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Gravitational waves induced by large primordial curvature fluctuations may result in a

sizable stochastic gravitational wave background. Interestingly, curvature fluctuations are

gradually generated by initial isocurvature fluctuations, which in turn induce gravitational

waves. Initial isocurvature fluctuations commonly appear in multi-field models of inflation

as well as in the formation of scattered compact objects in the very early universe, such

as primordial black holes and solitons like oscillons and cosmic strings. Here we provide a

review on isocurvature induced gravitational waves and its applications to dark matter and

the primordial black hole dominated early universe.

I. INTRODUCTION

The standard model of cosmology requires adiabatic primordial fluctuations as initial conditions

set in the very early universe [1–3]. Fluctuations are adiabatic when all fields filling the universe

agreed to share a slicing of the spacetime where each of its separate energy density fluctuations van-

ish. In such choice of coordinates the energy density of those fields is homogeneous (by definition)

and only the metric contains fluctuations. These are the so-called adiabatic curvature fluctua-

tions. The reason for this sort of coherent initial conditions may simply be that one “primordial”

field is responsible for all the fluctuations, e.g. because it decays into all the other fields. This is

precisely the prediction from the simplest models of cosmic inflation and what Cosmic Microwave

Background (CMB) observations confirmed [4].

If the initial conditions for primordial fluctuations are not adiabatic, they are said to be isocur-

vature (see e.g. [5–9]). As the name implies, isocurvature requires that there is no initial adiabatic

curvature perturbation. This means that there is no slicing of spacetime where each of the energy

density fluctuations separately vanish (although there is always the slicing where the total energy

density fluctuation is zero). And so, isocurvature initial conditions are related to relative energy

density fluctuations (to be precise relative number density fluctuations). On scales larger than

10Mpc, CMB tells us that isocurvature primordial fluctuations may not account for more than

1 − 10% of the total fluctuations [2]. Since the measured amplitude of the power spectrum of

primordial adiabatic fluctuations is about 10−9, the power spectrum of isocurvature fluctuations

may have an amplitude of less than 10−10 on large scales.

The story changes when we consider scales smaller than 1 Mpc, where CMB constrains no longer

apply. For scales between 1Mpc and 1 pc future CMB spectral distortions might be able to test
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isocurvature fluctuations [10, 11].1 For scales smaller than a parsec our best bet to constrain the

amplitude and nature of primordial fluctuations are Primordial Black Holes (PBHs) and induced

Gravitational Waves (GWs).2 PBHs form from the collapse of large primordial fluctuations [16–

22] and could explain the Cold Dark Matter (CDM) [23–28], some of the LIGO/VIRGO/KAGRA

black hole mergers [29–32] and be the seeds of supermassive black holes [33, 34]. Induced GWs are

a consequence of the non-linear nature of gravity: density fluctuations eventually lead to metric

fluctuations, which include GWs as a secondary effect [35–41]. In some sense, the evolution of

primordial fluctuations (e.g. the resulting density waves) yield an anisotropic stress which sources

the secondary, or induced, GWs. See Refs. [42–47] and [48, 49] for recent reviews on PBHs and

induced GWs respectively. See also Ref. [50] for lecture notes on the collection of GW signatures

of PBHs.

By extension of the CMB, the standard approach is to consider adiabatic initial conditions

for PBHs and induced GWs. But, both PBHs and induced GWs may also be generated from

isocurvature initial conditions [51, 52].3 Isocurvature fluctuations generally occur in multi-field

models of inflation [61, 62], phase transitions [63] and may be consequence of the Poisson noise (or

clustering) from the formation of compact structures in the very early universe, such as PBHs and

solitonic structures like oscillons and cosmic strings [56, 64–67]. This opens the door to probes of

the nature of primordial fluctuations and the formation of compact objects in the early universe.

In this review we will focus on isocurvature induced GWs. Details on PBHs formed by the collapse

of primordial CDM isocurvature fluctuations can be found in Ref. [51].

We are in an exciting time for cosmology with GWs. Recently, Pulsar Timing Array (PTA)

collaborations around the globe have announced tentative evidence of a GW background at nHz

frequencies [68–77]. On plausible explanation is that they are induced GWs from primordial fluc-

tuations [78–114] (or the merger of supermassive PBHs [115–117]). As a new application, here we

will also explore the possibility that the PTA results are explained by CDM isocurvature induced

GWs. The PTA results are and will be complemented by other GW detectors at higher frequencies

such as the LIGO/Virgo/KAGRA collaboration [118] and future GW detectors like µ-Ares [119],

LISA, Taiji [120, 121], TianQin [122], DECIGO [123, 124], Einstein Telescope (ET) [125], Cosmic

Explorer (CE) [126], Voyager [127, 128].

This work is organized as follows. In § II we present an overview of the basic equations and

the notion of adiabatic and isocurvature initial conditions. The content of this section is based

on Refs. [7, 8]. Then, we discuss some applications. In § III we view GWs induced by CDM,

based on the results of Ref. [52]. In § IV we consider the isocurvature due to PBH number density

fluctuations in the PBH reheating scenario. Here we will base our discussions on Refs. [65, 129–

131]. Lastly, we discuss more applications in § V. Some details of the calculations can be found

in the appendices and in the aforementioned references. We work in reduced Planck units where

c = ℏ = 1 and Mpl = (8πG)−1/2 = 1.

1 Baryon isocurvature is constrained by Big Bang Nucleosynthesis [12] to be less than 1% in a similar range of scales.
2 On those scales, one may constrain CDM fluctuations if are non-trivial particle interactions with CDM [13–15].
3 Other PBH formation scenarios include first-order phase transitions [53, 54], collapse of Q-balls [55–57] and long-

range forces in the early universe [58–60].
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II. BASIC EQUATIONS

We start by deriving the general formalism for isocurvature induced GWs. Since isocurvature

fluctuations result from relative number density fluctuations, we should at least consider two fluids

filling the primordial universe. For simplicity, we assume that after cosmic inflation the universe

is dominated by relativistic particles, so-called radiation, and that there is a small but non-zero

fraction of non-relativistic particles, let us call it matter. The energy momentum tensors of radiation

and matter are respectively given by

Trµν = (ρr + pr)urµurν + prgµν , (2.1)

Tmµν = ρmumµumν , (2.2)

where gµν is the metric, ρ and p respectively are the energy density and pressure and uµ the

fluid 4-velocity. The subscripts “r” and “m” respectively refer to radiation and matter. In par-

ticular, we have that pm = 0 and pr = ρr/3. For the metric gµν we take a perturbed Fried-

mann–Lemâıtre–Robertson–Walker (FLRW) universe. For convenience (the equations for induced

GWs are simplest), we work in the Newtonian gauge in which the metric reads

ds2 = a2(τ)
[
−(1 + 2Ψ)dτ2 + ((1 + 2Φ)δij + hij)dx

idxj
]
, (2.3)

where a is the scale factor, τ is conformal time, Ψ and Φ are the gravitational potentials and hij the

tensor perturbations (or we may say GWs). The dynamics of the scale factor are dictated by the

Friedmann equations, which we present in App. A. In the same appendix we describe the notation

for matter perturbations as well.

Most important to us is the fact that energy conservation (∇µTµν = 0) at the background level

requires that ρr ∝ a−4 and ρm ∝ a−3 (also see App. A). From the different dilution of the energy

densities, we see that

ρm
ρr

∝ a , (2.4)

and, therefore, matter fields eventually dominate the energy density of the universe, assuming they

do not decay. Thus, if we call β to the initial fraction of matter, namely

β =
ρm,i

ρr,i
< 1 , (2.5)

where “i” refers to the initial time, the universe will be matter dominated after a/ai > β−1.

Actually, there is an exact analytical solution for the scale factor in the radiation-matter universe.

It reads [7, 132]

a(τ)

aeq
= 2

(
τ

τ∗

)
+

(
τ

τ∗

)2

, (2.6)

where (
√
2 − 1)τ∗ = τeq. The subscript “eq” means matter-radiation equality, i.e. the time when

ρr = ρm. It is easy to check that Eq. (2.6) goes from the radiation dominated universe where a ∼ τ

to the matter dominated universe with a ∼ τ2. This is for the moment all we need to understand

the source of induced gravitational waves.
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A. What sources secondary gravitational waves?

Before entering into the computational details, let us qualitatively understand what is the main

source of secondary gravitational waves (at least in the Newton gauge). Let us formally start with

Einstein equations, that is

Gµν = Tmµν + Trµν , (2.7)

where Gµν is the Einstein tensor and for simplicity we set Mpl = (8πG)−1/2 = 1. The linear

equations of motion for the tensor modes correspond to the transverse-traceless projection of the

spatial-spatial components. If we call Pij
ab the transverse-traceless projector (which can be found

in, e.g., Refs. [48, 130]), then we schematically have at linear order

Pij
abG

(1)
ab = Pij

ab
(
T
(1)
mab + T

(1)
rab

)
⇒ h′′ij + 2Hh′ij +∆hij = 0 , (2.8)

where H = a′/a, ′ = d/dτ and the superscript (1) refers to linear perturbations. We will use a

superscript (2) to refer to second order perturbations. Eq. (2.8) basically tells us that since Tµν

has no tensor component at linear order (because we assumed a perfect fluid with no anisotropic

stress), gravitational waves propagate freely. If we include second order scalar terms though, we

find that

Pij
abG

(1)
ab = Pij

ab
(
−G

(2)
ab + T

(2)
mab + T

(2)
rab

)
⇒ h′′ij + 2Hh′ij +∆hij = Pij

abSab , (2.9)

which after some simplifications the source term is given by [130]

Sij = 4∂iΦ∂jΦ+ 2a2ρm∂ivm∂jvm + 2a2(ρr + pr)∂ivr∂ivr . (2.10)

Note that we selected the scalar component of the perturbation of the spatial velocity in Eq. (2.1),

that is we took ui = a∂iv. Also in Eq. (2.9) we considered the second order expansion of G
(2)
ab as a

source (or backreaction) to the linear equations and, as such, we moved it to the right hand side.

We then used that Ψ + Φ = 0 in the presence of no anisotropic stress (see App. A).

