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Phonological acquisition depends on the timing of
speech sounds: Deconvolution EEG modeling across the
first five years
Katharina H. Menn1,2,3*, Claudia Männel2,4†, Lars Meyer1,5†

The late development of fast brain activity in infancy restricts initial processing abilities to slow information.
Nevertheless, infants acquire the short-lived speech sounds of their native language during their first year of
life. Here, we trace the early buildup of the infant phoneme inventory with naturalistic electroencephalogram.
We apply the recent method of deconvolution modeling to capture the emergence of the feature-based
phoneme representation that is known to govern speech processing in the mature brain. Our cross-sectional
analysis uncovers a gradual developmental increase in neural responses to native phonemes. Critically,
infants appear to acquire those phoneme features first that extend over longer time intervals—thus meeting
infants’ slow processing abilities. Shorter-lived phoneme features are added stepwise, with the shortest ac-
quired last. Our study shows that the ontogenetic acceleration of electrophysiology shapes early language ac-
quisition by determining the duration of the acquired units.
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INTRODUCTION
During language acquisition, speech processing is rapidly shaped by
the native linguistic environment: Newborns can distinguish all
phonemes based on acoustics but lose this ability from 6 months
of age onwards. Eventually, they no longer hear the acoustic differ-
ence between some sounds that are irrelevant for the understanding
of their native language (1). Seminal work has shown that English-
learning 6- to 8-month-old infants can still distinguish individually
presented native and non-native phonemes, yet discrimination of
non-native phonemes decreases by 10 to 12 months (2). In parallel,
the ability to discriminate native phonemes improves (3–7). On the
neurobiological level, auditory association cortex represents pho-
nemes that have been acquired as bundles of so-called phonological
features (8). Each phoneme in a speaker’s native inventory corre-
sponds to a unique combination of features. These feature-level rep-
resentations are invoked once an acoustic exemplar of the phoneme
is present in speech (9, 10). The exact age at which features are ac-
quired is a matter of debate, with some recent reports that infants as
young as 3 months may be able to access feature information of
speech sounds (11).

The rapid time course of feature acquisition seems paradoxical,
because infant brains are too slow for detecting and processing in-
dividual phonemes. Infant-directed speech serves ∼20 phonemes
per second, resulting in an average duration of ∼50 ms (12). Yet
even at 7.5 months of age, infants fail to dissociate 70-ms-long
sounds that are separated by less than ∼75 ms (13). We have recently
proposed that this slowness is explained by neurobiological

immaturity at birth (14): Fast electrophysiological activity that is re-
quired for phoneme-rate auditory and feature processing (9, 15)
only emerges after birth and approaches adult speeds across
infancy and childhood (16–18). In line with this temporal con-
straint, newborns initially focus on slow prosodic modulations (i.
e., long units) of speech, shifting toward smaller (i.e., faster) units
only later [e.g., syllables and phonemes (14, 19)].

Individual phonemes in natural speech may be too short for
infants’ long temporal processing windows. However, actually not
all features alternate at a fast rate. Instead, some features (e.g.,
voicing and place of articulation) often span sequences of multiple
subsequent phonemes (Fig. 1). As a result, features alternate at a
much slower rate. In this study, we show that when this rate is
slow enough, infants’ electroencephalogram (EEG) clearly indicates
sensitivity to features. This suggests that feature timing allows
infants to bootstrap into phoneme acquisition in spite of neurobi-
ological slowness. We recorded the EEG from children between 3
months and 4.5 years of age who listened to translation-equivalent
stories in their native language (German) and a non-native language
(French). French and German largely overlap in their phoneme in-
ventories (20, 21) and children learning either language show
similar learning trajectories for individual phonemes (22, 23).
Most phonological features are relevant in both languages. One
major difference in phonological features between German and
French is the [long] feature, which only distinguishes speech
sounds in German but not in French. Furthermore, the [nasal]
feature is more relevant in French compared to German. In addi-
tion, French does not allow for diphtongs. However, the exact
acoustic realizations of phonological features differ between the
two languages [e.g., (24) for voicing], and native speakers of the
two languages weigh acoustic cues differently. In addition, there
are some prosodic differences between the two languages, which
are most evident in their rhythmic structure (25, 26). German is
stress timed, meaning that it has roughly equal intervals between
stressed syllables, whereas French is syllable timed, that is, syllables
have an approximately equal duration. German marks stress on the
word level, and the position of the stressed syllable can vary between
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words (27). In contrast, stress is never contrastive on the word level
in French. From the EEG collected during story listening, we esti-
mated categorical processing of phonemes from the prediction ac-
curacy of cross-validated feature-based EEG deconvolution models
(temporal response functions (TRFs)]. We hypothesized that the
prediction accuracy would increase cross sectionally for the native
but not the non-native language in line with perceptual narrowing
accounts of phonological acquisition (1, 2). Regarding the acquisi-
tion of individual features in the native language, we expected that
the cross-sectional increase in TRF prediction accuracy for any
feature could be predicted by the average duration of this particular
feature in child-directed speech even after correcting for the fre-
quency of occurrence of each feature.

