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Abstract: We investigate higher-order corrections to correlators in a general CFT with
the double trace T T̄ deformation. Traditional perturbation theory proves inadequate for
addressing this issue, due to the intricate stress tensor flow induced by the deformation.
To tackle this challenge, we introduce a novel technique termed the conservation equa-
tion method. This method leverages the trace relation and conservation property of the
stress tensor to establish relationships between higher and lower-order corrections and sub-
sequently determine the correlators by enforcing symmetry properties. As an illustration,
we compute both first and higher-order corrections, demonstrating the impact of stress ten-
sor deformation on correlators in a general deformed CFT. Our results align with existing
calculations in the literature.
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1 Introduction

The T T̄ deformation of two-dimensional quantum field theories, as introduced by Smirnov
et al. [1–3], has attracted considerable attention due to its remarkable properties. The
deformation is characterized by significantly improved analytic tractability compared to
generic irrelevant deformations. Several works have shown that the deformation is integrable
[3–7], such that under the T T̄ flow the deformed spectrum remains exactly solvable and an
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infinite tower of conserved charges as well as their associated algebra are preserved. Multiple
equivalent descriptions, such as those in terms of string theory [8, 9],1 random metrics
[15, 16], and 2D gravity [17, 18], have been provided for this deformation. The holographic
counterpart of the deformed CFT has been suggested as a cutoff AdS gravity [19]. An
alternative holographic description imposes a mixed boundary condition at the asymptotic
AdS boundary [20][21]. Further, accumulated evidence suggests a potential connection
between deformed conformal field theories (CFTs) and cutoff AdS gravity, hinting at a
novel example of holography beyond conventional holographic CFTs [22–28].

Extensive efforts have been devoted to computing correlators in T T̄ deformed CFTs
using various methods. Noteworthy studies on the partition function include the works
of Datta et al. [29], Aharony et al. [30], and Cardy [31]. These investigations leverage
the deformed spectrum and delve into the modular properties of the deformed partition
function. Previous works have also computed one-point functions of KdV charges on a
torus [32, 33]. Higher-point functions of the stress tensor [16, 22, 27, 34–36] and undeformed
operators [37–42] have been computed perturbatively to the first few nontrivial orders in
the deformation parameter λ.

Furthermore, authors of [43–45] have constructed surface charges of T T̄ deformation to
impose constraints on correlators. Harnessing integrability, the renormalized Lagrangians
of the deformed massive scalar and Dirac fermion are constructed by leveraging integra-
bility [4, 46]. It’s worth highlighting that non-perturbative investigations have also been
conducted. These investigations have covered aspects such as the UV divergences of cor-
relators [47] and the large-momentum behavior of two-point correlators [48]. A recent
functional renormalization group study on the T T̄ deformed scalar field theory has un-
covered the presence of a non-trivial UV fixed point [49]. Other related studies include a
non-perturbative computation of two-point correlators within the context of the TsT/T T̄

correspondence [50].
For a general 2D CFT, The T T̄ deformation is defined via the following flow equation

of action2

∂λS
λ =

1

π

∫
d2xOT T̄ (x),

OT T̄
..=T T̄ −Θ2, T ..= −2πTzz, Θ ..= 2πTzz̄ =

π

2
Tµ
µ ,

(1.1)

where Tµν denotes the stress tensor defined in the deformed theory, thereby making the
deformation non-linear. A general correlator obeys the following flow equation [2]

∂λ⟨
∏
i

Oi(zi)⟩λ =⟨∂λ
Å∏

i

Oi(zi)

ã
⟩λ

− 1

π

∫
d2x⟨OT T̄ (z)

∏
i

Oi(zi)⟩λ − ⟨OT T̄ (z)⟩λ⟨
∏
i

Oi(zi)⟩λ,
(1.2)

1For the single trace T T̄ deformation [10–14], one can refer to the relevant investigation.
2Our convention for the flow equation differs from [22] by a factor of 1

π
, i.e. 1

π
(∂λS

λ)ours = (∂λS
λ)KLM .

Note that the Tzz in [22] corresponds to T in our paper.
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which follows from the definition of correlators3

⟨
∏
i

Oi(zi)⟩λ =

(∏
i

δ

δJOi

)
Zλ[J ]

Zλ[J = 0]

∣∣∣∣∣
J=0

. (1.3)

The first term in the right hand side (RHS) of (1.2) accounts for the deformation of deformed
operators, which are operators whose functional forms in terms of the fundamental fields
depend on λ, such as the conserved currents. From a Hamiltonian point of view, these
deformed operators differ from their CFT counterparts even on the initial time slice, for
the deformed operators are not only time evolved with the deformed Hamiltonian but also
undergo changes in their explicit form [51]. It is important to note that the first term
vanishes for undeformed operators whose forms are independent of λ. The second term on
the RHS of (1.2) is associated with the contribution from the flow of action.

The disconnected term in the integral, namely −⟨OT T̄ (z)⟩λ⟨(
∏

iOi(zi))⟩λ, will be omit-
ted in the rest of our discussions since it vanishes on a Euclidean plane, as proved in appendix
A. We may expand both sides of the equation in powers of λ to obtain a relation between
higher-order and lower-order corrections:

⟨
∏
i

Oi(zi)⟩(n) =
n−1∑
m=0

⟨
Å∏

i

Oi(zi)

ã(m)

⟩(n−m) − 1

nπ

∫
d2x⟨OT T̄ (z)

∏
i

Oi(zi)⟩(n−1), (1.4)

where A(n) represents the coefficient of order λn in the series expansion of a given quantity
or object within the deformed theory, expressed as Aλ =

∑
i λ

iA(i). Specifically, A(0)

corresponds to the limit of the Conformal Field Theory (CFT). For instance, ⟨
∏

iOi(zi)⟩(n)

represents the n-th order correction to the correlator ⟨
∏

iOi(zi)⟩λ; O(n) signifies the n-
th order correction to the functional form of the deformed operator O in terms of the
fundamental fields. As an illustration, in the deformed free boson CFT, one has [52]

OT T̄ =
4λ(∂ϕ∂̄ϕ)2 +

√
1− 8t(∂ϕ∂̄ϕ)2 − 1

2λ2
√
1− 8λ(∂ϕ∂̄ϕ)2

,

OT T̄ =
∑
i

λiO(i)

T T̄
, O(0)

T T̄
= (2π)2(∂ϕ∂̄ϕ)2, O(1)

T T̄
= 32π3(∂ϕ∂̄ϕ)3.

(1.5)

While (1.4) allows for the computation of first-order corrections to correlators of undeformed
operators with conformal perturbation theory, this approach has its limitations when ad-
dressing correlators with stress tensor insertions or higher-order corrections to correlators
of undeformed operators. In these scenarios, solely relying on the flow equation for corre-
lators as described above proves insufficient without knowledge of the explicit form of the
deformed stress tensor T (n)(z).

As a possible attempt, we may try to obtain corrections to the stress tensor by its
definition as the variation of the action w.r.t. the metric:

∂λTab =
δ

δgab
∂λS

λ =
∂

∂gab
(
√
gOT T̄ ), T

(1)
ab =

δ

δgab
∂λS

(0) =
∂

∂gab
(
√
gO(0)

T T̄
). (1.6)

3We will use complex coordinates for most of our discussions. For simplicity, a field’s coordinate de-
pendence will be indicated by its holomorphic coordinate, while its antiholomorphic dependence will be
omitted.
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However, the feasibility of this method is limited to specific models with explicit classical
action. For a general CFT, the dependence of the stress tensor on the metric, i.e., ∂Tcd

∂gab
,

is unknown. Moreover, we have to assume that the stress tensor can be obtained as the
response of the action to an arbitrary change in the background metric, while as discussed
in [47], one may have to confront the problem of generalizing the T T̄ deformation to curved
space.

In the present work, we develop a systematic approach to compute correlators in the
deformed theory to higher orders in perturbation theory without relying on the explicit
form of the deformed stress tensor. Our method is based on general principles of the T T̄

deformed CFTs, including the trace relation and the conservation of the stress tensor. As
a check, the results are shown to be consistent with computation in deformed free field
theories and existing results in the literature.