Let us discuss the secondary source to GWs, Eq. (2.10), within the big picture. First, we see

that from G
(2)
ab we obtain gradients of Φ. So, one source of secondary gravitational waves are

curvature (metric) fluctuations. Second, from Tµν only the spatial component of the fluid velocity

contributes. So velocity flows also generate GWs (this is the main, intuitive, source of GWs inside

the cosmic horizon). However, this does not tells us much yet about isocurvature initial conditions.

To make it more intuitive, let us introduce the total spatial velocity (the one seen by the linear

Einstein Equations and so linear metric fluctuations) and the relative velocity which respectively

read [133]

ρV = (ρm + ρr)V = ρmvm + (ρr + pr)vr and Vrel = vm − vr . (2.11)

In terms of these variables we find that Eq. (2.10) is given by

Sij = 4∂iΦ∂jΦ+ 2a2
ρ2

ρ+ p

(
∂iV ∂jV +

ρm(ρr + pr)

ρ2
∂iVrel∂jVrel

)
, (2.12)
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where p = pm + pr = pr. Now, it is clear that the contribution from the relative velocity is always

suppressed by the energy density of the subdominant field. So unless we are considering scales

that enter the horizon close to the matter-radiation equality, we may neglect the relative velocities.

With this we conclude that secondary gravitational waves are mainly sourced by the dominant

fluid, which is the main source of curvature fluctuations. Any contribution from isocurvature

initial conditions (= no initial curvature or Φi = 0) must then be suppressed by a factor ρm/ρ in

the early stages.

A natural question then arises: why should we consider isocurvature induced GWs? But this

question misses that the point that isocurvature is a matter of initial conditions. As the system

evolves, isocurvature fluctuations are transferred into curvature fluctuations, the transfer being

complete after matter-radiation equality [7]. So the answer is that isocurvature induced GWs can

be important when:

• isocurvature fluctuations are large enough to compensate for the suppression factor ρm/ρ,

or,

• non-relativistic particles dominate the universe in an early matter dominated era with isocur-

vature induced curvature fluctuations.

We will study the first case in § III for CDM fluctuations and the second in § IV for the PBH

dominated early universe. We now proceed with the evolution of the curvature fluctuations and

the formal solutions to induced GWs.

B. Evolution of curvature perturbation: adiabatic vs isocurvature initial conditions

The general notion of curvature and isocurvature fluctuations is better understood using the

gauge invariant definition of the curvature perturbation on uniform density slices, which is given

by, see e.g. [8, 134],

ζ = −ϕ+Hδρ

ρ′
. (2.13)

Here we used ϕ to denote the spatial curvature perturbation which corresponds to Φ in the Newton

gauge. In the uniform density slicing where δρ = 0 we have that ζ = −ϕ. The convenience of using

ζ is that it is conserved on superhorizon scales. One may also define a curvature fluctuation for

each fluid, namely

ζy = −ϕ+Hδρy
ρ′y

, (2.14)

where in our case y = {r,m}. And, from the individual definitions, the notion of isocurvature

follows as the relative individual curvature fluctuations, namely

S = 3(ζr − ζm) =
δρm
ρm

− δρr
ρr + pr

=
δρm
ρm

− 3

4

δρr
ρr

, (2.15)
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where we used that ρ′y + 3H(ρy + py) = 0 and that pr = 1/3ρr. The physical intuition behind

such formal definitions, Eqs. (2.13) and (2.15), is the following. Curvature fluctuations are metric

fluctuations even in the time slicing where there are no total density fluctuations (δρ = 0). Adiabatic

initial conditions then require no initial isocurvature, that is Si = 0, and ζi ̸= 0. Isocurvature

initial conditions correspond to the case when there are no such curvature fluctuations but there

are relative density fluctuations (i.e. we may have ζi = 0 but Si ̸= 0).

To understand this also in terms of the Newton gauge variables, it is convenient to look at the

0-0 Einstein Equation on superhorizon scales (see App. A), which reads

6H2
iΦi = a2i (δρm,i + δρr,i) = a2i δρi , (2.16)

where we imposed that initially Φ′
i = 0, we neglected gradient terms and we used the subscript “i”

to denote evaluation at the initial time. In the Newton gauge, initial curvature fluctuations Φi are

then proportional to δρi. Thus, adiabatic initial conditions correspond to Si = 0 and Φi ∝ δρi ̸= 0

and isocurvature initial conditions to Φi ∝ δρi = 0 and Si ̸= 0. An interesting perspective from

these definitions is that adiabatic initial conditions are set by the fluid with dominant energy density

(since S = 0 the dominant ρ has also dominant δρ) while isocurvature initial conditions are mainly

given by the sub-dominant field (since δρm + δρr = 0 and S depends inversely in ρm).

The closed system of equations for curvature-isocurvature fluctuations in Fourier modes is given

by (see App. A or [52, 130] for details)

Φ′′ + 3H(1 + c2s)Φ
′ + (H2(1 + 3c2s) + 2H′)Φ + c2sk

2Φ =
a2

2
ρmc2sS , (2.17)

and

S′′ + 3Hc2sS
′ − 3

2a2ρr
c2sk

4Φ+
3ρm
4ρr

c2sk
2S = 0 , (2.18)

where we defined as usual

c2s ≡
4

9

ρr
ρm + 4ρr/3

. (2.19)

The relative velocity Vrel can be computed from S by

Vrel = S′/k2 . (2.20)

Let us note here that in the matter dominated universe where c2s → 0 the general “growing mode”

solution to Eqs. (2.17) is Φ = constant. The precise value of the constant will be set by the evolution

during the radiation dominated universe. We present first the general solutions for superhorizons

scales and later the solutions for general k in the radiation dominated universe. We will denote

with Si and Φi the initial values of isocurvature and curvature in the far past, formally when a → 0.

The conclusions do not change if a has a non-zero value as the solutions are attractors [66].
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a. Superhorizon fluctuations (k ≪ H): If we drop all terms containing k in Eqs. (2.17)

and (2.18), and re-write them using a as a time variable, we find that the general solutions are

given by [7, 132, 135]

S(ξ) = Si , (2.21)

Φ(ξ) = Φi

(
8

5ξ3

(√
1 + ξ − 1

)
− 4

5ξ2
+

1

5ξ
+

9

10

)
+ Si

(
16

5ξ3

(
1−

√
1 + ξ

)
+

8

5ξ2
− 2

5ξ
+

1

5

)
, (2.22)

where for compactness we defined ξ = a/aeq. We see that while isocurvature remains constant on

superhorizon scales, curvature fluctuations Φ are not. For the adiabatic component we have that

Φad(a) ≈ Φi ×

1 (a ≪ aeq)

9

10
(a ≫ aeq)

, (2.23)

where the factor 9/10 actually comes from the conservation on ζ and the relation ζ = 5+3w
3+3wΦ for

constant w = p/ρ. For isocurvature fluctuations we instead have

Φiso(a) ≈ Si ×


1

8

a

aeq
(a ≪ aeq)

1

5
(a ≫ aeq)

. (2.24)

Thus, while we have vanishing initial curvature perturbation, i.e. Φiso(a → 0) → 0, it grows as

a/aeq and saturates to 1/5 of the initial isocurvature after matter-radiation equality.

b. Fluctuations during radiation domination (a ≪ aeq): To study the evolution of

general fluctuations during radiation domination, we shall take the limit τ ≪ τeq (a ≪ aeq)in

Eqs. (2.17) and(2.18). At leading order, they are given by [52]

d2Φ

dx2
+

4

x

dΦ

dx
+

1

3
Φ +

1

4
√
2κx

(
x
dΦ

dx
+ (1− x2)Φ− 2S

)
≃ 0 , (2.25)

and

d2S

dx2
+

1

x

dS

dx
− x2

6
Φ− 1

2
√
2κ

(
dS

dx
− x

2
S − x3

12
Φ

)
≃ 0 , (2.26)

where we defined for compactness

x = kτ and κ =
k

keq
. (2.27)

In these new variables, the limit of interest is given by x ≪ κ (or keqτ ≪ 1). Due to the length of

the solutions we treat the initial adiabatic and initial isocurvature cases separately below.
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For initial curvature fluctuations, Φi ̸= 0 and Si = 0, we solve the leading order terms in

Eqs. (2.25) and (2.26), namely we first solve the homogeneous equation for Φ and plug it in in the

equation for S. This yields

Φad(x/κ ≪ 1) ≈ 3Φi
j1(csx)

csx
+O (x/κ) , (2.28)

Sad(x/κ ≪ 1) ≈ 9Φi

(
γE − 1

2
+

1

2
cos(csx)− Ci(csx) + log(csx)

)
+O (x/κ) , (2.29)

where γE ≈ 0.577 and Ci(x) is the cosine integral function. Note that Eq. (2.28) is the standard

solution for adiabatic perturbations in the radiation universe. Φ is first constant and decays as

x−2 once a given mode enters the sound horizon, that corresponds to csx > 1. We also see that

S is negligible for csx < 1 as it is proportional to x4 but grows as log(csx) for csx > 1. Such

logarithmic grows is due to the fact that matter perturbations grow logarithmically during the

radiation dominated universe [136]. It should be noted that one may also use Eq. (2.29) to compute

the next order solution to Φ. We refer the interested reader to Ref. [7] for general solutions.

For the initial isocruvature case, Φi = 0 and Si ̸= 0, we follow Ref. [52]. In this case, we see

that we can expand the solution of Φ and S in powers of κ−1 for κ ≫ 1 and in powers of x/κ for

κ ≪ 1, as e.g. S = Si + S1 + ... and Φ = Φ1 + ... etcetera. The leading contribution to Eq. (2.25)

Φ is a then a constant S and we may also compute the effects of the leading solution to Φ to the

next leading solution to S. Doing so we find [52]

Φiso(x/κ ≪ 1) ≈ 3Si

2
√
2κ

1

x3

(
6 + x2 − 2

√
3x sin(csx)− 6 cos(csx)

)
+O (x/κ)2 , (2.30)

Siso(x/κ ≪ 1) ≈ Si +
3Si

2
√
2κ

(
x+

√
3 sin(csx)− 2

√
3Si(csx)

)
+O (x/κ)2 , (2.31)

where Si(x) is the sine integral function. Looking at x ≪ 1 we see that initially the curvature

perturbation grows as Φiso ∝ x, reaches a maximum at around csx ∼ 1 and then decays as x−2.

