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CHAPTER SEVEN

Compartmental Dynamical Systems and Carbon Cycle Models
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Models of the terrestrial carbon cycle are particular 
cases of compartmental dynamical systems, which 
are systems of differential equations that must con-
serve mass. This chapter introduces the main math-
ematical properties of compartmental dynamical 
systems and proposes a classification scheme that 
is useful for the analysis of carbon cycle models. 
This classification scheme distinguishes between 
models where carbon inputs and rates change over 
time or remain constant (nonautonomous versus 
autonomous models), and between models in 
which the amount of mass in compartments inter-
act with mass in other compartments (nonlinear-
ity). We show that simple concepts such as steady 
state may not be well defined for some groups 
of models, and present alternative concepts such 
as the pullback attractor for the analysis of mod-
els with no steady state. In addition, this chapter 

introduces the theoretical basis for the mathemati-
cal analysis of models written in matrix form.

INTRODUCTION

The matrix representation of models has emerged 
as a very general representation of ecosystem mod-
els, particularly models that track the movement 
of carbon, nitrogen, and other elements inside 
vegetation and soil pools (Mulholland and Keener 
1974; Matis et al. 1979; Bolin 1981; Luo and Weng 
2011; Xia et al. 2013; Luo et al. 2017). For soil 
organic matter models, some of the first represen-
tations in matrix form were the models of Bolker 
et al. (1998), Baisden and Amundson (2003), and 
Tuomi et al. (2009). For these authors, the matrix 
representation helped them organize the set of 
differential equations that resulted in their model 
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in a more manageable and compact form. This is 
also the case in other fields of science such as biol-
ogy or chemistry, where large sets of differential 
equations can be organized using this compact 
representation.

In fact, any model that represents the mass bal-
ance of a quantity such as atoms or molecules, can 
be represented in this form. Compared to other 
systems of differential equations, mass-balanced 
systems are special in the sense that all quantities 
are generally non-negative; i.e., the information 
that is fed into the model, and the predictions it 
produces can only exist inside the domain of the 
positive real numbers. Furthermore, the mass bal-
ance constraint leads to a special type of dynamical 
system known as a compartmental system.

We will now introduce the mathematical con-
cept of compartmental systems, and will show that 
models written in compartmental form have a spe-
cific set of mathematical properties. These prop-
erties however, depend on the specific structure 
analyzed, mostly on the time dependence of the 
elements of the model and intrinsic nonlinearities.

DEFINITION OF COMPARTMENTAL SYSTEMS

We start by the defining a compartment as an amount 
of material that is kinetically homogeneous and 
that follows the law of mass balance. The meaning 
of ‘mass balance’ is elaborated below. A compart-
mental system therefore, is a set of compartments 
that exchange mass with each other and with the 
external environment. This implies that a compart-
mental system is an open system with an observer 
defined boundary (Anderson 1983; Jacquez and 
Simon 1993).

Let’s consider the mass stored in the compart-
ment i, denoted by xi, as the balance between 
(Figure 7.1):

	•	 ui ≥ 0 inflow (uptake) from outside the 
system,

	•	 ri ≥ 0 outflow (release) to outside the 
system,

	•	 Fji ≥ 0 flow transfers from compartment i to 
compartment j,

	•	 Fij ≥ 0 flow transfers from compartment j to 
compartment i.

The change in mass over time of this compart-

ment, 
dx

dt
xi
i=  ,  must be balanced according to the 

equation:

	

x F F u ri

j i

ji ij i i� � �� � � �
�
� ,

where the constraints Fij ≥ 0, ui ≥ 0, and ri ≥ 0 
must be met for all i, j, and t. The time dependence 
is omitted in the notation for simplicity, but all 
masses and flows may change over time.

An additional constraint for the system is that if 
the compartment is empty, no mass can flow out 
of it; i.e., if xi = 0, then ri = 0 and Fji = 0 for all j, 
so that xi ≥ 0.

If the flows F are continuously differentiable, 
i.e., they change smoothly over time without sud-
den jumps, we can define the flows as (Jacquez 
and Simon 1993):

	
F b xji ji ix x� � � � � · .

Therefore, we can write the mass balance equation 
for compartment i as:

	

x b x b x ubi

j i

ji i

j i

ij j ii� � �
�

�

�
�

�

�

�
�

� �
� �
� �0 .

