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Antiferromagnetic topological insulators (AFM TIs), which host magnetically gapped Dirac-cone
surface states and exhibit many exotic physical phenomena, have attracted great attention. The
coupling between the top and bottom surface states becomes significant and plays a crucial role
in its low-energy physics, as the thickness of an AFM TI film decreases. Here, we find that the
coupled surface states can be intertwined to give birth to a set of 2n brand new Dirac cones, dubbed
intertwined Dirac cones, through the anisotropic coupling due to the n-fold crystalline rotation
symmetry Cnz (n = 2, 3, 4, 6) in the presence of an out-of-plane electric field. Interestingly, we
also find that the warping effect further drives the intertwined Dirac-cone state into a quantum
anomalous Hall phase with a high Chern number (C = n). Then, we demonstrate the emergent six
intertwined Dirac cones and the corresponding Chern insulating phase with a high Chern number
(C = 3) in MnBi2Te4/(Bi2Te3)m/MnBi2Te4 heterostructures through first-principles calculations.
This work discovers a new intertwined Dirac-cone state in AFM TI thin films and also reveals a new
mechanism for designing the quantum anomalous Hall state with a high Chern number.

I. INTRODUCTION

The interplay between magnetism and topology in con-
densed matters has greatly enriched the research content
of topological quantum physics with many exotic physi-
cal phenomena, such as quantum anomalous Hall effect
(QAHE) [1–5], magnetic Weyl semimetals [6, 7], topolog-
ical magnetoelectric effects [8, 9], axion polariton [10–13]
and so on. Recently, MnBi2Te4 and its family were dis-
covered to be an important class of promising intrinsic
magnetic topological insulators (TIs) and have attracted
great attention [14–38]. As the most representative ma-
terial, MnBi2Te4, having the A-type antiferromagnetic
(AFM) ground state, is found to be a static axion insula-
tor with quantized magnetoelectric effect [16, 30]. More-
over, the QAHE with a high temperature (∼ 1 K, higher
than that of Cr-doped (Bi,Sb)2Te3 films [3]) was theo-
retically proposed and experimentally observed in odd-
septuple-layer (SL) MnBi2Te4 films [4, 16, 17, 22], and
the dynamical topological magnetoelectric effect was the-
oretically proposed in even-SL MnBi2Te4 films [39]. Most
interestingly, the layer Hall effect was also demonstrated
in even-SL MnBi2Te4 films in which there are two sep-
arated magnetically gapped Dirac cones exhibiting half-

integer quantized Hall conductivity with opposite signs
(±e2/2h) on the top and bottom surfaces [33].

When the thickness of such a AFM TI film is gradu-
ally reduced, the two separated Dirac-cone surface states
become coupled with each other. This coupling could
play a crucial role especially in an ultrathin (< 10 nm)
AFM TI film. For example, the competition between
the surface-state coupling and magnetic order can lead
to a topological phase transition between a trivial phase
and a QAHE [2, 40]. Generally speaking, on account of
the n-fold (n = 2, 3, 4, 6) crystalline rotation symmetry
(Cnz) that a (magnetic) TI usually respects, the surface-
state coupling should contain both isotropic terms and
symmetry-allowed anisotropic terms [41]. However, to
our knowledge, only isotropic surface-state couplings are
considered [40, 42–46], whereas anisotropic couplings are
simply omitted.

Remarkably, in this work, we find that the Cnz-
symmetry-allowed anisotropic coupling can induce a
set of 2n brand new Dirac cones, termed intertwined
Dirac cones, around the Γ point through intertwining
the two original Dirac cones on the top and bottom
surfaces of AFM TI thin films in the presence of a
PT -symmetry breaking potential, e.g. an out-of-plane
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FIG. 1: Schematic of intertwined Dirac cones and high-Chern-number phase transition. (a) The coupled top
and bottom Dirac-cone surface states of an AFM TI thin film. (b) The surface states are doubly degenerate when the PT
symmetry is preserved (i). An external electric field can shift the surface Dirac cones to split the degenerate bands (ii). When
only considering the isotropic coupling (see the main text for the details), the energy gap first closes with a gapless nodal ring
at u = u0 (iii) and reopens (iv), but without a topological transition. (c) When introducing the symmetry-allowed anisotropic
coupling, the gapless nodal ring splits into six intertwined Dirac cones if the AFM TI film has a 3-fold rotation symmetry. The
color of Dirac cones indicates the different Chern number, with green (orange) representing C = −1/2 (C = 1/2). Green and
orange Dirac cones simultaneously change their signs across the gapless point, with increasing the electric field, but there is
still no topological transition. (f) When further considering the symmetry-induced warping effect, the three green intertwined
Dirac cones first change their sign from C = −1/2 to C = 1/2 at u = u− (ii) to result in a topological transition to a C = 3
phase (iii), and as the electric field increases, the other three orange intertwined Dirac cones change their sign from C = 1/2
to C = −1/2 at u = u+ (iv) to make the second topological transition to C = 0 (v).

