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Abstract

3D multi-object tracking (MOT) is vital for many ap-
plications including autonomous driving vehicles and ser-
vice robots. With the commonly used tracking-by-detection
paradigm, 3D MOT has made important progress in recent
years. However, these methods only use the detection boxes
of the current frame to obtain trajectory-box association re-
sults, which makes it impossible for the tracker to recover
objects missed by the detector. In this paper, we present Tra-
jectoryFormer, a novel point-cloud-based 3D MOT frame-
work. To recover the missed object by detector, we gener-
ates multiple trajectory hypotheses with hybrid candidate
boxes, including temporally predicted boxes and current-
frame detection boxes, for trajectory-box association. The
predicted boxes can propagate object’s history trajectory
information to the current frame and thus the network can
tolerate short-term miss detection of the tracked objects.
We combine long-term object motion feature and short-term
object appearance feature to create per-hypothesis feature
embedding, which reduces the computational overhead for
spatial-temporal encoding. Additionally, we introduce a
Global-Local Interaction Module to conduct information
interaction among all hypotheses and models their spatial
relations, leading to accurate estimation of hypotheses. Our
TrajectoryFormer achieves state-of-the-art performance on
the Waymo 3D MOT benchmarks. Code is available at
https://github.com/poodarchu/EFG.

1. Introduction
3D multi-object tracking (MOT) is an essential and crit-

ical task in the fields of autonomous driving and robotics.
It plays a vital role in enabling systems to accurately per-
ceive their surrounding dynamic environment and make ap-
propriate responses. Among the various sensors used in au-
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tonomous driving, LiDAR-based systems have emerged as
a popular choice because they can capture accurate and de-
tailed 3D information of the environment, enabling more
precise object detection and tracking. Therefore, 3D MOT
based on LiDAR point clouds shows great potential to im-
prove the safety and efficiency of autonomous vehicles.

Tracking-by-detection is a popular paradigm that has
demonstrated excellent performance on the 3D MOT
task [34, 13, 27, 1, 15]. Previous methods, such as Center-
Point [34] and SimpleTrack [13], rely on heuristic rules to
associate objects across frames. These methods use manu-
ally designed affinity metrics such as distance, intersection
over union (IoU), and GIoU to match a history trajectory
with a current detection box based on their positional rela-
tionship. However, these heuristic rules are not robust as
they cannot be trained and different categories may prefer
different association metrics [13]. Moreover, these meth-
ods only consider pair-wise position relationships between
boxes, without considering comprehensive global context
information, which often results in low-quality trajectories.

Other methods have attempted to enhance 3D MOT by
modeling the spatial context among different boxes. Polar-
MOT [8] adopts Graph Neural Network (GNN) to establish
the spatial-temporal relationship between trajectories and
different boxes, followed by edge classification to conduct
association. Similarly, InterTrack [30] employs attention
mechanisms to interact between trajectories and all boxes,
generating the affinity matrix for association. These meth-
ods generally leverage global context information, result-
ing in improved tracking performance compared to heuristic
methods. However, they still only rely on detection boxes
for associating with existing trajectories, which limits the
recall rate when the detector misses objects. Thus, incor-
porating additional box candidates for association has great
potential to improve the recall and performance of 3D MOT.

To overcome the limitations of existing approaches, we
present TrajectoryFormer, a point-cloud-based 3D MOT
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framework. Our framework generates multiple trajectory
hypotheses with hybrid candidate boxes, enabling robust
tracking of challenging objects. It employs a per-hypothesis
feature encoding module and a cross-hypothesis feature in-
teraction module to learn representative features for select-
ing the best hypotheses. The per-hypothesis feature encod-
ing module encodes both the appearance and motion infor-
mation of each hypothesis, whereas the feature interaction
module captures the contextual relationship among all hy-
potheses. By leveraging multiple hypotheses and contextual
information, TrajectoryFormer can enhance tracking perfor-
mance in challenging scenarios with limited overhead.

Specifically, our framework first generates multiple tra-
jectory hypotheses for each existing trajectory using two
types of association candidate boxes: temporally predicted
boxes and current frame detection boxes. Unlike existing
approaches that only consider detection boxes at the cur-
rent frame, we design a small motion prediction network
that generate predicted boxes for several future frames of
each history trajectory. This allows us to generate multiple
trajectory hypotheses for an object by linking its history tra-
jectory with both temporally predicted boxes (generated by
its motion prediction at different past time steps) and cur-
rent frame detection boxes (matched by nearest distance of
box centers). Such a strategy enables the network to recover
objects missed by the detector at the current moment and
provides additional association options that can help correct
trajectory errors caused by low-quality detection boxes.