It is also interesting to note that for csx ≫ 1 we have Φad ⊃ sin(csx) and Φiso ⊃ cos(csx),

recovering the well-known result that adiabatic and isocurvature initial conditions give an out of

phase curvature fluctuations. Isocurvature S is constant for csx < 1 and then grows with x for

csx > 1. Interestingly, it is possible that S reaches a high enough amplitude for PBHs to form

[51]. Although we will not explore this possibility in this work, let us write down the time when

the local density of matter is larger than that of radiation. This happens at

τNL =

√
2

keqSi
. (2.32)

At times τ > τNL we can no longer trust of linear solutions. Nevertheless, this only occurs when Si

is very large. In most situations regarding induced GWs we may consider that τNL is late enough

such that it does not affect the production of GWs as curvature perturbations already decayed

significantly. For example, requiring that the non-linear regime occurs deep inside the horizon (i.e.

xNL > 1) translates into an upper bound on the initial isocurvature, namely

Si <
√
2κ , (2.33)
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FIG. 1. Numerical solutions to the evolution of curvature fluctuations for adiabatic and isocurvature initial

conditions in terms of x = kτ , respectively in purple and orange lines. We normalized the amplitude of the

initial conditions to Φi = 1 and Si = 1. On the left we show the behavior on scales with k ≪ keq. For the

numerical solution we chose k = 10−3keq. See how both lines saturate after matter-radiation equality to a

constant. For the adiabatic case the constant is 9/10 and for isocurvature 1/5. On the right we instead show

k ≫ keq, in particular k = 500keq. In this case the lines also saturate to a constant after matter-radiation

equality. However, for k ≫ keq the amplitude after τeq is of the order of (keq/k)
2 in both cases.

for a given isocurvature mode with wavenumber k.

c. Fluctuations during matter domination (a ≫ aeq): Well inside matter domination

curvature fluctuations on all scales becomes constant. The amplitude of such fluctuations is then

determined by whether they were superhorizon or subhorizon during the radiation domination

epoch. For k ≪ keq its value is given by Eqs. (2.23) and (2.24) respectively for adiabatic and

isocurvature initial conditions. For k ≫ keq the amplitude has a suppression factor proportional

to (k/keq)
−2, which comes from the x−2 decay during the radiation dominated phase. For the

analytical approximations, we refer the reader to the work of Kodama and Sasaki [7], although in

our simplified set up the numerical prefactors could be refined by matching at matter-radiation

equality. As it is not crucial for our purposes we leave it as an exercise. Most important for

the present review is the result of the curvature perturbation for isocurvature initial conditions at

matter domination, which is given by [7]

Φiso(a ≫ aeq) ≈ Si ×


1

5
(k ≪ keq)

3

4

(
k

keq

)−2

(k ≫ keq)

. (2.34)

We show the results of numerical integration in Fig. 1. In the numerical results we find that the

coefficient for k ≫ keq in Eq. (2.34) is close to 1. For easier comparison with the literature though,

we maintain the coefficient of Eq. (2.34) as it only introduces small errors.
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C. General formulation of isocurvature induced gravitational waves

We proceed with the formal solution to induced gravitational waves. Our starting point is the

equations of motion for secondary GWs (2.9) which is given by

h′′ij + 2Hh′ij +∆hij = Pij
abSab , (2.35)

where Sij (2.12) using the linear Einstein Equations is given by

Sij = 4∂iΦ∂jΦ+ 6c2s
ρ

ρr
∂i

(
Φ′

H +Φ

)
∂j

(
Φ′

H +Φ

)
+ 6a2c2sρm∂iVrel∂jVrel . (2.36)

It will be more convenient to work in Fourier modes, where we give a primordial initial amplitude of

Sk(0) and/or Φk(0) and describe the evolution of a given mode by a transfer function, say TΦ(kτ).

In the notation of the previous subsections Sk(0) should be understood as Si for a given mode

k. The same applies to Φ. We will also only consider the case of either adiabatic or isocurvature

initial condition and, therefore, we neglect any cross term coming from the gradient squared terms.

Doing so Eq. (2.35) reads

h′′k,λ + 2Hh′k,λ + k2hk,λ = Sk,λ , (2.37)

with

Sk,λ = 4

∫
d3q

(2π)3
eijλ (k)qiqj

{
Φq(0)Φ|k−q|(0)

Sq(0)S|k−q|(0)

}
f(τ, q, |k− q|) , (2.38)

where Φq(0) and Sq(0) respectively refer to initial adiabatic or initial isocurvature fluctuations,

and we defined

f(τ, q, |k− q|) =f(x, k, u, v) = TΦ(vx)TΦ(ux) +
3

2
c2sa

2ρmTVrel
(vx)TVrel

(ux)

+
3

2
c2s

(
1 +

ρm
ρr

)(
TΦ(vx) +

T ′
Φ(vx)

H

)(
TΦ(ux) +

T ′
Φ(ux)

H

)
. (2.39)

In Eq. (2.39) we introduced for later use the notation

v = q/k , u = |k− q|/k . (2.40)

Also, in Eq. (2.39), TVrel
(x) is the transfer function of Vrel which is not important in the regimes of

interest, so we will not consider it in the following sections. Note that the transfer functions that

appear in Eq. (2.39) have to be properly chosen according to whether we are considering adiabatic

or isocurvature initial conditions.

Assuming that the isocurvature fluctuations are Gaussian we arrive at a compact expression for

the spectral density of induced GWs [52, 137, 138], namely

ΩGW,c(k) =
2

3

∫ ∞

0
dv

∫ 1+v

|1−v|
du

(
4v2 − (1− u2 + v2)2

4uv

)2

I2(xc, k, u, v)PS(ku)PS(kv) , (2.41)



11

where PS(k) is the initial dimensionless spectrum of isocurvature fluctuations, defined by

⟨Sk(0)Sk′(0)⟩ = 2π2

k3
PS(k)× (2π)3δ(3)

(
k+ k′) . (2.42)

For adiabatic initial conditions PS(k) should be replaced by PΦ(k) at the initial time. In Eq. (2.41)

the notation xc refers to a time when the GW is well inside the horizon such that the spectral density

is constant [139]. In Eq. (2.41) we introduced the kernel which incorporates the information from

the transfer functions and it is given by

I(x, k, u, v) ≡ x

∫ x

xi

dx̃G(x, x̃)f(x̃, k, u, v) , (2.43)

where G(x, x̃) is the tensor mode’s Green’s function.

As we will be mostly interested in the induced GWs generated during an radiation dominated

phase, either the one preceding matter domination or the one after an early matter domination, we

restrict ourselves to the radiation dominated universe. In particular, the Green‘s function in the

radiation dominated universe reads

G(x, x̃) =
a(x̃)

a(x)
(sinx cos x̃− cosx sin x̃) . (2.44)

Then, we may split the kernel (2.43) into a sine and cosine terms as

I(x, k, u, v) = Ic(x, k, u, v) sinx− Is(x, k, u, v) cosx , (2.45)

where

Ic/s(x, k, u, v) ≡
∫ x

0
dx̃ x̃

{
cos x̃

sin x̃

}
f(x̃, k, u, v) . (2.46)

This allows us to take the oscillation average of the spectral density, which is given by

I2(x → ∞, k, u, v) ≃ 1

2

(
I2c,∞(k, u, v) + I2s,∞(k, u, v)

)
, (2.47)

where we took the limit x → ∞ as we are interested in GW frequencies which are well within the

horizon. It is interesting to note that at this point the main difference between the isocurvature and

adiabatic initial condition cases is the different behavior of the transfer functions. The integrals

Is and Ic (2.46) can be analytically carried out as they are integrals of trigonometric functions.

However, the expressions are considerably long and so we will only present them in simplified

situations. In the next sections we show in more detail the different GW spectrum from isocurvature

and adiabatic initial conditions.

Before moving on, we write down the explicit relation between ΩGW,c (2.41) and the spectral

density of GWs measured today. A straightforward relation can be found in the case when the ra-

diation domination era where ΩGW,c is computed corresponds to the standard radiation dominated
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stage, i.e. prior to BBN and CDM domination. In that case, taking into account the redshifting of

the GW energy density one finds that [48]

ΩGW,0h
2 ≈ 1.62× 10−5ΩGW,c(k) , (2.48)

where ΩGW,0 is the energy density fraction of GWs evaluated today and h = H0/(100km/s/Mpc).

H0 is the Hubble parameter evaluated today. For simplicity, we assumed the standard model of

particle physics. In the general case there is a dependence on the effective degrees of freedom, see

e.g. [139, 140].

III. GRAVITATIONAL WAVES FROM CDM ISOCURVATURE

Let us consider that the matter component with isocurvature fluctuations is the CDM. This

means that the initial fraction of CDM β is fixed its the current abundance, which according to

Planck [4] is ΩCDM,0h
2 ≈ 0.12. For our practical purposes though, we just need to use that the

time of matter-radiation equality, normalized to today, is at a−1
eq ≈ 3400 and that the comoving

size of the universe at that time was keq ≈ 0.01Mpc−1. To grasp the magnitude suppression factor

keq/k, let us write down the GW frequency in terms the relevant wavenumbers, that is

fGW ∼ 2× k

2π
≈ 3Hz

(
k

1015Mpc−1

)
, (3.1)

where the first factor 2 comes from the fact that two scalar modes source one induced tensor

mode. Thus, for the frequencies of interest, say between nHz and kHz, we have suppression factors

respectively between 10−8 and 10−19. This means that initial isocurvature has to be roughly of the

inverse order of magnitude so that isocurvature induced GWs are detectable. It should be noted,

though, that such large values of initial isocurvature are compatible with cosmological perturbation

theory up to the time τNL. For a detailed discussion on the validity of perturbations see the appendix

of Ref. [52]. The current challenge is then not the validity of perturbations but to find a model

with such large initial isocurvature. At the end of this section we will discuss some interesting cases

where isocurvature need not be that large.