electric field. More intriguingly, when further taking
the symmetry-allowed warping effect into consideration,
an electrically tunable high-Chern-number (|C| = n)
QAHE can appear. These are further explicitly ver-
ified by the existence of six intertwined Dirac cones
and the corresponding |C| = 3 Chern insulating phase
in MnBi2Te4/(Bi2Te3)m/MnBi2Te4 (m =0, 1, 2) het-
erostructures through first-principles calculations, and
also confirmed in HgS films with the C2z rotation sym-
metry and α-Ag2Te films with the C4z rotation symme-
try [47, 48], by introducing the magnetic proximity effect
on the surfaces. This work not only reveals a new con-
cept of intertwined Dirac cones in AFM TI films, but also
provides a new scheme to achieve high-Chern-number
QAHE.

II. INTERTWINED DIRAC-CONE STATES

We start from an even-layer AFM TI thin film with two
Dirac-cone surface states located on the top and bottom

surfaces, respectively, as illustrated in Fig. 1a. Due to the
out-of-plane surface magnetic moments, if the two Dirac-
cone surface states are uncoupled, each of them can be
described by a Dirac-cone Hamiltonian [41]

HDα
= sℏv(kxσy − kyσx) +mασz (1)

where α = 1, 2, D1 (D2) represents the top (bottom)
Dirac cone, v is the Fermi velocity, s = +(−) for the
Dirac cone D1 (D2), the Planck’s constant ℏ is simply
set as 1 henceforth, and mα indicates Zeeman coupling.
Since magnetic moments on the two surfaces are opposite
in the AFM TI, we have m1 = −m2 = m (m is set to be
positive henceforth). In the basis of |D1, ↑⟩, |D1, ↓⟩, |D2, ↑
⟩, |D2, ↓⟩, where ↑ (↓) represent the spin, a four-band low-
energy Hamiltonian of the two decoupled Dirac cones is
directly written as:

H0 = vτz ⊗ (kxσy − kyσx) +mτz ⊗ σz. (2)

Here, the Pauli matrix τz acts in the subspace of top
and bottom Dirac cones. This Hamiltonian describes
two degenerate Dirac cones with a gap of 2m, as shown
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FIG. 2: Intertwined Dirac-cone states and Berry cur-
vatures induced by the anisotropic coupling with a
3-fold rotation symmetry. (a) The six gapless intertwined
Dirac cones at the critical electric field u = u0. (b) The layer-
resolved Hall conductivity (LRHC) for the top (blue line) and
bottom (red line) surfaces with increasing the electric field.
(c) The Berry curvatures for u < u0 (i) and u > u0 (ii),
respectively. The significant Berry curvature is mainly lo-
cated around the six intertwined Dirac cones, which changes
sign from u < u0 to u > u0. The parameters are chosen as
m = 0.05 eV, v = 1 eV · Å,∆ = 0.05 eV, B = 5 eV · Å2, R1 =
100 eV · Å3 in the above numerical calculations.

in Fig. 1b(i). Note that although the time-reversal
(T = iσyK with K denoting the complex conjugate) and
inversion (P = τx) symmetries are separately broken, the
combined PT symmetry of them is preserved, which en-
sures the double degeneracy of each band.

Based on H0, we then introduce a PT -symmetry
breaking potential u between the two Dirac cones de-
scribed by Hu = uτz ⊗ σ0, which could be induced by an
out-of-plane electric field (u ∝ E). This potential lifts
the double degeneracy of each band by shifting the two
Dirac cones in opposite directions [see Fig. 1b(ii)], and it
is indispensable for the realization of layer Hall effect [33].
With increasing u, the energy gap gradually reduces un-
til it closes at the Γ point when u = m. If we continue
to increase u, i.e. u > m, the closing point evolves into
a gapless nodal ring with radius

√
u2 −m2/v around the

Γ point.

Now we consider the coupling between D1 and D2.
When assuming that the AFM TI respects Cnz (n =
2, 3, 4, 6) rotation symmetry and a combined symmetry
MxT of mirror and time-reversal operations, we can ob-
tain the following coupling Hamiltonian [see the supple-

mentary material (SM) [49] for more details]

Hcoup = (∆−Bk2)τx ⊗ σ0 +R1gn(kx, ky)τy ⊗ σ0 (3)

where k2 = k2x + k2y and gn(kx, ky) = (kn+ − kn−)/2i with
k± = kx ± iky, and i is the imaginary unit. The first
term in Eq. (3) describes the isotropic couplings up to
k2 order (∆B > 0 is assumed throughout the work [43]),
while the second term comes from the symmetry-allowed
anisotropic coupling (for simplicity we have dropped
other higher-order coupling terms which will not affect
our main results [49]). Most importantly, it plays a cru-
cial role in generating the intertwined Dirac-cone states,
as we will show below. Without the anisotropic coupling,
the energy gap only closes along a gapless nodal ring with
the radius k0 =