The total outputs from compartment i can be 

expressed as b bbii

j i

jii� � �
�

�

�
�

�

�

�
�

�
�0 , then a general 

expression for each compartment satisfies the 
expression:

	

x b x ui

j

ij j i� �� .

Figure 7.1.  The mass balance of a single compartment.
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A general expression for the entire system can 
be written as:

	 x Bx u� � , 	 (7.1)

where the elements may be time-dependent and 
the matrix B and vector u depend on the vector of 
states x. Notice that in contrast to other chapters, 
we follow here a different notation and use B to 
denote a matrix. The system of Equation 7.1 is a 
compartmental or reservoir system, and the matrix B is 
called the compartmental matrix.

For any compartmental system, the compart-
mental matrix B has three properties:

	•	 bii ≤ 0 for all i, t ≥ 0,

	•	 bij ≥ 0 for all i ≠ j, t ≥ 0,

	•	
i

n

ij

i j

ij jj jb b b z
� �
� �� � � � �

1

0  for all j, t ≥ 0.

In words, the compartmental matrix B must 
always meet the requirement that all its diagonal 
entries are non-positive, its off-diagonal entries 
non-negative, and the sum of all elements inside 
each column must be non-positive. This col-
umn sum represents the fraction of matter that is 
released from the system, and it is called the frac-
tional release coefficient zj because it can be used to com-
pute the amount of material that is released to the 
external environment from each pool j. The total 
release from the system can be obtained with the 
expression:

r z x=  ,

where z is the vector of fractional release coeffi-
cients and ∘ is the entry-wise product between the 
two vectors.

The property −zj ≤ 0 implies that B is a diag-
onally dominant matrix, which means that each 
element in the diagonal is greater than or equal to 
the column sum for this entry. Mathematically, B 

is diagonally dominant if b bii

j i

ij�
�
� , and strictly 

diagonally dominant if b bii

j i

ij�
�
� .

One important property of strictly diago-
nally dominant matrices is that they are invert-
ible (Taussky 1949); i.e., there exists an inverse 
matrix B−1 such that B · B−1 = I, where I is the 
identity matrix. Compartmental systems that meet 
this property contain no traps (Jacquez and Simon 
1993); i.e., all mass that enters the system eventu-
ally leaves from any of the output flows.

CLASSIFICATION OF COMPARTMENTAL 
SYSTEMS

In the derivation of the compartmental system 
(Equation 7.1), the explicit representation of time 
dependencies and nonlinearities was omitted. We 
will now introduce a classification scheme for com-
partmental systems based on these two properties, 
time dependencies (autonomy), and interaction 
among state variables (linearity). We call a model 
linear when the vector of inputs and the compart-
mental matrix are not dependent on the vector of 
states, and nonlinear otherwise. Similarly, we call a 
model autonomous when the mass inputs and the 
compartmental matrix are not explicitly time depen-
dent, and nonautonomous otherwise (Table 7.1).

This classification scheme leads to four distinct 
groups of compartmental systems, each with spe-
cific mathematical properties that we will explore 
in the following sections.

Autonomous Versus Nonautonomous Systems

In the autonomous case (Table 7.1), mass inputs and 
process rates in the system are constant. This implies 
that the external environment (e.g., solar radia-
tion, air temperature, water content) are assumed 
constant. Although ecosystems are far from being 

TABLE 7.1
Classification of carbon cycle models according to their dependence on the vector of states (linearity), and on time 
(autonomy). Table cells are expressions for the differential equation describing x t� �  that captures the change of 

mass contents with respect to time

x-dependence Autonomous Nonautonomous

Linear u + B · x(t) u(t) + B(t) · x(t)

Nonlinear u(x) + B(x) · x(t) u(x, t) + B(x, t) · x(t)
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surrounded by a constant environment, this assump-
tion is sometimes useful to study basic properties of 
a system such as its long-term behavior.

However, it is important not to mix up concepts 
that belong to autonomous systems with concepts 
that do not apply for nonautonomous systems. For 
instance, an autonomous compartmental system 
generally converges to a steady state in the long 
term where the mass of each compartment does 
not change with time. In contrast, a nonautono-
mous system does not reach such a steady state 
because, by definition, the system is changing all 
the time. Therefore, it is wrong to talk about the 
steady state of a nonautonomous system (for addi-
tional details see Sierra et al. 2018).

