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We revisit the recent debate on the evidence for an overtone in the black hole ringdown of
GW150914. By gating and inpainting the data, we discard the contamination from earlier parts of
the gravitational wave signal before ringdown. This enables the parameter estimation to be con-
ducted in the frequency domain, which is mathematically equivalent to the time domain method.
We keep the settings as similar as possible to the previous studies by Cotesta et al. [1] and Isi et
al. [2, 3] which yielded conflicting results on the Bayes factor of the overtone. We examine the
spectral contents of the matched-filtering in the frequency domain, and propose a convergence test
to assess the validity of an overtone model. Our results find the Bayes factors for the overtone fall
within 10 and 26 around a range of times centered at the best-fit merger time of GW150914, which
supports the existence of an overtone in agreement with the conclusions of Isi et al. [2, 3]. Our
work contributes to the understanding of how various methods affect the statistical significance of
overtones.

I. INTRODUCTION

The gravitational waves (GWs) emitted during the
black hole (BH) ringdown consists of a superposition of
damped sinusoids known as quasi-normal modes (QNMs)
[4]. According to the no-hair theorem [5, 6] the charac-
teristic frequencies and damping times are exclusively de-
termined by the astrophysical BH’s mass and spin. When
multiple modes are identified from the ringdown’s GW,
the BH mass and spin can be inferred independently and
cross-checked. This is often known as BH spectroscopy
[7], and offers an unequivocal way to test the validity of
general relativity (GR).

The first evidence of a QNM is reported for GW150914
[8], in which the single (ℓ,m, n) = (2, 2, 0) mode is found
with a frequency and decay time consistent with the GR
expectation from the full signal analysis. Theoretical
studies [9] suggest the detection of a secondary QNM
would likely only occur once Advanced LIGO [10], Ad-
vanced Virgo [11] and KAGRA [12] have reached their
design sensitivity. Nevertheless, the event GW190521 is
discovered to have an unexpectedly high redshifted rem-
nant mass ∼ 260 M⊙ [13, 14]. The evidence of a subdom-
inant mode (3, 3, 0) from GW190521 is reported with a
Bayes factor of 56 [15–18]; also see [19] for an alterna-
tive interpretation involving the (2, 1, 0) mode. By fit-
ting numerical relativity data, Ref. [20] shows that the
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QNM description can be valid as early as the merger
stage, provided that overtones are considered. Starting
the analysis from the merger time, Isi et al. [2] reports
the first detection of a (2, 2, 1) mode from GW150914
with a significance of 3.6σ and shows the parameters to
be consistent with the prediction of GR. More studies
that investigate the GW150914 overtone include [21–24]
with various techniques.
However, Cotesta et al. [1] claims that the detection

of the overtone in Isi et al. [2] is noise-dominated. A
reanalysis shows that the Bayes factor in favor of the
overtone compared to only the fundamental mode is less
than 1 around the merger time, hence no evidence for the
overtone is found. Nevertheless, Isi and Farr [3] revisits
the analysis and claims to be unable to reproduce the
results in Cotesta et al. [1] and shows that the Bayes
factor of the model including the (2, 2, 1) mode indicates
the presence of the overtone.
The data analysis frameworks employed in [1] and [2, 3]

are fundamentally similar. To remove the influence of the
pre-ringdown GW signal, both compute the likelihood in
the time domain [25, 26], as the frequency-domain for-
malism used by conventional GW parameter estimation
is no longer applicable. In practice, a number of techni-
cal complications can result in the inconsistent findings
between [1] and [2, 3], highlighting the need for a com-
prehensive understanding of the techniques employed in
ringdown overtone analysis. In this study, we utilize an
independent framework in the frequency domain to re-
visit GW150914, aiming to offer a new perspective to
understand the analysis for overtones.

ar
X

iv
:2

31
0.

19
64

5v
1 

 [
gr

-q
c]

  3
0 

O
ct

 2
02

3

mailto:yifan.wang@aei.mpg.de


2

In [15] we propose a new approach following the orig-
inal idea of [27] to excise the contamination from the
GW signal prior to the ringdown by gating and inpaint-
ing the data. This is mathematically equivalent to the
time domain method of [1–3] and enables us to keep the
analysis in the frequency domain. Thereby, we can take
advantage of the parameter estimation package PyCBC
inference [28] by using several existing modules, such
as data conditioning, power spectral density (PSD) esti-
mation with Welch’s method [29], and frequency-domain
likelihood calculation and sampling [30], which are well
tested and were used in numerous previous studies, e.g.,
[31, 32].

