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CHAPTER FIFTEEN

Time Characteristics of Compartmental Systems
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Max Planck Institute for Biogeochemistry, Jena, Germany

CONTENTS

Introduction / 123
Age and Transit Time Distributions for Autonomous Systems in Equilibrium / 124
Age and Transit Time Distributions for Nonautonomous Systems / 125

Age Distributions / 126
Transit Time Distributions / 126

Final Remarks / 126
Suggested Reading / 127
Quizzes / 127

To understand carbon flows through terrestrial 
ecosystems, it is very important to use metrics to 
quantify the time carbon spends in the entire sys-
tem and in particular compartments. In this chap-
ter, we introduce the concepts of age and transit 
time as two fundamental metrics that character-
ize the speed at which carbon flows through eco-
systems. Age is defined as the time carbon atoms 
spend in an ecosystem, from when they enter 
through photosynthesis until they are observed in 
a particular compartment. Transit time is defined 
as the time carbon atoms require to pass through 
the entire ecosystem, from the time they enter 
through photosynthesis until they are lost in gas, 
liquid, or solid form. We review here mathemati-
cal formulas for computing age and transit time in 
compartmental systems, distinguishing between 
formulas for autonomous systems in equilibrium 
and nonautonomous systems moving along a 
known trajectory.

INTRODUCTION

One of the advantages of representing models in 
the compact form of compartmental systems is that 
we can derive system-level diagnostics that help to 

better understand system dynamics. Differences in 
process representations, parameterizations, or size 
of compartments required to represent a system, 
can be compared using simple aggregated metrics 
at the level of the entire system.

Two important system-level diagnostics for 
describing compartmental systems are the con-
cepts of system age and transit (residence) time 
(Bolin and Rodhe 1973; Sierra et al. 2017). We 
define system age as the age of all atoms or particles 
inside the system, from the time they entered te 
until the time of observation t. Transit time is defined 
as the average time required for atoms or particles 
to traverse the system from their arrival time until 
they leave in the output flux. In other words, sys-
tem age characterizes the age structure of all the 
atoms or particles in the system, while transit time 
characterizes the age structure of all atoms or par-
ticles in the output flux (Figure 15.1).

It is also possible to characterize the age struc-
ture of the atoms or particles inside each pool 
or compartment. We define pool age as the time 
elapsed since the atoms or particles entered the 
system until the time of observation t inside a pool 
i (Figure 15.1). Therefore, the system age is the 
aggregated result of the pool ages for all pools.
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Since the age and transit time concepts are 
defined for all individual atoms or particles inside 
a system, we can also think about them in terms of 
distributions that quantify the proportional distri-
bution of the mass in age classes. Therefore, these 
distributions can be characterized by statistics such 
as the mean, standard deviation, and quantiles 
such as the median.

In the following sections, we will introduce 
mathematical formulas to quantify age and tran-
sit time distributions for two separate cases, (1) 
autonomous systems in equilibrium and (2) non-
autonomous systems. Note that we will not be 
making a distinction between linear and nonlinear, 
because for case (1), linear and nonlinear systems 
in equilibrium can be treated similarly since the 
vector of states does not change once the equilib-
rium is reached and the system behaves similarly 
as a linear system. For case (2), the formulas rely 
on a linearization of the specific trajectory of a 
nonlinear system, therefore we will first introduce 

the linearization strategy and then provide the for-
mulas for the linear nonautonomous case.

AGE AND TRANSIT TIME DISTRIBUTIONS FOR 
AUTONOMOUS SYSTEMS IN EQUILIBRIUM

The derivation of the formulas for age and transit 
time distribution of linear autonomous systems in 
equilibrium was originally introduced in Metzler 
and Sierra (2018). For their derivation, we were 
able to show that linear compartmental systems are 
analogous to absorbing continuous-time Markov 
chains. This means that linear compartmental sys-
tems can also be interpreted in a stochastic sense, 
with the deterministic system of differential equa-
tions representing the macroscopic behavior of 
entire masses, and the absorbing Markov chains 
representing the stochastic behavior of individual 
atoms of particles with respect to their age. For 
details about the stochastic process and derivation 