Linear Versus Nonlinear Systems

In the linear case, the contents of compartments 
do not influence the rates at which mass flows into 
the system from the external environment, and do 
not influence the rates at which mass flows out 
of the compartments (Table 7.1). In other words, 
there are no feedbacks among compartment con-
tents. However, nonlinear behavior can occur in 
ecosystems, for instance, when the amount of pho-
tosynthesis in the leaves depends on the amount of 
nonstructural carbohydrates or in fine roots.

Nonlinear compartmental systems can show a 
very rich set of qualitative behaviors (Jacquez and 
Simon 1993; Anderson and Roller 1991), which 
for nonlinear autonomous systems range from sus-
tained oscillations to catastrophic shifts to alternate 
states (Wang et al. 2014). In the nonlinear non-
autonomous case, the time-dependent signals that 
affect the system introduce an even larger degree 
of complexity, which complicates the behavior of 
these systems further (Müller and Sierra 2017).

PROPERTIES AND LONG-TERM BEHAVIOR OF 
AUTONOMOUS COMPARTMENTAL SYSTEMS

Even though the assumption of a constant envi-
ronment is unrealistic, autonomous models can 
be very useful in illustrating potential behavior 
of compartmental systems. In the following, we 
will present a few properties of autonomous sys-
tems that are useful for many applications, which 
include: long-term behavior of stocks and fluxes, 
behavior in the neighborhood of the steady state 
after a perturbation, the age structure of the 

compartments and the release flux, and the behav-
ior of an impulsive tracer.

Linear Systems

We will consider first linear autonomous compart-
mental systems of the form

	 x u B xt t� � � � � �· , 	 (7.2)

with B invertible and some initial conditions at 
t = 0

	
x x0 0� � � .

One advantage of systems of the form of 
Equation 7.2 compared to the other systems in 
Table 7.1, is that it is possible to compute their 
analytical solution. The general solution of this 
model is given by:

	

x x uB Bt e e dt

t

t� � � �
�

�

�
�

�

�

�
�� �� �· · ,0

0

� �

	

(7.3)

where eB is the matrix exponential.
Equation 7.3 shows that the solution of the 

system is composed of two terms. The first term 
accounts for the decomposition of the mass ini-
tially stored in the system at time zero. The second 
term accounts for decomposition of the inputs 
that entered the system until time t. At any given 
time, the mass stored in the system is the sum of 
both the remaining of the initial mass present at 
time t = 0 and all the un-decomposed mass that 
entered until time t.

The release of mass from the system is com-
puted by multiplying the fractional release coef-
ficients zj by the amount of carbon stored in each 
pool as:

	

r

z x

t z x t

t

j j
j n

� � � � �� �
� � �

� �
· ,

1



If the system runs for a very long time, it even-
tually reaches a point called the steady state where all 
inputs are equal to the outputs, and there are no 
changes in mass within the system. Technically, as 
t → + ∞, x(t) → x∗, where:
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	 x B u� �� � 1 · , 	 (7.4)

and

	

r

z x

� �

�
�

� � �
�

z xj j
j n

· ,



Notice that the steady state does not depend 
on the initial conditions. It only depends on the 
compartmental matrix and the vector of exter-
nal inputs, and represents the equilibrium point 
where the total amount of matter in the system 
and in the individual pools do not change, i.e., 
� �x 0 , and x = 0 , respectively.

Nonlinear Systems

In contrast to linear systems, nonlinear compart-
mental systems have no general explicit analytical 
solution. However, it is always possible to obtain a 
numerical solution of the system using any suit-
able numerical method (LeVeque 2007).

In most applications, we are interested in observ-
ing how the system evolves over time and eventu-
ally reaches a steady state. Therefore, it is of interest 
to find an equilibrium solution for the system:

	 x u x B x x� � � � � � · , 	 (7.5)

such that:

	 0 u x B x x� � � � � � · . 	 (7.6)

However, it is not certain that a specific non-
linear system has an equilibrium solution, or in 
case there is one, that this equilibrium is unique. 
Anderson and Roller (1991) show special cases of 
nonlinear compartmental systems with constant 
inputs that have unique solutions, but these cases 
are too specific for our purposes here.

Certain combinations of parameter val-
ues and pool sizes may lead to the situation in 
which the matrix B(x) is not compartmental, 
and therefore the system may not be mass bal-
anced. For this reason, it is useful to define a 
space in which a nonlinear system is well defined. 
Following Anderson and Roller (1991), we define 
 � � � �� �n n: :x x 0  as the set of all non-
negative real numbers in an n-dimensional space. 