The paper is structured as follows. Section 2 introduces the computational method
and outlines the computing correlators’ procedures. In Section 3, we calculate first-order
corrections for three types of correlators: those involving undeformed operators, stress
tensor correlators, and mixed correlators featuring both the stress tensor and undeformed
operators. These examples illustrate the execution of specific steps within our method,
particularly the resolution of certain undetermined terms. In Section 4, we extend our
analysis to compute second-order corrections for nearly the same set of correlators examined
in Section 3. The paper concludes with a summary of our findings and outlines potential
areas for further investigation.

2 The setup and prescription

In this section we present the procedures employed to compute a deformed correlator to
an arbitrary order, relying on the trace relation and conservation of the deformed stress
tensor. Consider the undeformed theory Sλ=0 to be a CFT on a Euclidean plane. The flow
equation of action (1.1) implies that the stress tensor obeys the trace relation

Θ = λOT T̄ . (2.1)

This relation crucially connects higher-order corrections to lower-order ones and, ultimately,
CFT correlators. Its validity has been demonstrated for the deformed free boson in [3] and
proved with the variational principle in [21].

Let us begin by promoting the classical trace relation (2.1) into an operator equation
valid inside correlators

⟨Θ(z)X⟩λ = λ⟨OT T̄ (z)X⟩λ. (2.2)

Expanding both sides of equation (2.2) yields

⟨Θ(z)X⟩(n) =⟨OT T̄ (z)X⟩(n−1), n ̸= 0. (2.3)

Further, using the conservation equations of the stress tensor gives

⟨T (z)X⟩(n) =⟨
(
∂−1
z̄ ∂zΘ(z)

)
X⟩(n),

⟨T̄ (z)X⟩(n) =⟨
(
∂−1
z ∂z̄Θ(z)

)
X⟩(n).

(2.4)
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The equations formally replace all insertions of T and T̄ inside correlators by ∂−1
z̄ ∂zΘ, ∂−1

z ∂z̄Θ,
respectively. It is important to emphasize that ∂−1

z̄ formally denotes the inverse of ∂z̄.
Adding a term holomorphic in z to the following equation4

T = ∂−1
z̄ ∂zΘ+ f(z), (2.5)

still preserves the conservation equation of T . Therefore, the latter two equations of (2.3)
are understood to hold up to holomorphic/antiholomorphic terms. These terms are typically
determined by symmetries and other properties of the correlators, as we shall demonstrate
in the subsequent sections. Introducing an anti-derivative on other geometries, such as a
torus, would result in a nontrivial constant term that cannot be determined solely from the
conservation equations. However, in this study, we restrict our discussions to the Euclidean
plane so such issues do not arise.

Equipped with the trace relation and conservation equations, the key insight is that
higher-order corrections can be expressed in terms of lower-order ones as long as stress
tensor insertions are present within the correlator under consideration. For correlators of
undeformed operators, the stress tensor can always be introduced using the flow equation
(1.4).

We now summarize the procedure for computing a correlator of undeformed operators
up to an arbitrary order: computing ⟨X⟩(n). The procedure is as follows:

1. Utilizing the flow equation (1.4) and the expansion of correlator (2.4), insert the vertex∫
d2zOT T̄ to lower the order of the correction by one,

⟨X⟩(n) =− 1

nπ

∫
d2x⟨OT T̄ (z)X⟩(n−1). (2.6)

2. Rewrite the stress tensor components T or T̄ in terms of Θ. The RHS of (2.6) becomes∫
d2x⟨(T T̄ − (Θ)2)(z)X⟩(n−1) =

∫
d2x⟨

(
∂−1
z̄ ∂zΘ · T̄ − (Θ)2

)
(z)X⟩(n−1). (2.7)

3. Insert the trace relation to further lower the order. (2.7) becomes∫
d2x⟨

(
∂−1
z̄ ∂zOT T̄ · T̄ −ΘOT T̄

)
(z)X⟩(n−2). (2.8)

4. Repeat steps 2 and 3 until the resulting expression contains only zeroth-order correc-
tions or CFT correlators.

5. Perform the antiderivatives ∂−1
zi ’s and fix the (anti)holomorphic terms and integration

constants by the symmetries or specific properties of ⟨X⟩λ.

A notable aspect of our prescription is the use of conservation equations (step 2) in dealing
with the stress tensor. This approach allows us to avoid relying on the explicit form of the
deformed stress tensor, which is not available in a general deformed theory.

4More accurately, this term can be a meromorphic function.
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Before proceeding with examples, we clarify certain aspects regarding the field OT T̄ .
OT T̄ is defined through the operator product expansion as follows [1]

T (z)T̄ (z′)−Θ(z)Θ(z′) = OT T̄ (z) + derivative terms. (2.9)

The presence of arbitrary total derivative terms on the RHS reflects the ambiguity in the
definition of OT T̄ . This does not pose a problem when the above definition defines the
deformed action. However, it does inflict deformed correlators with ambiguities [53]. Con-
sequently, the quantum trace relation is also subject to ambiguities

Θ = λOT T̄ + ∂µW
µ. (2.10)

To date, the resolution of such ambiguities remains elusive. In our treatment, we work in
the gauge where all these improvement terms vanish. This means we set the total derivative
terms in the trace relation to zero, such that the T T̄ operator is defined as

OT T̄ (z) = lim
z′→z

T (z)T̄ (z′)−Θ(z)Θ(z′). (2.11)

3 First-order corrections

3.1 Correlators of undeformed operators

In this section, we apply the formalism developed in the previous section to derive an
expression for the first-order correction to T T̄ deformed correlators of undeformed operators.
We assume the undeformed (λ = 0) theory is a CFT on an Euclidean plane. A similar
approach was taken in a prior study [47]. We find that the first-order correction to a
correlator of undeformed operators can be expressed as a sum of correlators of descendant
operators.

At first-order, the procedure is rather straightforward. Let ⟨X⟩λ be a correlator of
undeformed operators, and then its first-order is given by

⟨X⟩(1) =− 1

π

∫
d2x⟨OT T̄ (z)X⟩(0)

=− 1

π
lim
ε→0

∫
d2x⟨

(
T (z + ε)T̄ (z)−Θ(z + ε)Θ(z)

)
X⟩(0) − ⟨T (z)T̄ (z)−Θ2(z)⟩(0)⟨X⟩(0),

(3.1)
where a point-splitting regulator ε is introduced. By the conformal Ward identity

⟨X⟩(1) = − 1

π

Ñ∫
d2x

∑
m,n

∑
r,s≥1

1

(z − zm + ε)r(z̄ − z̄n)s

é
⟨Lr−2,mL̄s−2,nX⟩(0), (3.2)

with indices m,n running over all field insertions, and indices r, s running over all positive
integers. Lr−2,m is a shorthand notation for the Virasoro generator at zm, Lr−2(zm),
formally defined in terms of a contour integral of the undeformed stress tensor T (0). These
Virasoro generators are undeformed operators as well. The details of the calculation can
be found in appendix C.1, and the final result is given by

⟨X⟩(1) =⟨dX⟩(0), d ..=
∑
m,n

dzm,zn (3.3)
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with

dzm,zn
..=


log(|zmn|2/ε2)∂zm∂z̄n −

∑
s≥2

1
s−1

L̄s−2,n∂zm
z̄s−1
mn

−
∑

r≥2
1

r−1
Lr−2,m∂z̄n

zr−1
nm

, if m ̸= n,

∑
s≥2

1
s−1

L̄s−2,m∂zm
εs−1 −

∑
r≥2

1
r−1

Lr−2,m∂z̄m
εr−1 , if m = n.

(3.4)
It should be noted that the subscripts of dzm,zn are ordered–dzm,zn ̸= dzn,zm . This expression
implies that at first-order, the effect of the deformation on correlators can be viewed as the
insertion of a set of fields of the form

∑
m ∂−1

zmT (zm)∂z̄m + ∂−1
z̄m T̄ (zm)∂zm .