te: particle enters reservoir

Age: t-te

t: now

Output fluxInput flux

Figure 15.1.  Graphical representation of the concepts of system age, transit time, and pool age. Mass entering a compartmental 
system can be conceptualized as being composed of small particles or atoms, each of them with a ‘clock’ that measures the time 
they have been in the system since they entered. All particles in the input fluxes have an age of zero. If we collect all particles 
inside the system at any given time and organize this information as a distribution of ages, we obtain the system age distribution 
of particles inside the system. If we collect the particles inside a specific pool and organize particles according to their age, we 
obtain the pool age distribution. Collecting particles in the output flux and organizing this information as a distribution of ages 
provides the transit time distribution. Figure extracted from Sierra et al. (2017).
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of formulas, interested readers can refer to Metzler 
and Sierra (2018) for additional details.

Let’s consider linear autonomous systems intro-
duced in Chapter 7, of the form of equation 7.2, 
with an equilibrium point given by equation 7.4. 
Let’s also consider the 1-norm of a vector, defined 

as v v
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all the elements in the vector. We say that the ran-
dom variable age a that measures age of atoms or 
particles in the system is distributed according to a 
Phase-Type (PH) distribution of the form:
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Note that this density distribution is composed 
of three terms: the vector of fractional release 
coefficients, the matrix exponential of the com-
partmental matrix evaluated at each value of age, 
and the proportional distribution of mass at steady 
state. Since the fractional release coefficients can be 
computed directly from B, we can say that the sys-
tem age distribution follows a Phase Type distribu-
tion with two parameters: the probability vector of 
mass at steady state, and the transition rate matrix 
generated by the compartmental matrix. This can 
be abbreviated as a ∼ PH(η, B).

The mean or expected value   of the system 
age distribution can be obtained as:
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where 1 is a vector containing ones, and ⊺ is the 
transpose operator.

To obtain the pool-age density distribu-
tion, we define first a diagonal matrix with the 
steady-state values for each compartment as 
X� � �� �� �: diag x xn1, , . The vector-valued function 
that returns the age distribution for each pool is 
then given by:

	
f X uBa aa� � � � � �� �1

0e , ,

and the mean age for each pool:

	
 a X B x� � � �� �� � � �1 1 .

The density distribution of the random variable 
transit time τ is also Phase-Type distributed, with 
the probability vector given by the proportional 
distribution of the input flux β, and the compart-
mental matrix as the transition rate matrix; i.e. τ ∼ 
PH(β, B). It can be obtained as:
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with mean transit time given by:
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Notice that the mean transit time is given by 
the ratio between the total mass at steady state and 
the total input flux.

AGE AND TRANSIT TIME DISTRIBUTIONS FOR 
NONAUTONOMOUS SYSTEMS

We consider now the nonlinear nonautonomous 
compartmental system introduced in Chapter 7 
of the form of equation 7.9, for which we can 
always find a unique numerical solution of the 
form x(t, t0, x0). To obtain time-dependent age and 
transit time distributions for this system, we will 
use the known solution to construct an equivalent 
linear nonautonomous system with the exact same 
solution. Details about the approach are presented 
in Metzler, Müller, and Sierra (2018).

Plugging in the known solution x(t) = 
x(t, t0, x0) into a new linear version of the sys-
tem, we can define a new vector of inputs as 
u u xt t t� � � � �� �: , , and a new compartmental 

matrix as B B xt t t� � � � �� �: , . Then, we obtain a 
linear nonautonomous compartmental system of 
the form:

	
& % %y u B y y xt t t t t t t� � � � � � � � � � � � � �· , , ,0 0 0

which has a unique solution y(t, t0, y0). Since we 
assume that the original nonlinear system of equa-
tion 7.9 also has a unique solution, both solutions 
must be identical; i.e. y(t, t0, y0) = x(t, t0, x0). We 
can then use the solution of a nonlinear nonau-
tonomous system to construct an equivalent lin-
ear nonautonomous compartmental system of the 
general form of equation 7.7, which has a general 
solution given by equation 7.8.
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Age Distributions

We assume now that the initial content x0 has an ini-

tial age distribution f0(a) such that x f0

0

0� � �
�

� a da.  

