to the q-order
correlation sum is possible.

The integer representations of the boxes b(x) with side length
r0 can be calculated by

b(x) =
⌊

x − xmin

r0

⌋

(A4)

for each point x and the minimum of each dimension xmin. This
method is based on Appendix A 1, as Theiler does not specify a
method for the calculation of the boxes. The permutations needed
to sort all representations in lexicographic order are calculated with
a quick sort algorithm. The representations have the same order-
ing as the points they were calculated with, therefore sorting the
points into boxes reduces to the iteration through the permutations
and searching for changing integer representations. If the integer
representation changes, all previous permutations are stored in an
array.

For a point inside a box, there may be points outside the box
that are within the given distance of the point. Therefore, the neigh-
boring boxes with respect to the current box also have to be found
and checked. The distances between the points in the box and its
neighbors are calculated as given in Eq. (6). The first sum runs over
all points of the initial box and the second sum uses all points in the
box and adjacent boxes. For q = 2, only boxes with equal or larger
indices are included in the neighbor search and the optimization,
presented in the previous chapter, is used.

A point of criticism for this algorithm is its poor runtime for
higher dimensions. The advantage of distributing the points into
boxes beforehand diminishes as the number of boxes increases con-
siderably with dimension. To reduce the amount of boxes, Theiler
proposed a prism algorithm, where only the first P dimensions are
used to distribute the data into boxes. These new boxes, where

P sides are of side length r0 and the other D − P sides cover the
whole range, are called prisms. The best choice given by Theiler is
P = 0.5 log2 N and should be used when D exceeds 0.75 log2 N. A
downside of this prism approach is that for any P < D, some point
pairs that should have been discarded may be included due to hav-
ing small distances in the first P dimensions but a larger distance in
at least one of the remaining dimensions.

According to Theiler, the size of the boxes r0 can be com-
puted as

r0 = R(2/N)1/1
(C)
2 , (A5)

where R is the size of the chaotic attractor and the dimension 1(C)
2

is estimated by computation of the correlation sum for
√

N points.
Since these points are chosen randomly, the estimated dimension
and in consequence the box size and even the final dimension can
vary strongly. A downside is that for some sets, the proposed box
size can drop below the minimum interpoint distance of the set.
Furthermore, our tests showed an irregular output value of r0 with
differences as high as two orders of magnitude for two box size
estimates on the Hénon map.

Bueno-Orovio and Pérez-García41 proposed a different, and
more stable, algorithm for the calculation of the optimal box size
r0. They optimized the expected calculation times for the optimal
number of filled boxes to

ηopt ≈ N2/3

[

31
(C)
2 − 1

3P − 1

]1/3

.

Here, P is the number of dimensions used for the boxing, with D
for boxes and P for prisms. Introducing the effective length of the

chaotic attractor ` = r`η
1/1(C)2
` and solving ηopt = (`/r0)

1
(C)
2 for the

box size r0 yields

r0 = `

η
opt1/1

(C)
2

. (A6)

Here, ` is the effective length, r` is the box size used to calculate
the effective length with r` = R/10, and η` is the number of filled
boxes in case of the effective length. η` is calculated by distributing
N/10 points into boxes of size r`. The dimension 1(C)

2 used for the
calculation of r0, ηopt, and ` is again estimated by computation of the
correlation sum for

√
N points.

The box size estimator still varies in its choice of box size but
shows fluctuations of smaller amplitude than the Theiler estimator.
The choice of a box size smaller than the smallest interpoint distance
only occurs for high dimensional data sets with a low number of
points. Furthermore, Bueno-Orovio and Pérez-García chose a prism
dimension of always P = 2 (for D > 2). However, a prism dimen-
sion of 2 can result in box size estimates smaller than the minimal
interpoint distance for high dimensional datasets with compara-
bly low size. In this paper, we used P = 2 but we have different r0

(see below).
The main benefit of a small r0 is that it makes the computations

much faster. Unfortunately, both suggestions, and especially that of
Ref. 41, often fail in practice. They give much too small r0 values and
for data with any amount of noise whatsoever this value is well below
the noise radius. This is displayed in Fig. 7. The vertical dotted line
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shows the r0 estimated by Eq. (A6) (the calculation of C2 would be
limited up to this r0). In fact, r0 is so small that even for only 5% addi-
tive noise the computation would only show the noise dimension
and no hint of the deterministic (and smaller) slope of log(C2) vs
log(ε). That is why in this paper, we decided to use the box-assisted
version for better performance, but with r0 = εmax/e

2 as discussed
in Sec. III I. The performance is not too bad, e.g., for the typical
data lengths N = 105 considered here computing the entire C2 curve
takes about a minute on an average computer. Notice that even with
the optimized-for-performance r0 of Ref. 41, the entropy method is
still massively faster (in fact, it is even faster than just computing r0).