After generating multiple trajectory hypotheses, Tra-
jectoryFormer combines long-term object motion feature
and short-term object appearance feature to create per-
hypothesis feature embedding. More specifically, we adopt
a PointNet-like [19] neural network to encode the motion
feature for each trajectory hypothesis via encoding its long-
term sequence boxes, and a small transformer-based neural
network on the cropped object points to encode its appear-
ance feature. Note that we only encode the object appear-
ance feature based on short-term point clouds, since it not
only requires very limited computational overhead but also
avoids handling long-term object point variations. The con-
catenation of two types of features that capture complemen-
tary information for each trajectory hypothesis creates the
per-hypothesis feature embedding. This embedding enables
the evaluation of each hypothesis quality and facilitates the
modeling of relationships among multiple hypotheses.

To jointly consider the trajectory association across all
objects, we introduce a global-local Interaction module that
models spatial relations of all trajectory hypotheses. It uses
a transformer-based neural network to alternately conduct
scene-level (e.g., all trajectory hypotheses within the scene)
and ID-level (e.g., multiple trajectory hypotheses of each
object) feature interactions on the hypotheses, leading to
more accurate estimation of hypotheses. During inference,

TrajectoryFormer selects the hypothesis with the highest
confidence as the best association result for each object.
The selected hypothesis is then refined using its extracted
features to generate a more accurate trajectory.

In summary, our contributions are three-fold: 1) We
propose TrajectoryFormer, a novel transformer-based 3D
MOT tracking framework, which generates multiple trajec-
tory hypotheses that incorporate both predicted and detected
boxes to better track challenging objects. 2) To better en-
code each hypothesis, we incorporate both long-term tra-
jectory motion features and short-term object appearance
features. Additionally, the framework employs a global-
local interaction module to model relationships among all
hypotheses to adaptively determine the optimal trajectory-
box association. 3) We demonstrate the effectiveness of our
proposed approach through extensive experiments, and our
framework achieves state-of-the-art results for 3D MOT on
the challenging Waymo 3D tracking benchmark.

2. Related Work

2.1. 3D Object Detection on Point Clouds

Current methods of 3D detection on point cloud can be
categorized into three groups: point-based, voxel-based,
and point-voxel-based. The point-based methods [21, 16,
33] directly extract information from the original point
clouds. These methods leverage operations like set ab-
straction [17] to capture spatial position features of the
irregular 3D point clouds. In contrast, voxel-based ap-
proaches convert the irregular points into regular 3D vox-
els. Therefore, voxel-based works [31, 37, 34] can uti-
lize 3D CNN to directly extract features of each voxel in
3D space. Some high-efficiency methods [32, 9, 28, 5]
further reduce the height dimension of voxels, named pil-
lar, and adopt a bird-eye view (BEV) representation to
encode 3D features efficiently. Additionally, point-voxel-
based methods aim to enhance the performance by lever-
aging the strengths of both point and voxel representations.
By exploiting the two representations, some recent point-
voxle-based works [18, 10, 20] have achieved state-of-the-
art detection results.

On the other hand, some methods aim to exploit the
benefit of multi-frame point cloud for better detection per-
formance. Early methods employ a feature-based strat-
egy to aggregate temporal features with 2D CNN [11] or
transformer-based architectures [26, 35]. Recent works [6,
25, 34] have shown that a simple concatenation strategy of
multi-frame points can significantly outperform the single-
frame setting. Furthermore, MPPNet [2] proposes to em-
ploy proxy point as a medium to handle information aggre-
gation of long point clouds sequences.
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Figure 1. The overall framework of the proposed TrajectoryFormer. Given N history trajectories and the input point cloud, we first
generate multiple trajectory hypotheses for each history trajectory by incorporating both W detected boxes and Tf temporally predicted
boxes. Then a long-short hypothesis feature encoding module is used to encode the appearance and motion feature of each hypothesis.
These hypothesis features are then further encoded via a global-local hypothesis interaction module to propagate information among these
hypotheses. Finally, these features are utilized to predict the confidence of each hypothesis for selecting the best trajectory hypothesis.

2.2. 3D Multi-Object Tracking

Benefiting from recent advancements in 3D object detec-
tion, the state-of-the-art 3D MOT algorithms have adopted
the tracking-by-detection paradigm. A notable example is
CenterPoint [34], which proposes a simple approach that
utilize objects’ center distance as the association metric
to link detection boxes across sequential frames. How-
ever, CenterPoint employ a constant velocity assumption to
compensate for the motion displacement between different
frames. This approach may exhibit less resilient to missing
detections or curved motion trajectories.

