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Abstract 26 

Manipulating working memory (WM) is a central yet challenging question. Previous studies 27 

posit that WM items with varied memory strengths reactivate at different latencies, 28 

supporting a time-based mechanism. Motivated by this view, here we developed a purely 29 

bottom-up, “Leader-Follower” behavioral approach to manipulate WM in humans. 30 

Specifically, task-irrelevant, flickering color discs that are bound to each of the memorized 31 

items are presented during the delay period, and the ongoing luminance sequences of the 32 

color discs follow a “Leader-Follower” relationship, i.e., hundreds-of-millisecond temporal 33 

lag. We show that this dynamic behavioral approach leads to better memory performance for 34 

the item associated with the temporally advanced luminance sequence (“Leader”) than that 35 

with the temporally lagged luminance sequence (“Follower”), yet with limited effectiveness. 36 

Taken together, our findings constitute evidence for the essential role of temporal dynamics 37 

in WM operation and offer a promising, non-invasive WM manipulation approach. 38 

 39 

 40 

  41 
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Significance Statement 42 

Working memory (WM) is known to be the “sketchpad of conscious thought’’ that allows us 43 

to temporally hold and manipulate limited amounts of information to guide future behavior. 44 

A major challenge in the WM field concerns how multiple items could be simultaneously 45 

retained while not be confused with each other. Previous work advocates a time-based 46 

mechanism, with the item with stronger strength firing at earlier latency than that with 47 

weaker memory. Motivated by the time-based view, here we developed a novel behavioral 48 

approach, namely the “Leader-follower” dynamic perturbation, to alter WM performance in 49 

humans. Our findings constitute new evidence for a time-based WM mechanism and offers a 50 

brand-new behavioral approach to directly manipulate WM, but with the need for replication.  51 

 52 

53 
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Introduction  54 

Manipulating working memory (WM) is an important yet challenging question, answering 55 

which would also provide crucial causal evidence for the WM neural mechanism. WM 56 

information is posited to undergo reactivation or refreshing to overcome memory decay 57 

during the delay period (Curtis & D’Esposito, 2003; Vogel & Machizawa, 2004), a process 58 

that facilitates memory storage via short-term neural plasticity (STP) principles (Miller et al., 59 

2018; Mongillo et al., 2008; Wang et al., 2006). When multiple items are retained, previous 60 

models suggest that the item-specific reactivations compete with each other over time 61 

(Oberauer & Lewandowsky, 2008, 2011), wherein individual item fires at varied phases 62 

according to their respective memory strength (Lisman & Idiart, 1995; Lisman & Jensen, 63 

2013). The item with stronger memory strength, given its higher neural excitability, fires at 64 

an earlier latency, while the less excitable item reactivates relatively late (Bahramisharif et al., 65 

2018; Huang et al., 2018, 2021; Siegel et al., 2009), enabling the transformation of memory 66 

strengths into neural activities with varied latencies. Hence, a potential yet unexplored WM 67 

manipulation approach is to alter the temporal relationship between item-specific 68 

reactivations during retention so that their relative memory performance could be modified. 69 

Previous research on noninvasive WM modulation in humans has highlighted several 70 

approaches, such as frequency-specific transcranial magnetic stimulation (TMS) and 71 

transcranial Alternating Current Stimulation (tACS) (Beynel et al., 2019; Hoy et al., 2015; 72 

Sauseng et al., 2009). Moreover, presentation of a retro-cue could prioritize recalling 73 

performance via top-down attentional modulations (Griffin & Nobre, 2003; Landman et al., 74 

2003; Myers et al., 2017; Oberauer & Hein, 2012). Recently, we developed a purely bottom-75 

up, behavioral “dynamic perturbation” approach to interfere with the multi-item neural 76 

dynamics of sequence WM  (Li et al., 2021). Notably, this approach draws upon many 77 

theoretical models and empirical findings. First, color features, even task-irrelevant, tend to 78 

be automatically bound to memorized items, i.e., object-based WM (Huang et al., 2018; 79 

Johnson et al., 2008; Li et al., 2021; Luck et al., 1997). Accordingly, presentation of color 80 

discs that are attached to memorize items could possibly reactivate and even modify 81 

memories. Second,  although WM information has been posited to be stored in an active or 82 

activity-silent manner (Curtis & D’Esposito, 2003; Goldman-Rakic, 1995; Miller et al., 2018; 83 

Rose et al., 2016; Wolff et al., 2017), memory manipulation still relies on active states to 84 

drive STP-based modifications of synaptic efficacies (Barbosa et al., 2020; Masse et al., 2019, 85 

2020). This idea is akin to the reconsolidation process in long-term emotional memories, 86 
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whereby the stored information is rendered labile after being retrieved so that new 87 

information could be incorporated into and modify old memories (Agren et al., 2012; Lane et 88 

al., 2015; Schiller et al., 2010). Finally, flickering color discs have been found to be able to 89 

tag item-specific neural reactivations (Huang et al., 2018). Therefore, altering the temporal 90 

relationship between luminance sequences of color discs that are linked to each memorized 91 

item would presumably perturb the multi-item reactivation profiles to manipulate their 92 

memory performances. These points motivate the “dynamic perturbation’” approach 93 

developed in our previous study, wherein we demonstrate that temporally synchronized 94 

luminance sequences disrupt the recency effect while temporally independent luminance 95 

sequences keep the recency intact (Li et al., 2021). Nevertheless, the recency effect is just a 96 

behavioral index for sequence WM, and there still lacks an efficient bottom-up, behavioral 97 

approach to modulate multi-item WM performance at a general level.  98 

Here we developed a new “Leader-Follower” approach for WM manipulation when 99 

participants temporarily hold two or three items simultaneously. We introduced a temporal 100 

lag at hundreds of milliseconds based on previous findings (Bahramisharif et al., 2018; 101 

Herweg et al., 2020; Huang et al., 2018; Lisman & Idiart, 1995; Mi et al., 2017; Mongillo et 102 

al., 2008), to the luminance sequences of flickering color discs during retention. Specifically, 103 

one luminance sequence (“Leader”, although a randomly generated white noise that does not 104 

contain any regularities, always precedes another sequence (“Follower”) by certain temporal 105 

lag. We hypothesize that the item bound to the “Leader” luminance sequence reactivates 106 

earlier than that with the “Follower” sequence and therefore has better memory performance. 107 