5. Fixed mass correlation dimension

The correlation dimension stems from the assumption that the

probabilities pi scale as
∑

i

(

p
q
i /δ

−(q−1)1(M)q

i

)

∼ 1 for ε → 0 with δi

being the diameter of the partition. In most methods that compute
the dimension, the diameter is fixed and the probabilities are defined
by the set. Termonia and Alexandrowicz107–109 proposed a method
using a fixed mass algorithm that does the opposite: the probabilities
are fixed by defining pi = n/N, where n is a chosen number of points
and N is the total number of points in the set. The diameter is chosen
to include n points. Following the explanation by Grassberger84 the
scaling can be rewritten to assume the form of Eq. (A7),

(r(j))
−τ = 1

M

M
∑

i=1

(

r
(j)
i

)−(q−1)1(M)q ∼ Nq−10(j + 1 − q)

0(j)
. (A7)

Here, (r(j))−τ is the mean of all radii that contain j points,
τ = (q − 1)1q, M is the number of points of the set considered
for the calculation, and 0 is the gamma function. Equation (A7) is
not solvable for 1q in general. Equation (A8) can be obtained from
Eq. (A7) from the limit q → 1 and applying L’Hôspital’s rule,

11log r(j) ∼ 9(j)− log N. (A8)

9 is the digamma function, 9(x) = d log0(x)/dx. With this gen-
eral form that is not solvable, this algorithm is restricted to q = 1.
We compared this version with the traditional correlation sum with
q = 2 and we found very similar accuracy in the estimated FD, pro-
vided that maximum j was large enough. However, we also noticed
that the fixed mass results spanned much less orders of magnitude

in the estimated log r(j), even for very high j (see Fig. 19). Further-
more, it is not clear to us how to estimate up to what maximum
j should the calculations be performed, i.e., it is not something
that could be straightforwardly extracted from data as in Sec. III I.
Regarding computational performance, the fixed mass algorithm is
implemented using KDTrees,110 giving a very high performance for
low-dimensional dataset, scaling poorly for very high-dimensional
ones. Hence, we decided to use only the traditional correlation sum
version in the main comparison of Sec. III.

6. Takens’ estimator

The estimator introduced by Takens13 aims to estimate the
correlation dimension using the method of maximum likelihood

FIG. 19. Fractal dimension estimates for sets coming from different dynamical
systems with known dynamical rule to compare the correlation sum to the fixed
mass formulation.

estimation (MLE).111 From m interpoint distances ρj < εmax, one can
estimate the correlation dimension as

1(T) = − m − 1
∑m

j=1 log
ρj

εmax

. (A9)

The derivation of this formula starts with the assumption that
∃ εmax > 0, so that ∀ 0 ≤ ε ≤ εmax, the correlation sum

C2(ε) = c ε1
(T)
2 holds exactly, (A10)

without any higher-order terms, for some proportionality con-
stant c.

The transformed variable yi = − log(ρi/εmax) is distributed
exponentially with parameter 1(T). The log-likelihood-function of
this distribution is given by

l
(

1(T); {yi}
)

= log L
(

1(T); {yi}
)

= m log1(T) −1(T)

m
∑

j=1

yj.

l is then maximized with respect to 1(T) to obtain the most likely
value of the correlation dimension. As Takens noted correctly, just
taking the maximum of l is biased,13,43 which can be easily corrected
by writing

1(T) = m − 1

m
correction

m
∑m

j=1 yj

original

= m − 1
∑m

j=1 yj

.

For a Gaussian distributed random variable, the log-likelihood
function is a parabola, that at 1σ has fallen by 0.5 from its maximum
and at 2σ by 2. By invariance,112 this is also the case for a non-
Gaussian random variable, letting us easily estimate the variance
of1(T).

When testing the algorithm and its dependency on εmax

(Fig. 20) on different dynamical systems, we found that the varia-
tion of 1(T) exceeds the confidence intervals at any fixed εmax for
low-dimensional systems.
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FIG. 20. Dependency of 1(T) for different systems on the parameter εmax.
The shaded 5%–95% confidence intervals around the curves are not visible in
most cases. Clearly, the variation of 1(T) over different values of εmax exceeds
the confidence intervals.