Regarding isocurvature induced GWs, we are mostly interest in the small scale power spectrum.

This constitutes fluctuations on scales which entered the horizon much before matter-radiation

equality. Therefore, it is a very good approximation to use our solution Eq. (2.30) during the

radiation dominated epoch. Plugging in Eq. (2.30) into the integrals (2.46) we find that

Ic,∞(k, u, v) =
9

32u4v4κ2

{
− 3u2v2 +

(
−3 + u2

) (
−3 + u2 + 2v2

)
ln

∣∣∣∣1− u2

3

∣∣∣∣
+
(
−3 + v2

) (
−3 + v2 + 2u2

)
ln

∣∣∣∣1− v2

3

∣∣∣∣
− 1

2

(
−3 + v2 + u2

)2
ln

[∣∣∣∣1− (u+ v)2

3

∣∣∣∣ ∣∣∣∣1− (u− v)2

3

∣∣∣∣]
}
, (3.2)
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FIG. 2. Source term (2.39) for induced GWs for adiabatic and isocurvature initial conditions, respectively

in purple and orange, in terms of x = kτ . For simplicity we chose u = v = 1 but the main behavior is

independent on such particular values. Here we consider τ ≪ τeq and, therefore, the source term only decays

after a given mode enters the horizon during radiation domination. See how for adiabatic initial conditions

the source term is initial constant and then decays with large amplitude oscillations. Instead for isocurvature

initial conditions the source term initially grows and then decays with smaller amplitude oscillations. Note

that the frequency of the oscillations is the same in both cases but are out of phase.

and

Is,∞(k, u, v) =
9π

32u4v4κ2

{
9− 6v2 − 6u2 + 2u2v2 +

(
3− u2

) (
−3 + u2 + 2v2

)
Θ

(
1− u√

3

)
+
(
3− v2

) (
−3 + v2 + 2u2

)
Θ

(
1− v√

3

)
+

1

2

(
−3 + v2 + u2

)2 [
Θ

(
1− u+ v√

3

)
+Θ

(
1 +

u− v√
3

)]}
, (3.3)

where we took the limit x → ∞ for analytical simplicity. With the kernels Eqs. (3.2) and (3.3)

we are ready to compute the isocurvature induced GW spectrum via Eq. (2.41). Let us emphasize

that Eqs. (3.2) and (3.3) are valid for any primordial spectrum of isocurvature fluctuations. The

only requirement is that the relevant fluctuations enter the horizon much before matter-radiation

equality. The averaged kernel for GWs induced by adiabatic fluctuations can be found in App. B.

For illustration, we also compare the source term (2.39) between initially adiabatic and isocurvature

fluctuations in Fig. 2.

It is interesting to note that the explicit κ dependence in the kernel (3.2) and (3.3) can be

absorbed via the definition of an effective power spectrum of curvature perturbations, namely

Peff
Φ (k) ≡ κ−2PS(k) . (3.4)

Although this is a mere redefinition, it illustrates the differences with the adiabatic initial conditions.

For instance, after using Peff
Φ (k) the averaged kernel resembles that of the adiabatic initial conditions
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case, in the sense that they have the same resonance and same scaling in the limits of integration

[52]. The detailed shape is of course different. Also note that the GW spectrum has a global

suppression proportional to κ−4, consistent with our expectations that Φ ∝ ρm/ρr × S ∝ κ−1S

for isocurvature initial conditions when evaluated at horizon crossing. We proceed to discuss some

concrete examples.

A. GWs induced by a peaked primordial CDM isocurvature spectrum

To have an idea of the shape of the isocurvature induced GW spectrum and its difference with

the standard (curvature) induced GWs, let us consider that the primordial spectrum of CDM

isocurvature fluctuations peaks at given scale, say kp. For concreteness and to follow previous

works we consider a log-normal peak given by

PS(k) =
AS√
2π∆

exp

[
− ln2(k/kp)

2∆2

]
, (3.5)

where AS is the amplitude and ∆ is the logarithmic width of the peak. This is standard practice

when dealing with GWs induced by primordial adiabatic fluctuations (see e.g. [141]) and it is well

motivated from inflationary models [25, 142–166]. Similar conclusions extend to the isocurvature

case [167, 168]. We note that the formal limit of ∆ → 0 corresponds to a Dirac delta peak, namely

PS(k) = ASδ(ln(k/kp)) . (3.6)

A log-normal is considered to be “sharp” if ∆ ≲ 0.1 and broad otherwise [141]. We take a similar

ansatz for primordial curvature fluctuations Φi.

The Dirac delta case is convenient as it allows for an analytical expression for ΩGW,c simply by

replacing u = v = kp/k in Eqs. (3.2), (3.3) and (2.41). Explicitly, we obtain

ΩGW,c(k) =
A2

S

3

(
k

kp

)−2(
1− k2

4k2p

)2(
I2c,∞

(
kp
k
,
kp
k

)
+ I2s,∞

(
kp
k
,
kp
k

))
Θ(2kp − k) , (3.7)

where the sharp cut-off at k = 2kp comes from momentum conservation. From Eq. (3.7) we see

that, as in the initially adiabatic case (see e.g. the discussions in Ref. [48]), the induced GW

spectrum has a resonant peak at k = 2cskp and decays as k2 ln2 k in the low frequency tail, namely

for k ≪ kp [169–171]. However, contrary to the adiabatic case, there is no destructive interference

with vanishing GW spectrum at k =
√
2cskp. This is because adiabatic initial conditions lead to

coherent, order unity, oscillations of Φ while for isocurvature initial conditions the oscillations of

Φ are modulations with a different phase. Thus, one can in principle distinguish the adiabatic

and isocurvature cases by the shape of the GW spectrum around k ∼ kp. One of the important

differences, though, is that the isocurvature induced GW spectrum has a suppressed amplitude,

namely the peak amplitude is given by

Ωiso,peak
GW,c ∝ A2

S ×
(
keq
kp

)4

. (3.8)
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FIG. 3. Induced GW spectrum from a log-normal primordial spectrum in terms of comoving wavenumber k

normalized to the peak wavenumber kp. The amplitude of the GW spectrum is normalized such that AS = 1

and AΦ = 1 in Eq. (3.5) for PS as well as PΦ, i.e. primordial isocurvature and curvature respectively. On

the left we respectively show the induced GWs from primordial curvature and primordial isocurvature in

purple and orange, in the case of a Dirac delta power spectrum. See how the overall shape is similar, that

is a resonant peak at k = 2cskp and a k2 low frequency tail with a logarithmic running. However, the shape

around the peak and the dip is different which breaks the degeneracy of the GW signals. On the right we

show the isocurvature induced GW spectrum from a log-normal peak with ∆ = 0.01, 0.3, 1 respectively in

red, green and blue. The orange dotted line show the Dirac delta result of the left figure. See how the peak

of the induced GW spectrum shifts to lower k for larger ∆ as explained by Eq. (3.4).

This means that the amplitude of the initial power spectrum of isocurvature fluctuations must be

very large to partly compensate for the suppression, roughly AS ∝ (kp/keq)
2 ≫ 1. Such large

values of initial isocurvature fluctuations are not in contradiction with the validity of cosmological

perturbation. The reason is that any effect of isocurvature is accompanied by a factor ρm/ρr during

the radiation dominated era. The product of initial isocurvature times ρm/ρr is always smaller than

unity during the relevant times for our calculations.

For the log-normal peak we recover similar results as the Dirac delta for ∆ ≲ 0.01, except that

for scales k < ∆ kp, where the slope transitions to a k3 scaling, as in the adiabatic case [141]. For

∆ ≳ 0.01 similar conclusions apply but because of the κ−2 dependence in Peff
Φ (3.4), coming from

the fact that modes that enter earlier or more suppressed, the peak of the GW spectrum moves to

lower values of k. We show the numerical results for the Dirac delta and log-normal peak in Fig. 3.

B. Remarks, issues and future work

So far we have discussed that a large amplitude of primordial isocurvature fluctuations is com-

patible with perturbation theory, as long as they satisfy Eq. (2.33). We also assumed that the initial

isocurvature fluctuations can be considered as Gaussian. Such assumption, while expected to give a

rough approximation, is strictly speaking not correct. The reason is that isocurvature fluctuations

are mostly density fluctuations of the matter fluid, i.e. S ∝ δρm/ρm, and while PS ≫ 1 is certainly

possible, the probability distribution of S cannot be Gaussian as S > −1 (i.e. ρm + δρm > 0).
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FIG. 4. Example of induced GWs from a Dirac delta spectrum for primordial curvature and isocurvature

fluctuations. As an illustration we chose AΦ = 0.01 and AS = 0.05 (kp/keq)
2 ∼ 1018 to fit the PTA data by

eye. The peak is chosen at fp ∼ 10−7 Hz (kp ∼ 107 Mpc−1). Gray violins indicate the recent NANOGrav

results [78] and in blue and orange we show power-law integrated sensitivity curves [172] for LISA and

Taiji [120, 121]. See [126–128, 173] for the sensitivity curves. The horizontal blue and purple dashed

lines respectively show the current constraint from BBN [174–176] and future constraints from CMB-S4

experiments [175, 177]. We also include future sensitivity of µ-Ares [119] and Lunar Laser Ranging from

Ref. [178] (see also [179]). GW detectors such as µ-Ares may tell apart whether the GWs were induced by

adiabatic or isocurvature initial conditions.

Thus, a correct distribution function would be highly skewed, starting at S = −1 and with large

tails for large S, so as to keep the average ⟨S⟩ = 0. The main issue here is that in the absence of a

concrete realization it is difficult to parametrize the distribution function as it cannot be expanded

in terms of Gaussian distributions. Some estimates are given in the appendix of Ref. [52] but the

general expectation is that large tails lead to large 4-point functions and a larger amplitude of the

induced GWs. Thus, what we computed in the previous section might well be a lower bound on

the amplitude of CDM isocurvature induced GWs. It would be interesting to study a concrete case

and confirm these expectations.