√
∆/B at u = u0 =

√
m2 + v2∆/B [see

Fig. 1b(iii)], and it reopens when u > u0 [see Fig. 1b(iv)].
However, there is no topological phase transition in this
gap-closing-and-reopening process, for the Chern num-
ber remains as zero. Interestingly, in the presence of
the anisotropic coupling, it is found that the gapless
nodal ring at u = u0 splits into 2n nodal points con-
nected to each other by Cnz symmetry, as illustrated in
Fig. 1c(ii). In the k-θ polar coordinate (the original kx-
direction is chosen as the θ = 0 direction), the 2n nodal
points are located at (k0, θj), where θj = jπ/n, with
j = 0, 1, 2, ..., 2n − 1. Only at these nodal points, the
coupling becomes zero, and to have a better knowledge
of them, we expand the Hamiltonian around them to
linear order and obtain an effective two-band Dirac-like
Hamiltonian as

hn(θj) =− 2Bk0qρσx + (−1)jnR1k
n−1
0 qθσy

+ δuσz
(4)

where qρ = k−k0 and qθ = k0δθ with δθ = θ−θj , are the
momentum measured from the nodal points along the ra-
dial and angular directions in the polar coordinates and
δu = u− u0. The effective Hamiltonian hn(θj) indicates
that each nodal point is a new Dirac-cone state with a
mass of δu. Since this set of Dirac-cone states emerge
from the coupling between the top and bottom local
Dirac-cone surface states, they are dubbed “intertwined”
Dirac-cone states. Moreover, according to Eq. (4), the
helicity of the intertwined Dirac-cone state labeled by
odd or even value of j is opposite. As a result, the Chern
number for each intertwined Dirac-cone state, given by

C(θj) = (−1)j+1

2 sgn(δu), turns out to be opposite for
odd and even j [see Fig. 1c(i)]. It follows that when δu
changes from negative (u < u0) to positive (u > u0), the
Chern number changes by +1 (−1) for odd (even) j, as
can be seen from Fig. 1c(iii), so the total Chern number
still equals zero. To exemplify this, we have chosen n = 3
to numerically calculate the typical Berry curvature dis-
tribution of the valence bands near the transition point
with u < u0 [Fig. 2c(i)] and u > u0 [Fig. 2c(ii)], as well as
the band structure of the gapless intertwined Dirac-cone
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states at the transition point of u = u0 (Fig. 2a). Obvi-
ously, the local Berry curvature around each intertwined
Dirac-cone state changes its sign between u < u0 and
u > u0, and it is always opposite for intertwined Dirac-
cone states characterized by odd and even j, leading to
a zero net Chern number.
Furthermore, we have also investigated how the layer

Hall effect is affected by the coupling between surface
states. In Fig. 2(b), we have plotted the layer-resolved
Hall conductivity (LRHC) as a function of the potential
difference u. It can be seen that with increasing u, the
LRHCs of both surfaces gradually decrease towards zero.
Note that the deviation from the quantized value ±e2/2h
before the gap closing (u < u0) results from the coupling
between the surface states.

III. WARPING EFFECT AND
HIGH-CHERN-NUMBER PHASE

Based on the above analysis concerning the intertwined
Dirac-cone states, we are now ready to reveal the emer-
gence of a high-Chern-number phase with |C| = n by
further considering the symmetry-induced warping ef-
fect [50, 51] of the two original Dirac-cone surface states.
The warping effect can be described by the following
Hamiltonian

Hwarp = R2wn(kx, ky)τz ⊗ σz, (5)

where wn(kx, ky) = (kn+ + kn−)/2. Because of Hwarp, the
critical potential u0 of the gap-closing condition for each
intertwined Dirac-cone state now becomes [49]

u0,j =

√[
m+ (−1)jR2 (∆/B)

n/2
]2

+ v2∆/B. (6)

In contrast to the case without the warping effect where
u0,j is the same for all values of j, the critical gapless
transition point is now distinct between odd and even
values of j, namely, u0,j ≡u− and u+ for odd and even j,
respectively. This can be understood from the fact that
Hwarp effectively introduces opposite corrections to the
Zeeman term between intertwined Dirac cones with odd
and even j. The difference between u± indicates that the
changes of Chern number ∆C of the intertwined Dirac-
cone states with odd j (∆C = +1) and even j (∆C =
−1) no longer occur simultaneously [see Figs. 1d(ii) and
1d(iv)]. As a result, if mR2 > 0 is assumed, we have
u− < u+ and a high-Chern-number phase with C = n
when u− < u < u+, while C = 0 for both u > u+ and
u < u−, as schematically shown by the C = 3 case in
Fig. 1d.
As further support, we have chosen n = 3 to numeri-