Since the mass in all compartments is always 
non-negative, the solutions of the system can 
only occupy this space. Now we define the space 
within +

n  where all solutions of the system obey 
mass balance constraints as:

� : : .� � � �� ��x B xn is a compartmental matrix

The space Ω is the set of all possible states the 
system can take without violating mass balance. 
One important use of Ω is that it can be used to 
test whether a particular nonlinear model does not 
violate mass balance for any value of x and t.

For the case of constant inputs, i.e., u, Anderson 
and Roller (1991) propose an iteration strategy to 
find a steady-state solution for a nonlinear autono-
mous system. It consists of applying the formula:

x B x up p p� �
� � � � � �1 1

0 1 2· , , , , ,

until xp + 1 ≈ xp. Notice that for this method to 
work, the compartmental matrix must be invert-
ible. Also, the existence of one equilibrium point 
is not a guarantee that it is unique: other equi-
libria may exist as well. The choice of the starting 
xp = 0 may determine what equilibrium point the 
method will find.

Stability Analysis Near Equilibria

In many applications, it is of interest to study the 
behavior of a system as it approaches an equilib-
rium point, or the behavior of the system when 
it is slightly perturbed from this equilibrium. The 
study of these behaviors usually falls under the 
label stability analysis. Again, the stability analysis 
would differ depending on whether the autono-
mous system is linear or nonlinear.

Linear Systems

For linear autonomous compartmental systems 
(Equation 7.2), their long-term behavior can be 
studied by analyzing the eigenvalues and eigen-
vectors of the compartmental matrix B. It is well 
established that a compartmental matrix with con-
stant coefficients has no eigenvalues with posi-
tive real part, which means that the mass inside 
the compartments never grows exponentially as 
long as inputs and rates are kept constant. This is 
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ensured by the diagonally dominant property of 
the compartmental matrix.

In most applications, the eigenvalues of the 
linear autonomous compartmental matrix have 
a negative real part. In these cases, it is said that 
the compartmental system is asymptotically stable 
because all solutions converge in the long-term to 
the steady state of Equation 7.4. If the eigenvalues 
also contain a complex part, then the solution will 
approach the steady state through oscillations. If 
the eigenvalues contain no complex part, then the 
system approaches the steady state in the direction 
given by the eigenvector of the eigenvalue with 
the smallest absolute value of the real part.

A third possibility is that the compartmental 
matrix contains at least m eigenvalues with a real 
part equal to zero. In this case, it is said that the 
compartmental system contains m traps (Jacquez 
and Simon 1993). A trap is a compartment, or a 
set of connected compartments, where mass may 
flow in but cannot flow out. In this case, the sys-
tem contains no equilibrium since B is not invert-
ible and Equation 7.4 cannot be solved. The system 
therefore, will grow proportionally to the amount 
of mass entering the m traps.

Nonlinear Systems

For nonlinear systems, it is common to study the 
behavior of the system in the neighborhood of 
one or multiple equilibrium points. For compart-
mental systems, we are only interested in equi-
libria that reside in the space Ω, since they are 
the only ones that have a physical and biological 
interpretation.

We assume that the nonlinear autonomous sys-
tem of Equation 7.5 has at least one equilibrium 
point in Ω, then we are interested in calculating 
the Jacobian matrix, defined as:

	
J x

B x x

x
� � �

� � �� �
�

·
,

at an equilibrium point x = x∗ ∈ Ω. This Jacobian 
matrix tells us about the behavior of trajectories 
that are close to the steady state, which is a point 
in the phase plane. Then, the properties of the 
Jacobian matrix, particularly its eigenvalues, tell 
us about the stability of the system in the neigh-
borhood of the equilibrium (Guckenheimer 
and Holmes 1983). It is possible to treat the 

nonlinear system as a linear system in the neigh-
borhood of the equilibrium, and for this reason 
one can perform the same analysis of eigenvalues 
as in the linear case (Guckenheimer and Holmes 
1983).

If there are eigenvalues with positive real part, 
trajectories are repelled away from the equilibrium 
point, which is considered unstable (Strogatz 1994). 
The existence of unstable equilibria is an indication 
of possible tipping points and alternative states for 
the system (Scheffer et al. 2001). However, it is 
often the case that the Jacobian matrix of a com-
partmental system is also a compartmental matrix, 
in which case the existence of unstable equilibria 
is excluded.