These variations occur because for the estimation, it is assumed
that Eq. (A10) holds. Thus, the estimated 1(T) and its confidence
intervals are of no use as long as the validity of the assumption (A10)
is not known.

While Takens’ estimator does not provide a significant advan-
tage in the precise estimation of the fractal dimension, compared
to correlation-sum-based methods, it can be useful in the case of
surrogate timeseries as described in Sec. V.

7. Judd’s estimator

Judd’s “improved” estimator for the correlation dimension44,45

also uses maximum likelihood estimation. To account for deviations
from uniform scaling, it allows a polynomial a of degree t so that the
assumed correlation sum is

C2(ε) ≈ ε1
(J)
2
(

a0 + a1ε + · · · + atε
t
)

. (A11)

It is stated that a degree t ≤ 2 is “usually sufficient.”
The estimator performs a binned maximum likelihood esti-

mation of 1(J)
2 alongside the coefficients of the polynomial. Judd,

therefore, introduces a logarithmic binning, where the bins are
defined by B0 = [ε0, ∞), εi = λiε0 and Bi = [εi, εi−1) for i > 0 and
λ < 1. The parameter ε0 is called the cutoff and w = log(1/λ) the
bin width. Now, the probability of observing a distance in bin Bi

becomes pi = Pi − Pi+1, with

Pi =
(

εi

ε0

)1
(J)
2
[

a0 + a1

(

εi

ε0

)

+ · · · + at

(

εi

ε0

)t
]

.

If the bin contents bi are distributed multinomially, the negative log-
likelihood function for the bin contents {bi} is

l
(

{

bi

}

;1(J)
2 , a

)

= −
∑

i

bi log pi + C, (A12)

FIG. 21. Estimates of 1
(J)

2 for different dynamical systems. For each box, 100
different samples have been drawn from a trajectory. Each individual sample
contained 100 points. The degree of the polynomial was deg(a) = 1.

which must be minimized under the constraints
∑

i

pi = 1 and pi > 0. (A13)

Equation (A12) does not necessarily only have one minimum
because it depends on t + 2 parameters and must be minimized
numerically.

The optimal bin width for the estimator w minimizes

log w + log

(

n
b1 . . . bm

)

+ log

(

n + m + 1
m

)

, (A14)

where m is the index of the last bin for which the bin content bm 6= 0
and n is the number of considered interpoint distances. Because the
computation time of Eq. (A14) becomes unreasonably large for large
numbers of distances, the estimator is restricted to small sample
sizes.

Once the optimal bin width is found, the cutoff ε0 is chosen as
the right edge of the fullest bin of the histogram. All bins to the right
of this bin are joined to form B0 = [ε0, ∞).

The minimization of Eq. (A12) is subject to two difficulties that
are already noted by Judd. First, an optimizer cannot understand

the idea that the exponential ε1
(J)

is the essence of the model, while
the polynomial is only a device to correct for deviations from the
scaling law. Second, the optimizer is highly sensitive to the initial
condition of the optimization, which could be reduced by a tailored
optimizer,113 but still one can observe a very broad distribution of
1
(J)
2 values over different samples of a long trajectory, especially for

higher-dimensional systems, as is shown in Fig. 21.
Due to these problems, we decided not to include the estimator

in the main comparison.

8. Dimension from Lyapunov exponents

In Sec. II E, we described the Lyapunov dimension 1(L) due to
Kaplan and Yorke. We do not have anything to add here regarding
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1(L), but we want to mention Ref. 48 by Chlouverakis and Sprott.
They suggest that instead of a linear interpolation to the sum of λi,
a polynomial interpolation should be done instead. However, as we
found no theoretical foundation for this proposal, we decided to skip
it (and we also did not notice any significant improvement with the
numeric results).

9. Mean return times

According to the Poincaré recurrence theorem, any trajectory
within an ergodic set114 will return arbitrarily often and arbitrar-
ily close to any neighborhood in the ergodic set.99 We represent
this neighborhood as a hypersphere of radius ε, centered at some
point x0 in the ergodic set, and define as γ the mean return time
to this hypersphere. Then, one expects that log(γ ) ≈ −1(γ ) log(ε)
with 1(γ ) the fractal dimension, as estimated from the mean return
times. A more formal discussion of this fact and explicit connection
with the natural measure of the ergodic set and the fractal dimen-
sion obtained via the generalized entropy (4) is given by Theiler.16

The earliest reference we found using return times to estimate fractal
dimensions was Ref. 46.