It is also interesting to consider the hypothetical case where the possible GW background signal

reported by the PTA collaborations [68–77] is due to isocurvature induced GWs. Although we

will not carry out a detailed data analysis, we may infer a good order of magnitude estimate for

the required amplitude for the primordial spectrum of CDM isocurvature fluctuations. From the

analysis of GWs induced by primordial adiabatic fluctuations we have that, if given by a Dirac

delta spectrum, one needs AΦ ∼ 10−2 − 10−1 and a peak position around fp ∼ 10−7Hz [78]. This

means that for the primordial CDM isocurvature one requires AS(keq/kp)
2 ∼ AΦ, which roughly

corresponds to AS ∼ 1018−1019. While this value of AS is certainly big it is still within the validity

range of our induced GW spectrum calculations as AS(keq/kp)
2 ≪ 1. With future detectors in the

µHz window, such as µ-Ares [119] it may be possible to see the peak of the GW spectrum and to

distinguish the nature of the initial conditions. We present an example in Fig. (4).
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IV. GRAVITATIONAL WAVES FROM THE PBH DOMINATED EARLY UNIVERSE

An interesting model which includes an early stage of matter domination ended by a fast tran-

sition to radiation domination is the PBH reheating scenario [180, 181]. In this scenario, tiny

PBHs are formed after inflation with a fraction large enough such that they dominate the early

universe before evaporating via Hawking radiation. The most interesting part is that, as shown

by Refs. [129, 182], a sudden transition from matter to radiation domination greatly enhances the

spectrum of induced GWs. In our case, this generates a distinct GW signal of a PBH dominated

early universe.

A. PBH formation and evaporation

Consider that initially we have a universe filled with a homogeneous radiation fluid. Then, at

some moment in time, PBHs form roughly at the same time and with the same mass MPBH (this

is often called a monochromatic mass function). We assume that PBHs formed by the collapse

of large primordial fluctuations (although it does not have to be necessarily the case) and so

their mass at formation is related to the Hubble parameter at the time of formation, say Hf , via

MPBH,f ∼ 4πM2
pl/Hf . Note that fact that PBHs formed from adiabatic primordial fluctuations

does not affect our simplified picture of an initial homogeneous radiation fluid, as we shall see. We

also assume from now on that the particle content of the universe after evaporation is given by

the standard model of particles particle. Additional particles might change the precise coefficients

through the effective degrees of freedom. We refer the interested reader to Refs. [129, 130] for the

details.

After formation, PBH make a fraction β of the total energy density at formation. It is interesting

to relate the β to the number density of PBHs, namely

β =
ρPBH,f

ρr,f
∼ 4π

3H3
f

nPBH,f , (4.1)

where we used that ρPBH,f = MPBH,f × nPBH,f and ρr,f ≈ 3H2
f M

2
pl. Thus, β can be interpreted as

the mean number of PBHs for Hubble volume. We emphasize that it refers to the mean number

because in general there will be statistical number density fluctuations.

Now, while the number density of PBHs is conserved, which in an expanding universe means

that nPBH ∝ a−3, the PBH mass decreases due to Hawking radiation. One finds that the mass

decays as [129]

MPBH(t) ≈ MPBH,f

(
1− t

teva

)1/3

, (4.2)

where teva is the time of evaporation and is approximately given by

teva ∼
M3

PBH,f

M4
pl

∼ 0.4 fs×
(
MPBH,f

104 g

)3

, (4.3)
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where fs = 10−15 s are femtoseconds. Here t is cosmic time related to conformal time by dt = adτ .

Since we assumed that all PBHs have the same mass and that formed roughly at the same time,

they all evaporate at the same time as well. From the Hubble parameter at the time of evaporation

(Heva ∼ 1/teva) we can estimate the temperature of the radiation fluid filling the universe right

after evaporation. In doing so, we find that

Teva ≈ 2.76× 104GeV

(
MPBH,f

104g

)−3/2

. (4.4)

From the Hubble parameter we can also compute the comoving size of the Hubble horizon at

evaporation, namely [130]

keva = Heva ≈ 4.7× 1011Mpc−1

(
MPBH,f

104g

)−3/2

. (4.5)

As expected, the larger the PBH mass the later the reheating and the larger the comoving horizon

at evaporation. It should be noted that PBHs must reheat the universe well before BBN, which

imposes that Teva > 4MeV and translates into MPBH,f < 5 × 108 g. We can also compute the

minimum value of β such that PBHs eventually dominate the universe before evaporating, which

is given by

β > 6× 10−10

(
MPBH,f

104g

)−1

. (4.6)

When dealing with fluctuations, we treat the collection of PBHs as an almost pressureless matter

fluid. The evaporation is then considered as the decay of “matter” into radiation via a decay rate

given by

Γ ≡ −d lnMPBH

dt
. (4.7)

Then, the energy density of the PBH fluid is gradually transferred to radiation and obeys

ρ̇PBH + (3H + Γ) ρPBH = 0 , (4.8)

where ˙≡ d/dt. The equation for the radiation energy density is similar but with the opposite sign

in front of Γ, as to satisfy energy conservation. One can check that the total evaporation of PBHs

is not instantaneous but takes about a quarter of an e-fold. We show in Fig. 5 the evolution of

ρPBH and ρr for a particular example.

The main point that we want to emphasize here is that fluctuations with k ≫ Γ have a typical

time scale much larger than the evaporation rate and, as such, they are very much affected by

the finite duration of evaporation [129]. This translates into a suppression factor for curvature

fluctuations with k ≫ Γ after evaporation given by

SΦ(k) ≡
ΦlRD

Φinstant
lRD

≈
(

k

keva

)−1/3

, (4.9)
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FIG. 5. Energy density fraction Ωy = ρy/(3H
2M2

pl), with y = m, r respectively for PBH (matter) in blue

and radiation in red, in terms of the scale factor normalized at formation. We chose the initial PBH fraction

to be β = 10−4 for illustrative purposes. See how PBH domination can last for several e-folds and that

evaporation is faster than one e-fold.

where “lRD” means late radiation domination and “instant” refers to the amplitude of Φ obtained

by an instant matching from matter to radiation domination. Note that the exponent 1/3 in

Eq. (4.9) is directly related to the exponent in the decay of the PBH mass (4.2). The relation

between Φ and ρPBH follows from the Poisson equation on very subhorizon scales, that is k2Φ ∼
a2ρPBHδPBH. We must take the suppression factor SΦ(k) (4.9) into account when computing any

transfer function for the curvature perturbation. We suggest to read Ref. [129] for more details on

the calculations.

B. PBH number density fluctuations and initial isocurvature

While on average PBH are homogeneously distributed, the fact that PBHs are discrete objects

introduces inhomogeneities. For instance, the mean PBH separation is given by [65]

df ≡
(

3

4πnPBH,f

)1/3

≈ β−1/3Hf
−1 . (4.10)

On scales larger than df we have a coarse grained fluid picture but on scales smaller than df we

either see a PBH or not. Now, since PBH formation is a rare event (the number of PBH per

Hubble volume at formation β is very small), we can approximate the process of formation as

PBHs appearing randomly and uniformly distributed in space (in other words, everywhere has the

same probability of hosting a PBH). And, this means that the probability of having n PBHs in a

given volume is described by Poisson statistics. This allows us to compute the variance of number
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density fluctuations, which for Poisson fluctuations is constant in wavenumber and given by [65]〈
δnPBH,f(k)

nPBH,f

δnPBH,f(k
′)

nPBH,f

〉
=

4π

3

d3f
a3f

δ(k + k′) , (4.11)

where the factor af comes from the fact that we are working with comoving scales. In terms of

dimensionless quantities, a constant physical variance implies a dimensionless variance proportional

to k3. Thus, the variance of fluctuations increases with wavenumber until the fluid picture is no

longer valid, which occurs at an “ultra-violet” cut-off given by the mean inter-PBH comoving

separation, namely

kUV = af/df ≈ β1/3Hf = β1/3kf , (4.12)

where we used that kf = Hf .

Such initial PBH number density fluctuations are in fact initial isocurvature fluctuations. Simply

put, by energy conservation any missing part of the radiation fluid (that ended up in a PBH) is

compensated by the PBHs themselves, such that at formation we have δρPBH,f + δρr,f = 0. This

implies that

Sf =
δρPBH,f

ρPBH,f
− 3

4

δρr,f
ρr,f

≈ δρPBH,f

ρPBH,f
≈ δnPBH,f

nPBH,f
, (4.13)

where we used that initially ρPBH ≪ ρr. From Eq. (4.11), the dimensionless initial isocurvature

power spectrum then reads

PS(k) =
2

3π

(
k

kUV

)3

. (4.14)

This is the initial isocurvature that will eventually generate induced GWs [65, 130].

C. GWs from PBH isocurvature fluctuations after PBH evaporation

PBH number density fluctuations provide isocurvature initial conditions for cosmological fluc-

tuations. However, as we discussed, induced GWs are mainly sourced by curvature fluctuations.

Thus, before computing the induced GWs we have to compute the transfer functions for Φ. As we

will be interested in the GWs sourced by curvature fluctuations after evaporation and on very small

scales (since kUV ≫ keva), we just have to follow Φ until the end of the PBH dominated era. There

are of course GWs induced during the early radiation domination and the early matter domination

phase. However, they turn out to be subdominant and, therefore, we neglect them. See Ref. [65]

for the GWs induced during the PBH dominated phase.

To compute the transfer functions, we start noting that the comoving Hubble parameter at

equality is proportional to β, that is

keq =
√
2β kf , (4.15)
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where keq = Heq. It then follows that we have the resulting hierarchy: kf ≫ kUV ≫ keq ≫ keva.

