
Review

Diversity matters — extending sound
intensity coding by inner hair cells via
heterogeneous synapses
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Abstract

Our sense of hearing enables the processing of stimuli that differ
in sound pressure by more than six orders of magnitude. How to
process a wide range of stimulus intensities with temporal preci-
sion is an enigmatic phenomenon of the auditory system. Down-
stream of dynamic range compression by active cochlear
micromechanics, the inner hair cells (IHCs) cover the full intensity
range of sound input. Yet, the firing rate in each of their postsyn-
aptic spiral ganglion neurons (SGNs) encodes only a fraction of it.
As a population, spiral ganglion neurons with their respective indi-
vidual coding fractions cover the entire audible range. How such
“dynamic range fractionation” arises is a topic of current research
and the focus of this review. Here, we discuss mechanisms for gen-
erating the diverse functional properties of SGNs and formulate
testable hypotheses. We postulate that an interplay of synaptic
heterogeneity, molecularly distinct subtypes of SGNs, and efferent
modulation serves the neural decomposition of sound information
and thus contributes to a population code for sound intensity.
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Introduction

Our sense of hearing is critical for our vocal communication.

Impaired speech comprehension requires intervention in approxi-

mately 466 million people with disabling hearing loss worldwide

(WHO, 2019). Our ability to hear acoustic signals as different as rus-

tling leaves and a roaring jet engine, i.e., sound pressures (intensi-

ties) that differ by about six orders of magnitude, and to process

them with exceptional temporal precision, arguably, is one of the

most fascinating yet enigmatic phenomena of the auditory system.

Sound intensity coding at the level of single SGNs faces the so-called

dynamic range problem (Evans, 1981): While the receptor potential

of IHCs covers the full intensity range of sound input (Russell &

Sellick, 1978; Russell, 1983; Cheatham & Dallos, 2000), SGNs

change their spike rate only over a fraction of the input range (Kiang

et al, 1965; Sachs & Abbas, 1974; Liberman, 1978; Winter et al,

1990; Taberner & Liberman, 2005; Huet et al, 2016). In inner hair

cells (IHCs), the ensuing mechanoelectrical transduction generates a

graded receptor potential (stronger depolarization from stronger

sound intensity) activating voltage-gated Ca2+ influx that triggers the

release of synaptic vesicles. This results in efficient, temporally pre-

cise, and indefatigable transmission at the IHCs’ 5–30 specialized

ribbon-type synapses with type I spiral ganglion neurons (SGNs,

Figs 1 and 2C; Meyer & Moser, 2010; Fettiplace, 2017; Moser

et al, 2019; Rutherford et al, 2021). Sound of different frequencies

activates IHCs, and consequently postsynaptic SGNs, at different

locations along the length of the cochlea. This way, information

about sound frequency is primarily represented as a place code, i.e.,

a tonotopic mapping via the identity of the activated SGNs. As the

traveling wave gets wider with stronger sound intensities, a larger

set of SGNs will be activated around the tonotopic position resulting

in a population code for intensity. At the level of single SGNs at any

tonotopic position of the cochlea, sound intensity is represented in

spike rate- and time-codes. Matching the large input dynamic range

to limited output range of the SGNs involves a number of fascinat-

ing biological mechanisms: (i) Outer hair cell electromotility that

amplifies weak basilar membrane vibration and dampens strong

vibrations; (ii) adaptation processes of hair cells, synapses, and neu-

rons; and (iii) tiling of the dynamic range by spiral ganglion neurons

(SGNs) with diverse intensity coding.

Specifically, SGNs that share the same frequency tuning and

might therefore receive input from the same IHC differ in the range

of sound pressures over which they change their firing rate (Figs 2A

and B and 3A). Yet, as a population, SGNs cover the entire audible

range with their individual coded fractions. How such “dynamic

range fractionation” arises is a topic of current research and will be

at the focus of this review.
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A first indication of how the signal from IHCs can lead to

intensity-dependent activation of different SGNs was provided

through seminal analysis by Liberman et al, who showed a corre-

lation between the sensitivity of a SGN to sound and its contact

point on the IHC: SGNs with high spontaneous firing rate (SR)

and low sound threshold (“high SR” SGNs) tend to innervate the

“pillar” side of the IHC (facing the pillar cells toward the outside

of the cochlear spiral), while low SR, high-threshold (“low SR”)

SGNs preferentially synapse on the opposite “modiolar” side (fac-

ing the cochlear modiolus on the inside of the cochlear spiral;

Fig 2A and B; Liberman, 1982; Merchan-Perez & Liberman, 1996).

How such diverse SGN coding properties and spatial segregation

on the IHC membrane are achieved remains to be elucidated.

Three major hypotheses have been put forward (Guinan, 2018;

Moser et al, 2019; Shrestha & Goodrich, 2019): (i) IHCs decom-

pose the intensity information into complementary neural codes

by varying the properties of their presynaptic active zones (AZs,

Figs 2C and D and 4; Frank et al, 2009; Meyer et al, 2009; Grant

et al, 2010; Kantardzhieva et al, 2013; Ohn et al, 2016; Michanski

et al, 2019; Hua et al, 2021; Niwa et al, 2021; Özçete &

Moser, 2021), (ii) different molecular SGN profiles shape diverse

SGN firing properties (Fig 3B; Davis & Crozier, 2016; Petitpr�e

et al, 2018; Shrestha et al, 2018; Sun et al, 2018; Li et al, 2020;

Markowitz & Kalluri, 2020; Siebald et al, 2023), (iii) efferent

innervation differentially modulates afferent synapses (Fig 3C;

Ruel et al, 2001; Yin et al, 2014; Wu et al, 2020; Hua

et al, 2021).

Additionally, glial (or supporting) cells of the cochlea might con-

tribute to shape synaptic or firing properties of SGNs as is observed

for regulation of synaptic strength in the brain (Letellier et al, 2016).

We hypothesize that an interplay of the aforementioned mecha-

nisms results in fractionated coding of the audible intensity range

by individual SGNs in order to achieve good sound intensity dis-

crimination also for low sound intensities (Ehret, 1975). We review

evidence for these candidate mechanisms and potential relation-

ships between them. In addition, we propose experiments to evalu-

ate their causal contributions to sound intensity coding. Advances

in the experimental and theoretical analysis of molecular profiles,

anatomy, and physiology of SGNs and IHCs (Moser et al, 2019;

Shrestha & Goodrich, 2019), as well as technological advances such

as multiscale imaging and optogenetic stimulation of the cochlea,

now enable combinatorial approaches to this fascinating phenome-

non of sensory biology. This effort is highly relevant also from a

clinical point of view. Exposure to loud sounds is the leading cause

of hearing impairment and also affects synaptic sound encoding

(hidden and overt hearing loss; Kujawa & Liberman, 2015; Moser &

Figure 1. Afferent cochlear circuitry.