Unfortunately, the method using mean return times is not rec-
ommended at all. A fundamental limitation is that knowledge of the
dynamic rule f is necessary, otherwise the results of the method for
measured data are too inaccurate to be considered seriously. Even
for known rule f, the method converges slowly (numerically). Fur-
thermore, it provides an estimate of the local dimension around the
point of return, similarly with the point-wise dimension. Thus, it
has to be further averaged over several state-space points, requiring
several orders of magnitude more computation time than the cor-
relation sum method or the Lyapunov dimension method. Last, we
found its numeric output (not shown, see online repository) to be
quite far from the results of the correlation dimension and, thus, we
do not consider it accurate enough.

10. Extreme value theory

We introduced the algorithm of estimating a FD via extreme
value theory (EVT) in Sec. II D. Here, we will expand more on how
the algorithm has been used in the literature and highlight potential
ambiguities we have noticed in its real-world applications.

Recall from the discussion of Sec. II D that the exponential
distribution (EXPD) the extremes of the g(ε) function (Sec. II D) fol-
low is, in fact, a simplification of a Generalized Pareto Distribution
(GPD). The cumulative function of GPD is

F(x) = 1 −
(

1 + ξx

σ

)−1/ξ

(A15)

and is valid for x ≥ 0 if ξ ≥ 0 and for 0 ≤ x ≤ −σ/ξ if ξ < 0. It
reduces to EXPD for ξ = 0. The first ambiguity we found in the liter-
ature concerns the recently published work of Pons et al.,75 as well as
real-world applications that explicitly fit a GPD to data (i.e., allowing
ξ 6= 0 instead of enforcing ξ = 0). It is correct that the exceedances
E in a dataset may follow a GPD, but if one wants to make the claim
that the σ parameter is connected with the fractal dimension, then
one must assume that the data follow the reduced EXPD instead.
That is because of Eq. (14). If one uses the GPD cumulative function

instead of the EXPD one, one would get the expression exp(−E1i)

to be equated to (1 + ξE/σi)
−1/ξ , from which it is impossible to

claim1i = 1/σi like in Eq. (14). Hence, when using GPD fits instead
of EXPD, one cannot simply equate the (local) fractal dimension
with the σ parameter of the fit, in contrast to what has been done
in the literature.75

The second ambiguity we encountered is the lack of applica-
tion, and even discussion, of delay coordinates embeddings. Many
real-world applications, e.g., Ref. 65, analyze a single dynamic vari-
able (such as sea level pressure in the case of climate applications).
This dynamic variable is a spatiotemporal field and, hence, provides
a multi-dimensional input dataset. Despite the high input dimen-
sionality, this single variable is likely coupled to many other dynamic
variables in a coupled dynamical system (which is especially true
in the case of climate dynamics). The theory of delay embeddings
is supposed to re-construct the missing dynamic variables and as a
result provide a more correct representation of the dynamical flow.
Delay embedding is missing from almost all applications of EVT we
reviewed and cited, even though they all use the timeseries of only
one dynamic variable. Given that delay embedding is a well estab-
lished analysis step28 that is completely separate from estimating
fractal dimensions, we are not sure why there is a lack of discussion
of it.

The third ambiguity we want to highlight is the report of rel-
atively small values for the fractal dimensions of spatiotemporal,
and highly complex, real-world data. For example, Ref. 70 reports
dimensions of 1 ≈ 3.5 for the dynamics of slow earthquakes in the
Cascadia region, Ref. 72 reports 1 ≈ 15 for spatiotemporal atmo-
spheric flow (of daily resolution; hence, large scale turbulence is
considered), Ref. 73 report a difference of at most δ1i ≈ 2 from the
states of largest and smallest local fractal dimension of the 500-hPa
geopotential height (Z500) dynamic variable for the weather of the
European-Atlantic region. In particular, in the last case, this would
mean that, out of the potentially millions of available degrees of free-
dom in this (discretized) spatiotemporal system, there is a difference
of at most two additional degrees accessed by the state space flow
between the least and most stable regions in state space. Given that
in this review, we noticed much higher differences of local dimen-
sions in much lower-dimensional systems (see, e.g., Fig. 11 or 18), we
find this reported small number difficult to grasp. In general, given
the discussion on falsifiability of Secs. IV C and IV H, as well as lim-
itations that come from the length of input data that we discussed
in Sec. III C, we believe that the absolute value of the fractal dimen-
sions reported in these publications should be taken with a grain of
salt and not be equated with the available degrees of freedom in the
state space. Whether or not the relative values of the local dimen-
sions 1(E)

i (in the sense that a relatively higher value means higher
local state instability for the real system) can be used to draw con-
clusions or not depends on the confidence one has on the stability of
the distributions of1(E)

i (see Sec. IV C).