If X consists purely of primaries of the undeformed CFT, then the Ward identity
reduces to

⟨T (z)X⟩(0) =
Å

∂zi
z − zi

+
hi

(z − zi)2

ã
⟨X⟩(0), (3.5)

and the expression for the first-order correction becomes

⟨X⟩(1) = ⟨dpX⟩(0),

dp ..=
∑
m ̸=n

Å
log(|zmn|2/ε2)∂zm∂z̄n − h̄n∂zm

z̄mn
− hm∂z̄n

znm

ã
−
∑
i

Å
h̄i∂zi
ε

+
hi∂z̄i
ε

ã
,

(3.6)

where the subscript p signifies that this relation holds for primary operators.
The formula (3.4) exhibits both logarithmic and power divergences. In this order, it is

possible to define locally renormalized fields whose correlators are finite as

OR(zi) ..= O(zi)− λ

Ñ
log(µ2ε2)∂zi∂z̄i −

∑
s≥2

1

s− 1

L̄s−2,i∂zi + Ls−2,i∂z̄i
εs−1

é
O(zi) (3.7)

with µ an arbitrary renormalization scale. After incorporating this procedure, we arrive at
a renormalized expression for the first-order correction

⟨XR⟩(1) =⟨dR X⟩(0) (3.8)

with

dR ..=
∑
m̸=n

Ñ
log(µ2|zmn|2)∂zm∂z̄n −

∑
s≥2

1

s− 1

L̄s−2,n∂zm
z̄s−1
mn

−
∑
r≥2

1

r − 1

Lr−2,m∂z̄n
zr−1
nm

é
. (3.9)

In subsequent discussions, when referring to the first-order correction to correlators of un-
deformed operators, we typically refer to (3.4), the unrenormalized expression, without
incorporating the locally renormalized fields.

As a first example, we examine the case of a two-point correlator of primary fields of
conformal dimensions (h, h̄). Substituting X = O(z)O(w) into the formula (3.6), we obtain

⟨O(z)O(w)⟩(1) = 8hh̄ log(|z − w|2/ε2)
(z − w)2h+1(z̄ − w̄)2h̄+1

, (3.10)
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where we have used the CFT two-point function

⟨O(z)O(w)⟩(0) = 1

(z − w)2h(z̄ − w̄)2h̄
. (3.11)

Note that the power terms in (3.6) vanish by translational invariance and the fact that the
conformal dimensions of the two fields are equal. This result (3.10) is consistent with the
findings in [38] [16].

As a different case, we examine a scenario where the correlator vanishes in the unde-
formed theory and involves non-primary fields. We consider the deformed free boson CFT
and calculate ⟨O(0)

T T̄
(z1)ϕ(z2)ϕ(z3)⟩(1). Applying the formula (3.4), we find

⟨O(0)

T T̄
(z1)ϕ(z2)ϕ(z3)⟩(1) = − 1

24π

ïÅ
1

z̄312z
2
12z13

+
1

z̄313z12z
2
13

ã
+

Å
1

z313z̄
2
13z̄12

+
1

z312z̄13z̄
2
12

ãò
,

(3.12)
where we have used the fact that (L−nϕ)(w) equals ∂ϕ when n = 1 and is zero for all other
values of n.

3.2 Stress tensor correlators

In this section, we examine the deformed stress tensor correlators, utilizing mainly the trace
relation and conservation equations, as discussed earlier.

3.2.1 Two-point and three-point functions

In the first order, the stress tensor two-point functions remain unaltered. However, delving
into the reasons behind this sheds light on a fundamental constraint imposed on the holo-
morphic terms stemming from the conservation equations, known as the spin constraint.
It’s worth mentioning that similar results regarding the two-point functions have been ob-
tained in other studies [22]. Nevertheless, our approach offers nuanced insights and applies
to various scenarios.

By the trace relation, the two-point function ⟨Θ(z1)T (z2)⟩ has a vanishing first-order
correction

⟨Θ(z1)T (z2)⟩(1) = ⟨(T T̄ −Θ2)(z1)T (z2)⟩(1) = 0. (3.13)

It follows from the conservation equations that ⟨T (z1)T (z2)⟩(1) can only be a term holo-
morphic in z1 (and by symmetry, it is also holomorphic in z2). Then, the question is how
to constrain this holomorphic term.

To tackle this problem, we can use the symmetries inherent in the deformed theory,
specifically rotational invariance. To facilitate this discussion, we shall revisit the concept
of spin. The spin, denoted as si, of a field ϕi(x) corresponds to the eigenvalue of the spin
operator [54]

S = J(0)− z∂z + z̄∂z̄, (3.14)
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when it acts on that field, J(0) is the total angular momentum operator that generates
rotations around the point z = 0.5 In the context of a correlator, the spin can be determined
by employing the Ward identity associated with global rotational symmetry, as given by6∑

i

(−zi∂zi + z̄i∂z̄i) ⟨X⟩ =
∑
i

si⟨X⟩, (3.15)

where si is the spin of the field at z = zi, and the sum
∑

i si is identified as the spin of the
correlator.

To illustrate, consider the massive free boson two-point correlator

⟨∂ϕ(z, z̄)∂ϕ(w, w̄)⟩ = − m2

4(z − w)2

Å
|z|2K0(m|z − w|) + 2(|z − w|/m)K1(m|z − w|)

+|z|2K2(m|z − w|)
ã
.

(3.16)

One may verify that this is an eigenfunction of the differential operator −z∂z+ z̄∂z̄−w∂w+

w̄∂w̄, and the corresponding eigenvalue, or its spin, can be found to be +2, which is the
sum of spins of the two bosonic fields. Moreover, the expanded forms of fields, such as the
Laurant expansion of the holomorphic stress tensor in a CFT, namely T (z) =

∑
n

Ln(0)
zn+2 ,

can also be shown to have the same spin as the original fields by using the commutation
relations between the rotation generator and the Virasoro generators.

Given the preservation of rotational symmetry in the deformed theory, the spin of all
fields remains unchanged under deformation, and any corrections to a correlator must ex-
hibit the same spin as the undeformed correlator. This constraint on deformed correlators is
called the spin constraint. For example, note that the expression for the first-order correc-
tion of correlators of undeformed operators (3.4) satisfies this requirement. Schematically,
d can be written as

∑
m ∂−1

zmT (zm)∂z̄m + ∂−1
z̄m T̄ (zm)∂zm , which leaves the spin of the fields

at points z = zm unaffected. In particular, the action of ∂z̄m lower the spin of the field at
point zm by one, but this is offset by ∂−1

zmT (zm). The similar precedure happened in the
second term of

∑
m ∂−1

zmT (zm)∂z̄m + ∂−1
z̄m T̄ (zm)∂zm .

We turn our focus back on the first-order corrections to stress tensor two-point corre-
lators. Recall that for two-dimensional quantum field theories, the zz component of the
stress tensor has a spin of 2, as determined by its transformation properties under rotations.
Consequently, the two-point correlator ⟨T (z1)T (z2)⟩λ should have a spin of 4, and the form
of the full correlator ⟨T (z1)T (z2)⟩λ is constrained to be

⟨T (z1)T (z2)⟩λ =
f(λ, |z12|, ε)

z412
, (3.17)

with the deformation effect only manifesting as a spin-neutral factor f(λ, |z12|, ε). We
note that if ⟨T (z1)T (z2)⟩(1) is holomorphic in z12 and is nonzero, then to have the correct

5while z = 0 is often chosen as a point of reference, this choice is arbitrary, and one can opt for a
different reference point z0, expressing S as J(z0)−(z−z0)∂z+(z̄− z̄0)∂z̄ if it proves more convenient. This
flexibility can be particularly advantageous when expanding fields around the point z0, as it may simplify
the commutation relation with J(z0), while the commutation with J(0) remains more intricate.

6The contribution from J(0) vanishes since it annihilates the vacuum.
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dimension, it must be proportional to 1/z612, which has a spin of 6, violating the spin
constraint. This holomorphic term is then fixed to zero. The same reasoning applies to
⟨T̄ (z1)T̄ (z2)⟩(1) and ⟨T̄ (z1)T (z2)⟩(1), which are also fixed to zero.

The three-point functions are also explored in [27] using almost the same method
applied to exact results in the large c limit. However, in their prior work, it was suggested
that ⟨T (z1)T (z2)T (z3)⟩(1), or ⟨T (z1)T (z2)T (z3)⟩λc→∞ in their context, which is holomorphic,
cannot be determined. In this context, we resolve this term based on the spin constraint.
We find

⟨Θ(z1)T̄ (z2)T (z3)⟩(1) = ⟨OT T̄ (z1)T̄ (z2)T (z3)⟩(0) =
c2/4

z412z̄
4
13

,

⟨T (z1)T (z2)T̄ (z3)⟩(1) =
c2/3

z512z̄
3
13

+ (1 ↔ 2),

⟨T (z1)T (z2)T (z3)⟩(1) = 0.