cally calculate the typical Berry curvature distribution of
the valence bands with u < u− [Fig. 3c(i)], u− < u < u+
[Fig. 3c(ii)], and u > u+ [Fig. 3c(iii)]. The band struc-
tures at the critical transition points of u = u− and

u = u+ are presented in Figs. 3a(i) and 3a(ii), respec-
tively. The sign change of the Berry curvature around
each intertwined Dirac-cone state across the transition
points of u± can be clearly seen in Fig. 3c. Moreover, to
verify that u− < u < u+ is indeed a high-Chern-number
phase, we have explicitly calculated the anomalous Hall
conductivity (AHC) in Fig. 3b, where the AHC indeed
equals 3 e2/h when the Fermi energy lies in the gap for
u− < u < u+.
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FIG. 3: The high-Chern-number phase transition in-
duced by the anisotropic coupling and the warping
effect with a 3-fold rotation symmetry. (a) The two suc-
cessive band gap closings with the gapless intertwined Dirac
cones at u = u− and u = u+, respectively. (b) The anomalous
Hall conductivity (AHC) for the u− < u < u+ case, where
the AHC takes the quantized value of 3 e2/h when the Fermi
level lies in the energy gap. (c) Typical Berry curvatures for
three different cases of u < u− (i), u− < u < u+ (ii), and
u > u+ (iii), respectively. The u− < u < u+ case represents
the high-Chern-number phase with C = 3, and the other two
cases represent the topologically trivial phases with C = 0.
The parameters are chosen as m = 0.05 eV, v = 1 eV · Å,∆ =
0.05 eV, B = 5 eV · Å2, R1 = 100 eV · Å3, R2 = 100 eV · Å3

in the above numerical calculations.
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FIG. 4: Intertwined Dirac cones and high-Chern-number phase in MnBi2Te4/(Bi2Te3)m/MnBi2Te4 (m = 0, 1, 2)
heterostructures (a) The schematic heterostructure structure. (b) The band structure for the heterostructure with m = 1
under increasing the electric field, with E = 0.0 V/Å (i), 0.008 V/Å (ii), 0.0113 V/Å (iii), 0.0135 V/Å (iv), 0.0182 V/Å (v),
0.02 V/Å (vi). (c) The topological phase diagram as a function of the Bi2Te3 layer number and the electric field, where the
yellow (green) region denotes the topologically nontrivial (trivial) phase with the Chern number C = 3 (C = 0). (d,e) The
AHC as a function of the energy level for the C = 3 phase at E = 0.0135 V/Å for m = 1. A quantized value of σxy = 3 e2/h
can be seen when the energy level is in the energy gap, which originates from the emergence of three chiral edge states shown
in (e). (f) Typical Berry curvatures for the three different insulating phases, namely, E = 0.011 V/Å (the C = 0 phase before
the first gap closing) (i), E = 0.0135 V/Å (the intermediate C = 3 phase ) (ii), and E = 0.0186 V/Å (the C = 0 phase after
the second gap closing) (iii), where significant changes of Berry curvatures are seen around the intertwined Dirac cones located
at k− (k+) in the first (second) topological phase transition.

IV. MATERIAL REALIZATION

Inspired by recent experimental progresses on
MnBi2Te4 family intrinsic AFM TIs and related het-
erostructures, such as MnBi4Te7 and MnBi6Te10 [25, 52–
60], we take the MnBi2Te4/(Bi2Te3)m/MnBi2Te4 (m =0,
1, 2) heterostructure as a realistic example of the pre-
ceding n = 3 case with the C3z symmetry and perform
first-principles calculations to demonstrate the existence
of six intertwined Dirac-cone states and the QAHE with
a high Chern number C = 3. As shown in Fig. 4a,
the MnBi2Te4/(Bi2Te3)m/MnBi2Te4 (m =0, 1, 2) het-
erostructure is constructed by inserting m quintuple-layer
Bi2Te3 between two MnBi2Te4 SLs, which preserves the
required threefold rotational symmetry (C3z) and the
combined MxT symmetry. Moreover, according to the
total energy calculation [49], the out-of-plane AFM or-
der is preserved as the magnetic ground state of these
heterostructures.

First, we inspect the evolution of the band structure
of the MnBi2Te4/Bi2Te3/MnBi2Te4 heterostructure with
increasing the strength of the out-of-plane electric field.
Without the electric field, the band structure is doubly
degenerate with an energy gap, as shown in Fig. 4b(i).
Once a weak electric field is applied (e.g. E = 0.008

V/Å), the band structure starts splitting due to break-
ing the PT symmetry, seen in Fig. 4b(ii). With increas-
ing the electric field, the band structure undergoes two
successive gap-closing-and-reopening processes, as can be
seen from Figs. 4b(iii-vi), where the energy gap closes at
E = 0.0113 V/Å and E = 0.0182 V/Å, respectively.