Similar to the conception of optical flow [7, 22, 23],
several 3D MOT algorithms utilize Kalman Filters to es-
timate the location of tracked objects. AB3DMOT [29]
serves as a foundational approach in this regard, where
3D Intersection-over-Union (IoU) is employed as the as-
sociation metric for object tracking. Furthermore, Chiu
et al. [3] propose an alternative approach by introducing
the use of Mahalanobis distance as a replacement for 3D
IoU to capture the uncertainty of the trajectories. Mean-
while, SimpleTrack [13] conducts an analysis of the differ-
ent components of a tracking-by-detection pipeline and and
provides suggestions for enhancing each component. Im-
mortalTracker [27] propose a simple tracking system that
maintain tracklets for objects gone dark to solve the ID
switch problem in 3D MOT. SpOT [24] introduces a ap-
proach by developing the representation of tracked objects
as sequences of time-stamped points and bounding boxes
over a long temporal history. At each timestamp, SpOT im-
proves the location estimates of tracked objects by utilizing
encoded features from the maintained sequence of objects.

Some works exploit trajectory prediction to deal with oc-
clusion problems in tracking or detection. FutureDet [14]

propose an end-to-end approach for detection and mo-
tion forecasting based on LiDAR, which is capable of
forecasting multiple-future trajectories via future detection.
Quo-Vadis [4] utilizes trajectory prediction to solve long-
term occlusions in single-camera tracking. Similarly, PF-
Track [12] maintains the object positions and enables re-
association by integrating motion predictions to handle
long-term occlusions multi-camera 3D MOT.

3. TrajectoryFormer

Existing state-of-the-art 3D MOT approaches [34, 13,
27, 24] generally adopt the tracking-by-detection paradigm,
which utilizes the detected boxes at the current frame for
trajectory-box association. Although these approaches have
achieved excellent tracking performance, they may en-
counter difficulties when tracking challenging objects, such
as occluded or distant objects, due to mis-detections or in-
accurate localization caused by sparse object points. To ad-
dress these limitations, we present an efficient framework,
TrajectoryFormer, for 3D MOT in point cloud scenarios.

Specifically, as shown in Fig. 1, TrajectoryFormer gen-
erates a novel set of multiple trajectory hypotheses, which
incorporate both current frame detection boxes and history-
trajectory prediction boxes to better cover the potential
moving patterns of tracked objects. In Sec. 3.1, we first
introduce the generation of multiple trajectory hypotheses.
Next, in Sec. 3.2, we present the feature encoding of each
trajectory hypothesis. In Sec. 3.3, we propose the global-
local feature interaction module to propagate information
among all the trajectory hypotheses and generate the final
trajectories. Finally, we introduce the losses of Trajectory-
Former in Sec. 3.4.
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Figure 2. The illustration of the generation of multiple trajectory
hypotheses at frame t for a single history trajectory.

3.1. Generation of Multiple Trajectory Hypotheses

Given N existing history trajectories up to time t − 1,
{ht

i}Ni=1, state-of-the-art 3D MOT approaches [13, 27] gen-
erally associate each history trajectory with its nearest de-
tection boxes at t for extending the trajectories up to current
time t. However, this association strategy may fail in track-
ing some challenging objects if the detector misses the ob-
ject at time t. To address this limitation, TrajectoryFormer
is designed to generate multiple trajectory hypotheses for
each tracked object ht

i to better cover the potential mov-
ing patterns of each object. Unlike existing approaches that
solely consider current frame detection boxes for trajectory-
box association, each history trajectory ht

i is paired with
hybrid candidate boxes at time t to generate trajectory hy-
potheses, which include not only the current frame detec-
tion boxes but also the temporally predicted boxes based on
the motion prediction of the history trajectory ht

i.
Motion Prediction of History Trajectories. To achieve
this goal, we introduce a motion prediction network that en-
codes the historical trajectories of tracked objects to predict
their future states. Specifically, we first reorganize the his-
tory trajectories {ht

i}Ni=1 as Ht = {ĥt
i | ĥt

i ∈ RTh×S}Ni=1 ∈
RN×Th×S . Note that ĥt

i ∈ RTh×S is the cropped history
trajectory of the i-th trajectory ht

i up to time t−1 with tem-
poral length Th, and S denotes the number of state attributes
at each frame, such as location, heading angle, velocity, and
time encoding. We pad all-zero vectors to the history tra-
jectories that are shorter than Th.

The motion features of each history trajectory are then
encoded using a PointNet-like encoder as

Ht
g = MaxPool(MLP(Ht)), (1)

where MLP(·) is a multi-layer perception network trans-
forming each S-dimensional history trajectory’s state vec-
tor, followed by max-pooling over the temporal dimension
to summarize all frames’ features into N history trajectory
features Ht

g ∈ RN×D. The trajectory features are then used
as input to an MLP prediction head that predicts each ob-
ject’s future states as

Ht
p = MLP(Ht

g), (2)

where Ht
p ∈ RN×Tf×3 is the set of predicted states at future

Tf frames for each history trajectory ht
i up to time t − 1.