We explore the impact of different sampling rates on
the GW150914 overtone significance as the sampling rate
appears to differ between [1] and [2, 3] (16384 Hz vs 2048
Hz). In addition, the extremely short decay time of the
overtone, typically ≲ O(1) ms, motivates us to examine
the matched-filtering of high frequency contents of the
signal, which is straightforward by examining the wave-
form in the frequency domain. As emphasized by [1], the
merger time of GW150914 is subject to uncertainty, and
we follow [1–3] to select a set of discrete times centered
around the best-fit merger time as the ringdown start-
ing time. 1 We also carefully ensure the starting time is
precisely implemented in PyCBC inference, rather than
rounding up to that of a LIGO data sample, in light of
our findings that the evidence of an overtone is highly
sensitive to such approximations (see Appendix A) be-
cause of the overtone’s rapid decay.

II. GATED GAUSSIAN LIKELIHOOD

We briefly review the gated Gaussian likelihood that
employs data gating and inpainting [15, 26, 27]. The con-
ventional likelihood used in GW parameter estimation for
Gaussian and stationary noise is

L(n) = 1√
(2π)N |C|

exp

[
−1

2
nTC−1n

]
(1)

where n is the noise vector with N elements, C is the
covariance matrix of n. By the stationary assumption,
C is a Toeplitz matrix, and can be further diagonalized
by a discrete Fourier transform basis matrix if the noise
data is circulant. Therefore, the likelihood can be greatly
simplified in the frequency domain as

lnL(n) ∝ ⟨n|n⟩ (2)

where the inner product is defined as

⟨a|b⟩ = 4ℜ
∫

ã†(f)b̃(f)

Sn(f)
df (3)

1 See [33] which reports the analysis for GW150914 overtone by
sampling and marginalizing over the sky location and starting
time.

in which ã(f) and b̃(f) are the Fourier transforms of arbi-
trary functions a and b, and Sn(f) is the one-sided PSD
of the noise. When a GW is present, the noise can be
obtained by subtracting the GW waveform h from the
detector measurement d, so that the likelihood of a GW
waveform is L(n) = L(d− h).
Ringdown inference aims to exclusively analyze sig-

nals after the remnant BH enters a linear perturbation
regime, hence the pre-ringdown contamination should be
excised. However, this would break the circularity condi-
tion due to the abrupt onset of the ringdown signal, thus
the covariance matrix can not be diagonalized simply by
a Fourier transform [26]. One needs to numerically in-
vert the non-circulant covariance matrix in Eq. (1), as
implemented by the time domain analysis [1–3].
Alternatively, Ref. [27] proposes, and Ref. [15] applies

in ringdown analysis, a relation between the inversion of
the covariance matrix from truncated data, ntr, and that
from the complete data, n, by replacing (inpainting) the
excised data with x. Without loss of generality, we ex-
press the complete data n as the concatenation of three
vectors, which is n = n1 ⊕ n2 ⊕ n3, where ⊕ denotes
the concatenation operation; the border of n2 and n3 de-
lineates the pre-ringdown and ringdown stage, and n2 is
long enough to cover the entire pre-ringdown GW signals.
The truncated data can be expressed by ntr = n1 ⊕ n3.
The gated Gaussian likelihood aims to replace n2 with a
vector x, as ninpaint = n1 ⊕ x⊕ n3, such that

ntrC
−1
tr ntr = ninpaint

TC−1ninpaint (4)

where C−1
tr denotes the covariance matrix of ntr. The so-

lution is obtained by solving the Toeplitz linear equation
(for a proof see Appendix C)[

C−1(n1 ⊕ x⊕ n3)
]
inpaint

= 0inpaint (5)

where the subscript asserts this equation is valid only
in the rows corresponding to the data being inpainted.
Given an M -dimensional inpainting vector x, Eq. (5) is
an M -dimensional Toeplitz linear equation with the time
complexity scaling as M2. Since the right-hand side of
Eq. (4) resumes the use of C−1, one can diagonalize it
with a Fourier transform and thus perform the analysis
in the frequency domain once x is obtained via Eq. (5).