(3.18)

Some correlators are simply related by complex conjugation, such as ⟨T (z1)T (z2)T̄ (z3)⟩λ

and ⟨T̄ (z1)T̄ (z2)T (z3)⟩λ or ⟨T (z1)T (z2)T (z3)⟩λ and ⟨T̄ (z1)T̄ (z2)T̄ (z3)⟩λ. This thus serves
as a complete list of three-point functions. In the above, we have used the conservation
equations and fixed the integration constant by the interchange symmetry (1 ↔ 2). Note
that the resulting expression for ⟨Θ(z1)T̄ (z2)T (z3)⟩(1) has a spin of zero, consistent with
the sum of the fields’ spins totaling zero. ⟨T (z1)T (z2)T (z3)⟩(1), which is holomorphic in z1,
z2, and z3 and has a mass dimension of 8, is found to vanish due to the spin constraint.
If it were non-zero, this term would possess a spin of 8, which does not align with the
required spin of 6. This analysis completes the computation for the stress tensor two-point
and three-point functions.

3.2.2 Four-point functions

To provide insight into the first-order correction to higher-point functions of the stress tensor
and to highlight the emergence of logarithmic corrections, as in (3.3), in both approaches,
we will compute⟨T (z1)T̄ (z2)T (z3)T̄ (z4)⟩(1) with both standard perturbation theory and the
conservation equation method.

We start by computing the correlator with the conservation equation method. We write

⟨T (z1)T̄ (z2)T (z3)T̄ (z4)⟩(1) =⟨(∂−1
z̄1 ∂z1Θ)(z1)T̄ (z2)T (z3)T̄ (z4)⟩(1)

=∂−1
z̄1 ∂z1⟨OT T̄ (z1)T̄ (z2)T (z3)T̄ (z4)⟩(0),

(3.19)
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where the RHS is given by7

∂−1
z̄1 ∂z1⟨

ÅÅ
L2,3

z413

Å
∂z̄4
z̄14

+
2

z̄214

ãã
+ (4 ↔ 2)

ã
T̄ (z2)T (z3)T̄ (z4)⟩(0) (3.21)

=
c2

z413z̄
4
24

ïÅ
−4 log(z̄14)

z13z̄24
+

2

z13z̄14

ã
+ (4 ↔ 2)

ò
+ holomorphic in z1. (3.22)

The next step is to address the arbitrary holomorphic terms in z1 that arise from the an-
tiderivative, which is found to be highly constrained by the symmetries and other properties
of the correlator.

The correlator ⟨T (z1)T̄ (z2)T (z3)T̄ (z4)⟩λ exhibits two key symmetries. The first one is
the invariance under z1 ↔ z3 or z2 ↔ z4, which follows from the interchange symmetry
T (z1) ↔ T (z3) and T̄ (z2) ↔ T̄ (z4). The other is the invariance under complex conjugation
followed by an interchange of coordinates (z1, z3) ↔ (z2, z4), which results from the fact
that T̄ is the complex conjugate of T . After adding the required holomorphic terms to
preserve these symmetries, (3.21) becomes

∂−1
z̄1 ∂z1⟨

ÅÅ
L2,3

z413

Å
∂z̄4
z̄14

+
2

z̄214

ãã
+ (4 ↔ 2)

ã
T̄ (z2)T (z3)T̄ (z4)⟩(0) (3.23)

=
c2

z413z̄
4
24

ïÅ
−4 log(|z14|2)

z13z̄24
+

2

z13z̄14
+

2

z23z̄24

ã
+ (1 ↔ 3) + (4 ↔ 2) + (1 ↔ 3, 4 ↔ 2)

ò
.

(3.24)

Additionally, it is important to ensure that the argument of the logarithm is dimensionless.
This can be achieved by inserting a term ∼ log(µ2)/z13z̄24 with µ an arbitrary renormaliza-
tion scale such that the combined term − log(µ2|z14|2)

z13z̄24
satisfies the required property.8 After

incorporating these terms, the result is9

⟨T (z1)T̄ (z2)T (z3)T̄ (z4)⟩(1)

=
c2

z413z̄
4
24

ïÅ
−4 log(µ2|z14|2)

z13z̄24
+

2

z13z̄14
+

2

z23z̄24

ã
+ (1 ↔ 3) + (4 ↔ 2) + (1 ↔ 3, 4 ↔ 2)

ò
.

(3.25)
No further terms are allowable under the constraints imposed by the symmetries, with the
sole exception being a term of the form a

z513z̄
5
24

, where a is an arbitrary real number. This
term, however, could be absorbed into the scale µ, which reflects the arbitrariness in the
choice of µ.

7Note that the CFT correlator in (3.19), namely ⟨OTT̄ (z1)T̄ (z2)T (z3)T̄ (z4)⟩(0), can also be straightfor-
wardly computed as

⟨OTT̄ (z1)T̄ (z2)T (z3)T̄ (z4)⟩
(0) = ⟨T (z1)T (z3)⟩(0)⟨T̄ (z1)T̄ (z2)T̄ (z4)⟩(0) =

c/2

z413

c

z̄212z̄
2
24z̄

2
41

. (3.20)

In (3.21), we opt for an alternative approach, namely, the use of the Ward identity to address this correlator.
We make this choice due to its potential for generalization to more complex scenarios, as discussed later.

8Such a renormalization scale also appears in stress tensor correlators computed in cutoff 3D gravity
[36].

9The conservation equation was applied to T (z1) in the first step of (3.20). It is worth noting that
through the application of the conservation equation to either T (z1), T̄ (z2), T (z3) or T̄ (z4), and following
the aforementioned procedures, the same result (3.25) can be obtained.
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This result is validated by employing standard perturbation theory to compute the
first-order correction in the deformed free boson CFT; the relevant details are included in
appendix B.1. The same expression was obtained from the random geometry approach [16]
as well.

3.3 Mixed correlators

We now focus on a different class of correlators, known as mixed correlators, which in-
volve stress tensors and undeformed operators. This type of correlator has received limited
attention thus far. Conceptually, the corrections to these correlators can be viewed as de-
formations of the conformal Ward identity. In the context of our study, examining these
mixed correlators holds particular significance. This is because a higher-order correction
to a correlator of undeformed operators can be expressed as an integral of a lower-order
correction to a mixed correlator. We will delve deeper into this aspect in the next section.

As an initial exploration of this type of correlator, we compute the first-order correction
to the mixed correlator ⟨OT T̄X⟩λ. We have

⟨OT T̄ (z)X⟩(1) = lim
z′→z

⟨
(
T (z)T̄ (z′)−Θ(z)Θ(z′)

)
X⟩(1)

= lim
z′→z

⟨
(
∂−1
z̄ ∂zOT T̄ (z)T̄ (z

′)−OT T̄ (z)Θ(z′)
)
(z)X⟩(0).

(3.26)

Here we used the point-splitting definition of OT T̄ (z) and assumed that T (z) and T̄ (z′) do
not act on each other. The symmetry property we leverage here is the invariance under
the replacement of T ↔ T̄ followed by z ↔ z′, a symmetry property of the correlator
⟨
(
T (z)T̄ (z′) − Θ(z)Θ(z′)

)
X⟩λ. Using the conformal Ward identity and following similar

procedures as in the previous section, we obtain

⟨OT T̄ (z)X⟩(1) = log(µ2|z − zn|2)(∂z∂z̄n + ∂z̄∂zn)⟨OT T̄ (z)X⟩(0)

+

Å
1

s− 1

L̄s−2,n∂z
(z̄ − z̄n)s−1

+
1

r − 1

Lr−2,n∂z̄
(z − zn)r−1

ã
⟨OT T̄ (z)X⟩(0)

+ ⟨OT T̄ (z) dX⟩(0).

(3.27)

where the holomorphic terms are fixed by demanding the invariance under the replacement
of T ↔ T̄ followed by z ↔ z′, a symmetry property of ⟨

(
T (z)T̄ (z′) − Θ(z)Θ(z′)

)
X⟩λ. It’s

worth noting that the spin constraint and the Ward identities associated with translational
and rotational invariance play a crucial role in uniquely determining this correlator. For
details, please refer to appendix B.2.1.