Four behavioral experiments on 120 participants provided modest evidence supporting that 108 

the item associated with the temporally advanced luminance sequence turns out to have better 109 

memory performance than that modulated by temporally lagged luminance sequence. Taken 110 

together, our results not only offer a new bottom-up, behavioral approach to manipulating 111 

WM performance, but also constitute new evidence supporting the critical role of temporally 112 

sequenced reactivations in multi-item WM.  113 
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Methods 114 

Participants 115 

One hundred and thirty-one participants (50 males, age ranging from 17 to 25 years) took part 116 

in five experiments. Two in Experiment 1, two in Experiment 2, three in Experiment 3, and 117 

four participants in Experiment were removed due to their extreme memory performance 118 

(beyond 2.5 * σ), or not finishing the whole experiment, resulting in 30 participants for each 119 

experiment. An a-priori power analysis run in G-Power (Faul et al., 2009) revealed that to 120 

obtain an effect of Cohen’s d = 0.55 for a two-sided paired sample t-test with a power of 0.8, 121 

28 participants needs to be collected. The expected effect size of interest for a difference in 122 

normalized target probability between the "leader" and the "follower" condition was derived 123 

based on a pretest on 25 subjects, using a similar paradigm as in Experiment 1. All the 124 

participants had normal or corrected-to-normal vision with no history of neurological 125 

disorders. They were naïve to the purpose of the experiments, and have provided written 126 

informed consent prior to the start of the experiment. All experiments were carried out in 127 

accordance with the Declaration of Helsinki and have been approved by the Research Ethics 128 

Committee at Peking University. 129 

Stimuli and tasks 130 

Participants sat in a dark room, in front of a Display++ monitor with 100 Hz refresh rate and 131 

a resolution of 1920 * 1080, and their head stabilized on a chin rest.  Participants performed a 132 

multi-item working memory task. At the beginning of trial, multiple bars (0.56˚ × 1.67˚ 133 

visual angle; two bars in Experiment 1&2, three bars in Experiment 3&4) were 134 

simultaneously presented at different locations of the screen, with different colors. 135 

Participants were instructed to memorize the orientations of the bars, and their colors 136 

(Experiment 1&3) or their spatial locations (Experiment 2&4). During memory maintenance, 137 

colors discs flickered for 5 s, and participants should perform a central fixation task by 138 

monitoring an abrupt luminance change of the central fixation cross. Finally, participants 139 

needed to rotate a horizontal test bar by pressing corresponding keys to one instructed 140 

memorized orientation as precise as possible, without time limit. The luminance of flickering 141 

disc was randomly generated (ranging from 0 cd/m
2
 to 15 cd/m

2
) and then was tailored to 142 

have equal power at all frequencies by normalizing the amplitudes of its Fourier components 143 

before applying an inverse Fourier transform separately for red and blue color. The colors 144 

and the spatial locations of the bars and discs were carefully balanced across trials to 145 
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eliminate possible color-specific or spatial-specific effect. Participants should complete 192 146 

trials in total in Experiment 1&2, which took about 1 hour, and 162 trials in total in 147 

Experiment 3&4, which also took about 1 hour.  148 

Experiment 1 149 

In each trial, after a 0.5 fixation period, two bars in red and blue colors were presented at 3˚ 150 

visual angle above and below the fixation for 2 s. The orientations of the two bars were 151 

chosen randomly, with a difference of at least 10˚. The colors and spatial locations of the two 152 

bars were counterbalanced across trials. Participants were instructed to memorize the 153 

orientations and colors of the bars. After a blank interval (0.6 ~ 1 s), two discs(3˚ in radius) 154 

with the same colors as the two memorized bars were presented at the left or right side of the 155 

fixation (7˚ in eccentricity) for 5 s. The colors and spatial locations of the two discs were 156 

counterbalanced across trials. Crucially, the luminance of the two color discs was 157 

continuously modulated according to two 5 s temporal sequences ranging from dark (0 cd/m
2
) 158 

to bright (15 cd/m
2
). Specifically, in each trial, a 5 s temporal sequence was first randomly 159 

generated (“Leader” sequence), and then we shifted the Leader sequence 200 ms rightward 160 

and moved the final 200 ms segment of the Leader sequence to the beginning to generate a 161 

new sequence (“Follower” sequence). Note that the luminance sequences were generated 162 

anew in each trial, and it was quite hard to differentiate between Leader and Follower 163 

sequence. Throughout the 5 s maintenance period, participants performed a central fixation 164 

task by continuously monitoring an abrupt luminance change of the central fixation cross, 165 

while simultaneously holding the two bars. The fixation task is used to eliminate the effect of 166 

attentional bias. After finishing the fixation task, a horizontal test bar in red or blue color was 167 

presented to instruct participants to recall the red or blue bar’s orientation, and rotate the test 168 

bar to the target orientation as precise as possible.  169 

Experiment 2 170 

Experiment 2 had the same stimuli and similar paradigm as Experiment 1. The only 171 

difference was that, instead of requiring participants to memorize two bars’ orientations and 172 

their colors, we asked participants to memorize two bars’ orientations and spatial locations. 173 

Specifically, after finishing the fixation task, a retrospective cue (‘upper’ or ‘lower’ character) 174 

was presented for 1 s to instruct participants to recall the orientation at the upper or lower 175 

location. Then, a horizontal bar in white color was presented, and participants should rotate it 176 
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to the instructed memorized orientation. Therefore, in Experiment 2, color information was 177 

totally task-irrelevant.  178 

Experiment 3 179 

Experiment 3 was a three-item memory task, and had similar task as Experiment 1. In each 180 

trial, three bars in red, blue and green colors were presented at the same eccentricity to the 181 

fixation (3˚ visual angle) for 3 s. The orientations of the three bars were chosen randomly, 182 

with a difference of at least 10˚ between any two orientations. The colors and spatial 183 

locations of the three bars were randomized. Participants were instructed to memorize the 184 

orientations and colors of the bars. After a blank interval (0.6 ~ 1 s), three discs (3˚ in radius) 185 

with the same colors as the three memorized bars were presented to at 7˚ eccentricity to the 186 

fixation for 5 s. Disc and bar with the same color were presented in the same direction of the 187 

fixation, but different spatial locations. Similarly, the luminance of the three color discs were 188 

continuously modulated according to three 5 s temporal sequences ranging from dark (0 189 

cd/m
2
) to bright (15 cd/m

2
). Specifically, in each trial, a 5 s temporal sequence was first 190 

randomly generated (“Leader” sequence), and then we shifted it 150 ms rightward to generate 191 