III. RESULTS

We reanalyze the overtone of GW150914 using similar
settings to [1–3]. Our waveform model is

h+ + ih× =
∑
ℓmn

−2Sℓmn(ι, φ;χf )Aℓmne
i(Ωℓmnt+ϕℓmn) ,

(6)
where −2

Sℓmn are the spin-weighted spheroidal harmon-
ics, ι and φ are the inclination angle and azimuthal angle;
Ωℓmn = 2πfℓmn + i/τℓmn is the complex frequency, fℓmn

and τℓmn are the characteristic frequency and decay time
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exclusively determined by Mf and χf , the mass and spin
of the remnant BH; Aℓmn and ϕℓmn are the amplitude
and initial phase, which in principle can be determined
by the initial conditions of the BH perturbation, how-
ever, due to lack of concrete knowledge, we treat them
as free parameters to be inferred from the data.

We follow [1] and use the reference GPS time tref =
1126259462.42323 s as a median of GW150914’s merger
time recorded by LIGO Hanford, and expand the analysis
by scanning different starting times within tref ± 1.5 ms,
corresponding to 2σ uncertainty around tref . The ampli-
tude priors on A220 and A221 are uniform in [0, 5×10−20];
the phase priors on ϕ220 and ϕ221 are uniform in [0, 2π];
all of which are identical to [1]. The prior of final mass
and final dimensionless spin is chosen to be uniform in
[35,140]M⊙ and [0,0.99]; the inclination angle, azimuthal
angle, polarization angle and sky localization are fixed
to the values given by [1–3], which in turn are obtained
from the maximum likelihood value from the analysis of
the complete signal of GW150914. Because the auto cor-
relation function (ACF) of LIGO data typically decays to
zero only after a few seconds [26], we analyze 8s of data
centered at the starting time. We also use four different
sampling rates fs from 1024 Hz to 8192 Hz to study the
impact of different upper frequency limits on the overtone
inference. No higher sampling rate is considered because
the LIGO data calibration is only valid from 10 Hz to 5
kHz [34].

The findings of our study are presented in Fig. 1, which
shows the logarithm of the Bayes factor log10 B221

220 com-
paring the waveform model with modes (2, 2, 0)+(2, 2, 1)
to that with only the (2, 2, 0) mode at various start-
ing times. For comparison, we plot the Bayes factors
reported by [1] and [3], respectively. We consider the
fs = 8192 Hz runs as our fiducial results and quantify the
convergence of Bayes factors by measuring the fractional
difference between the highest and second highest sam-
pling rate results, i.e., δ = |Bfs=8192−Bfs=4096|/Bfs=8192,
as shown in Fig. 1.

We notice the intriguing trend that the Bayes factors
from different sampling rates only start to converge af-
ter tref − 0.25 ms, where we quantify convergence by the
criterion δ < 50%. Prior to that, there are noticeable dis-
agreements from different sampling rates. Results with
fs = 1024 Hz yield the strongest evidence for the (2,2,1)
mode (we will discuss in more details in the next sec-
tion). We regard the divergence as an indicator that
the overtone model is matching the data insufficiently.
The strong Bayes evidence for low sampling rate can be
plausibly attributed to matching the pre-ringdown stage
of GW150914 which has a merger frequency ∼ 175 Hz
[35, 36]. Extending the high-frequency cutoff towards
greater values would result in increasing inconsistencies
between the template and the signal. In light of this ob-
servation, we propose a discriminator that utilizes the
(non-)convergence of results from various sampling rates
to determine the region where the ringdown overtone
model is applicable, as opposed to the region where pre-

FIG. 1. The logarithm of Bayes factors comparing the
(2, 2, 0) + (2, 2, 1) model and the (2, 2, 0)-only model with
respect to a variety of starting times for sampling rates
fs = 1024/2048/4096/8192 Hz. As a comparison, we plot the
Bayes factors obtained from [1, 3]. We also plot symmetric
error bars with length Bfs=8192 × δ. The shaded regions de-
pict where the results from different sampling rates have not
converged, quantified by δ > 50%, while in the non-shaded
region all have δ < 50%.

ringdown contamination is present. Signal consistency
tests in a similar spirit have been proposed, e.g., for
searching for GWs [37]. At the late time around tref + 1
ms, we again observed discrepancies of different sampling
rates, suggesting the overtone model is again not appli-
cable.