Ht
p can be reformulated as a set Ht

p = {pti}Ni=1, where
pti ∈ RTf×3 indicates the predicted future states of the i-th
trajectory starting at time t, and 3 represents the predicted
2D location and the heading angle at each time step.
Generation of Multiple Trajectory Hypotheses. With the
predicted trajectory states from the past time steps, Tra-
jectoryFormer generates multiple trajectory hypotheses for
each tracked object by associating each history trajectory to
each of its Tf temporally predicted boxes and current-frame
detected boxes.

Specifically, as shown in Fig. 2, for a given history tra-
jectory hi up to time t− 1, we collect its predicted states at
time t from the motion prediction results at the previous Tf

frames of the history trajectory, which can be represented as
the set

{pt−1
i [1], . . . , pt−j

i [j], . . . , p
t−Tf

i [Tf ]},

where pt−j
i [j] indicates the predicted state at current time t

by using the short clip of this history trajectory at time t−j.
Note that we only predict the future position and heading
angle of each trajectory and assume that the box dimension
is unchanged for each history trajectory. For the sake of
simplicity, we consider {pt−j

i [j]}Tf

j=1 as the predicted boxes
of the i-th history trajectory at current time t, which are uti-
lized to associate with the i-th history trajectory to generate
multiple trajectory hypotheses. We illustrate the generation
of multiple trajectory hypotheses with temporally predicted
boxes in Fig. 2, where the prediction length Tf = 3 and
history length Th = 3.

In addition to the boxes temporally predicted from the
past, each history trajectory ht

i is also associated with the W
detection boxes at the current frame, which are generated
by a 3D detector and chosen as the nearest boxes to the
trajectory. We denote the associated detection boxes of the
i-th history trajectory as {dji}Wj=1.

Given the generated predicted boxes and associated de-
tection boxes, for each history trajectory ht

i, we can obtain
a set Ω consisting of M = N × (Tf +W ) hypotheses as

Ωp = {ht
i ⊕ pt−1

i [1], . . . , ht
i ⊕ p

t−Tf

i [Tf ]},
Ωd = {ht

i ⊕ d1i , . . . , h
t
i ⊕ dWi }, (3)

Ω = Ωp ∪ Ωd,

where ⊕ indicates linking the i-th history trajectory with a
temporally predicted or detection box to generate a trajec-
tory hypothesis.

These proposed multiple trajectory hypotheses strategy
provides two key benefits. Firstly, it enables the recovery
of objects that were not detected at time t by propagating
past times’ temporal prediction boxes to time t, which cre-
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ates trajectory hypotheses better tolerating short-term mis-
detection of the tracked objects. Secondly, it provides more
association candidates and can correct tracking errors in tra-
jectories caused by low-quality detection boxes, since the
3D detector only uses limited temporal information in the
point cloud sequence (e.g., 2-3 frames) and may produce
low-quality detection boxes for challenging objects. In such
cases, temporally predicted boxes might provide better tra-
jectory hypotheses to improve the tracking quality.

3.2. Long Short-Term Hypothesis Feature Encod-
ing

After obtaining multiple trajectory hypotheses, Trajecto-
ryFormer adopts a long-short feature encoder to transform
the trajectory hypotheses into the feature space, which in-
volves encoding the long-term motion information and the
short-term appearance of each trajectory hypothesis.

For long-term motion encoding, we employ a PointNet-
like neural network that takes M trajectory hypotheses’ box
sequence ΩB ∈ RM×(Th+1)×8 as input, where 8 means
the number of boxes’ properties (e.g. 7-dim geometry and
1-dim time encoding), and outputs their motion features
Em ∈ RM×D as

Em = MaxPool(MLP(ΩB)). (4)

The incorporation of such long-term motion information is
crucial in differentiating hypotheses that exhibit similar ap-
pearance and location at the current time.

To reduce the computational cost and avoid handling
long-term object point variations, we only encode the short-
term appearance of each trajectory hypothesis. Specifically,
we randomly sample Y points by cropping the input short-
term point cloud within the box at time t of each trajectory
hypothesis. We follow MPPNet [2] to encode the box in-
formation to each cropped object point by computing the
relative differences between each sampled point pi and 9
representative points of the hypothesis box (8 corner and
1 center points). By appending an extra one-dimensional
time offset embedding, the final point-wise appearance fea-
tures of the j-th hypothesis of the i-th tracked object can be
further encoded with an MLP network, which can be repre-
sented as Oj

i ∈ RY×D.
Given these encoded point-wise features, we first utilize

the self-attention mechanism to perform information inter-
action among all points and then adopt a cross-attention
layer to obtain the aggregated embedding from Y points as