RESULTS
Native specificity of phonological processing
To establish consistency with previous literature, we first compared
phonological processing in the native language to the non-native
language. Our dependent measure was the prediction accuracy of
the EEG deconvolution model. High prediction accuracy indicates
reliable neural responses to phonological features across the child-
ren’s story, as is expected once phonological representations have
been formed (15). In line with established findings, our mixed-
effects model analysis showed a significant interaction between lan-
guage condition and age, t(64) = 2.34, P = 0.023 (Fig. 2A). Follow-
up analyses showed that the increase of prediction accuracy with age
was specific to the native language [t(64) = 4.78, P < 0.001; non-
native: t(64) = 1.51, P = 0.133], indicating an increase in sensitivity
to native phoneme features. To assess the age at which native and
non-native feature processing diverge, we assessed the fitted confi-
dence interval (CI) for the age trajectory of the difference in predic-
tion accuracy between the native and the non-native conditions.
The CI initially includes 0 and exceeds 0 at 28 months of age.
This indicates that, in the beginning, there are no differences in

prediction accuracy between the two languages in our sample, sug-
gesting that infants initially process the features of both languages
similarly and that accuracy for the native language improves with
increasing familiarity with their native language. In contrast, we
found no evidence for a native specificity of general acoustic pro-
cessing (Fig. 2B): Mixed-effects models using the spectrogram as
an alternative predictor showed no interaction between language
condition and age, t(64) = 0.45, P = 0.656, but only a main effect
of age, t(64) = 2.83, P = 0.006. Our acoustic predictor in this
model consisted of logarithmically spaced channels of the full spec-
trogram from 250 to 8000 Hz, which thus includes the spectrotem-
poral information relevant for phoneme identification as well as the
fundamental frequency. Our results thus indicate the emergence of
native phonological representations and a general enhancement in
acoustic processing with increasing age.

Control analyses including infant sex showed no significant
three-way interaction between age, language, and sex in our
sample, t(62) = −0.35, P = 0.728. Given that sex was not perfectly
balanced in our sample, we further used a bootstrapping approach
with 1000 sex-balanced bootstrap resamples to estimate the 95% CI
for any interaction with sex. The resulting CIs for the t values of the
interaction terms were all found to include 0 for the model includ-
ing features (CI age × sex: −1.65 to 2.53; age × language × sex: −2.32
to 1.32) and the model including the spectrogram as dependent var-
iable (CI age × sex: −2.41 to 1.61; age × language × sex: −1.96 to
2.7), suggesting that the interactions are not statistically significant
at the 0.05 level. Consequently, our findings indicate no compelling
evidence of a moderating effect of sex on the developmental trajec-
tory of phonological feature acquisition. It should be noted,
however, that inclusion of age led to an improvement of overall
model fit in 28% of the bootstrapping samples for the feature-
based model, the interaction between age and sex was only signifi-
cant for 11% of the samples, and the three-way interaction between
age, language, and sex was only significant for 5% of the samples.
For control analyses showing that our results cannot be explained by

Fig. 1. Overview of TRF method. EEG and speech data were split into training and testing data for 10-fold cross-validation. Model parameters were estimated on the
basis of the training set. TRFs were then assessed on the previously unseen test set. The correlation between the predicted and observed data (= prediction accuracy)
across all folds was used as dependent measure for further statistical analyses.
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advances in lexico-semantic or syntactic knowledge, see Supple-
mentary text.