When this Jacobian matrix has a compartmen-
tal structure, the system is said to be cooperative, 
which means that if the mass of one compart-
ment increases, the fluxes to other compartments 
also increase (Jacquez and Simon 1993). In this 
case, trajectories close to the equilibrium point 
are attracted to it, and in some particular cases this 
equilibrium may be unique (Jacquez and Simon 
1993; Bastin and Guffens 2006). This particular 
case of a unique equilibrium point means that the 
system is global asymptotically stable or GAS (Müller 
and Sierra 2017).

PROPERTIES AND LONG-TERM BEHAVIOR OF 
NONAUTONOMOUS SYSTEMS

Nonautonomous compartmental systems behave 
in a completely different way to autonomous sys-
tems. Since the mass inputs and the rates change 
with time, it is not possible for them to converge 
to a fixed point in the state space. Also, the stabil-
ity analysis tools for autonomous systems are of 
little use for nonautonomous systems. Methods 
to analyze nonautonomous systems are relatively 
new, and they are currently an active branch of 
mathematical research (Rasmussen 2007; Kloeden 
and Rasmussen 2011). Concepts from control 
engineering can also be very useful to study non-
autonomous systems, particularly nonlinear ones 
(Sontag 1998). Again, we will split the concepts 
for linear versus nonlinear nonautonomous sys-
tems in the sections below.

Linear Systems

We will consider two cases for linear autono-
mous compartmental systems: (1) the case of 
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time-dependent inputs and constant rates, and (2) 
the case of time-dependent inputs and rates.

The first case is given by a system of the form:

	
x u B xt t t� � � � � � � �· ,

with initial condition x(0) = x0. If the vector-
valued function u(t) is known, an analytical solu-
tion can be obtained as:

	

x x uB Bt e e dt

t

t� � � � � �� �� �· · · ,0

0

� � �

which is a general form for the linear autonomous 
solution of Equation 7.3. This analytical solution is 
only possible to compute because the rates in the 
compartmental matrix B are constant for all times, 
and therefore one can take advantage of the ana-
lytical properties of the matrix exponential.

For the second case, when both mass inputs and 
rates are time dependent, the system is expressed as:

	 x u B xt t t t� � � � � � � � � �· , 	 (7.7)

for which an analytical solution cannot be com-
puted. However, a semi-explicit solution for 
Equation 7.7 can be expressed in terms of the state 
transition operator Φ(t, t0), which is a matrix whose 
product with the state vector at an initial time t0 
gives x(t) at a later time t. In other words, Φ(t, t0) · 
x0 is the solution to the homogeneous equation 
x B x� � �t · .

The semi-explicit solution of the linear nonau-
tonomous system of Equation 7.7 can be expressed 
as:

	

x x x ut t t t t d

t

t

, , , ,0 0 0 0

0

� � � � � � � � � ��� �· · .� � �
	

(7.8)

This solution explicitly depends on the initial 
conditions since for a nonautonomous system, 
where mass inputs and rates constantly change 
with time, the exact time and state when the sys-
tem starts is of fundamental importance to com-
pute a unique solution. In the autonomous case, 
solutions only depend on the time elapsed t − t0, 
while in the nonautonomous case the solutions 
depend separately on the actual time t and the 
starting time t0 (Kloeden and Rasmussen 2011).

Rasmussen et al. (2016) presents a sufficient 
condition for the global exponential stability of 
the nonautonomous linear compartmental sys-
tem. If the compartmental matrix B of the homo-
geneous system x B x� � �t ·  is strictly diagonally 
dominant for all t, then this system is exponen-
tially stable. This means that there is a minimal 
rate at which the initial mass in the system decays. 
Now, for the inhomogeneous case (Equation 
7.7), we can think of two solutions s1(t, t1, x1) and 
s2(t, t2, x2) that have different initial conditions. As a 
consequence of the exponential stability property, 
the two solutions are said to be forward attracting, i.e. 
they get close to each other as t → + ∞.

Rasmussen et al. (2016) also showed that for 
linear nonautonomous compartmental systems 
that meet the sufficient condition for exponen-
tial stability, there exists a unique pullback attracting 
solution or pullback attractor which all solutions are 
attracted to. It is defined as:

v ut t d

t

� � � � � � � �
��
�: ,� � � �,

and can be interpreted as the solution that has no 
influence whatsoever from the initial conditions 
(Kloeden and Rasmussen 2011). Therefore, the 
pullback attractor is the nonautonomous equiva-
lent of the steady-state concept for autonomous 
systems (Carvalho et al. 2013).