Follower1st sequence. Similarly, we shifted the Follower1st sequence 150 ms rightward to 192 

generate Follower2nd sequence. Therefore, even though the three sequences were presented 193 

simultaneously, their temporal relationship showed that Leader lead Follower1st 150 ms, 194 

Follower1st lead Follower2nd 150 ms, and Leader lead Follower2nd 300 ms. After finishing the 195 

fixation task, a horizontal bar in red, blue or green color was presented to instruct participants 196 

to recall the red, blue or green bar’s orientation, and rotate to the target orientation as precise 197 

as possible.  198 

Experiment 4 199 

Experiment 4 had the same stimuli and similar paradigm as Experiment 3, except that instead 200 

of requiring participants to memorize three bars’ orientations and their colors, we asked 201 

participants to memorize three bars’ orientations and their spatial locations. Specifically, after 202 

finishing the fixation task, a retrospective cue (‘left’, ‘middle’ or ‘right’ character) was 203 

presented for 1 s to instruct participants to recall the orientation at the left, middle or right 204 

location (horizontal direction). Then, a horizontal bar in white color was presented, and 205 

participants were asked to rotate it to the instructed memory orientation. Therefore, as 206 

Experiment 2, color information was also totally task-irrelevant in Experiment 4.  207 

 208 
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Data analysis 209 

To quantify the memory performance for each item, a probabilistic mixture model (Bays et 210 

al., 2009) was applied to fit behavioral performance. Specifically, the mixture model 211 

simultaneously characterizes the contribution of the memory for target item, non-target item 212 

and random guess to the final report. Specifically, this model calculates probability of 213 

correctly reporting the feature value of the target item, with some variability, the probability 214 

of mistakenly reporting the feature value of one of the other, non-target items held in memory 215 

with the same variability, and the probability of generating a random response unrelated to 216 

either target or non-target items. In the present study, we focused on target probability, 217 

because it represents the memory accuracy for the target and has been widely used to 218 

quantify memory performance (Gorgoraptis et al., 2011; Li et al., 2021; Van Ede et al., 2018). 219 

Moreover, considering that the target probability is not normally distributed, we performed an 220 

empirical logit transformation: logit(p) = ln((p + 1/2n)/(1 − p + 1/2n)), where p is target 221 

probability and n is the number of observations transformation (de Smith, 2018). The 222 

normalized target probabilities were used for further statistical tests in all the experiments. In 223 

addition, memory precision was estimated by calculating the reciprocal of the circular 224 

standard deviation of response error (the circular difference between the reported orientation 225 

and the true target orientation).  226 

Data and associated code are available in OSF (https://osf.io/cpvdk/). 227 

 228 

Statistics 229 

Classical frequentist statistics, e.g., repeated ANOVA and paired t-test, were applied to test 230 

experimental effect. Considering there are three conditions in Experiment 3&4, Holm 231 

correction was applied for post-hoc analysis. 232 

Apart from classical frequentist statistics, we also implemented Bayesian statistics using 233 

JASP (0.16.4.0). Specifically, for paired t-test, we provided Bayes Factor, BF10, which 234 

quantifies how many times the observed data are more likely under the alternative hypothesis 235 

that postulates the presence of the experimental effect (e.g., the perturbation effect) than 236 

under null hypothesis, while for repeated ANOVA, we reported the inclusion Bayes Factor, 237 

BFincl, which reflects the evidence for all models with a particular experimental effect, 238 

compared to all models without that particular effect. A Bayes factor greater than 1 can be 239 



 

10 
 

interpreted as evidence against the null, at which one convention is that a Bayes factor greater 240 

than 3 can be considered as "substantial" evidence against the null, and vice versa (a Bayes 241 

factor smaller than 1/3 indicates substantial evidence in favor of the null-model) (Wetzels et 242 

al., 2011). Bayesian post hoc tests were applied in Experiment 3&4. We reported the 243 

uncorrected Bayes factor, i.e., BF10,U, and posterior odds, which have been corrected for 244 

multiple testing by fixing to 0.5 the prior probability that the null hypothesis holds across all 245 

comparisons (Westfall et al., 1997).  246 
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Results 247 

 “Leader-follower” dynamic perturbation modulates two-item memory performance 248 

(Experiment 1) 249 

Thirty participants performed a two-item memory task in Experiment 1 (Fig. 1A). In each 250 

trial, two bars were simultaneously presented at the upper and lower locations, and 251 

participants needed to memorize both orientations and colors of the two bars over a 5 s delay 252 

period while performing a central fixation task. During the recalling phase, participants 253 

adjusted the orientation of a probe bar to match that of the memorized bar having the same 254 

color as the probe. Crucially, during the 5 s delay period, two task-irrelevant discs with the 255 

same colors as one of the memorized bars – one red and one blue – were bilaterally presented, 256 

and their luminance was continuously changing according to two 5 s temporal sequences (Fig. 257 

1B). The two luminance sequences were designed to have a specific temporal relationship, 258 

with their cross-correlation coefficient peaking at 200 ms lag (Fig. 1C). Specifically, one 259 

sequence randomly generated per trial (“Leader” sequence) would be used to generate the 260 

other by introducing a 200 ms lag (“Follower” sequence). In other words, to generate two 261 

random sequences with a fixed time lag, we temporally shifted one sequence (“Leader”) 262 

rightward by 200 msec to generate the “Follower” sequence. Moreover, to ensure their 263 

simultaneous occurrence, we cut the last 200 ms segment of the “Follower” sequence and 264 

shift it to its beginning so that the “Leader” and “Follower” sequences still have a fixed 265 

circular temporal lag. Finally, the color, spatial location, and “Leader-Follower” conditions 266 

were counterbalanced across trials. 267 

All trials were then categorized based on whether the luminance sequence of the 268 

corresponding disc during the delay period (i.e., one with the same color as the probe) was a 269 