Comparison of feature processing against baseline
To assess at which age children show reliable categorical processing
of features from continuous speech above chance, we compared the
age trajectory of phonological processing in the native language to
age-related changes in prediction accuracy in a statistical permuta-
tion baseline. The permutation baseline was created by pairing the
EEG data with a randomly time-shifted version of the acoustic pre-
dictors for each fold of the cross-validation procedure. This can
serve as a statistical baseline by disrupting the true relationship
between acoustic predictors and EEG and thus represents the null
hypothesis of no systematic relationship between predictor and re-
sponse. Linear regression analyses showed that native phonological
processing was significantly higher than baseline, t(64) = 7.93, P <
0.001, and the difference between observed and baseline prediction
accuracy significantly increased with age, t(64) = 4.18, P < 0.001
(Fig. 2C). Fitted CIs across the difference between native and base-
line measures show that native categorical processing of phonolog-
ical features significantly deviates from baseline at 14 months. This
indicates that infants show significant categorical processing of
phonological features from continuous speech from an age of
14 months.

Relationship of feature acquisition and duration
The average duration of each feature in the native language was
measured as the median duration of each feature from feature
onset to offset in a recording of natural maternal speech. Duration
thus reflects the uninterrupted stretches of multiple phonemes

(Table 1). To assess whether duration affects feature acquisition,
we conducted a mixed-effects model with age and feature duration
rank (from shortest to longest) as predictors. Our results show sig-
nificant main effects of age, t = 4.47, P < 0.001, and duration rank, t
= 3.54, P = 0.003, on EEG prediction accuracy. The analysis also re-
vealed a significant interaction between age and the duration rank
on prediction accuracy, (t = 2.83, P = 0.005). Here, the age trajectory
was steeper for longer features, indicating that infants display cate-
gorical sensitivity earlier to those features that extend over longer
stretches of speech (Fig. 3A). This effect remained significant
after controlling for the overall frequency of occurrence of each
feature. This means that even at equal exposure, infants’ sensitivity
to a given feature is higher when it tends to extend in time.

Control analyses assessing possible sex effects on the relationship
between feature duration and feature acquisition revealed no signif-
icant three-way interaction of sex, age, and language in our sample, t
= −0.49, P = 0.625. We again applied a bootstrapping approach to
create sex-balanced samples. The resulting 95% CIs for the t values
of the three-way interaction between sex, duration rank, and age in-
cluded 0 (−2.74 to 1.72), providing no evidence of a moderating
effect of infant sex on the relationship of feature acquisition and du-
ration at the α = 0.05 level. Inclusion of age improves overall model
fit in 38.5% of bootstrapping samples, and the three-way interaction
between age, sex, and pitch similarity was significant in 11.3% of
bootstrapping samples.

Exploratory analysis: Prosodic similarity
We analyzed whether the acquisition of phonological feature learn-
ing may be an extension of infants’ initial focus on prosody in
speech processing (14). More specifically, we thought that the

Fig. 2. Overview of overall feature acquisition results. (A) Feature acquisition is native specific. Top panel depicts topography of the average z-transformed prediction
accuracy per year of age for the native language (German) and the non-native language (French). Lower panel shows regression analysis for prediction accuracy for
electrode FC5 predicted by participant age for the two language conditions (N = 66). Prediction accuracy significantly increases with age for the native (t = 4.78, P <
0.001) but not for the non-native language (t = 1.51, P = 0.133). (B) The prediction accuracy for spectrogram processing significantly increases with age [t(64) = 2.83, P =
0.006]. The interaction between age and language condition was not significant [t(64) = 0.45, P = 0.656], providing no evidence that the increase of acoustic processing is
language specific. N = 66. (C) The difference in prediction accuracy between German and a statistical baseline significantly exceeds zero after 14 months of age. Shaded
area depicts the 95% CI. N = 66.
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duration of early-acquired feature-continuous stretches might be
similar to the modulation rate of speech prosody (Fig. 4). For
this, we first assessed infants’ processing of pitch (fundamental fre-
quency; F0) in a TRF model using the pitch track as single predictor.
In line with previous research, we found significant processing of
pitch already in the youngest children (CI: 0.01–0.03; fig. S1), con-
firming established prosodic processing abilities at an early age (28).
In addition, we find a significant increase of pitch processing across
age, t(64) = 2.34, P = 0.022. We then quantified the similarity
between prosody and each feature as the cross-correlation
between the pitch track and the feature predictor. Next, we