This initial age distribution is then perturbed by 
the time-dependent mass inputs and process rates 
of the system, generating a time-dependent age 
distribution of the form

	
f g ha t a t a t, , ,� � � � � � � �,

where the term g(a, t) is the time evolution of the 
age distribution of the initial mass in the system, 
and h(a, t) is the time evolution of the age distribu-
tion of mass that enters the system after t0.

The nonautonomous age distribution of the 
initial mass is given by:

	
g a t a t t f a t tt t, ,� � � � � � � � � � �� �� ��� ��1

0 0 0 0,
�

where the indicator function 1S(a) of a set S equals 
1 if a ∈ S, or zero otherwise. The state transition 
operator Φ(t, t0) is defined as in Chapter 7.

The nonautonomous age distribution of the 
mass that enters the system after t0 is given by:

	
h a t a t t a u t at t, ,,� � � � � � �� � � �� ��� �10 0

�

To obtain the age distribution of the entire sys-
tem, we simply sum the densities over all pools as:

	
f a t a t, ,� � � � �f .

Transit Time Distributions

To obtain transit time distributions in the non-
autonomous case, it is necessary to distinguish 
between the concepts of backward versus forward 
transit times. The backward transit time is defined 
as the age of particles in the output flux at the time 
of release from the system tr. Using the fractional 
release coefficients, it is possible to obtain the vec-
tor of outflow rates at time tr as:
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The backward transit time distribution can be 
obtained as:

f a t t a t t tr
T

r r rBTT , ,� � � � � � � �z f· .0

Now, the forward transit time is defined as 
the age of an atom or particle that enters the sys-
tem at an entering time te > t0 and exits at time 
tr = te + a. The forward transit time distribution can 
be obtained as:

	 f a t t a a t ae
T

e eFTT , ,� � � �� � �� �z f· .

Both distributions are tightly connected, with 
the forward transit time distribution of particles 
entering at time te being equal to the backward 
transit time distribution of the particles being 
released from the system at time tr, i.e.:

	
f a t f a te rFTT BTT, ,� � � � �.

FINAL REMARKS

The compartmental system representation also 
unveils analogies between deterministic systems 
that conserve mass with stochastic systems that 
conserve probabilities. This stochastic representa-
tion can be used to obtain formulas for the age of 
particles or atoms in the compartmental systems. 
With this approach, we derived formulas for the 
age of mass inside a compartmental system (sys-
tem age), and the age of mass in the output flux 
(transit time). The concept of age can be very valu-
able to assess how old carbon and biogeochemical 
elements can be in an ecosystem. The concept of 
transit time can be very useful to understand how 
fast biogeochemical elements are processed inside 
an ecosystem, integrating all transfers and trans-
formations that may take place.

There are other opportunities to further 
explore carbon cycle models in a stochastic set-
ting. This could be particularly useful for studying, 
for example, the macroscopic properties at larger 
scales where patterns emerge by the action of 
microorganisms acting at microscopic scales. Also, 
the compartmental system representation may 
help to integrate concepts from other disciplines 
such as graph theory or control theory to address 
a number of questions not being explored yet in 
carbon cycle science.
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SUGGESTED READING

A general introduction to the concepts of ages and 
transit times can be found in Bolin and Rodhe 
(1973). More specific results for the derivation of 
formulas and the computation of ages and transit 
times can be found in Rasmussen et al. (2016) for 
the mean of their distributions in nonautonomous 
systems, and for complete distributions in autono-
mous systems in Metzler and Sierra (2018), and 
for complete distributions in nonautonomous sys-
tems in Metzler, Müller, and Sierra (2018).

QUIZZES

	 1.	 Give examples of systems where the mean tran-
sit time is higher than the mean system age.

	 2.	 Give examples where the mean system age is 
higher than the mean transit time.

	 3.	 In what type of systems are the mean system 
age, the mean transit time, and the turnover time 
equal?