“Leader” or “Follower” sequence, regardless of its color or location. For instance, when 270 

recalling the orientation of a red bar held in memory, this trial would be labeled according to 271 

whether the luminance sequence of the red disc was a “Leader” or “Follower” sequence. 272 

Similarly, when retrieving the orientation of the blue bar, the trial condition would be 273 

determined by the blue disc, i.e., Leader or Follower.  274 

We first estimated memory precision for each item by calculating the reciprocal of 275 

circular standard deviation of response error (the circular difference between the reported 276 

orientation and the true orientation across trials) (1 ∕ σ) (Bays et al., 2009). As shown in Fig. 277 

1D, the “Leader” condition showed better memory performance than the “Follower” 278 

condition (Leader: mean = 1.636, s.e. = 0.100; Follower: mean = 1.483, s.e = 0.111; paired t-279 
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test, t(29) = 2.565, p = 0.016, Cohen’s d = 0.468). We then implemented the Bayesian 280 

hypothesis test and confirmed the significant memory modulation effect (BF10 = 3.074). To 281 

further assess the contribution of the memory for target item to the final report, we employed 282 

a probabilistic mixture model (Bays et al., 2009) and focused on the calculated Target 283 

probability, i.e., the proportion of responses attributed to the report of the correct target, to 284 

quantify memory performance. Moreover, to ensure normal distribution, we performed an 285 

empirical logit transformation (de Smith, 2018) on the target response probability. As shown 286 

in Fig. 1E, the “Leader” condition also showed better memory performance than the 287 

“Follower” condition (Leader: mean = 3.638, s.e. = 0.223; Follower: mean = 3.011, s.e = 288 

0.220; paired t-test, t(29) = 2.798 , p = 0.009, Cohen’s d = 0.511; Bayes factor, BF10 = 4.901) 289 

(see target probability without normalization in Extended Data Fig.1-1 and additional 290 

parameters (non-target and randomly guess probability) results in Extended Data Fig.1-2).  291 

Taken together, consistent with our hypothesis, the “Leader-follower” dynamic 292 

perturbation during WM retention effectively modulates memory performance when 293 

participants held two items in memory, wherein the item experiencing temporal advances 294 

during retention shows better memory performance compared to the item with relative 200 295 

ms temporal delays.  296 

 297 

Figure 1 about here  298 

 299 

Memory-irrelevant dynamic perturbation (Experiment 2) 300 

In Experiment 1, the color feature was memory-relevant since participants retained both 301 

orientation and color of the two items. In Experiment 2, we examined whether the dynamic 302 

perturbation would still be effective when color is memory-irrelevant. Thirty new participants 303 

participated in Experiment 2 (Fig. 2A), wherein two bars were simultaneously presented at 304 

the upper and lower locations. Instead of memorizing colors as in Experiment 1, participants 305 

held the locations and orientations of the two bars over a 5 s delay period in memory while 306 

performing a central fixation task. During the memory test, participants were first presented 307 

with a location cue (upper or lower) based on which they adjusted a probe bar to match the 308 

memorized orientation, regardless of its color. In other words, the color feature was 309 

completely memory-irrelevant in Experiment 2. Similar to Experiment 1, the “Leader-310 

Follower” dynamic perturbation was applied to the two colored discs during retention (Fig. 311 

2BC). 312 
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Unfortunately, as shown in Fig. 2D, there is no significant difference between 313 

“Leader” and “Follower” condition on memory precision (Leader: mean = 1.887, s.e. = 0.628; 314 

Follower: mean = 1.920, s.e = 0.645; paired t-test, t(29) = -0.460, p = 0.649, Cohen’s d = -315 

0.084; Bayes factor, BF10 = 0.214). Nevertheless, the normalized target probability showed a 316 

modulation trend (Leader: mean = 3.454, s.e. = 0.186; Follower: mean = 3.163, s.e = 0.186; 317 

paired t-test, t(29) = 1.862 , p = 0.073, Cohen’s d = 0.340; Bayes factor, BF10 = 1.012) (Fig. 2E) 318 

(see significant memory modulation effect on target probability in Extended Data Fig 1-1). 319 

To examine the manipulation consistency between Experiment 1 and 2 in terms of the 320 

normalized target probability, we conducted a mixed-design ANOVA analysis (Experiment * 321 

Perturbation). The results reveal a significant main perturbation effect across experiments, 322 

while the main effect of Experiment and their interaction effect were non-significant 323 

(Perturbation effect: F(1,58) = 11.288, p = 0.001, ηp
2
 = 0.163; Experiment effect: F(1,58) = 0.004, 324 

p = 0.949, ηp
2
 < 0.001 ; Experiment * perturbation: F(1,58) = 1.520, p = 0.223, ηp

2
 = 0.026); 325 

this indicates a convergence of evidence from similar experimental designs. Inclusion Bayes 326 

Factor based on all models further advocates significant perturbation effect (BFincl = 15.428), 327 

and non-significant Experiment effect (BFincl = 0.311) and their interaction (BFincl = 0.451).  328 

Overall, the “Leader-Follower” dynamic perturbation still seems to modulate 329 

memory in terms of target probability when the color feature that the dynamic perturbation 330 

operates on is memory-irrelevant, but with a less stronger modulation effect than the 331 

memory-relevant perturbation (Experiment 1). 332 

 333 

Figure 2 about here 334 

 335 

“Leader-follower” dynamic perturbation modulates three-item memory performance 336 

(Experiment 3) 337 

After demonstrating the limited effectiveness of the “Leader-follower” dynamic perturbation 338 

approach in the two-item memory task, we next tested the effectiveness of the approach on a 339 

three-item memory display. Thirty new participants participated in Experiment 3 (Fig. 3A), 340 

wherein they memorized both orientations and colors (red, blue, green) of three bars over a 5 341 

s delay period. Similar to Experiment 1, during the memory test phase, participants adjusted 342 

the orientation of a probe bar to match that of the memorized bar sharing the same color. 343 