ranked these from least to most similar (Table 1) and added
pitch-similarity rank as a fixed effect to the duration model de-
scribed above. Including pitch similarity significantly increased
the model fit (P = 0.001). This model revealed a significant interac-
tion between age and pitch similarity (t = 3.42, P < 0.001; Fig. 4C) as
well as significant main effects of pitch similarity (t = 3.18, P =
0.006) and age (t = 4.41, P < 0.001) on EEG prediction accuracy.
This indicates that the more similar the timing of a feature is to
the timing of pitch, the steeper its trajectory across age. The inter-
action between duration and age was not significant in the final
model after controlling for pitch similarity (Fig. 3C). All variance
inflation factors of the final model were ≤ 3.17, indicating that
this result was not caused by multicollinearity. Control analysis re-
vealed no moderating effects of sex on the relationship between
pitch similarity and age in our sample, t = −0.83, P = 0.409. We
again used bootstrapping and the resulting 95% CI for the interac-
tion included 0 (CI tage x sex x pitchsimilarity: −3.32 to 1.34). Inclusion
of age improves overall model fit in 66% of bootstrapping samples,
the three-way interaction between age, sex, and pitch similarity was
significant in 18% of bootstrapping samples. These findings suggest
that phonological feature acquisition may be driven by the similar-
ity between prosody and individual phonological features. In other
words: At an age when infants’ slow electrophysiology lets them
focus on prosody, they also start to process phoneme features that
alternate at a comparably slow rate.

DISCUSSION
In a large cross-sectional sample, we identified the emergence of
stable neural activity associated with phonological-feature process-
ing from 14 months of age onwards, using scalp-level EEG decon-
volution. This age is later than the previously reported 3 months for
feature extraction (11), which may be attributed to the use of natu-
ralistic speech in our study, which is more challanging given the
rapid transition of phonemes and their increased variability due
to co-articulation. Further possible are non-linear slopes for age
in the earliest age range, which we could not appropriately model
here. We further showed that the development of categorical feature
processing is native-specific and not based on a general enhance-
ment of auditory processing, which was found for both the native
and the non-native language. This replicates the well-known

Fig. 3. Pitch similarity is a better predictor for feature acquisition than duration. (A) Feature duration rank is associated with the feature’s prediction accuracy slope
across early childhood. Diagonal line depicts the identity line, which would indicate a perfect match between duration rank and slope rank. (B) Pitch similarity rank relates
to feature slope across early childhood. (C) Comparison of model estimates for the duration model and the full model. For the full model including both pitch similarity
and duration rank, only pitch similarity, age, and their interaction are significant predictors for individual feature prediction accuracy.

Table 1. Descriptive statistics for features. Overview of individual
feature duration and similarity between the feature and the pitch track.
Features were assigned according to Chomsky and Halle (72).

Feature
name

Median
feature
duration

Feature
duration
rank

Pitch
similarity

rank

Occurence
rank

Voiced 228 ms 17 17 17

Continuant 197 ms 16 15 15

Sonorant 178 ms 15 16 16

Low 132 ms 14 5 5

Tense 121 ms 13 10 8

Back 120 ms 12 12 11

Strident 116 ms 11 2 4

Consonantal 116 ms 10 13 14

Long 110 ms 9 6 2

Syllabic 109 ms 8 14 12

Round 109 ms 7 4 3

High 102 ms 6 8 9

Coronal 92 ms 5 9 10

Anterior 90 ms 4 11 13

Nasal 70 ms 3 7 6

Labial 69 ms 2 3 7

Lateral 68 ms 1 1 1
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attunement to native phonological categories during language ac-
quisition (1, 2). We obtained this classical effect under short stim-
ulation with natural continuous speech—that is, at a fraction of the
duration needed to assess phonological feature processing in a fac-
torial experiment (11, 29). Moreover, our analyses suggest that the
developmental trajectory is a function of the duration of the acoustic
counterparts of phonological features in speech: Infants display cat-
egorical sensitivity earlier to those features that extend over longer
stretches of speech.

Our findings provide evidence that the shaping of language de-
velopment by electrophysiological maturation extends into the ac-
quisition of fast occurring phonological information, which also
progresses from slow to fast phonological features. In infancy and
early childhood, slow electrophysiological activity dominates the
EEG (30), limiting infants’ processing abilities to slow time scales.
In contrast, faster electrophysiological activity shows a delayed de-
velopment across early years (16, 31). The progression of electro-
physiological maturation from slow to fast is mirrored in
language acquisition (14): From birth, newborns can track pitch
modulations (32) and native prosody may be learned in the
womb already (28, 33, 34), long before infants start building an in-
ventory of native phonology toward the second half of the first
year (1).