This composite graphic displays a mouse cochlea rendered transparent, immunofluorescently labeled for the IHC and SGN context marker parvalbumin, and imaged by

light sheet microscopy (taken from cover of Michanski et al, 2019). The large inset shows the IHC-SGN contacts from a confocal stack imaged at higher magnification,

and the smaller inset represents a 3D reconstruction of an IHC active zone based on electron tomography, with the synaptic ribbon in red, ribbon-proximal synaptic

vesicles in green and membrane-proximal vesicles in yellow and gold (from Chakrabarti et al, 2022).
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Starr, 2016). Hearing impairment reduces the range of audible

sound pressures likely by various mechanisms. Hearing aids and

cochlear implants, key means for partially restoring auditory

function, face the problem of mapping the entire range of relevant

sound pressures to the limited dynamic range of the diseased audi-

tory system.

Figure 2. Varying properties of inner hair cell active zones.
(A, B) Organ of Corti with three rows of outer hair cells (OHCs) and one row of IHCs (A). The latter are innervated by peripheral neurites of type I SGNs with different
spontaneous and sound-evoked firing properties (B, modified from Ohn et al, 2016, putative assignment to molecular subtypes Ia–c) with their synapses distributed
along the pillar–modiolar IHC axis according to their properties as reported by Charles Liberman. They likely correspond to the molecularly distinct type Ia–c SGN sub-
types. (C) Inset to A with a schematic of afferent IHC-SGN synapses and corresponding efferent synapses onto the afferent postsynaptic SGN. Active zones differ even
within the same IHC: larger presynaptic active zones with greater CaV1.3 channel clusters tend to be at the modiolar side. (D) Active zones differ also functionally: e.g.,
pillar ones activate at more negative potentials and, moreover, show tighter Ca2+ nanodomain coupling of CaV1.3 channels to vesicular release sites than the average
modiolar ones. (A) and (C) modified from Meyer & Moser (2010).
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Main: heterogeneity of afferent synapses

Molecular and structural heterogeneity
To set the stage for reviewing candidate mechanisms potentially

contributing to sound intensity encoding, we start by reviewing the

puzzling phenomenon that the small and compact IHCs harbor

afferent synapses that vary dramatically in structure and function.

The AZ of these synapses anchors the so-called synaptic ribbon or

dense body, a proteinaceous structure that tethers a halo of synaptic

vesicles near the active zone (see model in Fig 1 and schematic in

Fig 2C; Matthews & Fuchs, 2010; Lagnado & Schmitz, 2015; Moser

et al, 2019). Structural differences among the afferent IHC-SGN syn-

apses at one tonotopic place or even within one IHC have already

been noted by serial section electron microscopy studies that

reported different ribbon size and shapes, synaptic membrane

contacts, and postsynaptic fiber morphology (Spoendlin, 1969;

Dunn, 1975; Liberman, 1980). Combining functional characteriza-

tion of individual SGNs and backtracing their peripheral neurite to

the afferent synapse, Charles Liberman related the physiological

properties of SGNs to the position of their synaptic contacts with

IHCs (Liberman, 1982). Merchan-Perez & Liberman (1996) and later

Kantardzhieva et al (2013) specifically compared the ultrastructure

of synapses on the modiolar and the pillar side of IHCs. They found

larger pools of membrane-proximal and ribbon-associated synaptic

vesicles (SVs) at modiolar AZs that could also contain more than

one ribbon, while the trend toward larger size of modiolar ribbons

did not reach statistical significance in either study.

More recent volume electron microscopy studies used focused

ion beam scanning electron microscopy (FIB-SEM; Michanski

et al, 2019) and surface block-face scanning electron microscopy

(SBEM; Hua et al, 2021) to reconstruct individual IHCs or ensembles

of up to 20 IHCs, as well as the afferent and efferent connectivity in

the organ of Corti of the mouse cochlea. Building on sample sizes of

more than one hundred modiolar and pillar AZs, each, SBEM (Hua

et al, 2021) demonstrated that pillar and modiolar ribbon volumes

differed significantly and consistently across three mouse cochleae.

Ribbons on the modiolar side were ~ 30% larger on average than

the pillar ones: modiolar–pillar gradient of ribbon volume (Fig 4).

Both studies demonstrated the occurrence of multiple presynaptic

ribbons at individual modiolar AZs. SBEM analysis also provided

evidence for a conservation of overall ribbon material: the more rib-

bons a given IHC contained, the smaller were the ribbons on aver-

age. FIB-SEM analysis of few IHCs also showed trends toward larger

individual ribbons on the modiolar side, as well as greater total rib-

bon volume and more SVs per AZ (Michanski et al, 2019).

Some distributions of synaptic properties can also be examined

using immunofluorescence studies, which offer ease of orientation,

high throughput, large sample sizes, and identification of specific

labeled proteins, yet at the expense of more limited spatial resolu-

tion. Juxtaposed immunofluorescence of pre- and postsynaptic

markers allows efficient and safe identification of IHC ribbon synap-

ses (Khimich et al, 2005) and has been used extensively in the field

for counting and localizing them within IHCs and the organ of Corti

of various species under physiological and pathological conditions

(reviewed in Meyer & Moser, 2010; Rutherford, 2015; Wichmann &

Moser, 2015). While most synaptic structures, such as SVs, ribbons,

presynaptic density, and Ca2+ channel clusters, are below the resolu-

tion limit of confocal microscopy, superresolution techniques such

as 4Pi (Hell & Stelzer, 1992), Stimulated Emission Depletion (STED)

(Hell & Wichmann, 1994), and Minimal Photon Fluxes (MINFLUX)

optical nanoscopy (Balzarotti et al, 2017) enable a more detailed

quantification of synaptic molecular nanoanatomy. For semi-

quantitative assessment of the abundance of synaptic proteins, ana-

lyses of immunofluorescence intensity, 3D-integrated intensity, area,

and volume of immunofluorescent spots have been employed for

confocal imaging. The caveat of investigated structures being below

the resolution limit needs to be considered when interpreting esti-

mates of diameter, area, or volume obtained by confocal imaging of

Figure 3. Neural candidate mechanisms of cochlear wide range sound intensity encoding.
(A) SGNs with diverse discharge rate-sound pressure level functions fractionate the dynamic range (modified from Ohn et al (2016), putative assignment to molecular
subtypes Ia–c). SGNs with high spontaneous rate (HSR) and low sound threshold, suggested to correspond to type Ia SGNs, preferentially innervate the pillar IHC side,
while SGNs with low spontaneous rate (LSR) and high threshold preferentially innervate the modiolar side. This has been postulated to result from operation of the
corresponding IHC active zones at more negative potentials. (B) SGNs differ in their molecular profiles and can be clustered into three subtypes (Ia–c), thought to corre-
spond to high (Ia), intermediate (Ib), and low SR (Ic) functional phenotypes (modified from Shrestha et al, 2018). tSNE: t-distributed stochastic neighbor embedding, a
technique for dimensionality reduction. (C) SGN function is differentially modulated by efferent synapses of lateral (LOC) and medial (MOC) olivocochlear fibers, which
originate from the lateral or medial part of the superior olivary complex, respectively. MOC fibers also innervate outer hair cells (OHCs) (modified from Hua et al, 2021).
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immunofluorescence. Additionally, we need to consider that

studies can differ in their definition of the pillar and modiolar halves

of the basolateral IHC pole (e.g., Meyer et al, 2009; Liberman

et al, 2011).