Critically, the “Leader-follower” dynamic perturbation was now applied to three task-344 

irrelevant discs with the same colors as one of the memorized bars (red, blue, green) during 345 
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the 5 s delay period, with their luminance continuously modulated by three temporally related 346 

sequences (Fig. 3B). Specifically, one sequence randomly generated in each trial (“Leader” 347 

sequence) was used to generate the other two sequences by introducing a 150 ms or 300 ms 348 

lag, corresponding to the “Follower1st” and “Follower2nd” sequences, respectively (Fig. 3BC). 349 

Using 150 ms and 300 ms instead of 200 ms derives from previous neural findings revealing 350 

that three-item sequence memory entails a more temporally compressed reactivation than 351 

two-item sequence memory (Huang et al., 2018). Finally, the color, spatial location, and 352 

“Leader-Follower” conditions were counterbalanced across trials.  353 

Trials were categorized as “Leader”, “Follower1st”, or “Follower2nd” conditions, 354 

based on the corresponding luminance sequence (i.e., having the same color as the probe). As 355 

shown in Fig. 3D, the dynamic perturbation showed weak modulation on memory precision 356 

(Leader: mean = 1.153, s.e. = 0.054; Follower1st: mean = 1.117, s.e = 0.069; Follower2nd: 357 

mean = 1.024, s.e = 0.058; one-way repeated ANOVA; main effect of perturbation: F(2,58) = 358 

2.506, p = 0.090, ηp
2
 = 0.080; Bayes factor: BFincl = 0.686; Post-hoc analysis; Leader vs. 359 

Follower1st: t(29) = 0.595, pcor = 0.554, Cohen’s d = 0.107 (Bayesian post-hoc tests: BF10,U = 360 

0.236, posterior odds = 0.138); Leader vs. Follower2nd: t(29) = 2.167, pcor = 0.103, Cohen’s d = 361 

0.390 (Bayesian post-hoc tests: BF10,U = 1.178, posterior odds = 0.692); Follower1st vs. 362 

Follower2nd: t(29) = 1.571, pcor = 0.243, Cohen’s d = 0.283 (Bayesian post-hoc tests: BF10,U = 363 

0.573, posterior odds = 0.336)). Meanwhile, the normalized target probability showed a 364 

modulation trend (Leader: mean = 3.077, s.e. = 0.203; Follower1st: mean = 2.599, s.e = 0.191; 365 

Follower2nd: mean = 2.495, s.e = 0.184; one-way repeated ANOVA; main effect of 366 

perturbation: F(2,58) = 2.980, p = 0.059, ηp
2
 = 0.093; Bayes factor: BFincl =1.249), revealing a 367 

gradual decrease (Post-hoc analysis; Leader vs. Follower1st: t(29) = 1.881, pcor = 0.130, 368 

Cohen’s d = 0.453 (Bayesian post-hoc tests: BF10,U = 0.781, posterior odds = 0.459); Leader 369 

vs. Follower2nd: t(29) = 2.288, pcor = 0.077, Cohen’s d = 0.551 (Bayesian post-hoc tests: BF10,U 370 

= 1.424, posterior odds = 0.836); Follower1st vs. Follower2nd: t(29) = 0.407, pcor = 0.685, 371 

Cohen’s d = 0.098 (Bayesian post-hoc tests: BF10,U = 0.216, posterior odds = 0.127)).  372 

Together, on a descriptive level, the Leader-Follower dynamic perturbation 373 

approach is also effective in a three-item paradigm; that is, the item associated with earlier 374 

temporal reactivations shows better memory performance compared to those endowed with 375 

relatively delayed reaction during the delay period. However, on a statistical level, the results 376 

provide a trend in the suggested direction at best.  377 

 378 
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 Figure 3 about here 379 

 380 

Memory-irrelevant dynamic perturbation in three-item memory task (Experiment 4) 381 

Finally, we tested the memory-irrelevant dynamic perturbation approach in a three-item 382 

memory task (Experiment 4). Thirty new participants participated in the experiment (Fig. 4A), 383 

wherein they held the locations and orientations of the three bars over a 5 s delay period in 384 

memory. During the memory test phase, participants were first presented with a location cue 385 

(left, middle, or right) based on which they adjusted a probe bar to match the memorized 386 

orientation, regardless of its color. Thus, similar to Experiment 2, the color feature was 387 

completely memory-irrelevant here. Moreover, the same “Leader-Follower” dynamic 388 

perturbation as used in Experiment 3 was applied to the three colored discs during retention 389 

(Fig. 4BC).  390 

As shown in Fig. 4D, the memory precision for “Leader”, “Follower1st”, and 391 

“Follower2nd” conditions exhibited gradual decrease (Leader: mean = 1.510, s.e. = 0.091; 392 

Follower1st: mean = 1.329, s.e = 0.094; Follower2nd: mean = 1.170, s.e = 0.084; one-way 393 

repeated ANOVA; main effect of perturbation: F(2,58) =7.303 , p = 0.001, ηp
2
 = 0.201; Bayes 394 

factor: BFincl = 22.737; Post-hoc analysis, Leader vs. Follower1st: t(29) = 2.033, pcor = 0.093, 395 

Cohen’s d = 0.368 (Bayesian post-hoc tests: BF10,U = 0.883, posterior odds = 0.519); Leader 396 

vs. Follower2nd: t(29) = 3.819, pcor <0.001 , Cohen’s d = 0.692 (Bayesian post-hoc tests: BF10,U 397 

= 40.869, posterior odds = 24.007); Follower1st vs. Follower2nd: t(29) = 1.786, pcor = 0.093, 398 

Cohen’s d = 0.323 (Bayesian post-hoc tests: BF10,U = 1.197, posterior odds = 0.703)). The 399 

normalized target probability also showed significant modulation effect (Leader: mean 400 

=3.656 , s.e. = 0.217; Follower1st: mean = 3.064, s.e = 0.236; Follower2nd: mean = 2.630, s.e = 401 