This result is one of the main outcomes of our work. It resembles the previous equation
(3.4). However, it’s important to note that it is not precisely dz,zn or dzn,z acting on the
undeformed correlator. This distinction is reasonable since in (3.4), X does not flow under
the T T̄ deformation, whereas in (3.26) the operator OT T̄ inside ⟨OT T̄X⟩(1) does undergo
a flow. Nevertheless, the resemblance implies a potential connection between perturbation
theory and the conservation equation method.
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We can isolate the contribution from the stress tensor’s flow by subtracting
− 1

π

∫
d2x′⟨OT T̄ (z

′)OT T̄ (z)X⟩(0) from (3.27), yielding

⟨O(1)

T T̄
(z)X⟩(0) = −

Å
1

s− 1

L̄s−2,z∂zn
(z̄n − z̄)s−1

+
1

r − 1

Lr−2,z∂z̄n
(zn − z)r−1

ã
⟨O(0)

T T̄
(z)X⟩(0). (3.28)

As a way of illustration, we take X to be (∂ϕ∂̄ϕ)3(z2) in the deformed free boson CFT
and compute the first-order correction to the mixed correlator ⟨OT T̄ (z1)(∂ϕ∂̄ϕ)

3(z2)⟩(1)

and the contribution from the flow of the stress tensor ⟨O(1)

T T̄
(z1)(∂ϕ∂̄ϕ)

3(z2)⟩(0), using the
formulae(3.27), (3.28). This is a particularly nontrivial example as it receives a nonzero cor-
rection from the flow of the stress tensor, where much of the mysteries about T T̄ deformed
correlators lie. Applying the formulae yields

⟨OT T̄ (z1)(∂ϕ∂̄ϕ)
3(z2)⟩(1) = 0, (3.29)

and

⟨O(1)

T T̄
(z1)(∂ϕ∂̄ϕ)

3(z2)⟩(0) =
9

32π3

1

z612z̄
6
12

. (3.30)

Notably, these results are consistent with those obtained using standard perturbation the-
ory, as shown in the appendix B.2.2.

4 Higher-order corrections

4.1 Correlators of undeformed operators

We now proceed to consider the second-order correction to a correlator of undeformed
operators on an Euclidean plane. Up to this point, no explicit computation has been
conducted at this order, except for the stress tensor two-point functions [22]. By the
relation (2.6), the second-order correction is given by an integral of (3.27), namely

⟨X⟩(2) =− 1

2π

∫
d2x⟨OT T̄ (z)X⟩(1). (4.1)

Given that we are dealing with an integration involving functions with poles, we employ
a regularization technique by introducing point splitting for each stress tensor insertion.
To facilitate this, we introduce an additional UV regulator, denoted as ε′ ≪ ε, while
maintaining the condition ε+ ε′ ≈ ε. Consequently, the integrand takes the form

lim
z→z′

∂−1
z̄ ∂z⟨

(
T (z + ε′)T̄ (z)

)
T̄ (z′ − ε)X⟩(0). (4.2)
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The detailed calculations of the integrals are presented in appendix C.2. The result is as
follows

⟨X⟩(2)

=
1

2
⟨d2X⟩(0) +

∑
m,n,i

∑
r≥1

∑
(s,t)∈(Z+)2−{(1,1)}

1

2
⟨
ßï

log(µ2|zin|2)
zrim

+

Å
1

zrnm
log

z̄im
z̄in

+
1

zrim
Φ(

znm
zim

, 1, r)

ãò
Lr−2,mL̄−1,nL̄−1,i + (c.c.)

™
X⟩(0)

+
1

2
⟨
ß
(1− s)t−2

(t− 1)!

ï
1

z̄s+t−2
in

Å
1

zrnm
− 1

zrim

ã
+

1

zrnmz̄t−1
mi

δs,1

ò
Lr−2,mL̄s−2,nL̄t−2,i + (c.c.)

™
X⟩(0).

(4.3)
Here, Φ( znm

zim
, 1, r) represents the Lerch transcendent [55]. The expression above exhibits

both power and logarithmic divergences when two or more indices m,n, i coincide. These
divergences are regularized by ε if i coincides with either one of m,n and are regularized
by ε′ if m coincides with n.

Several noteworthy aspects regarding the divergence structure of the formula (4.3)
are worth mentioning. Firstly, the Lerch transcendent Φ(z, 1, r) yields logarithmic diver-
gences at the branch point at the branch point z = 1, introducing no new types of diver-
gences. Furthermore, while log z̄im

z̄in
may seem to introduce branch cuts into the expression,

the combination 1
zrnm

log z̄im
z̄in

+ 1
zrim

Φ( znm
zim

, 1, r) does not. This is since for all values of r,
1

zrim
Φ( znm

zim
, 1, r) is equal to 1

zrnm
log zim

zin
plus terms meromorphic in zi, zn, zm. Additionally,

the formula contains double logarithms, introduced by the term 1
2⟨d

2X⟩(0). This observa-
tion is consistent with the findings in [47], where it is shown that a correlator of undeformed
operators displays divergences of the form (log ε)n at order λn.

In Section 3, we demonstrated that the first-order correction to correlators of unde-
formed operators can be made finite by employing a local field redefinition. Unfortunately,
this approach is not feasible in the second-order. This is because when two indices m, n or
i coincide, the third index may not coincide with any of them, resulting in divergent terms
with dynamic behavior. These dynamic divergent terms manifest as divergences multiplied
by nontrivial functions of the coordinates. This implies that the divergences cannot be
eliminated by local field redefinitions alone.

In contrast to the first-order correction, where we provided specific examples, the ex-
pression for the second-order correction is generally intricate and not substantially simplified
for two-point functions or other straightforward cases.

4.2 Stress tensor correlators

In this section, we will delve into the analysis of higher-order corrections to stress tensor
correlators. The cutoff AdS-T T̄ CFT duality has seen relatively few examinations at the
level of correlators thus far. Previous work, such as [22] and [27], have computed two-point
and three-point correlators of the stress tensor to the lowest nontrivial order. More recently,
authors of [36] obtained the two-point functions to two-loop order in G from 3D gravity,
extending the previous classical computations.
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Stress tensor correlators are of particular interest in the tests of cutoff AdS-T T̄ CFT
duality for several reasons. They exhibit consistent structural properties across different
conformal field theories, enabling us to draw universal conclusions. Additionally, the finite
cutoff gravity dual for T T̄ deformed CFTs is expected to hold in the pure gravity sector
without turning on matter fields. Consequently, correlators of matter fields may not be the
most appropriate quantities to consider within the context of this duality proposal.

4.2.1 Two-point and three-point functions

We employ our method to compute the second-order correction to the correlator ⟨T (z)T (w)⟩λ.
We write

⟨T (z)T (w)⟩(2) = ∂−1
z̄ ∂z∂

−1
w̄ ∂w⟨Θ(z)Θ(w)⟩(2)

=∂−1
z̄ ∂z∂

−1
w̄ ∂w

ï
⟨OT T̄ (z)OT T̄ (w)⟩(0) + ⟨Θ(z)Θ(0)(w)⟩(0)

ò
=

5c2

6

1

(z − w)6(z̄ − w̄)2
,

(4.4)

the holomorphic term resulting from taking the antiderivative w.r.t. z̄ is fixed to zero by
the spin constraint. This result is consistent with the findings presented in [4], which were
obtained through a direct perturbation theory computation.

We further extend our analysis to higher orders and consider the third-order correction
to the two-point correlator

⟨Θ(z)Θ(w)⟩(3) = ⟨OT T̄ (z)OT T̄ (w)⟩(1) = ⟨(T T̄ − (Θ)2)(z)(T T̄ − (Θ)2)(w)⟩(1). (4.5)

Here, such terms as ⟨(Θ)2(z)(Θ)2(w)⟩(1) and ⟨(T T̄ )(z)(Θ)2(w)⟩(1) on the RHS vanish, as
can be seen by inserting the trace relation. The remaining term ⟨(T T̄ )(z)(T T̄ )(w)⟩(1) can be
extracted from the first-order correction to ⟨T (z1)T̄ (z2)T (z3)T̄ (z4)⟩(1) by taking the limits
z1 → z2, z3 → z4 then subtracting the divergent terms that arise from these limits

⟨Θ(z)Θ(0)⟩(3) =⟨(T T̄ )(z)(T T̄ )(0)⟩(1) = c2

(zz̄)5
(
8 log(µ2|z|2)− 8

)
. (4.6)

Applying the conservation equations, we determine the third-order corrections for the other
stress tensor two-point functions as

⟨T (z)Θ(0)⟩(3) = c2

z6z̄4
(
10 log(µ2|z|2)− 19/2

)
,

⟨T (z)T (0)⟩(3) = c2

z7z̄3
(
20 log(µ2|z|2)− 47/3

)
.