Nonetheless, confocal immunofluorescence studies have pro-

vided converging evidence for a modiolar–pillar gradient of decreas-

ing ribbon size and Ca2+ channel number of IHC AZs in mice

(Meyer et al, 2009; Liberman et al, 2011; Ohn et al, 2016; Figs 4 and

Figure 4. SGNs and their afferent synapses differ according to the position of the afferent synapse on the IHC.
Properties of afferent synapses (upper section) as well as of SGN morphology and function (lower section) exhibit gradients along the pillar–modiolar axis of the inner
hair cell.
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5), which, for ribbon size, agrees with the electron microscopy

observations (Merchan-Perez & Liberman, 1996; Kantardzhieva

et al, 2013; Michanski et al, 2019; Hua et al, 2021). Moreover, the

gradient of the AZ Ca2+ channel complement derived from immuno-

fluorescence could be corroborated by ex vivo functional imaging of

CaV1.3-driven Ca2+ signals at single AZs in separate experiments

(Ohn et al, 2016; Figs 4 and 5). The maximal amplitude of CaV1.3-

driven Ca2+ signals also positively correlated with ribbon size

estimates in the same confocal recording (Frank et al, 2009). This

was based on labeling of ribbons with a ribbon-binding fluorescent

peptide, using its fluorescence intensity to approximate ribbon size

(Frank et al, 2009) which likewise decreased along a modiolar–pillar

gradient (Ohn et al, 2016). Confocal and superresolution immuno-

fluorescence imaging in mouse IHCs also served the further dissec-

tion of the molecular nanoanatomy and physiology of IHC AZs.

Examples include the CaV1.3 Ca2+ channels (Frank et al, 2010;

Figure 5. Position dependence of molecular structure and function of afferent synapses.
(A) STED nanoscopy reveals heterogeneous CaV1.3 and bassoon clusters (modified from Neef et al, 2018). Scale bar: 200 nm. (B) Two-color spinning disc confocal imaging
of presynaptic Ca2+ signals (Rhod-FF, arrowheads) and glutamate release (iGluSnFR in SGN membrane, asterisks. From Özçete & Moser, 2021). Scale bar: 5 lm. (C) Exam-
ple traces of iGluSnFR imaging showing release dynamics of two synapses shown in B labeled “1” and “2” innervating the same IHC from either pillar or modiolar side.
Note that pillar synapse 1 is already active at lower voltages than modiolar synapse 2 (from data used in Özçete & Moser, 2021). (D) CaV1.3 (a1D or CaV1.3a1 pore-
forming subunit) constitutes ≥ 90% of all IHC Ca2+ channels and is present in splice variants. They differ in the length of the cytosolic C-terminus that contains several
domains for autoregulation and modulation by interacting proteins listed in the panel. (E) IHC AZs differ in the number and functional properties of their Ca2+ channels
as well as in the coupling of Ca2+ influx to SV exocytosis: pillar AZs (left) contain fewer Ca2+ channels that activate at more negative potentials (“magenta” channels, see
top, middle panel) and exert a so-called Ca2+ nanodomain control of exocytosis (tighter coupling, see bottom, middle panel). Modiolar AZs (right) are more heteroge-
neous, but on average contain more Ca2+ channels that activate at less negative potentials (“green” channels) and exert a so-called Ca2+ microdomain control of exocy-
tosis (looser coupling). Illustration based on material from Pangrsic et al (2018) and Özçete & Moser (2021), not drawn to scale.
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Wong et al, 2014; Neef et al, 2018; Fig 5A), as well as the multido-

main AZ proteins bassoon (Fig 5A; Khimich et al, 2005; Frank

et al, 2010; Jing et al, 2013; Neef et al, 2018), piccolo/piccolino

(Khimich et al, 2005; M€uller et al, 2019; Michanski et al, 2023), rab-

binding molecule (RIM) (Jung et al, 2015; Picher et al, 2017b), and

RIM-binding protein (RBP; Krinner et al, 2017, 2021). This has led

to the concept that clusters of CaV1.3, bassoon, RIM, and RBP are

mostly assembled in the shape of stripes, next to less prevalent dou-

ble stripes, spot-like, and more complex protein assemblies

(Fig 5A). A comprehensive account on the abundance and topogra-

phy of AZ proteins as a function of synapse position has yet to be

established and should then be related to synapse function.

Functional heterogeneity
Major functional AZ heterogeneity was discovered even within

individual IHCs across tonotopic positions (Frank et al, 2009;

Meyer et al, 2009). Specifically, when studying presynaptic Ca2+

signaling at single AZs, which is almost entirely mediated by

CaV1.3 channels (Platzer et al, 2000; Brandt et al, 2003; Fig 5D),

striking differences in the voltage-dependence of activation and

maximal amplitude of Ca2+ signals were observed (Frank et al,

2009; Meyer et al, 2009; Fig 5E). Ca2+ imaging with low affinity

Ca2+ indicators and added exogenous Ca2+ chelators approximates

Ca2+ influx at individual AZs, but is limited in its temporal resolu-

tion (Frank et al, 2009). A quantification of nanophysiology and

nanoanatomy of presynaptic Ca2+ channels found that the number

of Ca2+ channels per AZ varied between 30 and 300 channels,

organized in variably shaped clusters (Neef et al, 2018; Fig 5A).

The average number of Ca2+ channels (mean of 125 and a median

of 118: Neef et al, 2018) agrees well with previous estimates

obtained from the whole-cell Ca2+ current in hair cells (Roberts

et al, 1990; Brandt et al, 2005). Some AZs showed multiple, or

large morphologically complex, Ca2+ channel clusters, which are

likely to represent AZs with many Ca2+ channels (Neef et al,

2018). While not demonstrated in these experiments due to limited

optical resolution, they might represent AZs occupied by multiple

ribbons (up to 3 in mature IHCs) that have been observed by elec-

tron microscopy and superresolution STED microscopy (Kantardz-

hieva et al, 2013; Wong et al, 2014; Michanski et al, 2019; Hua

et al, 2021). Interestingly, most IHCs examined in ex vivo Ca2+

imaging experiments contained one AZ whose Ca2+ influx was sub-

stantially stronger than that of the others (“winner AZ” with 2.5

times greater amplitude than the average of the others; Ohn

et al, 2016). Whether these represent multi-ribbon AZs remains to

be tested, e.g., by combining STED imaging of Ca2+ signals and

ribbons. Functionally, large AZs with many Ca2+ channels

and corresponding strong maximal Ca2+ signal tended to localize

to the modiolar side (Figs 2–6). This modiolar–pillar gradient of

decreasing AZ size and maximal Ca2+ influx (Ohn et al, 2016;

Michanski et al, 2019; Hua et al, 2021) is seemingly at odds with

the pillar–modiolar gradient of decreasing SR and acoustic sensitiv-

ity of SGNs (Liberman, 1982). In other words, provided compara-

ble open probability and release site coupling of the channels, AZs

with a larger number of Ca2+ channels should provide more synap-

tic release for a given IHC potential and would be expected to

drive greater spontaneous rates of SGN firing (Wong et al, 2013).