0.208; one-way repeated ANOVA; main effect of perturbation: F(2,58) = 6.435, p = 0.003, ηp
2
 402 

= 0.182; Bayes factor: BFincl = 21.583; Post-hoc analysis; Leader vs. Follower1st: t(29) = 2.062, 403 

pcor = 0.087, Cohen’s d = 0.490 (Bayesian post-hoc tests: BF10,U = 1.101, posterior odds = 404 

0.647); Leader vs. Follower2nd: t(29) = 3.573, pcor = 0.002, Cohen’s d = 0.849 (Bayesian post-405 

hoc tests: BF10,U = 22.450, posterior odds = 13.187); Follower1st vs. Follower2nd: paired t-test, 406 

t(29) = 1.511, pcor = 0.136, Cohen’s d = 0.359 (Bayes factor: BF10,U = 0.614, posterior odds = 407 

0.360)).  408 

To examine the manipulation consistency between Experiment 3 and 4, both of which 409 

employed a three-item WM task, we conducted a mixed-design ANOVA analysis 410 

(Experiment * Perturbation) again. The results reveal a significant main perturbation effect 411 
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across experiments (Perturbation effect: F(2,116) = 9.111, p < 0.001, ηp
2
 = 0.136 (Post-hoc 412 

analysis, Leader vs. Follower1st: t(58) = 2.791, pcor = 0.012, Cohen’s d = 0.472; Leader vs. 413 

Follower2nd: t(29) = 4.193, pcor < 0.001, Cohen’s d = 0.708; Follower1st vs. Follower2nd: t(29) = 414 

1.401, pcor = 0.164, Cohen’s d = 0.237) ; Experiment effect: F(1,58) = 4.202, p = 0.045, ηp
2
 = 415 

0.068; Experiment * perturbation: F(2,116) = 0.726, p = 0.486, ηp
2
 = 0.006), supporting the 416 

modulation effect across experiments. Inclusion Bayes Factor based on all models further 417 

advocates significant perturbation effect (BFincl = 134.346; Post-hoc tests, Leader vs. 418 

Follower1st: BF10,U = 3.748, posterior odds = 2.202; Leader vs. Follower2nd: BF10,U = 133.865, 419 

posterior odds = 78.633; Follower1st vs. Follower2nd: BF10,U = 0.435, posterior odds = 0.256), 420 

while the main effect of Experiment (BFincl = 0.823) and their interaction effect (BFincl = 421 

0.376) were non-significant. Overall, the “Leader-Follower” dynamic perturbation efficiently 422 

modulates three-item memory when the color feature that the dynamic perturbation operates 423 

on is memory-irrelevant.  424 

To provide a possible explanation for the non-robust memory modulation effect in 425 

Experiment 2&3, we compared the memory precision between experiments, which we 426 

thought should largely reflect the task difficulty. Experiment 2 (2-item location memory) 427 

showed significant higher memory precision compared to Experiment 1(2-item color memory) 428 

(Experiment effect: F(1,58) = 5.264, p = 0.025, ηp
2
 = 0.083; BFincl = 2.191), while Experiment 429 

4 (3-item location memory) also showed significant higher memory precision than 430 

Experiment 3 (3-item color memory) (Experiment effect: F(1,58) = 7.242, p = 0.009, ηp
2
 = 431 

0.111; BFincl = 5.030). These results indicated that this purely bottom-up perturbations may 432 

only have significant effectiveness when the task is in moderate difficulty instead of too easy 433 

(2-item location memory) or too difficult (3-item color memory) to accomplish. 434 

 435 

Figure 4 about here 436 

 437 

 438 

  439 
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Discussion 440 

In the present study, we sought to capitalize on the “Leader-Follower” dynamic 441 

perturbation as a new behavioral manipulation mechanism to interfere with the multi-item 442 

neural dynamics and alter WM performance in humans. Four experiments on 120 participants 443 

demonstrate the effectiveness of the approach. Specifically, temporally advanced 444 

manipulation (‘leader’) during retention leads to better recalling performance than temporally 445 

delayed perturbation (‘follower’), regardless of its relevance to the memory task. These 446 

findings, together with previous works (Barbosa et al., 2020; Li et al., 2021; Miller et al., 447 

2018), support the substantial role of STP-based neural dynamics in mediating WM operation. 448 

Our work also offers a new bottom-up, behavioral approach to manipulating human WM. 449 

However, it is notable that memory modulation effect is not very robust across experiments 450 

and measures, which indicates that this purely bottom-up perturbation approach has limited 451 

effectiveness and needs further exploration.  452 

There are many noninvasive approaches to altering WM performance in humans. For 453 

instance, applying TMS to relevant brain regions could modulate memory behavior (Lee & 454 

D’Esposito, 2012) and even reactivate information retained in WM (Rose et al., 2016). 455 

Oscillatory interference methods, such as rhythmic physical stimulus (Clouter et al., 2017), 456 

Repetitive TMS (rTMS) (Beynel et al., 2019; Sauseng et al., 2009), tACS with rhythmic 457 

(Hoy et al., 2015) or theta-gamma coupling (Alekseichuk et al., 2016) have also been found 458 

to efficiently impact memory performance. Here we developed a purely bottom-up, 459 

behavioral approach by presenting task-irrelevant flickering color probes during WM 460 

retention. Notably, since participants could not discriminate the temporal relationship of the 461 

luminance sequences at the perceptual level, i.e., which sequence leads and which sequence 462 

lags, the manipulation is indeed operated in an unconscious way.  Moreover, the luminance 463 

sequences are randomly generated per trial, and therefore it is only their temporal relationship 464 

instead of a specific sequence that influences WM performance. Furthermore, the “Leader-465 

Follower” dynamic perturbation aims to alter multi-item WM performance, which is different 466 

from our previous work focusing on sequence working memory (Li et al., 2021), thus 467 

offering a memory manipulation approach at a general level. Finally, distinct from the 468 

retrocue behavioral paradigm, whereby the cued item would enter the focus of attention (FoA) 469 

and get prioritized in WM (Oberauer & Hein, 2012; Öztekin et al., 2010), our method is a 470 

purely bottom-up manipulation and does not rely on top-down attentional modulations.  471 
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Crucially, our “Leader-Follower” dynamic perturbation approach draws upon 472 

accumulating findings and models advocating the central function of temporal dynamics in 473 