(4.7)

Moving on to second-order, we find that three-point functions begin to receive nontrivial
corrections. As an example, we examine ⟨T (z1)T (z2)Θ(z3)⟩λ. Following standard proce-
dures, we find

⟨T (z1)T (z2)Θ(z3)⟩(2) =
c2

3z̄313

ï
1

z223

Å
1

z212z
3
13

+
1

z312z
2
13

ãò
+ (1 ↔ 2), (4.8)

where a symmetry under the interchanges (1 ↔ 2) and (1 ↔ 3) and (2 ↔ 3) is demanded.
The result exhibits a spin of 4, which is the sum of the spins of two T operators and one
Θ operator. These second-order corrections, as expected, comply with the spin constraint
discussed in Section 3.2.1.
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4.2.2 Four-point functions

In the subsequent analysis, we extend the computation of ⟨T (z1)T̄ (z2)T (z3)T̄ (z4)⟩λ to the
second-order. This four-point function comprises two components, one of order c2, the
other of order c3, expressed as ⟨T (z1)T̄ (z2)T (z3)T̄ (z4)⟩(2) = c2f2(zi, z̄i) + c3f3(zi, z̄i). The
dependencies on the coordinates of the four fields are collectively denoted as zi. The specific
expressions for these coefficients are

f2(zi, z̄i)

=
1

z413z̄
4
24

ß
− 10

ï
10 log(µ2|z12|2)

[
log(µ2|z23|2)− log(µ2|z34|2)

]
z213z̄

2
24

+

Å
4

z213z̄24z̄34
+ (c.c., z1 ↔ z2, z3 ↔ z4)

ã
log(µ2|z12|2)

+

Å
− 4

z213z̄12z̄24
+ (c.c., z1 ↔ z2, z3 ↔ z4)

ã
log(µ2|z34|2)

+

ÅÅ
2z̄12 − z̄24
z213z̄

2
12z̄24

+
2z̄23 + z̄24
z213z̄

2
23z̄24

+
z̄224

z213z̄
2
12z̄

2
14

ã
+ (c.c., z1 ↔ z2, z3 ↔ z4)

ã
log(µ2|z13|2)

+

Å
6z̄12 − z̄24
z213z̄

2
12z̄24

+ (c.c., z1 ↔ z2, z3 ↔ z4)

ã
log(µ2|z23|2)

+

Å
−6z̄23 + z̄24

z213z̄
2
23z̄24

+ (c.c., z1 ↔ z2, z3 ↔ z4)

ã
log(µ2|z12|2)

ò
+ (1 ↔ 3) + (4 ↔ 2) + (1 ↔ 3, 4 ↔ 2)

™
,

(4.9)
and

f3(zi, z̄i)

=
c2

z413z̄
4
24

ï
−5c

12

Å
1

z213z̄
2
13

+
1

z224z̄
2
24

ã
− 5c

18

ÅÅ
z̄424

z213z̄
3
12z̄

3
34

+
z413

z̄224z
3
12z

3
34

ã
+ (2 ↔ 4)

ãò
.

(4.10)

A detailed derivation can be found in appendix B.3.

5 Conclusions

In this study, we have computed various correlators in T T̄ deformed CFTs up to both
first and higher orders in λ. The calculation is particularly intricate, even at the first-
order level. The primary challenge stems from the absence of explicit expressions for the
deformed operators, especially the stress tensor, in a general deformed CFT. This renders
conventional conformal perturbation theory impractical, a complication that persists when
dealing with higher-order computations involving undeformed operators.

To address this issue, we have introduced an innovative approach that we refer to
as conservation equation method, which relies on the trace relation and the conservation
properties of the stress tensor. This method enables us to represent higher-order correc-
tions in terms of lower-order corrections, albeit introducing certain unknown functions. In
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our examples, we have successfully constrained these unknown functions by leveraging the
symmetries and characteristics of the correlators and the underlying deformed theory.

As an application, we studied first-order corrections to correlators of several types,
namely those undeformed operators only, those with the stress tensor only, and those com-
bining OT T̄ and undeformed operators, i.e. ⟨OT T̄X⟩(1). From these results, we have ex-
tracted the correlator involving the first-order deformation of OT T̄ , namely ⟨O(1)

T T̄
X⟩(0),

which is unaccessible in standard perturbation theory. As for the second-order, we have in-
vestigated correlators of undeformed operators, or ⟨X⟩(2) based on the result for ⟨OT T̄X⟩(1),
and we have also considered the case with stress tensor insertions only. Our discussion ap-
plies to a general CFT, and we have cross-checked our results with examples in the deformed
free boson CFT.

The techniques used for calculating first-order corrections to stress tensor correlators
and the mixed correlator ⟨OT T̄X⟩λ are extensible to higher orders, allowing for calculations
of arbitrary precision. However, challenges arise when addressing holomorphic terms arising
from conservation equations, and whether these terms can be consistently handled in all
cases remains an open question. Moreover, as higher orders are considered, issues related to
the proliferation of logarithmic and power divergences become apparent. These divergences
intertwine with finite terms and cannot be eliminated through a local field redefinition. To
tackle these concerns, a non-local renormalization scheme may be necessary, offering a path
for future research.

One promising avenue for future investigation involves extending this approach to de-
formed finite-size or finite-temperature CFTs. In these scenarios, the trace relation no
longer holds, and the conservation equations lack essential information, such as one-point
functions. Alternative principles, like modular covariance, may provide constraints for cor-
relators in these contexts. Additionally, verifying the AdS/T T̄ duality cutoff by calculating
stress tensor correlators in a deformed CFT on a torus and comparing them with results
from the gravity side, using the newly proposed prescription [28], holds significant promise.
Insights from the gravitational perspective could lead to the formulation of a generalized
trace relation.

A persistent challenge involves devising a method for computing holographic mixed cor-
relators and correlators of undeformed operators, where undeformed operators correspond
to matter fields in bulk. It has been suggested that in the presence of matter fields, the
deformed CFT corresponds to a gravitational theory with mixed boundary conditions [21].
If general expressions for the first-order corrections to mixed correlators could be obtained,
it would offer robust support for the holographic proposal.
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A Proof of the vanishing of the disconnected term

We demonstrate that the disconnected term −⟨OT T̄ (z)⟩λ⟨
(∏

iO
λ
i (zi)

)
⟩λ in the flow equation

(1.2) vanishes. Since this term is proportional to ⟨OT T̄ (z)⟩λ, it suffices to show that this
one-point function vanishes. In early works on this operator [1], it was shown that on
a Euclidean plane, the relation ⟨OT T̄ ⟩λ = (⟨Θ⟩λ)2 holds. Expanding both sides of the
equation in powers of λ, we obtain

⟨OT T̄ ⟩(n) =
∑

i+j=n

⟨Θ⟩(i)⟨Θ⟩(j). (A.1)

Inserting the trace relation gives

⟨Θ⟩(n+1) = ⟨OT T̄ ⟩(n) =
∑

i+j=n

⟨Θ⟩(i)⟨Θ⟩(j). (A.2)

Namely, higher-order corrections to ⟨Θ⟩λ can always be expressed as a sum of products
of its lower-order corrections. Conformal invariance of the undeformed theory implies the
vanishing of ⟨Θ⟩(0). Therefore, by mathematical induction, we can conclude that ⟨Θ⟩λ

vanishes to all orders. This, in turn, implies that ⟨OT T̄ ⟩λ vanishes as well.