A particular case is the linear nonautonomous 
system in which the mass inputs and the process 
rates are periodic. For example, this is the case of 
seasonal systems without noise in which the same 
periodic pattern for the mass inputs and for the 
process rates is repeated every year. More precisely, 
a periodic linear compartmental system is one in 
which u(t + T) = u(t) and B(t + T) = B(t) for a 
fixed period T and for all t. Mulholland and Keener 
(1974) showed that these types of systems have 
periodic solutions for which x(t + T) = x(t). This 
periodic solution can be interpreted as a pullback 
attractor because it has no influence on the initial 
conditions.

Nonlinear Systems

Nonlinear nonautonomous compartmental sys-
tems are the most complex cases for their study and 
analysis. It is not possible in general to obtain ana-
lytical solutions, and, contrary to the autonomous 



64 COMPARTMENTAL DYNAMICAL SYSTEMS AND CARBON CYCLE MODELS

case, it is not possible to study an equilibrium 
point for these systems because, by definition, 
compartment contents are always changing and 
they never reach a constant value.

As mass inputs, and process rates change in a 
nonlinear nonautonomous compartmental sys-
tem, it is possible that specific combinations of 
parameter values and compartment sizes lead the 
system outside the space Ω where mass balance 
consideration must be met. Therefore, it is always 
important to check that solutions for these systems 
are always inside this space; i.e. x(t, t0, x0) ∈ Ω for 
all t, where x(t, t0, x0) is a solution trajectory of the 
nonlinear nonautonomous compartmental system 
of the form:

	
x u x B x xt t t t t t� � � � �� � � � �� � � �, , · . 	 (7.9)

Concepts from control theory could be used to 
ensure that solutions are well behaved and inside 
Ω, and more importantly, within certain ‘regions 
of stability’ that solutions are attracted to (Müller 
and Sierra 2017; Kloeden and Rasmussen 2011).

Input-to-state stability (ISS) is a concept from 
the field of control theory that can be used to 
determine whether a nonlinear nonautonomous 
compartmental system meets stability properties. 
We say that a dynamical system is ISS if it is glob-
ally asymptotically stable in the absence of time-
dependent perturbations, and if its trajectories are 
bounded by a function of the size of the input for 
all sufficiently large times (Sontag 1998; Müller 
and Sierra 2017). Therefore, we can expect the tra-
jectories of an ISS system to remain within a cer-
tain region as long as the initial mass decays over 
time, and the mass inputs stay bounded within a 
certain limit.

We expect that for most applications, nonlinear 
nonautonomous compartmental systems meet the 
properties of ISS systems. However, mathematically 
showing that a system is ISS is not trivial, and this 

should be studied on a case-by-case basis (Sierra 
and Müller 2015; Müller and Sierra 2017).

FINAL REMARKS

The theory of compartmental dynamical systems 
offers a formal theoretical framework to express and 
analyze models of the carbon cycle and other biogeo-
chemical elements that meet mass balance require-
ments. Using a matrix representation of carbon 
storage in ecosystem pools, it is possible to use the 
theory of compartmental dynamical systems to study 
important characteristics of models such as their 
long-term behavior, the presence of traps that retain 
carbon indefinitely in a model, and the response of 
ecosystem compartments to disturbances.

The representation of ecosystem models as 
compartmental systems is also useful to study sys-
tem level properties of ecosystems (see Chapter 
15). It is a useful mathematical representation that 
can relate ecosystem concepts to formal math-
ematical properties of dynamical systems.

SUGGESTED READING

General introductions to compartmental systems 
can be found in the monograph by Anderson 
(1983), and the comprehensive review of Jacquez 
and Simon (1993). More specific results about the 
application of compartmental systems to model 
the terrestrial carbon cycle can be found in the ref-
erence list and other chapters of this book.

QUIZZES

	 1.	 According to the general classification of models 
with respect to their dynamical properties, what 
type of compartmental systems have a fixed-
point steady-state?

	 2.	 Can linear compartmental systems show transi-
tions through tipping points?

	 3.	 What is the analogue of a steady state for nonau-
tonomous systems? Why?