Ôj
i = SelfAttn(Q(Oj

i ), K(Oj
i ), V (Oj

i )),

V j
i = CrossAttn(Q(v), K(Ôj

i ), V (Ôj
i )), (5)

where i ∈ {1, · · · , N} and j ∈ {1, · · · , Tf + W}.
Q(·),K(·), V (·) are linear projection layers to generate
query, key, value features for the attention layers. v ∈

R1×D is zero-initialized learnable parameters to aggregate
features from all the subsampled points of the j-th hypoth-
esis of the i-th tracked object, which generates its final ap-
pearance feature as V j

i ∈ RD.
In practice, the self-attention and cross-attention oper-

ations are iteratively repeated for multiple rounds to up-
date the query vector v gradually. The final short-term ap-
pearance features of all M hypotheses can be denoted as
Ea = {V j

i }
N,Tf+W
i=1,j=1 ∈ RM×D.

Given the appearance embedding Ea and motion embed-
ding Em, the long short-term embedding E ∈ RM×D of all
M hypotheses of trajectory i is formed by concatenating the
features with a one-hot class vector C to distinguish their
target category along the channel dimension as

E = MLP(Concat(Ea, Em, C)). (6)

3.3. Global-local Feature Interaction of Multiple
Trajectory hypothesis

The hypothesis features encode the appearance and his-
torical motion information of each tracked object. However,
it fails to consider the relationship between multiple trajec-
tory hypotheses of the same tracked object and the interac-
tions between all tracked objects in the same scene.

To properly model inter-hypothesis and inter-trajectory
relations, we propose a Global-local Interaction Module to
model the spatial relationships among all hypotheses of all
tracked objects. Specifically, we design a transformer with
self-attention mechanism to propagate information between
all trajectory hypotheses. The interaction is performed al-
ternatively between global and local contexts, as depicted
in Fig. 1. During global interaction, each hypothesis gath-
ers information from all other hypotheses as

G = SelfAttn(Q(E),K(E), V (E))), (7)

which forms global-interacted embedding G ∈ RM×D. On
the other hand, local interaction emphasizes the interaction
between different hypotheses of the same tracked object.
Specifically, we use Gj

i represents the globally-interacted
j-th hypothesis embedding of the i-th tracked object, where
j = {1, . . . , Tf+W}, i = {1, . . . , N}. Therefore, the local
interaction of Tf +W hypotheses of the i-th tracked object
can be expressed as

Lj
i = SelfAttn(Q(Gj

i ),K(Gj
i ), V (Gj

i ))), (8)

which forms local-interacted embedding L ∈ RM×D.
We alternately conduct the global and local interaction in

the transformer for several times, which enables the repre-
sentations of the hypotheses to incorporate both global and
local contexts, allowing each hypothesis to gain a better un-
derstanding of the distribution of its neighboring objects.
This module leads to improved association outcomes since
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the embedding of each hypothesis becomes more context-
aware. After the interaction process, an MLP head is ap-
pended to generate a final probability score for each hypoth-
esis’ confidence evaluation, which is utilized for selecting
the best trajectory hypothesis for of each tracked object.

3.4. Losses

The overall training loss contains two loss terms: a
confidence-score loss Lconf and a bounding-box regression
loss Lreg as

L = Lconf + Lreg. (9)

We adopt the binary cross entropy loss for Lconf , which is
introduced to supervise the network to predict confidence-
score of all trajectory hypotheses. For Lreg, we employ
the same box regression loss in MPPNet [2] to supervise
box refinement, that is, to predict the residual of the po-
sition, shape and heading angle between hypothesis boxes
and ground truth. In addition, the simple motion prediction
network is trained separately. We use the L1 loss to su-
pervise the networks’ prediction of future trajectory states,
including center location and heading angle.

4. Experiments
In this section, we first outline our experimental setup,

which includes the datasets, evaluation metrics, implemen-
tation details and life cycle management. Subsequently,
we present comprehensive comparisons with state-of-the-
art methods on the Waymo 3D MOT benchmarks. Finally,
we provide a range of ablation studies and related analyses
to investigate various design choices in our approach.

4.1. Dataset and Implementation Details

Waymo Open Dataset. The Waymo Open Dataset com-
prises 1150 sequences, with 798 training, 202 validation,
and 150 testing sequences, and each of which contains 20
seconds of continuous driving data within the range of [-
75m, 75m]. 3D labels are provided for three classes, in-
cluding vehicle, pedestrian and cyclist.
Nuscenes Dataset. The nuScenes dataset is a large dataets
that contains 1000 driving sequences and each sequence
spans 20 seconds. LiDAR data in nuScenes is provided at
20Hz but 3D labels are only given at 2Hz. We evaluate on
the two most observed classes: car and pedestrian.
Evaluation Metrics. We adopt the official evaluation met-
rics as defined by the Waymo and nuScenes benchmarks
for comparison. For Waymo, MOTA is employed as the
primary evaluation metric, which involves three types of er-
rors: false positives (FP), missing objects (Miss), and iden-
tity switches (IDS) at each timestamp. Furthermore, the
evaluation performance is divided into two difficulty lev-
els: LEVEL 1 and LEVEL 2. The former evaluates objects
with more than five points, while the latter includes objects