Next, we investigate the topological properties,
namely, Berry curvatures and corresponding Chern num-
bers for different regions of the electric field. The Chern
number is calculated to be C = 3 in the intermediate
region between the two gap-closing processes, whereas
C = 0 for the other two regions (see the Wilson-loop [61]
calculations in the SM [49]), which is well consistent with
the above model prediction. Moreover, we have calcu-
lated the AHC as a function of the Fermi level in the
C = 3 region, as shown in Fig. 4d, where the AHC
takes the expected value of σxy = 3 e2/h when the
Fermi level lies in the gap. This is further confirmed
by the emergence of three chiral edge states in the en-
ergy gap (see Fig. 4e). To have a more intuitive pic-
ture of the above topological phase transitions, we have
calculated the typical Berry curvatures for the three re-
gions of the electric field, shown in Fig. 4f. We can
see that significant changes of the Berry curvature oc-
cur around the points where intertwined Dirac cones are
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located. This reflects the crucial role played by the in-
tertwined Dirac cones in the topological phase transi-
tions and the high-Chern-number QAHE. We also note
that similar topological phase diagrams can be found
for the MnBi2Te4/(Bi2Te3)m/MnBi2Te4 heterostructure
with m = 0, and m = 2, as shown in Fig. 4c (see the
SM [49] for more details). To further validate our model
analysis, apart from the n = 3 case, we also propose HgS
and α-Ag2Te thin films stacked along the (001) direction,
through the magnetic proximity effect on the surfaces, for
realizing the n = 2 and n = 4 cases hosting four and eight
intertwined Dirac cones, respectively. Correspondingly,
electrically tunable high-Chern-number phases of C = 2
and C = 4 are also confirmed by our first-principles cal-
culations (see the SM [49]).

V. DISCUSSION AND CONCLUSION

In summary, we have considered the previously over-
looked anisotropic coupling between Dirac-cone surface
states of AFM TI thin films with n-fold rotational sym-
metry. Intriguingly, this coupling could lead to the emer-
gence of 2n intertwined Dirac cones away from the Γ
point in the presence of an out-of-plane electric field,
and a high-Chern-number phase with |C| = n is pre-
dicted by tuning the electric field, which has been ex-
plicitly demonstrated by the C = 3 QAHE phase of
MnBi2Te4/(Bi2Te3)m/MnBi2Te4 (m = 0, 1, 2) het-
erostructures from first-principles calculations.
The proposed intertwined Dirac-cone states are essen-

tially different from conventional topological Dirac-cone
surface state. The most unique advantage of the inter-
twined Dirac cones is the flexible electrical tunability,
which could give rise to interesting physical phenomena.
For example, the high-Chern-number phase in the AFM
TI thin film can be used as an AFM switch controlled by
an electric field, which may act as a prototypical low-
power memory device for spintronic applications. In-
spired by the recent development of twistronics, a relative
twist between the top and bottom surfaces of the AFM
TI could result in flat bands with significantly reduced
velocity of the intertwined Dirac-cone state, which may
lead to high-Chern-number flat bands. More interest-
ingly, the flat bands are expected to be greatly tuned by
an electric field, which provides a new versatile platform
for studying the interplay between topology, magnetism,
twistronics, and strong correlation effects.
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I. DETAILED SOLUTIONS OF THE INTERTWINED DIRAC CONES

Here, we present the detailed solutions of the intertwined Dirac cones induced by the anisotropic coupling through
solving the gap-closing points and critical potentials of the model Hamiltonian without/with the warping term.
Without the warping term, the total Hamiltonian is given by

H0 +Hcoup = mτz ⊗ σz + uτz ⊗ σ0 + vτz ⊗ (kxσy − kyσx) + (∆−Bk2)τx ⊗ σ0 +R1gn(kx, ky)τy ⊗ σ0 (S1)

where gn(kx, ky) = (kn+ − kn−)/2i and k± = kx ± iky. To get the gap-closing points and critical potential, we must
first solve the eigenvalue of the Hamiltonian, and the result is shown below

ϵ±,α = ±[m2 + v2k2 + u2 + (∆−Bk2)2 +R2
1g

2
n + 2(−1)α−1u

√
m2 + v2k2]1/2, α = 1, 2 (S2)

∗Electronic address: zhanghj@nju.edu.cn; Electronic address: hqwang@njnu.edu.cn
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Next, we choose the two energy eigenvalues near the zero energy, i.e. ϵ±,2, and let them equal to each other ϵ+,2 = ϵ−,2,
we get the critical potential

u0 =

{
m2 + v2k2 − (∆−Bk2)2 −R2

1g
2
n + 2i

√
(m2 + v2k2)[(∆−Bk2)2 +R2

1g
2
n]

}1/2

(S3)

Since the potential u0 must be real, we naturally have the conditions:

{
∆−Bk2 = 0

gn = (kn+ − kn−)/2i = kn sin(nθ) = 0.
(S4)

Then we can get the gap-closing points (intertwined Dirac-cone points) from the above conditions and substitute
them into the expression of u0 to get the critical potential value. The final results are shown below:





u0 =
√
m2 + v2∆/B

k0 =
√
∆/B

θj = jπ/n, j = 0, 1, · · · , 2n− 1.