To put it into words, the initial fluctuations on scales similar to kUV are initially superhorizon

(they are on scales larger than kf). But, these scales around kUV enter the horizon well before

matter-radiation equality and so kUV ≫ keq. Then at evaporation all fluctuations of interest are

largely subhorizon. This means that we can use the second line of the transfer function in Eq. (2.34),

namely the transfer function for isocurvature initial conditions, together with the suppression factor

(4.9), which yields

TΦ(teva; k ≫ keq) = TΦiso(k)SΦ(k) =
3

4

(
k

keq

)−2( k

keva

)−1/3

. (4.16)

To compute the GWs induced after evaporation we have to continue the constant value of Φ

during the PBH (matter) domination to the late radiation domination. After matching, we find

that

ΦlRD(kτ) =
1

cskτ̄
(C1j1(cskτ̄) + C2y1(cskτ̄)) ; τ̄ ≡ τ − τeva/2, (4.17)

where

C1 = −Φeva(k) (cskτeva/2)
2 cos(cskτeva/2) , C2 = C1 tan(cskτeva/2) . (4.18)

Now, with the evolution of Φ we can re-compute the kernel for the induced GWs. Here we only

provide the main steps of the calculations and we refer the reader to Ref. [129, 130] for the details.

The most important point is to realize that, while the amplitude of Φ in Eq. (4.17) starts from a

constant and quickly decays, the amplitude of its time derivative, Φ′, begins at zero (by continuity)

and suddenly jumps to an amplitude proportional to k/keva, which is huge for k ∼ kUV. The reason

for this jump is that during the matter dominated era Φ remained constant but the relevant scales

became more and more subhorizon. Then, at the late radiation domination, Φ resumes its decay

but with very fast oscillations. Yet, since it has not decayed during the matter dominated phase,

the amplitude of Φ′ is suddenly very large by a factor aeva/aUV ∼ kUV/keva (the supposed decay if

there never were a matter dominated era).

Another explanation for the enhancement is given in Ref. [182]. During the matter dominated

phase PBH density fluctuations grow, as standard CDM fluctuations do. But suddenly all those

density fluctuations are converted into radiation which wants to propagate. The large density

fluctuations become density waves with a huge velocity (note that by Einstein Equations in App. A

V ∝ Φ′/H). Inspecting the source term (2.39) we see that the main contribution to the kernel

(2.43) comes from Φ′ and, basically, we can approximate the kernel by

IlRD(x, u, v, xeva) ≈
x̄

2
uv

∫ x̄

xeva/2
dx̄1 x̄

2
1G

lRD(x̄, x̄1)
dT lRD

Φ (ux̄1)

d(ux̄1)

dT lRD
Φ (vx̄1)

d(vx̄1)
, (4.19)

where GlRD(x̄, x̄1) is given by (2.44). After integration and selecting only those terms related to

the resonant peak (those at cs(u+ v) ∼ 1 where the frequency of the source term is equal to that

of the tensor mode) we arrive at

I2lRD,res(u+ v ∼ c−1
s , xeva) ≈

c4su
2v2
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x8evaT

2
Φ(teva; vk)T

2
Φ(teva;uk)Ci

2(|1− (u+ v)cs|xeva/2) . (4.20)
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To compute the induced GW spectrum we plug in the averaged kernel (4.20) into Eq. (2.41)

and integrate. However, for sufficiently peaked spectrum the integral is well approximated by a

power-law with a sharp cut-off [129–131]. A power spectrum is considered to be peaked enough if

the integrand in Eq. (2.41) grows for growing u and v. Since it contains (uv)2 ∼ v4, the effective

spectral index of PΦ(k) should be larger that −5/2. Otherwise the integral has to be carried out

numerically. Our effective power spectrum of curvature fluctuations at evaporation reads

Peva
Φ (k ≫ keq) ≈ T 2

Φiso
(k)S2

Φ(k)PS(k) =
3

8π

(
k

keq

)−4( k

keva

)−2/3( k

kUV

)3

, (4.21)

which has an effective spectral index of −5/3. We see that our effective power spectrum is well

within the power-law approximation for the integral.

With the aforementioned approximations, the PBH isocurvature induced GW spectrum is

roughly given by

ΩGW,c ≈ ΩGW,res

(
k

kUV

)11/3

Θ(kUV − k) , (4.22)

where the peak amplitude of the GW spectrum is approximately given by

ΩGW,res(k ∼ kUV) ≈
1

24576π 21/3
√
3

(
kUV

keva

)17/3( keq
kUV

)8

≈ 1030β16/3

(
MPBH,f

104g

)34/9

. (4.23)

Furthermore, using Eqs. (4.12) and (4.5), we find that the peak GW frequency is located at

fUV ≈ 1700Hz

(
MPBH,f

104 g

)−5/6

. (4.24)

Thus, on one hand, we see that for 5×108g > MPBH,f > 104 g the peak of the GW spectrum enters

in the observable range of LIGO/VIRGO/KAGRA and future detectors such as ET and CE. It is

interesting to note that the peak frequency only depends on the PBH mass at formation providing

a clear probe of the PBH mass. On the other hand, the peak amplitude of the GW spectrum can

be used to probe the initial PBH fraction. For instance, requiring that the peak amplitude is not

in contradiction with current BBN constraints imposes that

β < 10−6

(
MPBH,f

104 g

)−17/24

. (4.25)

This is the best constraint we have on the fraction of PBHs that evaporated before BBN. We show

the resulting bounds on β and an example of the GW spectrum from the PBH dominated universe

in Fig. 6.

D. Remarks, issues and future work

In our calculations we have mainly focus on the curvature perturbation Φ right after evaporation

and we trusted our linear perturbation theory since Φ ≪ 1. However, when we look into the
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FIG. 6. On the left we show in the shaded orange region the parameter space for the initial fraction of

PBHs, β, such that PBHs dominate the early universe (β > βmin; magenta line) and that the induced

GWs satisfies BBN bounds (β < βmax; purple line), as a function of PBH mass. On the right we present

an example of induced GWs from the PBH dominated early universe with MPBH,f = 106 g and β = 2 ×
10−8. We also show the power-law integrated sensitivity curves [172] for DECIGO, Einstein Telescope (ET),

Cosmic Explorer (CE), Voyager and LIGO A+ experiments [126–128, 173] as well as the upper bounds

from the LIGO/Virgo/KAGRA collaboration [118]. The horizontal lines show BBN [174–176] and CMB-S4

experiments constraints, respectively in blue and purple [175, 177]. Finding a very peaked GW signal with

a slope of k11/3 above Hz frequencies might be an indication of the PBH reheating scenario.

evolution of matter density fluctuations, which on small scales are related to Φ by the Poisson

equation 2k2Φ = a2δρ, we find that δρ/ρ at evaporation is larger than unity [65, 130]. Depending

on the PBH mass and fraction the amplitude of density fluctuations might be of a few orders of

magnitude. This signals the on-set of non-linear physics, such as halo formation and PBH mergers.

Unfortunately, one would need numerical simulations to explore such non-linear regimes. And,

although it is an interesting question, it is out of the scope of this review. Note that we could also

be conservative and stop our calculations of induced GWs when density fluctuations enter the non-

linear regime. But, the fact is that we do not expect the GW production to stop by non-linearities.

Thus, we take our result, Eq. (4.23), as a rough order of magnitude estimate. For an interesting

proposal in terms of turbulences in the radiation fluid after evaporation see Ref. [183].

In this work we have also neglected the contribution for the adiabatic fluctuations that formed

the PBHs, which for large PBH masses might enter the sensitivity of ET in the low frequency tail,

and any primordial adiabatic fluctuations enhanced by the PBH dominated stage [129]. For works

including both PBH isocurvature and adiabatic induced GWs see Refs. [184–186]. For articles

investigating the effect of a PBH dominated stage on the GW spectrum from cosmic strings see

Refs. [187–189]. Other applications of the GWs from the PBH dominated universe can be found in

Refs. [190–192] in the context of modified gravity. Another interesting signal of the PBH dominated

universe are GWs from Hawking evaporation itself, which could be important for highly spinning

PBHs [131, 175, 193–197]. For a similar application in the case where inflaton oscillons dominate
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the universe after inflation see Ref. [208].

We end this section by emphasizing that the formalism employed is also applicable to any early

matter dominated stage followed by a transition to radiation domination, as discussed in [131]

(although see Ref. [198] for a transition to kinetic domination). For instance, if at the start of the

early matter domination we have a spectrum of curvature fluctuations given by a power-law, for

instance

PΦ = AΦ

(
k

kUV

)−n

Θ(kUV − k) , (4.26)

with some arbitrary cut-off at kUV, then the resulting induced GW spectrum after evaporation

reads [131]

ΩGWs,rh(k ∼ kUV) ≈ Ωpeak
GWs

(
k

kUV

)7−2n

Θ(kUV − k) , (4.27)

where

Ωpeak
GWs ≈

π

3× 212cs

(
1− c2s

)2 (
4c2s

)n(kUV

krh

)7

A2
Φ . (4.28)

It is also important to note that if transition is rather gradual, the enhancement of the induced

GW spectrum disappears [199, 200]. This is particularly important if PBHs have a relatively broad

mass function [129].

V. DISCUSSIONS AND CONCLUSIONS

Initial isocurvature fluctuations may source induced GWs, in addition to any initial adiabatic

fluctuations. One possibility is that isocurvature fluctuations do so via an induced curvature fluc-

tuation, which is for example the case of initial CDM isocurvature. The revelant GWs are then

induced during the standard radiation dominated era. In that situation, the amplitude of the in-

duced GWs is roughly suppressed by a factor ρm/ρr evaluated at horizon crossing for a given k

mode. This results in a large amplitude of initial isocurvature fluctuations, if such GWs enter the

observable window of current and future GW detectors. Although a large amplitude (S ≫ 1) is

consistent with cosmological perturbation theory, it has the caveat that isocurvature fluctuations

must be extremely non-Gaussian [52]. We expect that such non-Gaussianities may in fact enhance

the production of induced GWs. As an example, we considered in Fig. 4 the possibility that CDM

isocurvature fluctuations explain the tentative GW signal reported by PTAs.

Another possibility is that the field mainly responsible for initial isocurvature fluctuations dom-

inates the very early universe. Initial isocurvature fluctuations are then converted into curvature

fluctuations which directly source induced GWs. As an example of this situation we considered the

PBH dominated universe and the number density fluctuations coming from their Poisson statistics.