A potential solution to this apparent conundrum came from

studying the voltage-dependent activation of the presynaptic Ca2+

Figure 6. How do afferent synapse subtypes and SGN subtypes relate to each other?
Color code and insets tentatively relate putative ribbon synapse subtypes and the SGN subtypes: this hypothesis needs further experimental and theoretical
investigation. Illustration based on material from Özçete & Moser (2021).
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influx. Here, it was found that AZ Ca2+ signals at the pillar side acti-

vate at lower voltages (i.e., hyperpolarized voltage) than the

modiolar ones, resulting in a pillar–modiolar gradient of voltage-

dependent AZ activation by resting and receptor potentials of IHCs

(Ohn et al, 2016; Figs 4, 5E and 6). This was quantified for the volt-

age of half-maximal activation (V0.5) of the Ca2+ signals and repro-

duced in several studies since (Jean et al, 2019; Sherrill et al, 2019;

Özçete & Moser, 2021; Cantu-Guerra et al, 2023), leading to the

hypothesis that the high SR and low sound threshold of SGNs syn-

apsing on the pillar side are rooted in Ca2+ channel activation at the

pillar AZs at resting and low receptor potentials (Ohn et al, 2016;

Moser et al, 2019): Pillar AZs drive high SR SGNs, as their Ca2+

channels would be active already at the resting IHC potential

(assumed to be approximately �55 mV) and be readily further

recruited with small receptor potentials. In contrast, modiolar AZs

which, consistent with the notion of them being presynaptic to low

SR SGNs, would show no or very little activity at rest and need

stronger receptor potentials to activate. As a next step to test this

hypothesis, imaging of glutamate release from IHC AZs by virally

expressing the genetically encoded glutamate sensor iGluSnFR in

SGNs was employed (Fig 5B and C). Indeed, not only Ca2+ influx,

but also the ensuing glutamate release from pillar AZ occurred at

lower voltages (Fig 5C; Özçete & Moser, 2021). Yet, iGluSnFR imag-

ing could not reliably detect release of individual SVs such that a

distinction of high and low spontaneous rate of transmission synap-

ses was not possible. However, recordings of excitatory postsynaptic

currents (EPSCs) from modiolar and pillar synapses indicated higher

rates of spontaneous release for pillar synapses which supports the

above hypothesis (Siebald et al, 2023; preprint: Jaime Tob�on &

Moser, 2022).

The dual-color imaging of Ca2+ signals and glutamate release of

the same AZ allowed to obtain a first estimate of the apparent Ca2+

dependence of release on the single synapse level (Özçete &

Moser, 2021). Previous work based on whole-cell measurements of

IHC Ca2+ influx and exocytic membrane capacitance increments

(Brandt et al, 2005; Wong et al, 2014) in mouse IHCs after hearing

onset had shown that the relationship between the two (apparent

Ca2+ dependence of exocytosis) across all AZs followed a power func-

tion with a lower power (1.4) when probed by changing the number

of contributing Ca2+ channels than the intrinsic Ca2+ dependence of

exocytosis established with Ca2+ uncaging (4–5 ions binding to the

Ca2+ sensor of SV fusion; Beutner et al, 2001) or the apparent Ca2+

dependence of exocytosis upon changes in single Ca2+ channel cur-

rent (~ 3–4) (Brandt et al, 2005; Wong et al, 2014). This indicated

that “nanodomain Ca2+”, contributed by few Ca2+ channels in

immediate proximity of the vesicular release site, governs release

(“Ca2+ nanodomain-like control of exocytosis”). Experiments testing

the effects of intracellular application of Ca2+ chelators with different

binding rates (Moser & Beutner, 2000; Goutman & Glowatzki, 2007;

Pangr�si�c et al, 2015) further corroborate this hypothesis.

Moreover, paired pre- and postsynaptic patch-clamp recordings,

which allow recording of glutamate release from single IHC synapses,

also indicated a Ca2+ nanodomain-like control of exocytosis

(Goutman & Glowatzki (2007) before hearing onset, but see Wong

et al (2014) for a more Ca2+microdomain-like control of exocytosis at

this developmental stage). However, since these recordings could

only target single synapses, it had remained unclear whether this

homogeneously applies to all AZs (Heil & Neubauer, 2010). This

could now be tested by dual-color imaging of Ca2+ signals and gluta-

mate release that allows recording of the activity of multiple AZs in

one IHC at different levels of depolarization. This revealed differ-

ences of the apparent Ca2+ dependence of release among the AZs

from near linear (Ca2+ nanodomain-like control) to supralinear (Ca2+

microdomain-like control, where the combined activity of several

channels in > 100 nm distance from the release site shape the Ca2+

signal that drives release). These findings suggest additional diversity

of AZ structure and function beyond that of different number and gat-

ing of Ca2+ channels, i.e., differences in the spatial coupling of Ca2+

channels and release sites among AZs. Indeed, even if the Ca2+ chan-

nel density at the AZ was constant, a Ca2+ microdomain-like control

would be predicted for AZs with many Ca2+ channels due to overlap

of the Ca2+ domains generated by the individual channels (Wong

et al, 2014). Future optical nanoscopy (Grabner et al, 2022), electron

microscopy (Wong et al, 2014; Chen et al, 2015; Nakamura

et al, 2015; Chakrabarti et al, 2018, 2022; Butola et al, 2021), and

computational modeling (Chapochnikov et al, 2014; Wong

et al, 2014) work will be required to evaluate the scope of Ca2+ chan-

nel and release site topographies adopted by the diverse IHC AZs.

This ideally will relate morphological and functional data on the AZ,

e.g., from paired patch-clamp and/or optical recordings, to synapse

position within the IHC. Moreover, analysis of the initial rate of gluta-

mate release prior to SV pool depletion will be important for faithfully

assessing the Ca2+ dependence of release. This was not amenable to

the dual-color imaging of Ca2+ signals and glutamate release (Özçete

& Moser, 2021), which limits the reliability of the approach and calls

for validation by more resolved recordings. Future studies should

also capture other key synaptic parameters such as SV tethering and

docking, ideally at different functional stages (Chakrabarti

et al, 2018, 2022), for which differences among AZs have not yet been

studied in detail. Most importantly, the field will need to work on

relating synaptic heterogeneity and neural firing diversity, which is

far from trivial given the methodological differences of e.g. fluores-

cence imaging of glutamate release ex vivo and extracellular record-

ings from single SGNs in vivo.

A first attempt of relating functional properties of IHC AZs

and SGN properties was recently done based on the above-

mentioned dual-color imaging of Ca2+ signals and glutamate release

of the same AZ (Özçete & Moser, 2021). Unbiased clustering of func-

tional single synapse parameters indicated three synapse types

(Fig 6). Cluster 1, with the most hyperpolarized operating range,

near-linear apparent Ca2+ dependence of release (indicating a tight

Ca2+ nanodomain-like coupling of Ca2+ influx and release sites of

synaptic vesicles, SVs), and broadest dynamic range (change of

potential from 10 to 90% of release), included all synapses of the

pillar side of the IHCs (Fig 6).