WM. First, multiple WM items are postulated to undergo item-by-item sequential 474 

reactivations with items of greater strength firing earlier (Lisman & Idiart, 1995; Lisman & 475 

Jensen, 2013; Oberauer & Lewandowsky, 2008, 2011), a framework that has received 476 

empirical evidence support (Axmacher et al., 2010; Burke et al., 2016; Friese et al., 2013; 477 

Heusser et al., 2016). Recently, we also demonstrate that a sequence of items is serially 478 

reactivated during the delay period, and the late item in the sequence is accompanied by 479 

better memory performance (i.e., recency effect) and earlier reactivation (Huang et al., 2018, 480 

2021), also in line with the latency-based view. Interestingly, this latency- or time-based 481 

coding of input strength extends beyond memory findings and also occurs in perception and 482 

attention (Fiebelkorn et al., 2013, 2018; Huang & Luo, 2020; Jensen et al., 2014; Jia et al., 483 

2017; Landau & Fries, 2012; Mo et al., 2019; Song et al., 2014). Here, we speculate that 484 

altering the early-late time relationship of neural responses indeed modifies the subsequent 485 

WM performance. Second, the time lag between luminance sequences is set also according to 486 

previous experimental findings and STP neural model, i.e., temporally compressed 487 

reactivation within 200 ms and 150 ms for two- and three-item sequences, respectively 488 

(Herweg et al., 2020; Huang et al., 2018; Li et al., 2021; Mi et al., 2017; Mongillo et al., 489 

2008). Overall, the “dynamic perturbation” approach is motivated by previous findings, 490 

allowing us to exploit the brain’s time perspective to manipulate multi-item neural dynamics 491 

and in turn alter WM performance.    492 

We developed a “Leader-Follower” dynamic perturbation aiming to introduce a 493 

specific temporal lag in the reactivation profiles of memorized items to manipulate their 494 

memory strengths. We hypothesize that items with relatively earlier reactivation during 495 

retention would have better memory performance than that with relatively later reactivation. 496 

The manipulation is implemented by generating temporally shifted luminance sequences (i.e., 497 

Leader sequence, Follower sequence) for color discs that are bound to each memorized item 498 

during retention. Although the temporal manipulation is possibly at an unconscious level, i.e., 499 

participants could not tell which sequence advances over time, our brain is known to be 500 

indeed endowed with tremendous capabilities to calculate the temporal lag between events, 501 

from tens of milliseconds to hundreds of milliseconds. Moreover, the continuous attractor 502 

neural network model established in our previous work, by incorporating plausible biological 503 

principles, also supports that temporal lag is encoded in the system and influences memory 504 

representations (Li et al., 2021) 505 
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Retaining information in WM has traditionally been hypothesized to rely on persistent 506 

firing but computational models and recent findings propose a hidden-state WM view, i.e., 507 

items could be silently retained in STP-based synaptic weights (Huang et al., 2021; Miller et 508 

al., 2018; Mongillo et al., 2008; Rose et al., 2016; Trübutschek et al., 2019; Wolff et al., 509 

2017), even lasting for tens of seconds long with periodical refresh (Fiebig & Lansner, 2017). 510 

Then how could we access information in this activity-silent network? Recent studies 511 

demonstrate that presenting a nonspecific impulse (i.e., PING) during retention could 512 

transiently perturb the WM network and reactivate memories (Fan et al., 2020; Huang et al., 513 

2021; Wolff et al., 2017). This methodological advance has allowed researchers to directly 514 

access WM information and predict subsequent behavior. Here we use task-irrelevant 515 

luminance sequences to first reactivate memory information, and then apply continuous 516 

perturbation to impose temporal relationships between items to interfere with their neural 517 

dynamics and manipulate WM. This approach resembles the reconsolidation process in long-518 

term memory, such that the stored fear memory would be rendered labile when retrieved, and 519 

new information could be inserted and modify old memories within this period (Agren et al., 520 

2012; Lane et al., 2015; Schiller et al., 2010). Meanwhile, different from long-term memory 521 

relying on long time scales, our approach is operated at a shorter temporal scale, i.e., 100-200 522 

ms, a critical time scale in STP-based WM operation.  523 

Taken together, based on accumulating neural findings and theoretical models, we 524 

develop a new “Leader-Follower” dynamic perturbation behavioral approach to alter multi-525 

item WM in humans, by presenting temporally related luminance sequences during the delay 526 

period. We demonstrate that the item associated with the ‘leader’ luminance sequence shows 527 

better memory performance than the item bound to the ‘follower’ luminance sequence. Our 528 

results suggest the essential role of neural temporal dynamics in WM operation and offer a 529 

promising, non-invasive WM manipulation approach.  530 
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 707 

Figure Legends 708 

Figure 1 709 

Figure 1. “Leader-follower” dynamic perturbation during retention modulates two-item 710 

memory performances (Experiment 1, N = 30) 711 
(A) “Leader-follower” dynamic perturbation paradigm. In each trial, participants were 712 

presented with two bars and memorized their orientations and colores. During the memory 713 

test, participants adjusted the orientation of a probe bar to match that of the memorized bar 714 

having the same color as the probe. During the 5 s delay period, participants performed a 715 

central fixation task, while two task-irrelevant, flickering discs having the same color as each 716 

of the memorized bars (blue and red) were presented bilaterally, with their luminances 717 

continuously modulated by two 5 s temporal sequences (Leader or Follower sequences), 718 

respectively. The color, spatial location, and “Leader-Follower” conditions were 719 

counterbalanced across trials. (B) The Leader temporal sequence was a 5 s white noise 720 

randomly generated per trial, and the Follower sequence was created by circular-shifting the 721 

Leader sequence 200 ms rightward. Note that the two sequences were presented 722 

simultaneously rather than asynchronously. (C) The Leader-Follower cross-correlation over 723 

time as a function of temporal lag, peaking at 200 ms. (D) Memory performance. Grand 724 

averaged (mean + SEM) memory precision during recalling test for Leader (purple) and 725 