11. Persistent homology

Persistent homology methods are based on topological time-
series analysis and applications in dynamical systems. These tech-
niques have been relatively recently applied to estimate fractal
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dimensions, and a quantitative review was recently published by
Jaquette and Schweinhart.50

The methodology is based on tracking how d-dimensional
holes form or disappear as the point cloud that composes X is
“inflated” or “thickened.” This means that each point in X is taken
as a sphere with radius initially 0, and this radius is increased as
the point cloud is “inflated.” Estimators based on zero-dimensional
persistent homology using minimal spanning trees were proposed
already in the early 1990s by van de Weygaert et al.115 and Martínez
et al.116 who stress that this approach provides an estimate of a (gen-
eralized) fractal dimension and also works with relative small data
sets. For more information about implementations of the method,
see Ref. 50.

The review of Ref. 50 compared fluctuations in the output
values and the distance of the output values themselves from the ref-
erence “true” values of the test sets applied to. The results showed
that the persistent homology method has similar performance for
d = 0, and dramatically worse performance for d > 0, when com-
pared to the correlation sum. Unfortunately, for d = 0, the method
performs poorly when noise is present, i.e., it does not distinguish
two slopes (of the noise and of the deterministic set) and instead
shows that of the noise, while it does find two slopes for d = 1. Addi-
tionally, the method output depends strongly on its meta-parameter
α, whose value cannot be deduced from input data. For these rea-
sons, and because the methodology itself is more complicated to
both explain and implement than the correlation sum of Sec. II C,
we deem the method worse than the correlation sum and only
considered the correlation sum for a more in-depth comparison in
Sec. III.

APPENDIX B: SOFTWARE IMPLEMENTATIONS AND

CODE BASE

The work done in this paper and the figures produced are
available as a fully reproducible code base, which can be found on
GitHub.117 It is written in the Julia language118 and is using the

software: DynamicalSystems.jl,36 DifferentialEquations.jl,119

BenchmarkTools.jl,120 ComplexityMeasures.jl,104 LsqFit.jl, and
DrWatson.121 Figures were produced with Makie.122 All methods,
with the exception of Judd’s algorithm and the persistent homology
method, are implemented, documented, and tested extensively in
the FractalDimensions.jl123 submodule of DynamicalSystems.jl. The
implementations follow best practices in scientific code124 and are
highly optimized, utilizing multi-threading whenever possible. The
following code is a simple example of calculating 1(C)

2 , 1(H)
1 , and

1
(E)
i with DynamicalSystems.jl and the Julia language:

using DynamicalSystems

# some input data (chaotic Roessler system):

ds = Systems.roessler()

X, t = trajectory(ds, 10000; Dt=0.1, Ttr=100)

# Estimate lengths as in Sect. III I:

es = estimate_boxsizes(X)

# Estimate correlation sum, App. A 4:

Cs = boxed_correlationsum(X, es; q = 2)

# find and fit largest linear region:

DeltaC = slopefit(log.(es), log.(Cs))[1]

DeltaC # the correlation dimension

# Estimate entropies and fit dimension

DeltaH = generalized_dim(X, es; q = 1)

# Estimate local dimensions via EVT

p = 0.99 # quantile probability

DeltaEi = extremevaltheory_dims(X, p)

APPENDIX C: DYNAMIC RULES OF KNOWN SYSTEMS

All dynamical systems used for generating data are listed in
Table III.

APPENDIX D: DELAY EMBEDDING PARAMETERS FOR

EXPERIMENTAL DATA

The method of Kraemer et al.34 finds optimal delay times that
may not be equispaced. The amount of delay times found is equal

TABLE III. Description of various systems considered in this paper.