(S5)

When considering the warping term given by

Hwarp = R2wn(kx, ky)τz ⊗ σz, (S6)

with wn(kx, ky) = (kn+ + kn−)/2, the solutions of the critical potential and gap-closing points can be obtained by
substituting m in the above equations with m(k) = m+R2wn(kx, ky). The results are then obtained as





u0,j =

√[
m+ (−1)jR2 (∆/B)

n/2
]2

+ v2∆/B

k0 =
√
∆/B

θj = jπ/n, j = 0, 1, · · · , 2n− 1.

(S7)

II. LOW-ENERGY EFFECTIVE HAMILTONIANS OF THE INTERTWINED DIRAC CONES

First, we need to derive the two eigenstates of each intertwined Dirac cone located at k = k0 and θ = θj in the
polar coordinates, which are given by





ψ+ = [
−ieiθj (−m+

√
m2 + k20v

2)

k0v
, 1, 0, 0]T

ψ− = [0, 0,
ie−iθj (−m+

√
m2 + k20v

2)

k0v
, 1]T

(S8)

Then, by projecting the four-band full Hamiltonian in Eq. (S1) into the subspace expanded by the above two
eigenstates, the two-band effective Hamiltonian up to linear order in momentum is then obtained as

h(θj) =




⟨ψ+|H|ψ+⟩
|⟨ψ+|ψ+⟩|

⟨ψ+|H|ψ−⟩√
|⟨ψ+|ψ+⟩||⟨ψ−|ψ−⟩|

⟨ψ−|H|ψ+⟩√
|⟨ψ+|ψ+⟩||⟨ψ−|ψ−⟩|

⟨ψ−|H|ψ−⟩
|⟨ψ−|ψ−⟩|




= −2Bk0qρσx + (−1)jnR1k
n−1
0 qθσy + δuσz,

(S9)

where qρ = k − k0, qθ = k0δθ with δθ = θ − θj , are the momentum measured from the nodal points along the radial
and angular directions in the polar coordinates and δu = u − u0. Obviously, this effective Hamiltonian describes a
Dirac-cone state.
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III. DISCUSSION OF THE OTHER NEGLECTED ANISOTROPIC COUPLING

Based on the theory of invariants [1], when considering all symmetry constraints imposed by the preserved Cnz
[=exp(− iπ

n σz)], PT [= τx ⊗ iσyK], and MxT [= −iσzK] symmetries, the most general symmetry-allowed coupling
Hamiltonian can be obtained as

Hcoup = (∆−Bk2)τx ⊗ σ0 +R1
kn+ − kn−

2i
τy ⊗ σ0 +R3

kn+ + kn−
2

τx ⊗ σ0 (S10)

Ef(eV)

σ xy
(e

2 /h
)

Fig. S 1: Anomalous Hall conductivity for the n = 2 case with the neglected R3 coupling term when u− < u < u+.
The parameters are chosen as u = 0.1 eV,m = 0.05 eV, v = 1 eV · Å,∆ = 0.05 eV, B = 5 eV · Å2, R1 = 10 eV · Å2, R2 =
10 eV · Å2, R3 = 2 eV · Å2 in the above numerical calculations.

Apart from the first two terms discussed in the main text, the third higher-order coupling R3 term is also symmetry-
allowed which is neglected in the main text for simplicity. Here, we will show that it will not affect the main results
of our work. We take the n = 2 case with the full Hamiltonian written as

H = m(k)τz ⊗ σz + vτz ⊗ (kxσy − kyσx) + ∆(k)τx ⊗ σ0 +R1gn(kx, ky)τy ⊗ σ0, (S11)

where m(k) = m+R2(k
2
x − k2y), and ∆(k) = ∆−Bk2 +R3(k

2
x − k2y). Through a similar procedure as above, we can

find the critical potential and the intertwined Dirac cones as




u+ ≡ uj =

√
(m+

∆R2

B −R3
)2 +

v2∆

B −R3

kj =

√
∆

B −R3

θj = jπ/2, j = 0, 2

(S12)

and




u− ≡ uj =

√
(m− ∆R2

B +R3
)2 +

v2∆

B +R3

kj =

√
∆

B +R3

θj = jπ/2, j = 1, 3

(S13)

As we can see, if R3 < B is satisfied, there are still two successive gap-closing processes at u− and u+, respectively,
and the calculation of anomalous Hall conductivity (AHC) [shown in Fig. S1] confirms that there is a high-Chern-
number phase (|C| = 2) between u− and u+. However, due to the nonzero R3 term, the gap-closing points are no
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longer located on the circle with radius k0 =
√
∆/B. In contrast, if R3 > B, kj =

√
∆/(B −R3) with j = 0, 2

will not exist, indicating that there will not be another gap-closing process occurring at u = u+. As a result, there
exists an upper critical value of R3 for the emergence of the intermediate high-Chern-number state. Nevertheless,
the R3 coupling term does not fundamentally affect the results in the main text and is thus reasonably neglected for
simplicity.