When the PBH mass function is monochromatic, the final PBH evaporation is almost instanta-

neous, resulting in a large production of induced GWs right after evaporation. One may use this
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signal to probe the PBH reheating scenario and place constraints on the initial fraction of PBHs,

as we showed in Fig. 6. Although our estimate of the induced GW spectrum (4.23) might be sus-

ceptible to non-linearities that occur during the PBH dominated phase and to the assumption of a

monochromatic mass function, it provides hopes that we may be able to probe the PBH reheating

scenario.

As an extension of our result, we may wonder what implications would Planck remnants [201]

at the end of evaporation have for the induced GW signal. See refs. [202–206] for reviews and

models on black hole remnants. Recently in Ref. [207], it has been shown that if such remnants

constitute the totality of the CDM then the initial PBH mass must be 5 × 105g and the induced

GW spectrum must peak at around 100Hz. Although it is a speculative possibility, such rather

precise prediction for the peak frequency of the induced GWs might be one of the unique ways to

test the PBH remnant scenario as CDM.

We would like to end this review with one interesting consequence of the formalism for early

isocurvature induced GWs presented in this review. As argued in Refs. [66, 67], the formation of

compact solitonic structures, such as oscillons, monopoles, domain walls, Q-balls, cosmic strings,

etcetera, leads to a Poissonian distribution on scales much larger than the mean inter-soliton separa-

tion, just in the PBH scenario of § IV. This means that statistical fluctuations of the number density

of compact structures will lead to a dimensionless power spectrum proportional to k3. Such power

spectrum of isocurvature fluctuations first induces GW during the radiation dominated phase, as in

§ III, and might give another contribution if solitons dominate the early universe before decaying.

Such generic prediction has been named “Universal Gravitational Waves of Solitons” [66, 67].

We conclude by emphasizing that, while the consequences of primordial adiabatic fluctuations

have been extensively studied, initial isocurvature fluctuations present new opportunities to test

the physics of the unexplored very early universe.
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Appendix A: Equations for cosmological perturbations

For completeness we write in this appendix the main formulas for cosmological perturbation

theory in the Newton gauge. The background equations are given by the Friedmann equations,

which read

3M2
plH2 = a2(ρm + ρr) , (A1)

2M2
pl(H2 − 2H′) = a2(ρm + ρr + pr) . (A2)
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For the matter perturbations at linear level we have that um0 = ur0 = −a (1 + Ψ) , umi = a∂ivm
and uri = a∂ivr. We also perturb ρ → ρ+ δρ. The trace-less part of the liner ij Einstein equation

yields

Φ + Ψ = 0 . (A3)

For simplicity we use Ψ = −Φ in all forthcoming equations. The 00, 0i and ij trace components

lead us to

6HΦ′ + 6H2Φ− 2∆Φ = a2(δρm + δρr) ≡ a2δρ , (A4)

Φ′ +HΦ =
1

2
a2

(
ρmvm +

4

3
ρrvr

)
≡ 1

2
a2ρV , (A5)

Φ′′ + 3HΦ′ +
(
H2 + 2H′)Φ = −1

6
a2δρr . (A6)

Energy conservation of the perfect fluid yields

δρ′m + 3Hδρm + ρm(3Φ′ +∆vm) = 0 , (A7)

δρ′r + 4Hδρr +
4

3
ρr(3Φ

′ +∆vr) = 0 . (A8)

Euler equations, or momentum conservation, gives

v′m +Hvm − Φ = 0 , (A9)

ρrv
′
r +

1

4
δρr − ρrΦ = 0 . (A10)

The second order equations for tensor modes are given in the main text, Eq. (2.10).

Appendix B: Formula for induced GWs from adiabatic fluctuations

We take the analytical expression of GWs induced by adiabatic fluctuations from Ref. [48]. In

this case, the induced GW spectral density is given by

ΩGW,c =

∫ ∞

0
dv

∫ 1+v

|1−v|
du T (u, v, cs)PR(ku)PR(kv) , (B1)

where we defined for convenience

TRD(u, v, cs) =
2

3

(
4v2 − (1− u2 + v2)2

4uv

)2

I2(xc, k, u, v) , (B2)

and

TRD(u, v, cs) =
y2

3c4s

(
4v2 − (1− u2 + v2)2

4u2v2

)2

×
{
π2

4
y2Θ[cs(u+ v)− 1] +

(
1− 1

2
y ln

∣∣∣∣1 + y

1− y

∣∣∣∣)2
}

. (B3)
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Lastly, we introduced the variable y as it simplifies considerably the expressions, which reads

y = 1− 1− c2s(u− v)2

2c2suv
. (B4)

The relation between Φ and R is given by

PΦ =
4

9
PR . (B5)

This recovers the well-known result of Kohri and Terada [138].
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[64] D. Inman and Y. Ali-Häımoud, Early structure formation in primordial black hole cosmologies, Phys.

Rev. D 100, 083528 (2019), arXiv:1907.08129 [astro-ph.CO].

[65] T. Papanikolaou, V. Vennin, and D. Langlois, Gravitational waves from a universe filled with primordial

black holes, JCAP 03, 053, arXiv:2010.11573 [astro-ph.CO].

[66] K. D. Lozanov, M. Sasaki, and V. Takhistov, Universal Gravitational Wave Signatures of Cosmological

Solitons, (2023), arXiv:2304.06709 [astro-ph.CO].

[67] K. D. Lozanov, M. Sasaki, and V. Takhistov, Universal Gravitational Waves from Interacting and

Clustered Solitons, (2023), arXiv:2309.14193 [astro-ph.CO].

[68] G. Agazie et al. (NANOGrav), The nanograv 15-year data set: Evidence for a gravitational-wave

background, (2023), arXiv:2306.16213 [astro-ph.HE].

[69] G. Agazie et al. (NANOGrav), The nanograv 15-year data set: Observations and timing of 68 mil-

lisecond pulsars, (2023), arXiv:2306.16217 [astro-ph.HE].

[70] J. Antoniadis et al. (EPTA), The second data release from the european pulsar timing array iii. search

for gravitational wave signals, (2023), arXiv:2306.16214 [astro-ph.HE].

[71] J. Antoniadis et al. (EPTA), The second data release from the european pulsar timing array i. the

dataset and timing analysis, (2023), arXiv:2306.16224 [astro-ph.HE].

[72] J. Antoniadis et al. (EPTA), The second data release from the european pulsar timing array: V.

implications for massive black holes, dark matter and the early universe, (2023), arXiv:2306.16227

[astro-ph.HE].

[73] D. Reardon et al. (PPTA), Search for an isotropic gravitational-wave background with the parkes

pulsar timing array, (2023), arXiv:2306.16215 [astro-ph.HE].

[74] A. Zic et al. (PPTA), The parkes pulsar timing array third data release, (2023), arXiv:2306.16230

[astro-ph.HE].

[75] D. Reardon et al. (PPTA), The gravitational-wave background null hypothesis: Characterizing noise

in millisecond pulsar arrival times with the parkes pulsar timing array, (2023), arXiv:2306.16229

[astro-ph.HE].

[76] H. Xu et al. (CPTA), Searching for the nano-hertz stochastic gravitational wave background with the

chinese pulsar timing array data release i, (2023), arXiv:2306.16216 [astro-ph.HE].

[77] G. Agazie et al. (International Pulsar Timing Array), Comparing recent PTA results on the nanohertz

stochastic gravitational wave background, (2023), arXiv:2309.00693 [astro-ph.HE].

[78] A. Afzal et al. (NANOGrav), The nanograv 15-year data set: Search for signals from new physics,

(2023), arXiv:2306.16219 [astro-ph.HE].

[79] V. Dandoy, V. Domcke, and F. Rompineve, Search for scalar induced gravitational waves in the

International Pulsar Timing Array Data Release 2 and NANOgrav 12.5 years datasets, (2023),

arXiv:2302.07901 [astro-ph.CO].

https://doi.org/10.1103/PhysRevLett.126.041101
https://arxiv.org/abs/2008.12456
https://arxiv.org/abs/2304.13053
https://doi.org/10.1103/PhysRevD.98.023525
https://doi.org/10.1103/PhysRevD.98.023525
https://arxiv.org/abs/1711.06736
https://arxiv.org/abs/2110.02272
https://doi.org/10.1103/PhysRevD.47.4244
https://doi.org/10.1103/PhysRevD.100.083528
https://doi.org/10.1103/PhysRevD.100.083528
https://arxiv.org/abs/1907.08129
https://doi.org/10.1088/1475-7516/2021/03/053
https://arxiv.org/abs/2010.11573
https://arxiv.org/abs/2304.06709
https://arxiv.org/abs/2309.14193
https://arxiv.org/abs/2306.16213
https://arxiv.org/abs/2306.16217
https://arxiv.org/abs/2306.16214
https://arxiv.org/abs/2306.16224
https://arxiv.org/abs/2306.16227
https://arxiv.org/abs/2306.16227
https://arxiv.org/abs/2306.16215
https://arxiv.org/abs/2306.16230
https://arxiv.org/abs/2306.16230
https://arxiv.org/abs/2306.16229
https://arxiv.org/abs/2306.16229
https://arxiv.org/abs/2306.16216
https://arxiv.org/abs/2309.00693
https://arxiv.org/abs/2306.16219
https://arxiv.org/abs/2302.07901


31

[80] G. Franciolini, A. Iovino, Junior., V. Vaskonen, and H. Veermae, The recent gravitational wave ob-

servation by pulsar timing arrays and primordial black holes: the importance of non-gaussianities,

(2023), arXiv:2306.17149 [astro-ph.CO].

[81] G. Franciolini, D. Racco, and F. Rompineve, Footprints of the QCD Crossover on Cosmological Grav-

itational Waves at Pulsar Timing Arrays, (2023), arXiv:2306.17136 [astro-ph.CO].

[82] K. Inomata, K. Kohri, and T. Terada, The Detected Stochastic Gravitational Waves and Sub-Solar

Primordial Black Holes, (2023), arXiv:2306.17834 [astro-ph.CO].

[83] Y.-F. Cai, X.-C. He, X. Ma, S.-F. Yan, and G.-W. Yuan, Limits on scalar-induced gravitational waves

from the stochastic background by pulsar timing array observations, (2023), arXiv:2306.17822 [gr-qc].