with at least one point. We use LEVEL 2 as the default
performance setting. For nuScenes, we follow the official
tracking protocol and use AMOTA as the main metric.
Implementation Details. We employ the detection boxes
of CenterPoint and MPPNet as inputs for our method. Dur-
ing training, we take 4 hypotheses that includes 2 gener-
ated hypotheses (1 predicted box and 1 detection box) and 2
augmented hypotheses derived from the generated ones for
diverse hypotheses distribution. For inference, we specify
the number of multiple hypotheses for each history trajec-
tory as 6 (5 predicted boxes and 1 detection box) and 2 (
1 predicted boxes and 1 detection box) for CenterPoint and
MPPNet on Waymo, respectively. The detection boxes are
associated with the trajectory through a greedy matching al-
gorithm. For history trajectory without the matched current
frame detection boxes, we pad all-zero boxes to create a hy-
pothesis. We set a maximum matching distance of 2m, 0.5m
and 1m for vehicles, pedestrians and cyclists in Waymo and
2.2m, 2.0m for car and pedestrian in nuScenes, respectively.
The track-birth confidence threshold varies by detectors and
classes. For CenterPoint, the track-birth confidence thresh-
old is 0.2 for all classes in nuScenes and it is set to 0.72
for pedestrian and 0.8 for vehicle and cyclist in Waymo.
For model hyper-parameters, we set the feature dimension
D = 256, the number of sampling points Y = 128. We
set the number of iteration blocks to 3 for both point feature
encoding process and global-local interaction module. For
optimization, the network is trained with the ADAM opti-
mizer for 6 epochs with an initial learning rate of 0.001 and
a batch size of 4.
Life Cycle Management. If the score of a trajectory’s lat-
est predicted hypothesis is below a threshold, we remove
the tracked object. For the retained objects, we select the
hypothesis with the highest score as the association result.
Finally, the new-born objects are generated from detection
boxes which remain unassociated with history trajectories
and do not overlap with the history trajectories. These boxes
that meet the criteria and have score above the track-birth
threshold are considered to new-born trajectories.

4.2. Comparison with State-of-the-art 3D MOT
Tracker

Waymo Validation Set. In Table 1, we compare Trajec-
toryFormer with other 3D MOT methods on the valida-
tion set of Waymo Open dataset, where TrajectoryFormer
exhibits superior performance compared to other methods.
To be specific, it outperforms the highest reported perfor-
mance by 3.3%, 0.5%, and 1.5% and exceeds the adopted
CenterPoint baseline by 4.6%, 6.1%, and 3.2% in terms of
MOTA metric on vehicle, pedestrian, and cyclist, respec-
tively. More specifically, TrajectoryFormer exhibits a sig-
nificant improvement in the Miss metric compared to the
employed baseline, which implies that our method can suc-
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Method Vehicle Pedestrian Cyclist
MOTA↑ FP%↓ Miss%↓ IDS%↓ MOTA↑ FP%↓ Miss%↓ IDS%↓ MOTA↑ FP%↓ Miss%↓ IDS%↓

AB3DMOT [29] 55.7 - - 0.40 52.2 - - 2.74 - - - -
CenterPoint [34] 55.1 10.8 33.9 0.26 54.9 10.0 34.0 1.13 57.4 13.7 28.1 0.83
SimpleTrack [13] 56.1 10.4 33.4 0.08 57.8 10.9 30.9 0.42 56.9 11.6 30.9 0.56
ImmotralTrack [27] 56.4 10.2 33.4 0.01 58.2 11.3 30.5 0.26 59.1 11.8 28.9 0.10
SpOT [24] 55.7 11.0 33.2 0.18 60.5 11.3 27.6 0.56 - - - -
Ours (CenterPoint) 59.7 11.7 28.4 0.19 61.0 8.8 29.8 0.37 60.6 13.0 25.6 0.70
Ours (MPPNet) 61.0 10.9 28.0 0.13 63.4 11.6 24.6 0.40 63.5 8.2 28.0 0.28

Table 1. Tracking performance on the Waymo Open dataset validation split. The employed detector of compared tracking methods,
including SimpleTrack, ImmotralTrack and SpOT are all CenterPoint.