Follower (turquoise) conditions, with dots denoting individual participants. (E) Same as D, 726 

but for normalized target probability. *: p < 0.05. For target probability without normalization 727 

see Extended Data Fig.1-1. For additional parameters (non-target and randomly guess 728 

probability) results in Extended Data Fig.1-2.  729 
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Figure 2 730 

Figure 2. Task-irrelevant “Leader-follower” dynamic perturbation (Experiment 2, N = 731 

30).  732 

(A) Task-irrelevant dynamic perturbation paradigm. Experiment 2 was the same as 733 

Experiment 1, except that participants needed to memorize the orientations and locations 734 

(upper or lower) of the two bar stimuli regardless of their color features. During the memory 735 

test period, a location cue (upper or lower) was first presented, based on which participants 736 

rotated the horizontal white bar to the corresponding memorized orientation. Critically, a 737 

“Leader-follower” dynamic perturbation as in Experiment 1 was applied during the delay 738 

period, i.e., two discs of the same color as each of the memorized bars (blue and red) were 739 

presented bilaterally, with their luminances continuously modulated by a Leader or Follower 740 

sequences, respectively. (B) The Leader temporal sequence was a 5 s white noise randomly 741 

generated per trial, and the Follower sequence was created by circular-shifting the Leader 742 

sequence 200 ms rightward. The two luminance sequences were presented simultaneously 743 

rather than asynchronously. (C) The Leader-Follower cross-correlation over time as a 744 

function of temporal lag, peaking at 200 ms. (D) Memory performance. Grand averaged 745 

(mean + SEM) memory precision during recalling test for Leader (purple) and Follower 746 

(turquoise) conditions, with dots denoting individual participants. (E) Same as D, but for 747 

normalized target probability. For target probability without normalization see Extended Data 748 

Fig.1-1. For additional parameters (non-target and randomly guess probability) results in 749 

Extended Data Fig.1-2. 750 

 751 

  752 
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Figure 3 753 

Figure 3. “Leader-follower” dynamic perturbation modulates three-item memory 754 

performance (Experiment 3, N = 30) 755 
(A) Experiment 3 paradigm. In each trial, participants were presented with three bars and 756 

memorized their orientations and colores. During the memory test, participants adjusted the 757 

orientation of a probe bar to match that of the memorized bar having the same color as the 758 

probe. During the 5 s delay period, participants performed a central fixation task, while three 759 

task-irrelevant, flickering discs having the same color as each of the memorized bars (blue, 760 

red, green) were presented simultaneously, with their luminances continously modulated by 761 

three 5 s temporal sequences (Leader, Follower1st, Follower2nd), respectively. The color, 762 

spatial location, and “Leader-Follower” conditions were counterbalanced across trials. (B) 763 

The Leader temporal sequence was a 5 s white noise randomly generated per trial, and the 764 

Follower1st and Follower2nd sequences were created by circular-shifting the Leader sequence 765 

150 ms and 300 ms rightward, respectively. (C) The Leader- Follower1st and  Leader- 766 

Follower2nd cross-correlation over time as a function of temporal lag, peaking at 150 ms and 767 

300 ms, respectively. (D) Memory performance. Grand averaged (mean + SEM) memory 768 

precision for Leader (purple), Follower1st (turquoise), and Follower2nd (yellow) conditions. 769 

Dots denote individual participants. (E) Same as D, but for normalized target probability. For 770 

target probability without normalization see Extended Data Fig.1-1. For additional 771 

parameters (non-target and randomly guess probability) results in Extended Data Fig.1-2. 772 

 773 
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Figure 4 775 

Figure 4. Memory-irrelevant “Leader-follower” dynamic perturbation (Experiment 4, 776 

N = 30) 777 
(A) Task-irrelevant dynamic perturbation paradigm. Experiment 4 was the same as 778 

Experiment 3, except that participants needed to memorize the orientations and locations 779 

(left/middle/right) of the three bar stimuli regardless of their color features. During the 780 

memory test period, a location cue was first presented, based on which participants rotated 781 

the horizontal white bar to the corresponding memorized orientation. Critically, a “Leader-782 

follower” dynamic perturbation as in Experiment 3 was applied during the delay period, i.e., 783 

three discs of the same color as each of the memorized bars (blue, red, green) were presented 784 

simultaneously, with their luminances continuously modulated by Leader, Follower1st , or 785 

Follower2nd sequence, respectively. (B) The Leader temporal sequence was a 5 s white noise 786 

randomly generated per trial, and the Follower1st and Follower2nd sequences were created by 787 

circular-shifting the Leader sequence 150 ms and 300 ms rightward, respectively. (C) The 788 

Leader- Follower1st and Leader- Follower2nd cross-correlation over time as a function of 789 

temporal lag, peaking at 150 ms and 300 ms, respectively. (D) Memory performance. Grand 790 

averaged (mean + SEM) memory precision for Leader (purple), Follower1st (turquoise), and 791 

Follower2nd (yellow) conditions. Dots denote individual participants. (E) Same as D, but for 792 

normalized target probability. For target probability without normalization see Extended Data 793 

Fig.1-1. For additional parameters (non-target and randomly guess probability) results in 794 

Extended Data Fig.1-2.  795 
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Extended Data 796 

 797 

Figure 1-1 798 
(A) Target probability for the Leader (purple), Follower (turquoise) conditions, with dots 799 

denoting individual subjects in Experiment 1. (B-D) Same as A, but for Experiment 2, 800 

Experiment 3 and Experiment 4. Correction for multiple comparisons was applied to 801 

Experiment 3&4. 802 

 803 

 804 

 805 

Figure 1-2 806 
(A) Left panel: non-target probability for the Leader (purple), Follower (turquoise) conditions, 807 

with dots denoting individual subjects in Experiment 1. Right panel: random guess 808 

probability in Experiment 1. (B-D) Same as A, but for Experiment 2, Experiment 3 and 809 

Experiment 4. Correction for multiple comparisons was applied to Experiment 3&4. 810 

 811 