Our exploratory analyses suggest that infants’ ability to use
feature-continuous stretches for category acquisition builds on
their in-place ability to process prosodic modulations, in particular,
frequency modulations at the fundamental frequency (F0). At a rate
of <4 Hz (12, 35), these approach the typical frequency of feature
alternation (∼4 to 5 Hz for slow features; Table 1), indicating that
infants might exploit similar neural mechanisms to extract phono-
logical information as they use for prosody. One could call this pos-
sible temporal link between prosodic and phonological acquisition
temporal bootstrapping. It has been well established that prosodic
modulations are the initial processing objective of infants (19, 36,
37) and that infants use speech acoustics to infer abstract linguistic
knowledge [prosodic bootstrapping (38–41)]. This is made possible
by temporal correspondence between speech acoustics and linguis-
tic units (42, 43). The tracking of prosody may help the acquisition
of linguistic meaning (44, 45) by helping to segment and identify
linguistically meaningful (e.g., lexico-semantic or syntactic) units
in continuous speech. Caregivers appear to support bootstrapping
through amplified prosody in infant-directed speech (46). In line

with the temporal bootstrapping proposal, caregivers prolong pho-
nemes when interacting with infants (47, 48). This may further in-
crease the match between long phonological features and infants’
long neurobiological processing windows. As previous research
has indicated a relationship between phonological acquisition and
higher linguistic abstraction (49), future research should investigate
whether the acquisition of phonological features may aid acquisi-
tion of higher linguistic knowledge such as vocabulary.

By showing that feature similarity to pitch relates to phonologi-
cal acquisition, our study provides evidence that early phonological
acquisition relies on established prosodic processing abilities (34,
50). Temporal bootstrapping may allow the infant brain to exploit
the short-term continuity of phonological features for language ac-
quisition. This helps to solve a major paradox of language acquisi-
tion: While infants cannot resolve temporal differences shorter than
∼75 ms (13), they do acquire categorical knowledge of phonemes
that are even shorter (12).

In conclusion, we show that the order of phonological feature
acquisition depends on the duration of feature-continuous stretches
in speech. The slow electrophysiology of the infant brain and the
concomitant tuning to slow prosodic modulations may provide
the foundation for the induction of phonological categories from
feature-continuous stretches of speech. This helps to explain
infants’ astonishing ability to acquire fine-grained linguistic knowl-
edge in spite of their neurobiological limitations.

MATERIALS AND METHODS
Participants
Sixty-six children (40 female) between 3 months and 4.5 years were
included in the final analysis. Participants’ age was approximately
uniformly distributed across the age range. Thirty-one additional
infants participated but were excluded for failure to wear EEG cap
(n = 9), technical failure (n = 11), providing insufficient data (n = 11;
see “EEG analysis” section below). All participants were recruited
from the local database of the Max Planck Institute for Human Cog-
nitive and Brain Sciences and were born full-term (>37 weeks,
>2700 g), healthy, and raised in monolingual German environ-
ments. None of the children had experienced any exposure to
French. Older children were orally informed about the experimental
procedure and caregivers were informed both in written and oral
form. Caregivers gave written informed consent for their children’s

Fig. 4. Overview pitch similarity analysis. (A) Features differ in their individual resemblance to the pitch track. (B) Feature duration associates with the feature’s sim-
ilarity to the pitch track. Outliers are not plotted here. (C) Pitch similarity significantly relates to the developmental trajectory of feature acquisition (t = 3.42, P < 0.001).
Features that share a higher similarity to pitch (higher rank) are acquired faster than features with a lower pitch similarity rank. Shaded tiles depict the average similarity
rank in that tile. N = 66.
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participation in the study. Ethical approval was obtained from the
Medical Faculty of the University of Leipzig.

Materials
The stimuli consisted of three children’s stories in German and in
French (Hans de Beer’s Little Polar Bear and the Husky Pup, Little
Polar Bear, Take Me Home, and Little Polar Bear and the Whales).
Stories were translation equivalent between the two languages and
read in a child-directed way by two professional female speakers
who were native speakers of German and French, respectively.
The recording for each narrative was shortened to 7.5-min duration
without compromising content coherence.