Method Vehicle Pedestrian Cyclist
MOTA↑ FP%↓ Miss%↓ IDS%↓ MOTA↑ FP%↓ Miss%↓ IDS%↓ MOTA↑ FP%↓ Miss%↓ IDS%↓

AB3DMOT [29] 40.1 16.4 43.4 0.13 37.7 11.6 50.2 0.47 - - - -
PVRCNN-KF [20] 57.7 8.4 33.6 0.26 53.8 9.3 36.2 0.73 55.1 8.3 35.8 0.91
AlphaTrack [36] 55.7 9.6 34.3 0.44 56.8 10.7 31.3 1.23 59.6 5.4 33.7 1.23
CenterPoint [34] 59.4 9.4 30.9 0.32 56.6 9.3 33.1 1.07 60.0 11.1 28.1 0.78
SimpleTrack [13] 60.3 8.8 30.9 0.08 60.1 10.7 28.8 0.40 60.1 9.7 29.6 0.67
ImmotralTrack [27] 60.6 8.5 31.0 0.01 60.6 11.0 28.3 0.18 61.6 9.3 29.0 0.10
Ours (CenterPoint) 64.6 8.5 26.7 0.17 62.3 7.6 29.7 0.35 64.6 8.7 26.1 0.64
Ours (MPPNet) 64.9 9.1 25.8 0.21 65.5 9.4 24.7 0.42 64.2 7.2 28.0 0.55

Table 2. Tracking performance on the Waymo Open dataset testing split.

cessfully recover objects that were missed by the detector.
We attribute this success to our multi-hypothesis tracking
strategy, which utilizes multiple trajectory hypotheses to
propagate the state information of objects from past frames
to the current frame and thus our model can better capture
the potential motion of the tracked objects. Besides, this
strategy provides extra candidate bounding boxes, which
can be associated with objects that the detector failed to
detect in the current frame. Moreover, for pedestrians, our
method achieves lower False Positive (FP) values compared
to other methods, indicating that the boxes in our trajecto-
ries have higher quality. Pedestrian trajectories are more
complex and crowded compared to other categories, which
makes it challenging for the network to generate correct as-
sociations. Hence, the lower FP for pedestrians indicates
that TrajectoryFormer can handle associations in complex
scenarios. When adopt more advanced detector, MPPNet,
TrajectoryFormer can achieve higher performance.
Waymo Testing Set. As shown in Table 2, Trajectory-
Former also significantly outperforms other methods on the
testing set of Waymo Open Dataset.
NuScenes Validation Set. We also evaluate Trajectory-
Former on the validation split of the nuScenes dataset , as
shown in Table 3. Following SpOT, we conduct experi-
ments on the two main classes, namely car and pedestrian.
All compared methods utilizes the detection results of Cen-
terPoint. Our approach surpasses CenterPoint by 1.2% and
5.6% and SpOT by 0.3% and 0.4% in terms of AMOTA for
car and pedestrian, respectively.

4.3. Ablation Studies

To verify the effectiveness of each component in Tra-
jectoryFormer, We conduct comprehensive ablation studies
on the Waymo benchmark. Unless otherwise mentioned,

Method Car Pedestrian
AMOTA↑ MOTA↑ AMOTA↑ MOTA↑

CenterPoint 84.2 71.9 77.3 64.5
SimpleTrack 83.8 70.1 79.4 67.0
ImmotralTracker 84.0 69.8 80.2 68.0
SpOT 85.1 - 82.5 -
TrajectoryFormer (ours) 85.4 75.0 82.9 69.9

Table 3. Tracking performance on val split of the nuScenes dataset.
All the compared methods utilize CenterPoint as the detector, and
the main metric (AMOTA) is highlighted in gray.

all ablation experiments of TrajectoryFormer are trained on
the vehicle category by taking the detection results of Cen-
terPoint with 3 epoch. We take MOTA (LEVEL 2) as the
default metric for comparison.
Effects of the multiple hypotheses. Table 4 investigates
the impact of different number of hypotheses for each
tracked object. Firstly, without predicted boxes, Trajecto-
ryFormer’s association performance degrades to the same
level as CenterPoint baseline, which employs center dis-
tance and a greedy algorithm to perform trajectory-box as-
sociation for each trajectory. In this scenario, compared to
baseline, the refinement of detection box results in a 1.2%
performance gain. For the single prediction box setting, we
set Tf = 1. In other words, the motion prediction network
only predicts the future box of the tracked object in the next
single-frame. The incorporation of even a single predic-
tion boxes allows the network to transfer past information
of tracked objects to the current frame, resulting in a sig-
nificant 3.5% performance improvement. When employing
multiple temporal prediction boxes (e.g., 5), a slight perfor-
mance improvement of 0.3% is observed compared to the
single-frame prediction box setting. Utilizing the prediction
from trajectory embedding at different history moments can
provide more diverse candidate boxes, which brings a slight
improvement. However, the use of more prediction boxes
(i.e., 10) does not provide any additional performance im-
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Method MOTA↑ FP↓ Miss↓ IDS↓
CenterPoint [34] 55.1 10.8 33.9 0.26
w/o pred. boxes 56.3 10.5 33.0 0.24
1 pred. box 59.5 12.1 28.3 0.21
5 pred. boxes 59.8 11.3 28.7 0.23
10 pred. boxes 59.7 11.6 28.5 0.22

Table 4. Effects of the number of temporally prediction boxes. All
experiments use 1 heuristic matched detection box.