B Consistency checks and details

B.1 First-order correction to the stress tensor four-point function

As a check for the result in Section 3.2.2, we compute ⟨T (z1)T̄ (z2)T (z3)T̄ (z4)⟩(1) using stan-
dard perturbation theory. It’s important to note that this approach is typically impractical
for a generic deformed CFT due to the unavailability of a prescription for constructing the
deformed stress tensor. However, for certain seed theories, such as free theories, explicit
expressions for the deformed stress tensor are available, allowing us to perform this calcu-
lation. In the following discussion, we consider the deformed free boson CFT, for which we
have

T (0) = −2π(∂ϕ)2, L(1) =
1

π
T (0)T̄ (0), T (1) = −8π2(∂ϕ)3∂̄ϕ, O(1)

T T̄
= 32π3(∂ϕ∂̄ϕ)3. (B.1)

In this example, contributions from the flow of action, such as

⟨T (1)(z1)T̄
(0)(z2)T

(0)(z3)T̄
(0)(z4)⟩(0) + (1 ↔ 3),

vanish upon Wick contraction. Therefore, we have

⟨T (z1)T̄ (z2)T (z3)T̄ (z4)⟩(1) = − 1

π

∫
d2z⟨OT T̄ (z)T (z1)T̄ (z2)T (z3)T̄ (z4)⟩(0)

=− 1

π

∫
d2z

Å
∂z1

(z − z1)
+

2

(z − z1)2
+ (1 ↔ 3)

ãÅ
∂z̄4

(z̄ − z̄4)
+

2

(z̄ − z̄4)2
+ (4 ↔ 2)

ã
× ⟨T (z1)T̄ (z2)T (z3)T̄ (z4)⟩(0)

=
c2

z413z̄
4
24

ïÅ
−4 log(|z14|2/ϵ2)

z13z̄24
+

2

z13z̄14
+

2

z23z̄24

ã
+ (1 ↔ 3) + (4 ↔ 2) + (1 ↔ 3, 4 ↔ 2)

ò
,

(B.2)
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we find perfect agreement with the previous calculation (3.25) based on the conservation
equation method. Here, the point-splitting regulator is identified with the renormalization
scale µ.

B.2 First-order correction to mixed correlators

B.2.1 Deriving the general expression

Here, we present the details involved in deriving the expression for the first-order correction
to a mixed correlator, (3.27). Inserting the conformal Ward identity into (3.26) yields

⟨OT T̄ (z)X⟩(1)

= lim
z′→z

⟨
(
T (z)T̄ (z′)−Θ(z)Θ(z′)

)
X⟩(1) = lim

z′→z
∂−1
z̄ ∂z⟨T (z)T̄ (z)T̄ (z′)X⟩(0)

= lim
z→z′

∑
m,n

∑
t,r,s≥1

⟨ L̄t−2,i

(z̄′ − z̄i)t
∂−1
z̄ ∂z

Lr−2,mL̄s−2,n

(z − zm)r(z̄ − z̄n)s
X⟩(0),

(B.3)

where the terms in the summation fall into two types after working out ∂−1
z̄ lim

z′→z
⟨ L̄t−2,i

(z̄′−z̄i)t

(
r

s−1
Lr−2,mL̄s−2,n

(z−zm)r+1(z̄−z̄n)s−1

)
X⟩(0) + holomorphic in z, for s>1;

lim
z′→z

⟨ L̄t−2,i

(z̄′−z̄i)t

(
− rLr−2,mL̄−1,n

(z−zm)r+1 log(µ(z̄ − z̄n))
)
X⟩(0) + holomorphic in z, for s=1.

(B.4)
To ensure invariance under the replacement of T ↔ T̄ followed by z ↔ z′, we introduce an
additional term arising from taking the complex conjugate of all factors in the above terms
except for X and then swapping z and z′. Adding this term, we obtain lim

z′→z
⟨ L̄t−2,i

(z̄′−z̄i)t

(
r

s−1
Lr−2,mL̄s−2,n

(z−zm)r+1(z̄−z̄n)s−1 + t
s−1

Lr−2,mLs−2,n

(z−zm)r(z′−zn)s−1(z̄′−z̄i)

)
X⟩(0), for s>1;

lim
z′→z

⟨ L̄t−2,i

(z̄′−z̄i)t

(
− rLr−2,mL̄−1,n

(z−zm)r+1 log(µ2|z − zn|2)− tLr−2,mL−1,n

(z−zm)r(z̄′−z̄i)
log(µ2|z′ − zn|2)

)
X⟩(0), for s=1.

(B.5)
After taking the limit, the terms in the summation in equation (B.3) become ⟨

(
r

s−1
Lr−2,mL̄s−2,nL̄t−2,i

(z−zm)r+1(z̄−z̄n)s−1(z̄−z̄i)t
+ (c.c., L ↔ L̄)

)
X⟩(0), for s>1;

⟨
(
− rLr−2,mL̄−1,nL̄t−2,i

(z−zm)r+1(z̄−z̄i)t
log(µ2|z − zn|2) + (c.c., L ↔ L̄)

)
X⟩(0), for s=1.

(B.6)

The above can be written in a way that resembles the expression of the first-order correction
to correlators of undeformed operators:{(

1
s−1

L̄s−2,n∂z
(z̄−z̄n)s−1 + 1

r−1
Lr−2,n∂z̄
(z−zn)r−1

)
⟨OT T̄ (z)X⟩(0), for s>1;

log(µ2|z − zn|2)(L̄−1,n∂z + L−1,n∂z̄)⟨OT T̄ (z)X⟩(0), for s=1.
(B.7)

In addition to the complex conjugation symmetry, the holomorphic terms are also required
to have L̄t−2,i

(z̄′−z̄i)t
as one of their factors. Apart from what we have already included, the only

term that possesses the correct dimension and is consistent with the complex conjugation
symmetry takes the form

∼ ⟨
Lk−2,jL̄t−2,i

(z − zj)k(z̄′ − z̄i)t
f(zmn)X⟩(0), (B.8)
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where ∼ denotes equality up to a possible prefactor consisting of some dimensionless func-
tions of the coordinates that are consistent with the symmetries. Here f(zmn) has dimen-
sions of length−2 and depends only on the coordinates of the fields in X. Note that the
term

∼ ⟨
Lk−2,jL̄t−2,i

(z − zj)k+1(z̄′ − z̄i)t+1
X⟩(0) (B.9)

is not allowed, although it has the correct dimension and is consistent with complex conju-
gation symmetry. This is because T (z) and T̄ (z′) are supposed to have spins of +2 and −2,
respectively. Yet the above term can be written as ∼ ⟨∂zT (z)∂z̄′ T̄ (z′)X⟩(0), in which the
field at z and z′ has a spin of +3 and −3, respectively, thus violating the spin constraint.

To determine f(zm), we utilize the stress tensor’s properties. In a 2D QFT on a
Euclidean plane with translation and rotation symmetry, a correlator with a stress tensor
insertion must contain a term of the form [47]

⟨Tij(x⃗)X⟩ =
∑
m

Ç
(xj − xj,m)∂i
|x⃗− x⃗m|2

+ ξ
ϵjk(x

k − xkm)ϵia∂
a

|x⃗− x⃗m|2

å
⟨X⟩+ · · · , (B.10)

where the first term is fixed by the Ward identity associated with translational invariance
⟨∂iTij(x⃗)X⟩ =

∑
m δ2(x⃗− x⃗m)⟨∂j,mX⟩ and the remainder is fixed by rotational symmetry

and parity. Symmetry under i ↔ j further fixes ξ to −1. In complex coordinates, we have

⟨T (z)X⟩ =
∑
m

∂zm
z − zm

⟨X⟩+ · · · (B.11)

The ellipsis represents unknown terms not O(1/z). Subsequently, the only O(1/zz̄′) term
in the mixed correlator ⟨T (z)T̄ (z′)X⟩λ is

⟨T (z)T̄ (z′)X⟩λ =
∑
m,n

∂zm∂z̄n
(z − zm)(z̄′ − z̄n)

⟨X⟩λ + · · · (B.12)

Expanding in λ on both sides, we obtain a constraint on the first-order correction to this
mixed correlator (and, more generally, on n-th-order corrections as well)

⟨T (z)T̄ (z′)X⟩(1) =
∑
m,n

∂zm∂z̄n
(z − zm)(z̄ − z̄n)

⟨X⟩(1) + · · · (B.13)

This constraint leads us to uniquely determine that f(zmn) is d and the prefactor of the
extra term (B.8) is 1, ensuring the presence of a term

∂zi∂z̄j
(z − zj)(z̄′ − z̄i)

⟨dX⟩(0) =
∂zi∂z̄j

(z − zj)(z̄′ − z̄i)
⟨X⟩(1). (B.14)

The full expression for ⟨OT T̄ (z)X⟩(1) is thus given by formula (3.27).
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B.2.2 Examples

In Section 3.3, we have derived a general expression for the first-order correction to mixed
correlators and the contribution from the flow of the stress tensor. As an example, we have
applied the formulae to the case where X = (∂ϕ∂̄ϕ)3(z2). The computation proceeds as
follows.