For the acoustic models, the spectrogram of the recordings was
computed for 16 logarithmically spaced channels between 250 to
8000 Hz (15). Phonological annotations (see Table 1) were obtained
via forced alignment of orthographic transcript to the acoustic
waveform using the WEBMAUS automatic segmentation tool (51,
52). To improve the quality of the alignment, phoneme onsets and
labels were manually adjusted by a trained linguist using Praat (53).
To obtain ecologically valid measures of the average duration of
phonological features in German child-directed speech, a feature
duration measure was independently obtained by transcribing ma-
ternal speech in natural interactions between one mother and her 3-
year-old son from the DGD FOLK corpus [∼1 hour of interactions;
∼10,000 individual phonemes produced by the mother (54)].
Feature durations were measured as the median duration of each
feature from feature onset to offset, thus typically spanning multiple
phonemes (Table 1). In case of silence after feature offset, the silent
duration was added to the feature duration, as there was no new
phonological information interfering with infants’ processing. Fea-
tures were ranked according to their duration from short to long for
subsequent analyses. To control for mere exposure effects, we also
ranked the features regarding their overall occurrence in German
from least to most frequent.

Procedure
During the EEG recordings, children were seated on their parent’s
lap in an electrically shielded, sound-attenuated booth. They lis-
tened to one narrative in German and a different narrative in
French. Narratives were presented via speakers and counterbal-
anced across children. The total experiment lasted 16 min during
which EEG was recorded continuously.

EEG recording and preprocessing
EEG was recorded using a 28-channel EasyCap system (Brain Prod-
ucts GmbH) with Ag/AgCl electrodes arranged according to the 10/
10 system. The sampling rate was 500 Hz. Cz served as online ref-
erence, and vertical and horizontal electrooculograms were record-
ed bipolarly. EEG processing was done using the publicly available
“eeglab” (55) and “fieldtrip” (56) toolboxes as well as custom
MATLAB code. EEG preprocessing was done automatically using
a modified version of the Harvard Automated Preprocessing Pipe-
line (HAPPE) (57). In line with HAPPE, the EEG data were high-
pass filtered above 1 Hz with a noncausal finite impulse response
filter (order: 1650, −6-dB cutoff: 0.5 Hz) to remove slow drifts
that are often artifactual in infant data (58). A 45-Hz low-pass
filter was applied to remove line noise (order: 332, −6-dB cutoff:
47.5 Hz). Channels were categorized as noisy and removed from
preprocessing for any of three reasons: (i) channels that were flat

for longer than 30 consecutive seconds; (ii) channels with a Hurst
value below 0.7; (iii) channels that exceeded the normed joint prob-
ability of the average log power from 1 to 100 Hz by more than 2.75
SD from the mean (mean number of removed channels = 0.83). We
applied level 13 wavelet thresholding to remove large artifacts before
the previously removed noisy channels were interpolated using
spherical splines, which has a high accuracy for low-density EEG
data (59). Last, the data were re-referenced to the linked mastoids.
The 19 channels included in the final analysis were as follows: Fz,
F3/4, F7/8, FC5/6, C3/4, Cz, T7/8, CP5/6, Pz, P3/4, and P7/8. We
excluded the most posterior channels from the final analysis
because the EEG signal was consistently noisy across children.

EEG analysis
After automatic preprocessing of the continuous EEG data, the TRF
analysis was prepared following Jessen et al. (60): The data were fil-
tered between 1 and 10 Hz before it was segmented into consecutive
epochs with a duration of 1 s each. Epochs in which the EEG am-
plitude in the unfiltered data exceeded a threshold of ±200 μV were
rejected automatically. We then combined the EEG data with the
acoustic predictors (spectrogram and phonological features)
before recombining the EEG epochs, adding 1 s of zeros between
nonconsecutive epochs. Children had to contribute at least 350 s
(75% of the story) of artifact-free EEG data per language condition
to be included in the analysis (M = 434.5 s, SD = 23.6).