IV. BERRY CURVATURES AND ANOMALOUS HALL CONDUCTIVITIES OF MODEL WITH
n = 2,4,6

In addition to the n = 3 case in the main text, here, we show the numerical calculations of the Berry curvatures
and anomalous Hall conductivities for the n = 2 (first row), n = 4 (second row), and n = 6 (third row) cases in Fig.
S2.

k y(1
/Å

)

Ef(eV)

u<u–
u–<u<u+ u>u+ AHC

k y(1
/Å

)
k y(1

/Å
)

kx(1/Å) kx(1/Å) kx(1/Å)

σ xy
(e

2 /h
)

σ xy
(e

2 /h
)

σ xy
(e

2 /h
)

n=2

n=4

n=6

0.1

0.0

-0.1

0.1

0.0

-0.1

0.1

0.0

-0.1

0.10.0-0.1 0.10.0-0.1 0.10.0-0.1

2

1

0

0.0 0.1 0.2-0.1-0.2

0

1
2
3
4

0

2

4

6

Fig. S 2: Berry curvatures and anomalous Hall conductivities of model with n = 2,4,6. The parameters are chosen
as m = 0.05 eV, v = 1 eV · Å,∆ = 0.05 eV, B = 5 eV · Å2, R1 = 10n−1 eV · Ån

, R2 = 10n−1 eV · Ån
in the above numerical

calculations.

V. THE MAGNETIC GROUND STATE OF MnBi2Te4/(Bi2Te3)m/MnBi2Te4 (m = 0,1,2)

Here, we only consider the magnetic order with Mn atoms’ magnetic moments towards the out-of-plane direction.
We compare the energy per cell of MnBi2Te4/(Bi2Te3)m/MnBi2Te4 (m = 0, 1, 2) with ferromagnetic (FM) order and
antiferromagnetic (AFM) order. The results are listed in Table S1. As shown in Table S1, for m=0,1,2, the energy
per cell of the AFM order is lower than FM order of 1.46 meV, 0.19 meV and 0.05 meV separately, which verifies that
the AFM order state is the magnetic ground state of MnBi2Te4/(Bi2Te3)m/MnBi2Te4 (m = 0, 1, 2).
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m FM Energy AFM Energy
0 0 meV -1.46 meV
1 0 meV -0.19 meV
2 0 meV -0.05 meV

Table S 1: Energy per cell of MnBi2Te4/(Bi2Te3)m/MnBi2Te4(m = 0,1,2) with out-of-plane FM and AFM mag-
netic order. The energy of the FM order is set to be zero and the energy of the AFM order is compared to that of FM.

VI. WILSON-LOOPS OF MnBi2Te4/Bi2Te3/MnBi2Te4

Here, we show the calculation of the Chern number of MnBi2Te4/Bi2Te3/MnBi2Te4 by Wilson-loop methods (the
Wilson-loop winding number equals to the Chern number [2]) under different electric field values in Fig. S3. As shown
in Fig. S3, when E = 0.011 V/Å, the Wilson-loop winding number is 0, when E = 0.0135 V/Å, the Wilson-loop
winding number is 3, and when E = 0.0186 V/Å, the Wilson-loop winding number returns to 0.

0

1
E=0.011 V/Å E=0.0135 V/Å E=0.0186 V/Å

θ(2�)

kx(2�)0 1 kx(2�)0 1 kx(2�)0 1

Fig. S 3: Wilson-loops of MnBi2Te4/(Bi2Te3)/MnBi2Te4 under different electric fields. The electric fields are
E = 0.011 V/Å,E = 0.0135 V/Å, and E = 0.0186 V/Å.

VII. BAND STRUCTURES, WILSON-LOOPS, AND EDGE STATES OF MnBi2Te4/(Bi2Te3)m/MnBi2Te4

(m = 0,2)

Here, we show that band structures, Wilson-loops, and edge states of MnBi2Te4/(Bi2Te3)m/MnBi2Te4 (m =
0, 2) in Fig. S4 to exhibit the 0-3-0 transition of Chern number of them. Fig. S4a shows band structures of
MnBi2Te4/(Bi2Te3)m/MnBi2Te4 (m = 0, 2) under different electric fields. For the m = 0 (m = 2) case, the energy
gap closes at E = 0.0148 V/Å (E = 0.0078 V/Å) and reopens when the electric field continues to increase, and when
E = 0.0168 V/Å (E = 0.0125 V/Å), the gap closes again. Fig. S4c shows the calculation of the Wilson-loops for the
m = 0 and m = 2 cases when E = 0.0162 V/Å and E = 0.01 V/Å, respectively, both of which exhibit a Wilson-loop
winding number of 3. It confirms the existence of a high-Chern-number phase with C = 3. Fig. S4b shows the edge
states of m = 0 and m = 2 case when E = 0.0162 V/Å and E = 0.01 V/Å respectively, verifying the Chern number
is indeed 3.

