date: 2023-11-06T18:43:37Z
pdf:PDFVersion: 1.4
pdf:docinfo:title: Semantic segmentation of plant roots from RGB (mini-) rhizotron images?generalisation potential and false positives of established methods and advanced deep-learning models
xmp:CreatorTool: Springer
access_permission:can_print_degraded: true
subject: Plant Methods, https://doi.org/10.1186/s13007-023-01101-2
pdfa:PDFVersion: A-2b
xmpMM:History:Action: converted
language: EN
dc:format: application/pdf; version=1.4
pdf:docinfo:custom:robots: noindex
pdf:docinfo:creator_tool: Springer
access_permission:fill_in_form: true
xmpMM:History:When: 2023-11-04T10:38:30Z
pdf:encrypted: false
dc:title: Semantic segmentation of plant roots from RGB (mini-) rhizotron images?generalisation potential and false positives of established methods and advanced deep-learning models
modified: 2023-11-06T18:43:37Z
cp:subject: Plant Methods, https://doi.org/10.1186/s13007-023-01101-2
xmpMM:History:SoftwareAgent: pdfToolbox
pdf:docinfo:custom:CrossMarkDomains[1]: springer.com
robots: noindex
pdf:docinfo:subject: Plant Methods, https://doi.org/10.1186/s13007-023-01101-2
xmpMM:History:InstanceID: uuid:a53dbaa6-8fcd-4da5-aaa1-8a8c65ae51b5
pdf:docinfo:creator: Pavel Baykalov 
meta:author: Bart Bussmann 
trapped: False
meta:creation-date: 2023-11-04T05:07:53Z
pdf:docinfo:custom:CrossmarkMajorVersionDate: 2010-04-23
created: 2023-11-04T05:07:53Z
access_permission:extract_for_accessibility: true
Creation-Date: 2023-11-04T05:07:53Z
pdfaid:part: 2
pdf:docinfo:custom:CrossMarkDomains[2]: springerlink.com
pdf:docinfo:custom:doi: 10.1186/s13007-023-01101-2
pdf:docinfo:custom:CrossmarkDomainExclusive: true
Author: Bart Bussmann 
producer: Acrobat Distiller 10.1.8 (Windows); modified using iText® 5.3.5 ©2000-2012 1T3XT BVBA (SPRINGER SBM; licensed version)
CrossmarkDomainExclusive: true
pdf:docinfo:producer: Acrobat Distiller 10.1.8 (Windows); modified using iText® 5.3.5 ©2000-2012 1T3XT BVBA (SPRINGER SBM; licensed version)
doi: 10.1186/s13007-023-01101-2
pdf:unmappedUnicodeCharsPerPage: 0
dc:description: Plant Methods, https://doi.org/10.1186/s13007-023-01101-2
Keywords: Automatic image segmentation; Data augmentation; Deep learning; False positives; Fine roots; Image processing; Minirhizotron; Neural networks; Root segmentation; U-Net
access_permission:modify_annotations: true
dc:creator: Bart Bussmann 
description: Plant Methods, https://doi.org/10.1186/s13007-023-01101-2
dcterms:created: 2023-11-04T05:07:53Z
Last-Modified: 2023-11-06T18:43:37Z
dcterms:modified: 2023-11-06T18:43:37Z
title: Semantic segmentation of plant roots from RGB (mini-) rhizotron images?generalisation potential and false positives of established methods and advanced deep-learning models
xmpMM:DocumentID: uuid:a53dbaa6-8fcd-4da5-aaa1-8a8c65ae51b5
Last-Save-Date: 2023-11-06T18:43:37Z
CrossMarkDomains[1]: springer.com
pdf:docinfo:keywords: Automatic image segmentation; Data augmentation; Deep learning; False positives; Fine roots; Image processing; Minirhizotron; Neural networks; Root segmentation; U-Net
pdf:docinfo:modified: 2023-11-06T18:43:37Z
meta:save-date: 2023-11-06T18:43:37Z
Content-Type: application/pdf
X-Parsed-By: org.apache.tika.parser.DefaultParser
creator: Bart Bussmann 
pdfaid:conformance: B
dc:language: EN
dc:subject: Automatic image segmentation; Data augmentation; Deep learning; False positives; Fine roots; Image processing; Minirhizotron; Neural networks; Root segmentation; U-Net
access_permission:assemble_document: true
xmpTPg:NPages: 15
pdf:charsPerPage: 3565
access_permission:extract_content: true
access_permission:can_print: true
pdf:docinfo:trapped: False
CrossMarkDomains[2]: springerlink.com
meta:keyword: Automatic image segmentation; Data augmentation; Deep learning; False positives; Fine roots; Image processing; Minirhizotron; Neural networks; Root segmentation; U-Net
access_permission:can_modify: true
pdf:docinfo:created: 2023-11-04T05:07:53Z
CrossmarkMajorVersionDate: 2010-04-23