Category Method MOTA↑ FP↓ Miss↓ IDS↓

Vehicle
1 frame 59.6 11.5 28.7 0.23
3 frame 59.8 11.3 28.7 0.23
5 frame 59.8 11.3 28.7 0.23

Pedestrian
1 frame 59.8 9.7 30.1 0.37
3 frame 60.8 8.9 29.9 0.37
5 frame 61.0 8.8 29.8 0.37

Table 5. Effects of different numbers of point cloud frames for
appearance feature encoding.

provements and instead increases computational overhead.
Effects of length of point cloud frames. Table 5 displays
the performances of using different numbers of point cloud
frames. It should be noted that, in contrast to SpOT [24],
which maintains a point cloud sequence with the same
length as the trajectory bounding box, we only crop the
concatenated multi-frame points of hypothesis boxes at the
current time to reduce computation overhead. we scruti-
nize the effect of different numbers of point cloud frames in
appearance feature encoding by keeping the number of ran-
domly sampled point clouds constant. For the vehicle class,
the point cloud appearance information of 1, 3, or 5 frames
yields comparable performance. Conversely, for the pedes-
trian class, the utilization of 5-frame point cloud informa-
tion outperforms single-frame and 3-frame point clouds by
1.2% and 0.2%, respectively. We attribute this to the fact
that the pedestrian class has sparser raw LiDAR points in
comparison to vehicles. Thus, the concatenated multi-frame
points can provide more complete appearance information,
which is advantageous for the network to differentiate be-
tween various candidate hypotheses.
Effects of length of trajectory boxes. we explore the im-
pact of trajectory box length of our approach, as presented
in Table 6. We observe that trajectories that are too short fail
to fully leverage past temporal motion information of the
tracked objects, resulting in 0.5% performance drop. For
the Waymo dataset, we find that history trajectory boxes
length with 10 frames can effectively capture the object’s
past motion states, resulting in the best performance. Fur-
ther increasing the trajectory length does not yield any addi-
tional performance benefits, as the motion state of the object
may have changed, compared with earlier time steps. How-
ever, longer trajectories result in additional computational
overhead. Therefore, we employ 10 frame trajectory boxes
as the default setting in our approach as a trade-off.
Effects of the combination of point embedding and tra-

Method MOTA↑ FP↓ Miss↓ IDS↓
5 frame 59.3 11.7 28.8 0.23

10 frame 59.8 11.3 28.7 0.23
15 frame 59.7 11.5 28.6 0.22
20 frame 59.7 11.5 28.6 0.23

Table 6. Effects of numbers of trajectory length.

Method MOTA↑ FP↓ Miss↓ IDS↓
Trajectory 50.8 15.4 33.2 0.59
Point 56.5 12.2 31.2 0.17
Point + Trajectory 59.8 11.3 28.7 0.23

Table 7. Effects of different designs of hypothesis embedding.

jectory embedding. Table 7 presents the investigation of
different hypothesis embedding designs. As we can see,
only using the long-term boxes feature will lead to a 9%
performance drop, which is reflected by the large value of
the Miss and FP indicators. This suggests that a network
based solely on the trajectory boxes feature cannot ade-
quately select the best matching boxes for each tracked ob-
ject, resulting in the retention of low-quality boxes (increas-
ing FP) and the discarding of high-quality boxes (increasing
Miss). Meanwhile, utilizing the short-term appearance fea-
tures of point clouds demonstrates better association ability
than trajectory box features, but also decreases performance
by 3.3%. In the end, the optimal performance was achieved
through the joint utilization of point cloud and trajectory
features, emphasizing the significance of integrating both
motion and appearance information.

5. Conclusion

In conclusion, our work presents a novel transformer-
based 3D MOT tracking framework, TrajectoryFormer,
which immigrates the limitations of existing tracking-by-
detection methods by leveraging multiple predictive hy-
potheses that incorporate both temporally predicted boxes
and current-frame detection boxes. To better encode spatial-
temporal information of each hypothesis with low com-
putational overhead, we incorporate both long-term trajec-
tory motion features and short-term point appearance fea-
tures. Additionally, our global-local interaction module en-
ables the exploitation of context information by modeling
relationships among all hypotheses. Extensive experiments
on the Waymo 3D tracking benchmark demonstrate that
our proposed approach outperforms existing state-of-the-art
methods, validating the effectiveness of our framework.
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