Around the best-fit merger time of GW150914, specif-
ically in [−0.25, 0.5] ms, we obtain converged Bayes
factors from four different sampling rates consistently
greater than 1 in favor of the existence of the (2, 2, 1)
mode. In particular, at tref − 0.25 ms, which was consid-
ered as the merger time by Isi et al. [2], we find B221

220 = 26,
the median of A221 deviates from zero with 2.8σ; at tref ,
we find B221

220 = 10, and a 2.5σ non-zero A221, which indi-
cates positive but moderate evidence for the presence of
the (2, 2, 1) mode.

Notably, our Bayes factors agree with those from
Isi and Farr [3] in and only in the convergence region
[−0.25, 0.5] ms. Nevertheless, there is a discrepancy
at −0.3 ms with a notable outlier identified to have
log10 B ∼ 4 by [3]. Given their finer time stride, we
further perform additional analyses with fs = 2048 Hz
with more finely spaced starting times, but can not re-
produce the significant Bayes factor. After tref+0.75 ms,
our results coincide with Cotesta et al. [1], indicating no
overtone is found at a late time. To understand how
various methods affect the statistical significance of the
overtone, we note that a primary difference is that [2, 3]
and [1] use a 0.2 s and 0.1 s duration for data analysis,
respectively, while we use 8s to account for the non-zero
ACF over a few seconds; thus we conclude a sufficiently
long analysis duration can enhance the statistical signif-
icance of finding an overtone.
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IV. UNDERSTANDING THE DISCREPANCY
FROM DIFFERENT SAMPLING RATES

Prior to tref−0.25 ms, we notice a divergence of results
from four different sampling rates. To better understand
its origin, we choose a particular time tref − 0.75 ms,
which shows discrepancies, and analyze the results of pa-
rameter estimation in depth. In Fig. 2, we consider the
waveforms hmaxL

f from parameters corresponding to the

maximum likelihood sample. We plot 2|hmaxL
f |

√
f such

that the area under the square ratio between the wave-
form and the amplitude spectral density (ASD) indicates
the signal-to-noise ratio (SNR).

FIG. 2. The maximum likelihood parameters’ waveform for
four different sampling rates with analysis starting time tref −
0.75 ms. The grey curve shows the amplitude spectral density√

Sn(f).

We notice that the fs = 1024 Hz result tends to favor
a waveform with higher amplitude at the Nyquist fre-
quency 512 Hz. Examining the overtone amplitude A221

reveals that a stronger (2, 2, 1) mode is favored, which
manifests as the tilt at high frequency due to the short
decay time (∼ 1.5 ms) of the overtone. The rapid de-
cay leads to a broader frequency-domain representation
of the waveform. However, when the data analysis is
extended to higher frequency bands, this strong (2,2,1)
mode is no longer preferred. The SNR also gradually de-
cays from 13.75 to 13.7, 13.3, and 13 for sampling rates
increasing from 1024 Hz to 8192 Hz. The discrepancies
suggest the starting time is too early and overtone tem-
plates do not match the data well. The low sampling
rate result tends to be more affected by the contamina-
tion from the pre-ringdown to produce a high SNR.

To further illustrate this with the entire posterior in-
stead of a single point from maximum likelihood, we plot
the mass and spin posterior distribution in Fig. 3. For all
(Mf , χf ), we also compute the characteristic decay time
of the overtone, τ221, predicted from GR as the back-
ground of the figure. Fig. 3 shows that the 8192 Hz result
extends to a region with a longer decay time, while the
low sampling rate results are more restricted to a shorter

FIG. 3. The marginal posterior ofMf and χf for four different
sampling rates with analysis starting time tref − 0.75 ms. In
the background, we plot the value of τ221 as expected in GR
as a function of the mass and spin of a Kerr BH. The solid
and dashed lines show the 90% and 50% credible regions,
respectively.