VIII. BAND STRUCTURES, WILSON-LOOPS OF HgS AND α-Ag2Te

We choose HgS and α-Ag2Te as realistic materials for the n = 2 and n = 4 cases, respectively, in our model
discussions. HgS is a topological insulator respecting C2z symmetry [3]. α-Ag2Te is a zero-gap semiconductor
respecting C4z symmetry with inverted band structure [4], and we have applied a tensile in-plane strain resulting in
c/a = 0.97 (c/a = 1 before applying strain) to open a small gap at the Γ point. Moreover, since HgS and α-Ag2Te
are non-magnetic, we have constructed a several-cell-slab tight-binding model along the out-of-plane direction based
on first-principles calculations of the bulk electronic structures and suppose there are two ferromagnetic materials
with opposite magnetic moments near the top and bottom surfaces of the slab separately. To simulate the magnetic
proximity effect induced by the two ferromagnetic materials, we then add opposite zeeman coupling energies to the
top (0.05 eV) and bottom (−0.05 eV) cells, respectively. Finally, the potential imposed by the out-of-plane electric
field is simulated by adding the onsite potential to each cell according to its coordinates along the stacking direction.
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Fig. S 4: Band structures, Wilson-loops, and edge states of MnBi2Te4/(Bi2Te3)m/MnBi2Te4 (m = 0,2). (a)
Band structures of MnBi2Te4/(Bi2Te3)m/MnBi2Te4 (m = 0, 2) under diffrent electric fields: E = 0.0148 V/Å,E = 0.0154 V/Å,
E = 0.0168 V/Å for m = 0; E = 0.0078 V/Å,E = 0.01 V/Å, E = 0.0125 V/Å for m = 2. (b) Edge states of
MnBi2Te4/(Bi2Te3)m/MnBi2Te4 (m = 0, 2) when E = 0.0162 V/Å (m = 0) and E = 0.01 V/Å (m = 2). (c) Wilson-
loops of MnBi2Te4/(Bi2Te3)m/MnBi2Te4 (m = 0, 2) when E = 0.0162 V/Å (m = 0) and E = 0.01 V/Å (m = 2).

For HgS, we build a 5-cell-slab tight-binding model, as shown in Fig. S5a. Figure S5b shows the band structures
of the model under different electric fields, where the high-symmetry points M1,M2 are labeled in Fig. S5c, we find
that the energy gap closes at E− = 0.0233 V/Å and E+ = 0.0384 V/Å. Between E− and E+, there is a |C| = 2
phase, which is verified by calculating the Wilson-loops at E = 0.02 V/Å (< E−), 0.03 V/Å (between E− and E+)
and 0.04 V/Å (> E+) in Fig. S5d. As shown in Fig. S5d, apparently, when E < E− and E > E+, the Wilson-loop
winding number is 0, but when E− < E < E+, the Wilson-loop winding number is 2.
For α-Ag2Te, we build a 4-cell-slab model, as shown in Fig. S6a. The band structure evolution of α-Ag2Te with

different electric fields is shown in Fig. S6b, where the energy gap closes at E− = 0.027 V/Å and E+ = 0.039 V/Å.
Figure S6d shows the results of Wilson-loops at E = 0.02 V/Å (< E−), 0.03 V/Å (between E− and E+) and 0.04 V/Å
(> E+), which confirms the existence of the high-Chern-number phase with |C| = 4 induced by the intertwined Dirac
cones.
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Fig. S 5: Structure, band structures, and Wilson-loops of the five-cell-slab model of HgS with opposite Zeenman
energies in the top and bottom cell. (a) Structure of the slab model of HgS. (b) Band structures under different electric
fields of 0.0233 V/Å, 0.03 V/Å, and 0.0384 V/Å. (c) Two-dimensional Brillouin zone of the slab and the high-symmetry points.
(d) Wilson-loops under different electric fields of 0.02 V/Å, 0.03 V/Å, and 0.04 V/Å.
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Fig. S 6: Structure, band structures, and Wilson-loops of four-cell-slab model of α-Ag2Te with opposite Zeenman
energy in the top and bottom cell. (a) Structure of slab model of α-Ag2Te. (b) Band structures under different electric
fields of 0.027 V/Å, 0.03 V/Å, 0.039 V/Å. (c) Two-dimensional Brillouin zone of the slab and the high-symmetry points. (d)
Wilson-loops under different electric fields of 0.02 V/Å, 0.03 V/Å, 0.04 V/Å.