Modiolar synapses contributed to all three clusters, whereby clus-

ters 2 and 3 were similar in operating over a more depolarized,

smaller range of potentials. They showed a supralinear apparent

Ca2+ dependence with greater power for cluster 3, suggesting a looser

Ca2+ microdomain-like coupling of Ca2+ influx and SV release sites. It

is tempting to speculate that synapses of cluster 1 drive high SR

SGNs and that the other clusters might correspond to low and poten-

tially intermediate SR SGNs. Yet, the dynamic range of the transfer

function of cluster 1 synapses is the widest, while in vivo recordings

show that the dynamic ranges of firing-rate/sound-level functions of

high SR, low-threshold SGNs are the narrowest. Possible

8 of 17 The EMBO Journal 42: e114587 | 2023 � 2023 The Authors

The EMBO Journal Tobias Moser et al

D
ow

nloaded from
 https://w

w
w

.em
bopress.org on January 9, 2024 from

 IP 134.76.223.157.

https://www.embopress.org/servlet/linkout?type=rightslink&url=startPage%3D1%26pageCount%3D17%26copyright%3D%26author%3DTobias%2BMoser%252C%2BNare%2BKaragulyan%252C%2BJakob%2BNeef%252C%2Bet%2Bal%26orderBeanReset%3Dtrue%26imprint%3DJohn%2BWiley%2B%2526%2BSons%252C%2BLtd%26volumeNum%3D42%26issueNum%3D23%26contentID%3D10.15252%252Fembj.2023114587%26title%3DDiversity%2Bmatters%2B%25E2%2580%2594%2Bextending%2Bsound%2Bintensity%2Bcoding%2Bby%2Binner%2Bhair%2Bcells%2Bvia%2Bheterogeneous%2Bsynapses%26numPages%3D17%26pa%3D%26issn%3D0261-4189%26publisherName%3DWiley%26publication%3DEMBJ%26rpt%3Dn%26endPage%3D17%26publicationDate%3D12%252F01%252F2023


explanations include the notion of partial SV pool depletion at pillar

AZs at the more depolarized resting IHC potentials in vivo as well as

postsynaptic saturation. Clearly, this framework remains to be tested

by computational modeling and experiments that involve recordings

of SGN activity such as the combination of pre- and postsynaptic

patch-clamp recordings or simultaneous imaging of SGN membrane

potential. Recordings of EPSCs, in addition, provide access to the

individual release events (Glowatzki & Fuchs, 2002) that are subject

to regulation beyond Ca2+ triggering of SV fusion and, hence, offer

another level of complexity (Grant et al, 2010; Rutherford et al, 2012;

Chapochnikov et al, 2014; Huang & Moser, 2018; Niwa et al, 2021).

Indeed, EPSCs of the afferent IHC-SGN synapse vary greatly in ampli-

tude and shape. While, regardless of this EPSC variability, > 95% of

EPSCs successfully drive spike generation in the peripheral SGN

neurite, shorten the spike latency and provide closer coupling of the

spike to the time of the release (Rutherford et al, 2012). The EPSC

variability has initially been attributed to more or less coordinated

release of several SVs (coordinated multivesicular release; Glowatzki

& Fuchs, 2002; Goutman & Glowatzki, 2007; Grant et al, 2010)).

Alternatively, univesicular release through a dynamic fusion pore

has been proposed to underly the different EPSC amplitudes and

shapes (Chapochnikov et al, 2014; Grabner & Moser, 2018; Huang &

Moser, 2018). Regardless of the precise underlying mechanism, the

specifics of release likely co-determine the SGN firing properties and

are thus critical for sound encoding.

Outlook—Synaptic heterogeneity

Relating molecular composition, structure, and function of afferent

synapses and studying their position dependence remains an impor-

tant task. Confocal and superresolution optical imaging of pre- and

postsynaptic molecular nanoanatomy during physiological analysis

or after immunofluorescent labeling will likely contribute here, as

will electron microscopy and tomography. It is conceivable that the

position-dependent regulation of AZ size, Ca2+ channel number, and

molecular topography will involve the abundance of scaffold pro-

teins of IHC AZs such as bassoon (Frank et al, 2010), RIBEYE (Jean

et al, 2018), RIM2 (Jung et al, 2015; Picher et al, 2017b), and RIM-

BP2 (Krinner et al, 2017, 2021) that undergo direct (RIM, RIM-BP2)

or indirect (bassoon, likely RIBEYE) interaction with CaV1.3 Ca2+

channels (Fig 5D and E). Indeed, an alteration of Ca2+ channel clus-

tering at IHC AZs was found for a deletion of any of them (Frank

et al, 2010; Jung et al, 2015; Krinner et al, 2017; Jean et al, 2018).

Interestingly, bassoon (Frank et al, 2010), but not RIM2a (Jung

et al, 2015) or RIM-BP2 (Krinner et al, 2017), seems required for

establishing the normal variance of maximal synaptic Ca2+ influx of

IHC AZs. Differences in the Ca2+ channel complexes (Fig 5D)

between IHC AZs might originate from their subunit composition as

well as alternative splicing of CaV1.3a1 (Shen et al, 2006; Scharinger

et al, 2015; Ohn et al, 2016; Vincent et al, 2017), which may influ-

ence binding of EF-hand Ca2+ binding proteins (CaBPs, calmodulin;

Grant & Fuchs, 2008; Schrauwen et al, 2012; Picher et al, 2017a;

Oestreicher et al, 2021), multidomain proteins of the AZ (e.g.,

RIM-BPs and RIM), and adapters (e.g., Gipc3, unpublished). For

example, a genetic manipulation of the differentially spliced

CaV1.3a1 C-terminus that is expected to abolish the long CaV1.3a1
splice variant (Scharinger et al, 2015) indeed resulted in a mild

alteration of Ca2+ influx at IHCs, but the functional relevance for

sound encoding remains to be clarified (Ohn et al, 2016). Moreover,

while the CaVb2 subunit seems to prevail (Neef et al, 2009), other

subunits are expressed, too (Kuhn et al, 2009; Neef et al, 2009).

Interestingly, disruption of the CaVa2d2 subunit led to reduced Ca2+

influx and a loss of precise juxtaposition of pre- and postsynaptic

structures at the afferent IHC synapse (Fell et al, 2016).

Resolving the topography of these molecular players and their

complexes will benefit from advanced optical nanoscopy such as

MINFLUX, which recently revealed such a molecular AZ nano-map

for rod photoreceptors (Grabner et al, 2022), or ONE expansion

microscopy (preprint: Shaib et al, 2022). Freeze fracture immunola-

beling of Ca2+ channels and AZ proteins followed by electron

microscopy (Chen et al, 2015; Nakamura et al, 2015; Butola

et al, 2021) offers an alternative/additional approach. Electron

tomography allows the definition of SV subpools based on their

tethering and docking status (Fern�andez-Busnadiego et al, 2010;

Chakrabarti et al, 2018). Comparative electron tomography of pillar

and modiolar synapses, ideally following optogenetic stimulation

and high-pressure freezing (Chakrabarti et al, 2022), is expected to

majorly advance our understanding of the nanoanatomy and nano-

physiology of the IHC synapse. Since the postsynaptic density is typ-

ically well accessible in these samples, the presynaptic parameters

and the size of the postsynaptic density (PSD) can be simulta-

neously approached, but typically not fully captured given the limit

of typical 200 kV microscopes to a sample thickness of 250 nm or

less. Another remaining challenge is to simultaneously analyze the

topography of Ca2+ channels and SVs tethered or docked to the AZ

membrane. Approaches such as 2-color MINFLUX and cryo-electron

tomography promise progress toward this end.