[84] S. Wang, Z.-C. Zhao, J.-P. Li, and Q.-H. Zhu, Exploring the Implications of 2023 Pulsar Tim-

ing Array Datasets for Scalar-Induced Gravitational Waves and Primordial Black Holes, (2023),

arXiv:2307.00572 [astro-ph.CO].

[85] L. Liu, Z.-C. Chen, and Q.-G. Huang, Implications for the non-Gaussianity of curvature perturbation

from pulsar timing arrays, (2023), arXiv:2307.01102 [astro-ph.CO].

[86] C. Unal, A. Papageorgiou, and I. Obata, Axion-Gauge Dynamics During Inflation as the Origin of

Pulsar Timing Array Signals and Primordial Black Holes, (2023), arXiv:2307.02322 [astro-ph.CO].

[87] D. G. Figueroa, M. Pieroni, A. Ricciardone, and P. Simakachorn, Cosmological Background Interpre-

tation of Pulsar Timing Array Data, (2023), arXiv:2307.02399 [astro-ph.CO].

[88] Z. Yi, Q. Gao, Y. Gong, Y. Wang, and F. Zhang, The waveform of the scalar induced gravitational

waves in light of Pulsar Timing Array data, (2023), arXiv:2307.02467 [gr-qc].

[89] Q.-H. Zhu, Z.-C. Zhao, and S. Wang, Joint implications of BBN, CMB, and PTA Datasets for Scalar-

Induced Gravitational Waves of Second and Third orders, (2023), arXiv:2307.03095 [astro-ph.CO].

[90] H. Firouzjahi and A. Talebian, Induced Gravitational Waves from Ultra Slow-Roll Inflation and Pulsar

Timing Arrays Observations, (2023), arXiv:2307.03164 [gr-qc].

[91] J.-P. Li, S. Wang, Z.-C. Zhao, and K. Kohri, Primordial Non-Gaussianity and Anisotropies in Gravi-

tational Waves induced by Scalar Perturbations, (2023), arXiv:2305.19950 [astro-ph.CO].

[92] Z.-Q. You, Z. Yi, and Y. Wu, Constraints on primordial curvature power spectrum with pulsar timing

arrays, (2023), arXiv:2307.04419 [gr-qc].

[93] S. Balaji, G. Domènech, and G. Franciolini, Scalar-induced gravitational wave interpretation of PTA

data: the role of scalar fluctuation propagation speed, (2023), arXiv:2307.08552 [gr-qc].

[94] S. A. Hosseini Mansoori, F. Felegray, A. Talebian, and M. Sami, PBHs and GWs from T2-inflation

and NANOGrav 15-year data, JCAP 08, 067, arXiv:2307.06757 [astro-ph.CO].

[95] Z.-C. Zhao, Q.-H. Zhu, S. Wang, and X. Zhang, Exploring the Equation of State of the Early Universe:

Insights from BBN, CMB, and PTA Observations, (2023), arXiv:2307.13574 [astro-ph.CO].

[96] L. Liu, Z.-C. Chen, and Q.-G. Huang, Probing the equation of state of the early Universe with pulsar

timing arrays, (2023), arXiv:2307.14911 [astro-ph.CO].

[97] Z. Yi, Z.-Q. You, and Y. Wu, Model-independent reconstruction of the primordial curvature power

spectrum from PTA data, (2023), arXiv:2308.05632 [astro-ph.CO].

[98] N. Bhaumik, R. K. Jain, and M. Lewicki, Ultra-low mass PBHs in the early universe can explain the

PTA signal, (2023), arXiv:2308.07912 [astro-ph.CO].

[99] S. Choudhury, A. Karde, S. Panda, and M. Sami, Scalar induced gravity waves from ultra slow-roll

Galileon inflation, (2023), arXiv:2308.09273 [astro-ph.CO].

[100] Z. Yi, Z.-Q. You, Y. Wu, Z.-C. Chen, and L. Liu, Exploring the NANOGrav Signal and Planet-mass

Primordial Black Holes through Higgs Inflation, (2023), arXiv:2308.14688 [astro-ph.CO].

[101] K. Harigaya, K. Inomata, and T. Terada, Induced Gravitational Waves with Kination Era for Recent

Pulsar Timing Array Signals, (2023), arXiv:2309.00228 [astro-ph.CO].

https://arxiv.org/abs/2306.17149
https://arxiv.org/abs/2306.17136
https://arxiv.org/abs/2306.17834
https://arxiv.org/abs/2306.17822
https://arxiv.org/abs/2307.00572
https://arxiv.org/abs/2307.01102
https://arxiv.org/abs/2307.02322
https://arxiv.org/abs/2307.02399
https://arxiv.org/abs/2307.02467
https://arxiv.org/abs/2307.03095
https://arxiv.org/abs/2307.03164
https://arxiv.org/abs/2305.19950
https://arxiv.org/abs/2307.04419
https://arxiv.org/abs/2307.08552
https://doi.org/10.1088/1475-7516/2023/08/067
https://arxiv.org/abs/2307.06757
https://arxiv.org/abs/2307.13574
https://arxiv.org/abs/2307.14911
https://arxiv.org/abs/2308.05632
https://arxiv.org/abs/2308.07912
https://arxiv.org/abs/2308.09273
https://arxiv.org/abs/2308.14688
https://arxiv.org/abs/2309.00228


32

[102] S. Basilakos, D. V. Nanopoulos, T. Papanikolaou, E. N. Saridakis, and C. Tzerefos, Signatures of

Superstring theory in NANOGrav, (2023), arXiv:2307.08601 [hep-th].

[103] J.-H. Jin, Z.-C. Chen, Z. Yi, Z.-Q. You, L. Liu, and Y. Wu, Confronting sound speed resonance with

pulsar timing arrays, JCAP 09, 016, arXiv:2307.08687 [astro-ph.CO].

[104] E. Cannizzaro, G. Franciolini, and P. Pani, Novel tests of gravity using nano-Hertz stochastic

gravitational-wave background signals, (2023), arXiv:2307.11665 [gr-qc].

[105] Z. Zhang, C. Cai, Y.-H. Su, S. Wang, Z.-H. Yu, and H.-H. Zhang, Nano-Hertz gravitational waves

from collapsing domain walls associated with freeze-in dark matter in light of pulsar timing array

observations, (2023), arXiv:2307.11495 [hep-ph].

[106] L. Liu, Y. Wu, and Z.-C. Chen, Simultaneously probing the sound speed and equation of state of the

early Universe with pulsar timing arrays, (2023), arXiv:2310.16500 [astro-ph.CO].

[107] S. Choudhury, K. Dey, A. Karde, S. Panda, and M. Sami, Primordial non-Gaussianity as a saviour

for PBH overproduction in SIGWs generated by Pulsar Timing Arrays for Galileon inflation, (2023),

arXiv:2310.11034 [astro-ph.CO].

[108] M. Tagliazucchi, M. Braglia, F. Finelli, and M. Pieroni, The quest of CMB spectral distortions

to probe the scalar-induced gravitational wave background interpretation in PTA data, (2023),

arXiv:2310.08527 [astro-ph.CO].

[109] S. Basilakos, D. V. Nanopoulos, T. Papanikolaou, E. N. Saridakis, and C. Tzerefos, Induced gravita-

tional waves from flipped SU(5) superstring theory at nHz, (2023), arXiv:2309.15820 [astro-ph.CO].

[110] K. Inomata, M. Kawasaki, K. Mukaida, and T. T. Yanagida, Axion Curvaton Model for the Gravita-

tional Waves Observed by Pulsar Timing Arrays, (2023), arXiv:2309.11398 [astro-ph.CO].

[111] J.-P. Li, S. Wang, Z.-C. Zhao, and K. Kohri, Complete Analysis of Scalar-Induced Gravitational Waves

and Primordial Non-Gaussianities fNL and gNL, (2023), arXiv:2309.07792 [astro-ph.CO].

[112] G. Domènech, G. Vargas, and T. Vargas, An exact model for enhancing/suppressing primordial fluc-

tuations, (2023), arXiv:2309.05750 [astro-ph.CO].

[113] M. R. Gangopadhyay, V. V. Godithi, K. Ichiki, R. Inui, T. Kajino, A. Manusankar, G. J. Mathews, and

Yogesh, Is the NANOGrav detection evidence of resonant particle creation during inflation?, (2023),

arXiv:2309.03101 [astro-ph.CO].

[114] B. Cyr, T. Kite, J. Chluba, J. C. Hill, D. Jeong, S. K. Acharya, B. Bolliet, and S. P. Patil, Disentangling

the primordial nature of stochastic gravitational wave backgrounds with CMB spectral distortions,

(2023), arXiv:2309.02366 [astro-ph.CO].

[115] H.-L. Huang, Y. Cai, J.-Q. Jiang, J. Zhang, and Y.-S. Piao, Supermassive primordial black holes in mul-

tiverse: for nano-Hertz gravitational wave and high-redshift JWST galaxies, (2023), arXiv:2306.17577

[gr-qc].

[116] Y. Gouttenoire, S. Trifinopoulos, G. Valogiannis, and M. Vanvlasselaer, Scrutinizing the Primor-

dial Black Holes Interpretation of PTA Gravitational Waves and JWST Early Galaxies, (2023),

arXiv:2307.01457 [astro-ph.CO].

[117] P. F. Depta, K. Schmidt-Hoberg, and C. Tasillo, Do pulsar timing arrays observe merging primordial

black holes?, (2023), arXiv:2306.17836 [astro-ph.CO].

[118] R. Abbott et al. (KAGRA, Virgo, LIGO Scientific), Upper limits on the isotropic gravitational-wave

background from Advanced LIGO and Advanced Virgo’s third observing run, Phys. Rev. D 104,

022004 (2021), arXiv:2101.12130 [gr-qc].

[119] A. Sesana et al., Unveiling the gravitational universe at µ-Hz frequencies, Exper. Astron. 51, 1333

(2021), arXiv:1908.11391 [astro-ph.IM].

[120] S. Barke, Y. Wang, J. J. Esteban Delgado, M. Tröbs, G. Heinzel, and K. Danzmann, Towards a
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