FIG. 4. A comparison of the posteriors for A221 and τ221
using two different sampling rates, 1024 Hz and 8192 Hz, with
analysis starting time tref −0.75 ms. The contours denote the
90% and 50% credible regions. The shaded region shows the
posterior probability density of the fs = 1024 Hz result.

decay time. The posterior of τ221 and A221 is plotted in
Fig. 4, showing the parameters’ negative correlation. The
8192 Hz result favors a longer decay time τ221, hence a
higher posterior density at A221 = 0. Using the Savage-
Dickey density ratio, the density of A221 = 0 directly
determines B221

220. We thus conclude that the (dis-) favor-
ing of shorter τ221, which in turn is directly related to the
signal intensity in high-frequency bands, by an inappro-
priate sampling rate can bias the posterior of A221, and
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thus enhance or weaken the evidence for a (2, 2, 1) mode.
The findings underscore the importance of examining the
frequency spectrum in order to determine an appropri-
ate time range within which a ringdown overtone model
is applicable.

V. CONCLUSION AND DISCUSSION

We revisit the GW150914 overtone using an indepen-
dent frequency-domain analysis, with settings as similar
as possible to [1–3]; notably we use an 8s data analy-
sis duration accounting for the non-zero ACF. We ex-
amine the frequency spectral content of the recovered
waveforms and interpret the divergence of results from
different sampling rates as evidence for where the over-
tone model is not valid to be matched with the data.
When the results converge around the merger time of
GW150914, we find Bayes factor values fall within the
range of 10 to 26, which supports the existence of an
overtone, in agreement with the conclusion of [2, 3]. We
show that starting the analysis too early or too late will
lead to discrepancies for different sampling rates. At too
early times, an inappropriately low sampling rate tends
to favor a signal with a shorter decay time and thus biases
the estimation towards stronger evidence for the (2, 2, 1)
mode. In light of these discoveries, we propose a new
strategy, from the data analysis perspective, by analyz-
ing the convergence of different sampling rates to deter-
mine the validity of the overtone model, complementary
to the efforts of, e.g., [38, 39], which address whether the
overtone is valid physically.

Recently, the authors of Refs. [2, 3] published a com-
ment showing that increasing the analysis duration and
correcting the approximation of starting time discretiza-
tion can alleviate the discrepancies [40]. However, the
authors of [1] replied that the logarithmic Bayes factors
are still negative after addressing the comments [41]. Our
method in the current work does not have any of the
aforementioned limitations as we have used a long analy-
sis duration (8s) and reconstructed the subsampling data
point to ensure the starting time is precise (Appendix A).
Our work shows that using these more robust choices will
affect the results in the direction of enhancing the statis-
tical significance of an overtone.

We release the scripts to reproduce this work and the
posterior files at [42].
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Appendix A: Ensuring a precise starting time for
ringdown analysis

FIG. 5. Reconstructing the subsample corresponding to the
starting time of ringdown, tringdown. This is done by time
shifting the data by an offset of the difference of tringdown and
tnearest which corresponds to the nearest data sample from
LIGO Hanford.

The gating and inpainting formalism is potentially sub-
ject to a subtle caveat that the starting and ending time
of the inpainting can only land on a specific data point
due to the discrete nature of the sampled data. This is-
sue is particularly severe for a lower sampling rate with
a coarser time resolution. As depicted in Fig. 1 in the
main text, the results are sensitive to the ringdown start-
ing time at a sub-millisecond level because of the rapid
decay of an overtone. Consequently, it is necessary to
ensure a precise starting time for the ringdown analysis.
We address this issue by reconstructing the sub-data

points from the sampled data at the starting time of the
ringdown, tringdown, which is achieved by time shifting
in the frequency domain by an offset between tringdown



6

FIG. 6. The results of logarithm Bayes factor from sampling
rate 2048 Hz before and after accounting for the issue when
the ringdown starting time lands on a subsample. The ver-
tical (dot) dashed lines indicates the time stamp of the data
samples from LIGO Hanford or Livingston.

and the time stamp of the floor-nearest data sample,
tnearest. To visualize, the discrete data samples from the
LIGO Hanford with fs = 2048 Hz and those being re-
constructed are plotted in Fig. 5. In Fig. 6 we also plot
the results of log10 B221

220 from fs = 2048 Hz before and
after accounting for this issue. To guide the eyes, we
also plot vertical dashed lines for the time stamps for the
sampled data of LIGO Hanford and Livingston. Before
addressing this problem, the starting time of ringdown,
or equivalently, the ending time of inpainting, is rounded
up to the floor-nearest time of a data sample. There-
fore, this effectively results in an earlier and incoherent
starting time between LIGO Hanford and Livingston, bi-
asing the Bayes factors towards higher values due to the
contamination from signals prior to ringdown.