Furthermore, efforts are required also to elucidate the molecular

and structural knowledge regarding the PSD of the postsynaptic

SGNs. Immuno-electron microscopy and confocal and superresolu-

tion immunofluorescence have established the notion that a ~ 0.5–

1.5 lm sized dense array of glutamate receptors with a ring-like

structure likely surrounding the presynaptic AZ (Matsubara et al,

1996; Meyer et al, 2009; Wong et al, 2014; Rutherford et al, 2023)

ensures efficient detection of glutamate. A number of postsynaptic

density proteins such as PSD-95, Shank, and Homer1 have been

identified (e.g., Davies et al, 2001; Reijntjes et al, 2020). Few studies

have addressed the question whether postsynaptic elements show

gradients along the pillar–modiolar axis. Interestingly, opposing

size gradients (decreasing in pillar–modiolar direction for AMPA

receptor clusters, but in modiolar–pillar direction for ribbon size)

have been described for IHCs of CBA mice (Liberman et al, 2011;

Reijntjes et al, 2020), but while the presynaptic gradient was consis-

tently found in two other mouse lines, the postsynaptic gradient

was not (Reijntjes et al, 2020). A recent detailed study of the PSD of

the IHC-SGN synapse in C57BL/6J mice revealed a modiolar–pillar

gradient of PSD size and showed that the GluA3 is required for

modiolar–pillar gradient of ribbon size (Rutherford et al, 2023).

Together, pre- and postsynaptic molecular and ultrastructural

properties co-determine sound encoding at a given IHC ribbon syn-

apse. However, established neuronal concepts such as synaptic

strength might fall short when it comes to describing the heteroge-

neous synapses of IHCs that are driven by graded receptor poten-

tials, rather than action potentials. Instead, characterizing threshold

as well as resting and maximal rates of synaptic transmission as a
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function of IHC potential in ex vivo, but ideally also in vivo experi-

ments, will serve our understanding of sound intensity coding bet-

ter. The parameter of maximal presynaptic strength, i.e., the

maximal glutamate release for strong depolarizations, likely will

apply only to ex vivo analysis enabling such IHC stimulation.

Last not least, we propose to employ computational modeling to

reconcile the various data on synaptic properties and to study how

they relate to sound intensity coding by SGNs. Preliminary modeling

results (Gabrielaitis, 2015) indicate that the voltage-dependent acti-

vation of CaV1.3 Ca2+ channels can explain much of the diversity of

the spontaneous and sound-evoked SGN firing (Peterson &

Heil, 2021). For example, the difference in the threshold for Ca2+

channels—some above the IHC resting potential resulting in little or

no Ca2+ triggered glutamate release and others at > 10% of activa-

tion at rest with substantial release—can readily account for the

broad SR range of SGNs (~ 2 orders of magnitude). Modeling will

also help evaluating the impact that Ca2+ channel-release site cou-

pling has on sound encoding. Different from the effects of voltage

dependence of synapse function, this seems less intuitive. Generally,

one could assume that large AZs with many Ca2+ channels that oper-

ate in a more depolarized voltage range are able to grade the num-

ber of open channels (product of total number of channels and open

probability) and hence release over a wider voltage range. However,

this notion implies a Ca2+ nanodomain-like control of release (i.e., a

linear apparent Ca2+ dependence of release), which might not be

the case for these large synapses, where domain overlap among the

many Ca2+ channels is likely to occur. A supralinear apparent Ca2+

dependence could compress the synaptic transfer function as is

actually observed in clusters 2 and 3 of the IHC AZs. Yet, this seems

to conflict with the notion of these synapses driving low SR SGNs

that generally code a wider dynamic range of sound intensity. So,

modeling will be critical to better understand the complex interplay

of synaptic properties, excitability, and spike generation of type I

SGN and to evaluate the relative contributions of these processes to

diversify SGN sound intensity coding. In fact, studies have indicated

that differences in SGN excitability exist and might be related to

the molecular profiles type Ia–c (Crozier & Davis, 2014; Smith

et al, 2015; Markowitz & Kalluri, 2020).

Candidate signaling mechanisms for generating
heterogeneous afferent synapses

How could a small and compact sensory cell like an IHC establish

such synaptic diversity? At least 4 candidate signaling mechanisms

come to mind: (i) cell- or tissue-level planar polarity, known to

establish proper hair bundle orientation; (ii) transsynaptic signaling

by molecularly diverse type I SGNs; (iii) direct or indirect signaling

by efferent olivocochlear neurons; and (iv) position-dependent

impact of supporting cells. Figure 7 summarizes existing evidence

for a contribution of the first three mechanisms.

Cell- or tissue-level planar polarity
Correct orientation of stereocilia bundles, which are deflected by the

mechanical stimuli for gating of mechanotransducer ion channels, per-

pendicular to the pillar–modiolar axis is essential for efficient IHC acti-

vation by sound. This raises the possibility that planar polarity

signaling, involved in setting proper hair bundle orientation at the api-

cal hair cell membrane, might also contribute to determine synaptic

properties at the base of the IHC along the pillar–modiolar axis. Indeed,

interference with intrinsic (cell-autonomous) planar polarity signaling

by misexpression of pertussis toxin disrupts both proper hair bundle

orientation (Tarchini et al, 2013) and the modiolar–pillar gradients

of AZ size and maximal Ca2+ influx (Jean et al, 2019). It will be interest-

ing to address the roles of GPR156, a recently identified orphan G-

protein coupled receptor (Kindt et al, 2021), as well as those of Gai1

Figure 7. Candidate signaling mechanisms for establishing heterogeneous properties of IHC active zones.
(A) Establishment of apical planar polarity (top left) depends on Gai signaling triggered by GPR156 (top right). IHC expression of PTX and KO of Gai3 collapses the
basolateral modiolar–pillar gradient of AZ size (modified from Kindt et al, 2021). (B) RNAseq data of several laboratories have revealed three type I SGN subtypes that
have been proposed to correspond to high SR (Ia), intermediate SR (Ib), and low SR (Ic) SGNs. Those types occur all along the tonotopic axis (right). The transcriptional
profile likely relates to the molecular SGN physiology and could also differentially instruct the properties of presynaptic AZs in IHCs via transsynaptic signaling. Indeed,
postnatal disruption of the transcription factor Pou4f1, expressed in Ic (and less in Ib) collapsed the modiolar–pillar gradient of maximal AZ Ca2+ signaling (Modified
from Shrestha et al, 2018). (C) The source (LOC vs. MOC) and extent of efferent innervation differs between SGNs and appears to balance the maximal afferent synaptic
strength. Lesion of the efferent projection led to a collapse of the modiolar–pillar gradient of AZ size (Modified from Hua et al, 2021).
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and Gai3 that operate downstream of GPR156 (Kindt et al, 2021) in this

regard. In addition, it will be interesting to analyze the effects on syn-

apse organization of altering core-planar cell polarity by disrupting

Vangl1 and Vangl2 (Stoller et al, 2018).