System Dynamical rule Initial conditions Parameters

Hénon map xn+1 = 1 − ax2
n + yn, yn+1 = bxn (0.08, 0.12) a = 1.4, b = 0.3

Kaplan–Yorke map xn+1 = 2xn%1, yn+1 = λyn + cos(4πxn) (0.15, 0.2) λ= 0.2

Towel map

xn+1 = 3.8xn(1 − xn)− 0.05(yn + 0.35)(1 − 2zn),

yn+1 = 0.1
((

yn + 0.35
)

(1 + 2zn)− 1
)

(1 − 1.9xn) ,

zn+1 = 3.78zn(1 − zn)+ byn

(0.085, − 0.121, 0.075)

Hénon–Heiles ẋ = px, ẏ = py, ṗx = −x − 2xy, ṗy = −y − (x2 − y2) (0, −0.25, 0.420 81, 0)

Coupled logistic maps
u(i)n+1 = 4v(i)n (1 − v(i)n ),

v(i)n = u(i)n + k
(

u(i−1)
n − 2u(i)n + u(i+1)

n

)

(0.1, . . . , 0.9) k = 0.1

Rössler ẋ = −y − z, ẏ = x + ay ż = b + z(x − c) (0.1, − 0.2, 0.1) a = b = 0.2, c = 5.7

Periodic parameters: a = b = 0.2, c = 3

Lorenz-96 ẋi = (xi+1 − xi−2) xi−1 − xi + F (j × 0.1 for j ∈ 0, . . . , D − 1) F = 24
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to the embedding dimension. The delay times found are listed in
the below list for each system (delay times are always integers, in
units of the sampling time). For Vostok and “nifty50,” data we
used traditional techniques of optimizing delay time and embedding
dimension individually via Cao’s method and minimum of mutual
information, because the method of Ref. 34 (correctly) yields that
the data do not accommodate a proper embedding:

• “electroch. 1”: (0, 26, 13, 5, 20),
• “electroch. 2”: (0, 25, 16, 148, 138, 87, 60, 105),
• “Shinriki”: (0, 19, 38, 57),
• “nifty50”: (0, 43, 86, 129, 172, 215),
• “vostok”: (0, 50, 100, 150, 200, 250, 300),
• “double pendulum”: (0, 51, 25, 39, 12),
• “Roessler”: (0, 6, 3, 14), and
• “EEG IBI”: (0, 13, 26, 39, 7).

APPENDIX E: MORE PLOTS FOR SIGNIFICANCE OF

EVT

See Figs. 22 and 23.

FIG. 22. Same as Fig. 13 but now for the experimental dataset
“electrochemical 1.”

FIG. 23. Same as Fig. 13 but now for the “nifty50” stock market timeseries
(embedded in six-dimensional space). Note that this timeseries is only 3125
samples long, hence we used much smaller p when compared to other plots.
The proportion N(1 − p), however, remains similar.

APPENDIX F: INCREASING EMBEDDING DIMENSION

OF REAL-WORLD DATA

In Figs. 24 and 25, we perform what is known as standard
practice when estimating FDs: increasing the embedding dimen-
sion iteratively until a convergence of FD appears at the largest
scales of ε.22 In particular, for this subsection, we estimate the slope
of the right-most linear scaling region (i.e., the one at the largest ε),
as opposed to the slope of the largest linear region. That is because in
real data, it is this slope that should indicate the FD of the underlying
deterministic dynamics, if any exist (see Sec. III F).

Indeed, for the “electrochemical 2” dataset, the convergence
of 1(C)

2 becomes apparent very quickly. On the other hand, for
“nifty50,” there is no convergence (we computed C2 up to d = 13,
not shown). The results of H2 for “nifty50” are inaccurate because
the timeseries has only 3125 points; they should not be trusted (but
anyways they do not show any convergence either).
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FIG. 24. Analysis of behavior of FD estimators as we increase embedding dimen-
sion of real world data (delay time was estimated as the minimum of self-mutual
information), here for the “electrochemical 2” dataset.

FIG. 25. Same as in Fig. 24 but for the “nifty50” dataset. Note the convergence
of the EVT FD into a small value of 1(E) ≈ 2.5 already for d ≥ 5. Practically
identical results are obtained with the “vostok” dataset: C2 fails to converge to any
FD with increasing d, while EVT converges to1(E) ≈ 3.3 for d ≥ 5.

We also perform the same analysis for the EVT approach,
which once again reinforces that the method which fails to under-
stand the stock market timeseries should not have a convergent
dimension. Instead, the dimension estimates converge very rapidly
with increasing d.
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