Appendix B: Parameterization of the relative
amplitude between (2,2,1) and (2,2,0)

We also implement a different parameterization to ex-
amine the robustness of our results against a different
prior space. When sampling the likelihood distribu-
tion, we notice that the label switching issue between
the (2, 2, 0) and (2, 2, 1) mode would sometimes occur, in
which the sampler would explore where the A220 is almost
zero, and A221 is favored associated with much heavier
remnant mass. This is because the (2, 2, 1) mode of the
template is locked on the (2, 2, 0) signal in the data.
In light of this issue, we choose to sample on the rel-

ative amplitude between the (2,2,1) mode and (2,2,0)
mode, Arel

221 = A221/A220, instead of the absolute am-
plitude. We choose Arel

221 to be uniform in [0, 5], and
sample on log10 A220 which is uniformly distributed in
[−24,−19].

The results of Bayes factors are shown in Fig. 7. We
only show the results from fs = 1024 and 8192 Hz; other
sampling rates present consistent conclusions. We note
that the two parameterizations agree with each other
well. At zero epoch, the relative amplitude parameter-
ization slightly prefers a lower B221

220, which can be at-
tributed to a slightly higher weight in the prior space for
A221 = 0. At a sufficiently late time, the relative pa-
rameterization favors a Bayes factor being 1 between the
(2, 2, 1) + (2, 2, 0) and (2, 2, 0) mode, i.e., no preference
for any one of the models. Overall, the results demon-
strate the robustness of the Bayes factor results in the
main text.

FIG. 7. Comparison of Bayes factor for a different parame-
terization that samples on Arec

221 and log10 A220.

Appendix C: Proof for the solution of inpainting

Recall that the Gaussian likelihood for the noise n is

logL = −1

2
nTC−1n. (C1)

As firstly introduced in [27], they construct an inpainting
operator

F = 1−AM−1ATC−1 (C2)

where M = ATC−1A. The matrix A is an “extraction
matrix” with the size N × M , where N and M are the
numbers of elements of n, and x, the bad data to be in-
painted, respectively. Explicitly, A is an identity matrix
in the rows corresponding to x and zeros elsewhere

A =



0
1 ...

1 ...
1 ...

...
... 1

0


(C3)
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Such construction will have the desireble property that,
after acting F on n, any elements in the gating region
will not impact the computation of nTC−1Fn.

We offer another perspective, which is mathematically
equivalent to [27], by considering the inverse of the co-
variance from the truncated data. Without loss of gen-
erality, we express ninpaint as the concatenation of the
truncated data and the (yet unknown) inpainting data,
ninpaint = ntr ⊕ x (the more general case that x is in
the middle of ninpaint can be obtained by acting permu-
tation matrix on it, and the following derivation remains
the same). Hence the covariance matrix can be formally
expressed by a block matrix, its inversion is

C−1 =

(
Ctr B
BT D

)−1

=

(
a b
bT d

)
(C4)

where B,D, a, b, d are all block matrices yet unknown.
Because of the inversion relation, we have

Ctra+BbT = 1 (C5)

Ctrb+Bd = 0

where 1 and 0 are the unity and zero matrix, respectively.
Express B by the second line of Eq. (C5) and insert to
the first line, one gets

C−1
tr = a− bd−1bT (C6)

Hence the likelihood of truncated data can be written as

nT
trC

−1
tr ntr = nT

trantr − nT
trbd

−1bTntr (C7)

In the main text we have introduced the solution to be

C−1(ntr ⊕ x)inpaint = 0inpaint (C8)

This can be expressed as

bTntr + dx = 0 (C9)

Hence

x = −d−1bTntr (C10)

Therefore

(ntr ⊕ x)TC−1(ntr ⊕ x) (C11)

= (ntr ⊕ x)T
(

a b
bT d

)
(ntr ⊕ x)

= nT
trantr − nT

trbd
−1bTntr

Together with Eq. (C7) we have proved that inpaint-
ing with x will resume the use of C−1 in the likelihood.
As discussed in [26], constructing the inpainting filter
directly as in Eq. (C2) invokes inversing the ATC−1A
which requires M3 time complexity. However, as we use
Levinson Recursion in scipy [43] to solve the Toeplitz
linear equation for inpainting data in Eq. (C8), it only
requires the M2 time complexity.
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