Transsynaptic signaling by molecularly diverse type I SGNs
Deletion of the transcription factor Pou4f1, which is expressed in

type Ic (and less of Ib) SGNs that preferentially insert on the

modiolar IHC side (Shrestha et al, 2018; Sherrill et al, 2019), col-

lapsed the modiolar–pillar gradient of the maximal synaptic Ca2+

influx (Sherrill et al, 2019). This suggests that SGNs with a tran-

scriptional program controlled by Pou4f1 can instruct properties of

modiolar AZs. We note that the gradient of voltage-dependent acti-

vation of Ca2+ channels was not affected, but, peculiarly and for

unknown reasons, the ribbon size gradient was inverted (pillar–

modiolar) in both control and Pou4f1-deficient mice (Sherrill

et al, 2019). It will now be interesting to also target other transcrip-

tion factors, such as Runx1, which are thought to co-determine the

Ib and Ic molecular profile. Interestingly, disruption of Runx1 led to

a collapse of the modiolar–pillar ribbon size gradient, too (Shrestha

et al, 2023). Combining disruption of Runx1 function or misexpres-

sion of Runx1 across all type I SGNs with molecular tagging of syn-

apses formed by type Ib and Ic neurons will enable ex vivo studies

of the impact of Runx1 on the properties of afferent IHC synapses

and SGN excitability. Parallel in vivo recordings of spontaneous and

sound-evoked SGN firing will allow to relate alterations in position-

dependent AZ properties to potential changes in functional

SGN diversity. However, so far the molecular cues mediating the

transsynaptic signaling are unknown. One attractive candidate to

investigate here are CaVa2dx Ca2+ channel subunits (Fig 5D): a misa-

lignment of AZ and postsynaptic density was demonstrated for

CaVa2d2-deficient IHCs (Fell et al, 2016), but no position-dependent

analysis of synaptic features has been performed yet. The tetraspan

protein clarin-1, interacting with harmonin, has also been proposed

as a possible member of the IHC transsynaptic adhesion complex

(Dulon et al, 2018). While there is some preliminary work on the

function of synaptic adhesion proteins, such as neurexins (Sons

et al, 2006) and neuroligins (Hoon et al, 2009; Ramirez et al, 2022),

much remains to be done to elucidate the molecular players for

implementing synaptic heterogeneity.

Efferent signaling
Efferent innervation has been shown to differentially modulate affer-

ent synapses (Ruel et al, 2001; Yin et al, 2014; Hua et al, 2021).

Aside from acetylcholine, the efferent terminals employ dopamine

and peptidergic transmitters and the precise effects of efferent mod-

ulation remain to be studied (Fuchs & Lauer, 2019). Efferent inner-

vation approaching the unmyelinated peripheral SGN neurites is

more prevalent near the modiolar IHC side (Liberman et al, 1990),

which likely reflects the greater number of afferent synapses found

there as well as a greater density of efferent synapses. Reconstruc-

tion of an organ of Corti volume spanning ≥ 15 IHCs revealed that

efferent innervation of SGNs varies with their afferent innervation

and synaptic location (Hua et al, 2021). The number of efferent syn-

apses ranged from 0 to 20 per SGN, lower for SGNs with input from

an AZ with a single ribbon, higher for SGNs facing multi-ribbon AZs

(primarily modiolar), and highest for SGNs with branched neurites

driven by multiple AZs. It is tempting to speculate that this reflects a

balance of the afferent input from IHC AZs by efferent modulation.

SGNs contacting modiolar AZs received efferent input primarily

from lateral olivocochlear neurons, whereas medial olivocochlear

neurons formed en passant synapses mostly onto SGNs contacting

pillar AZs, which could offer an additional means of differential

efferent modulation of SGNs. Surgical lesioning of olivocochlear

projections at the floor of the 4th ventricle collapsed the modiolar–

pillar gradient of ribbon size (Yin et al, 2014). It will be interesting

in future experiments to study how the loss of efferent innervation

or the loss of efferent transmission affects the afferent synaptic orga-

nization and SGN firing properties and whether the effects of

disrupting transmission from lateral or medial olivocochlear neuron

differ.

Relating afferent synaptic heterogeneity and function to
spiral ganglion neuron diversity

Currently, the field lacks approaches that could connect the exciting

research on the diversity of SGN physiology, their molecular profile,

and the presynaptic input. Bridging gaps between the different

approaches and relating the likely intertwining candidate mecha-

nisms will be key to generating a unified concept on sound intensity

coding in the cochlea. For example, the tempting hypothesis that

IHCs use heterogeneous AZs to decompose sound intensity informa-

tion into complementary neural codes represented by the function-

ally and molecularly diverse type I SGNs awaits experimental and

theoretical testing. Detailed biophysical modeling of sound encoding

at the IHC-SGN synapse demonstrated that the variation of a single

parameter, the voltage of half-maximal activation of CaV1.3 chan-

nels, suffices to explain most, if not all, of the experimentally

observed diversity of spontaneous and sound-evoked SGN firing,

despite the use of a simple and unvaried implementation of spike

generation (Gabrielaitis, 2015). While not addressing likely contri-

butions of divergent SGN excitability, these modeling results empha-

size the impact of the voltage dependence of Ca2+ channel activation

and likely of Ca2+ channel-release site coupling.

A first attempt to bridge ex vivo synaptic physiology and in vivo

sound encoding took advantage of a mouse mutant with loss

of function for the adapter protein Gipc3 (GAIP interacting protein,

C-terminus 3), a PDZ protein and candidate regulator of Ca2+ chan-

nels. Defects of the human GIPC3 gene cause deafness (Charizo-

poulou et al, 2011; Rehman et al, 2011) and Gipc3 disruption in

mice led to audiogenic seizures and progressive hearing loss (Chari-

zopoulou et al, 2011). Early-onset hearing impairment in Gipc3

mutant mice has been attributed to dysfunction of hair cell stereo-

cilia, although its localization within hair cells resembles a cytoplas-

mic pattern similar to myosin VI (Charizopoulou et al, 2011). In the

brain, glutamate release was shown to depend on interaction

between myosin VI and the Gipc3 homolog Gipc1 (Giese

et al, 2012). Analysis of Gipc3-deficient IHCs revealed increased

Ca2+ influx and exocytosis (Ohn et al, 2016). Ca2+ channel activation

showed on average a hyperpolarized shift of the voltage of half-

maximal activation (Fig 8A, �7 mV on average for all AZs) while

maintaining the pillar–modiolar gradient of the voltage-dependent

activation of individual AZs.

Interestingly, a pillar–modiolar gradient was also observed for the

maximal synaptic Ca2+ influx in Gipc3-deficient IHCs, contrasting the
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modiolar–pillar gradient typically found in wild-type IHCs (Fig 4).