To assess the mapping between our acoustic predictors and the
EEG data, we used temporal-response functions (TRFs) as imple-
mented in the mTRF toolbox [(61); see Fig. 1 for an overview].
For each predictor, a TRF is estimated which best describes the
neural response to the respective predictor using regularized
linear regression. Individual forward encoding models were com-
puted to predict EEG data from either the acoustic spectrogram
or the phonological features separately for the two language condi-
tions (native versus non-native). The spectrogram was added as a
continuous predictor, and phonological features were added as a
step-function predictor, with steps corresponding to the start-
and endpoint of every feature. On the basis of previous research
on phonological processing in adults and infants, neural responses
were estimated between −150 and 400 ms with respect to feature
present samples (15, 62–65). The reliability of each model was quan-
tified using 10-fold cross-validation, which quantified the EEG pre-
diction accuracy (Pearson’s r) on unseen data while controlling for
overfitting. For each iteration, EEG data were split into training
(80%), validation (10%), and testing data (10%), which were used
as follows: Model parameters were first estimated on the training
set. To control for overfitting, the validation set served as a basis
for hyperparameter tuning of the regularization parameter, which
was performed by means of an exhaustive search of a logarithmic
parameter space from 10−7 to 107. In the last step, we used the op-
timized model parameters to predict the previously left-out testing
data and quantified the prediction accuracy as the correlation
between predicted and observed EEG data. Cross-validation predic-
tion accuracy is high if the infants show a reliable neural response to
the features, which can be generalized from the training to the pre-
viously unseen test data. We therefore interpret higher TRF predic-
tion accuracy as more stable neural responses and thus an indication
of phonological feature acquisition. To assess the statistical signifi-
cance of the prediction accuracy, we obtained a surrogate distribu-
tion of prediction accuracy values under the null hypothesis of no
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systematic relationship between speech acoustics and EEG data.
This surrogate distribution was created by pairing the EEG data
with a randomly time-shifted version of the acoustic predictors
for each fold of the cross-validation and is referred to as permuta-
tion baseline in this manuscript [see (66) for a similar approach].

Statistical analysis
Data were analyzed using mixed-effects models (67) in R [v4.1.3
(68)] using RStudio [v.2022.7.1.554 (69)]. Model significance was
assessed using Satterthwaite approximation (70). The prediction ac-
curacy for FC5 was used as dependent measure for all analyses, as
this was the electrode with the highest overall prediction accuracy in
the feature model across children and language conditions. To
assess whether processing of phonological features is native specific,
we compared the developmental trajectory of the prediction accu-
racy across all features in German (native) to French (non-native).
Age and language (native versus non-native) served as fixed effects
and participant as random intercept. For all analyses, age was mean-
centered and language was contrast-coded with native as reference
level coded as −0.5. In the second analysis, we assessed at which age
children show a reliable neural response to phonological features of
their native language, by assessing at which age the prediction accu-
racy across all features in the native language significantly exceeds a
statistical baseline. For every child, we subtracted the prediction ac-
curacy computed in the permutation baseline from the actually ob-
served prediction accuracy. Linear regression was used to predict
this difference from age. The age at which the prediction accuracy
to features is significantly above baseline was determined as the age
at which the fitted confidence of the difference between the two
measures intervals exceeded zero.

To assess whether the acquisition of individual phonological fea-
tures relates to their duration in natural speech, the last analysis
focused on the predictive accuracy of the 17 individual features in
the native language. Features did not occur equally often in our
stories, which may have affected TRF model performance. To
correct for the possible influence of unequal feature quantities in
the training data on the predictive accuracy for individual features,
we used the difference between the feature’s observed prediction ac-
curacy and the prediction accuracy computed in the permutation
baseline as dependent variable. Age and feature duration rank
served as fixed effects, and feature identity and participant were
added as random intercepts. Because children are expected to
acquire features earlier if they are exposed to them more often,
feature occurrence rank was added as an additional control variable
to the model.

To estimate the shape of the developmental change, we respec-
tively added logarithmic, quadratic, and cubic terms for age to all of
our analyses and compared the respective model fit to the model
including only the linear term for age. Because neither of the
added terms significantly improved model fit in any analyses, all
results are based on linear predictors for age. Previous findings
suggest an impact of infant sex on early phonological discrimina-
tion abilities (71). To assess for a potential effect of sex on our find-
ings, we conducted a control analysis for the main finding including
sex as a factor. Given that sex was not perfectly balanced in our
sample, we used a bootstrapping technique and constructed a
95% CI for all interaction effects with age from 1000 resamples of
a sex-balanced sample of 66 children, thus providing a robust and

nonparametric estimation of its uncertainty and allowing for more
reliable inferences.
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