This resulted in the unique scenario that both mechanisms of synap-

tic strength coincided at pillar synapses in addition to the overall acti-

vation of Ca2+ influx at lower voltages. Should the presynaptic

hypothesis of the functional SGN diversity be correct, one would

expect higher spontaneous firing rates and lower sound thresholds of

SGNs in Gipc3 mutant mice. In keeping with this hypothesis, the

mutants showed substantially elevated spontaneous firing rates

(Fig 8B) as well as onset firing rates upon suprathreshold sound stim-

ulation (Ohn et al, 2016). Interpretation of the greater spontaneous

rate is challenging, given that (i) impaired mechanotransduction

resulted in elevated sound thresholds hampering the analysis of

sound encoding by SGNs and (ii) Ca2+ influx at pillar AZs of Gipc3-

deficient IHCs showed both activation at lower voltages and greater

maximal amplitude. Interestingly, a CaV1.3 (Cacna1d) mutation that

was aimed to abolish the function of splice variants with long C-

terminus (Scharinger et al, 2015) generated greater Ca2+ influx ampli-

tude across all IHC synapses (comparable to Gipc3 mutation) but,

unexpectedly, did not alter its voltage-dependent activation (Ohn

et al, 2016). The normal opposing gradients of voltage-dependent

activation and maximal amplitude of synaptic Ca2+ influx were main-

tained. Interestingly, in vivo SGN recordings in these CaV1.3 mutant

mice revealed a normal distribution of spontaneous firing rates, nor-

mal sound-evoked firing rates, and normal sound-pressure depen-

dence of firing. The comparison of the two mutants seems to indicate

a greater impact of the voltage dependence of Ca2+ influx for deter-

mining SGN firing behavior.

Outlook—relating synaptic heterogeneity and functional
spiral ganglion neuron diversity

Considering the challenge to bridge the gap between ex vivo and in

vivo analysis of sound intensity coding, we provide some more

but not exhausting suggestions on future approaches:

Harmonize protocols to characterize synaptic transmission in and
ex vivo as closely as possible
In vivo recordings from single SGNs have routinely accommodated

the stochastic nature of single active zone function with few vesicu-

lar release sites by applying multiple repetitions of a given stimulus.

Yet, often they did not fully scrutinize synaptic functions such as

presynaptic pool dynamics. Ex vivo recordings have often (i) lumped

together all synapses of an IHC by whole-cell recordings of Ca2+ and

exocytic membrane capacitance changes, (ii) studied immature

IHCs, (iii) used unphysiological temperature and extracellular Ca2+

concentration, (iv) lacked sensitivity or kinetics, and/or (v)

presented stimuli with few repetitions if repeated at all, which

reports stochastic realizations given the few vesicular release sites

per AZ. In the future, electrophysiological or optical recordings of

spontaneous synaptic transmission or spontaneous firing rate from

individual synapses, ideally combined with identification of the

molecular SGN profile, will enable to tentatively assign synaptic

properties to type I SGN functional or molecular subpopulations.

Moreover, the use of more intact ex vivo preparations (Jagger &

Housley, 2002; Chan & Hudspeth, 2005; Jean et al, 2020) as well as

Figure 8. Relating afferent synaptic heterogeneity and spiral ganglion neuron diversity.
(A) Ca2+ influx in IHCs of Gipc3 mutant mice shows a more negative activation range. (B) Increased spontaneous firing rate of Gipc3 mutant mice (Modified from Ohn
et al, 2016). (C–E) Optogenetic approach to mapping the synaptic position of functionally distinct SGNs on IHCs (C): ChR2-H134R-mediated IHC photocurrents lead to
robust photodepolarization (D) and ensuing glutamate release revealed by recordings of light-evoked EPSCs from postsynaptic boutons of SGNs (E). This way, IHCs can
be stimulated in a less invasive way than using patch clamp (Adapted from Chakrabarti et al, 2022).
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physiological temperature and extracellular Ca2+ concentration will

help bridging the gaps. Finally, taking advantage of approaches such

as optogenetics will allow to probe synaptic transmission in a less

invasive way (Fig 8C–E) in more intact preparations, in particular

when combined with optical readout of SGN activity, which is still

to be established.

Analyze mouse mutants with altered synaptic properties and/or
synaptic heterogeneity
Clearly, analyzing mouse mutants such as mice carrying gain of

function mutations of CaV1.3 (Pinggera et al, 2015), with activa-

tion at lower voltage and, hopefully, better preserved acoustic

sensitivity than found in Gipc3 mutants, will be helpful to test

the hypothesis of presynaptic determination of SGN firing diver-

sity. Ideally, aside from ex and in vivo physiology, SGN RNA

sequencing should be considered to reveal potential changes in

SGN molecular profile or the SGN subtype representations.

Glutamatergic transmission at the afferent IHC-SGN synapse -

employing the vesicular glutamate transporter Vglut3 - is required

for maintaining the molecular SGN subtype specification (Shresthra

et al, 2018; Sun et al, 2018). Interestingly, disruption of glutama-

tergic IHC transmission by Vglut3 knock-out or largely abolishing

IHC exocytosis by mutation of otoferlin did not majorly alter the

heterogeneity of presynaptic AZs (Karagulyan & Moser, 2023). This

suggests that neither afferent synaptic activity nor proper subtype

identity of SGNs are strictly required for establishing and main-

taining presynaptic heterogeneity. However, we note that the Ca2+

influx activated at lower voltages in IHCs of both Vglut3 and

otoferlin mutants and that the voltage-dependence of Ca2+ influx

was less variable in otoferlin-mutant IHCs. Clearly more work, such

as manipulating the SGN molecular profile by disruption or misex-

pression of key transcription factors will be required to study the

consequences on afferent synaptic or neurophysiological SGN

properties.

Map the synaptic insertion of IHCs of low, intermediate, and high
SR SGNs
The heroic serial section electron microscopy of cochleae tracing

physiologically characterized SGNs back to their contact with IHCs

(Liberman, 1982) has sculpted our view of IHC-SGN connectivity

and provided evidence for a synaptic origin of the functional SGN

diversity (Merchan-Perez & Liberman, 1996; Kantardzhieva et al,

2013). Surface block scanning electron microscopy (Hua et al, 2021)

and light sheet fluorescence microscopy (Keppeler et al, 2021;

Rankovic et al, 2021) now offer powerful new approaches to

unravel the connectivity in the cochlea and, combined with labeling

of single SGNs after in vivo recordings, might substantially expedite

the process, promising larger numbers of characterized and

backtraced SGNs.

Computational modeling of sound encoding for reconciling data
and evaluating impact of parameters
Clearly, modeling has the capacity to cover and bridge the different

levels of observation and will likely be key to arrive at a unifying

account of sound intensity coding. Yet, in order for it to scrutinize

hypotheses, it requires reliable and detailed experimental results.

Together, the opportunities offered by new methods and con-

cepts allow for work toward a better understanding of the principles

of sound intensity coding. This would not only be a great step for-

ward toward understanding how the auditory system works but

would also be informative regarding human deafness and the effects

of noise-induced hearing loss. Furthermore, it would allow more

targeted approaches for advanced hearing restoration, such as by

optogenetic stimulation, where specific targeting of SGN subtypes

could vastly improve the dynamic range that can be addressed by

future optogenetic cochlear implants. Eventually, it will be exciting

to relate such work on the auditory system to parallel studies of

wide dynamic range intensity coding in other sensory systems.

Vestibular function and vision, also employing ribbon synapses of

secondary sensory cells, will be of particular interest.
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