We begin by applying the formula (3.27). The first line with the logarithm vanishes
due to the vanishing of the undeformed correlator. The remaining terms are given by:

⟨OT T̄ (z)LnO(1)

T T̄
(z2)⟩(0)

=
1

2πi

∮
z2

dz′ (z′ − z2)
n+1⟨OT T̄ (z)T (z

′)O(1)

T T̄
(z2)⟩(0)

=− 1

2πi

∮
z
dz′ (z′ − z2)

n+1⟨OT T̄ (z)T (z
′)O(1)

T T̄
(z2)⟩(0) (Reversing the contour)

=− 1

2πi

∮
z
dz′ (z′ − z2)

n+1

Å
∂z

z′ − z
+

2

(z′ − z)2

ã
⟨OT T̄ (z)O

(1)

T T̄
(z2)⟩(0)

− 1

2πi

∮
z
dz′ (z′ − z2)

n+1 c/2

(z′ − z)4
⟨T̄ (z)O(1)

T T̄
(z2)⟩(0) = 0,

(B.15)

where in the first line, we used the definition of Ln. Obviously, the last equality vanishes,
since the correlators ⟨OT T̄ (z)O

(1)

T T̄
⟩(0) and ⟨T̄ (z)O(1)

T T̄
(z2)⟩(0) vanish upon Wick contraction.

We now reproduce the result with standard perturbation theory. The contribution from
the flow of OT T̄ (z1), i.e., the first term on the RHS of (1.4) is

⟨O(1)

T T̄
(z1)(∂ϕ∂̄ϕ)

3(z2)⟩(0) = 32π3⟨(∂ϕ∂̄ϕ)3(z1)(∂ϕ∂̄ϕ)3(z2)⟩(0) =
9

32π3

1

z612z̄
6
12

. (B.16)

The 2nd term on the RHS of (1.4), which is the contribution from the flow of action, is
given by

− 1

π

∫
d2x⟨OT T̄ (z)OT T̄ (z1)(∂ϕ∂̄ϕ)

3(z2)⟩(0) (B.17)

=− 1

π

∫
d2x⟨(2π)2(∂ϕ∂̄ϕ)2(z)(2π)2(∂ϕ∂̄ϕ)2(z1)(∂ϕ∂̄ϕ)3(z2)⟩(0), (B.18)

where the only contribution comes from the term involving the contact term contraction
⟨∂̄ϕ(z)∂ϕ(z1)⟩ = 1

4π ∂̄
1

z−z1
= 1

4π∂
1

z̄−z̄1
= 1

4δ
2(x − x1). All else contractions, such as

⟨∂̄ϕ(z)∂ϕ(z3)⟩, lead to zero. Thus, (B.17) becomes

− 1

π
(2π)4 · 2 · 22

∫
d2x

1

4
δ2(x− x1)⟨

(
(∂ϕ)2∂̄ϕ

)
(z)
(
∂ϕ(∂̄ϕ)2

)
(z1)(∂ϕ∂̄ϕ)

3(z2)⟩(0)

=− 32π3⟨(∂ϕ∂̄ϕ)3(z1)(∂ϕ∂̄ϕ)3(z2)⟩(0).
(B.19)

Now adding up (B.16) and (B.17) leads to

⟨OT T̄ (z1)(∂ϕ∂̄ϕ)
3(z2)⟩(1) = 0. (B.20)

Namely, the contribution from the flow of action and the flow of stress tensor cancel out.
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As another example, we compute ⟨O(1)

T T̄
(z1)(∂ϕ∂̄ϕ)

3(z2)⟩(0), i.e., the contribution from
the flow of action, using the formula (3.28). For the deformed free boson CFT, the un-
deformed T T̄ operator is given by O(0)

T T̄
(z1) = (2π)2(∂ϕ∂̄ϕ)2(z1). We can write (∂̄ϕ)3(z2)

as
lim

5→2,4→2,3→2
∂z̄3∂z̄4∂z̄5 [ϕ(z3)ϕ(z4)ϕ(z5)],

then evaluate ⟨O(1)

T T̄
(z1)(∂ϕ)

3(z2)[ϕ(z3)ϕ(z4)ϕ(z5)]⟩(0), and take the derivatives and limits
at the end of the calculation (without taking the contractions between fields at z2, z3, z4, z5
act on each other).10 Applying the formula (3.28), we find the relevant terms to be

⟨O(1)

T T̄
(z1)(∂ϕ)

3(z2)[ϕ(z3)ϕ(z4)ϕ(z5)]⟩(0)

=(2π)2
∑

n=3,4,5

⟨ L̄s−2,1∂zn
z̄s−1
n1

(∂ϕ∂̄ϕ)2(z1)(∂ϕ)
3(z2)[ϕ(z3)ϕ(z4)ϕ(z5)]⟩(0).

(B.21)

As a trick, (∂ϕ)3(z2) can be rewritten as (∂ϕ)2(z2)∂ϕ(z2) = − 1
2πT (z2)∂ϕ(z2), allowing us

to use the conformal Ward identity to evaluate this term. The contributing terms are the
connected part acting on (∂ϕ∂̄ϕ)2(z1)

⟨O(1)

T T̄
(z1)(∂ϕ)

3(z2)[ϕ(z3)ϕ(z4)ϕ(z5)]⟩(0)

=(−2π)
∑

n=3,4,5

⟨ L̄s−2,1∂zn
z̄s−1
n1

Å
∂z1
z21

+
2

z221

ã
(∂ϕ∂̄ϕ)2(z1)∂ϕ(z2)[ϕ(z3)ϕ(z4)ϕ(z5)]⟩(0).

(B.22)

The above is nonzero only when s = 2, or s = 4; in the latter case, (∂̄ϕ)2(z1) is annihilated,
and the whole correlator vanishes upon Wick contraction. The surviving terms are

⟨O(1)

T T̄
(z1)(∂ϕ)

3(z2)[ϕ(z3)ϕ(z4)ϕ(z5)]⟩(0)

=(−2π)
∑

n=3,4,5

⟨2∂zn
z̄n1

Å
∂z1
z21

+
2

z221

ã
(∂ϕ∂̄ϕ)2(z1)∂ϕ(z2)[ϕ(z3)ϕ(z4)ϕ(z5)]⟩(0).

(B.23)

Performing Wick contractions gives

⟨O(1)

T T̄
(z1)(∂ϕ)

3(z2)[ϕ(z3)ϕ(z4)ϕ(z5)]⟩(0)

=4(−2π)
1

(4π)4
2

z̄31

Å
∂z1
z21

+
2

z221

ã
1

z212

Å
1

z13z̄14z̄15
+ perm.(3,4,5)

ã
.

(B.24)

Taking the ∂z̄3∂z̄4∂z̄5 derivatives and the z3 → z2, z4 → z2, z5 → z2 limits results in

⟨O(1)

T T̄
(z1)(∂ϕ∂̄ϕ)

3(z2)⟩(0) =
9

32π3

1

z612z̄
6
12

, (B.25)

which agrees with the result obtained using contractions and the explicit form of O(1)

T T̄
(z1):

⟨O(1)

T T̄
(z1)(∂ϕ∂̄ϕ)

3(z2)⟩(0) = 32π3⟨(∂ϕ∂̄ϕ)3(z1)(∂ϕ∂̄ϕ)3(z2)⟩(0) =
9

32π3

1

z612z̄
6
12

. (B.26)

10lim5→2,4→2,3→2 ∂̄ϕ(z3)∂̄ϕ(z4)∂̄ϕ(z5) is nothing but the definition of the product of fields (∂̄ϕ)3(z2);
Here the only trick is taking the derivatives at the end of the calculation, which is justified by the rule
∂zm⟨O(1)

TT̄
(z)X⟩(0) = ⟨O(1)

TT̄
(z)(∂zmX)⟩(0). Further explanation of such tricks is given at the end of this

section.
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In computing these examples, we have relied on the rule ⟨∂zmX⟩λ = ∂zm⟨X⟩λ, which follows
from translational invariance of the vacuum state. Its use is not entirely justified, for the
related expressions(3.4)(3.28) are inconsistent with the above rule. This may be attributed
to the regularization process involved in evaluating the integrals. This discrepancy can be
attributed to the regularization process of evaluating these integrals. Such irregularities are
inherent to the regularization procedure and affect all results that rely on regularization.

On the other hand, results that do not require regularization are exempt from these
issues. For instance, in the case of the first two lines of (3.27), where the rule ⟨∂zmX⟩λ =

∂zm⟨X⟩λ is trivially satisfied.
In the context of the deformed free boson CFT, we work with the assumption that

the fields ϕ and their correlators are the basic objects and correlators of their derivatives,
specifically those involving ∂ϕ and ∂̄ϕ can ultimately be derived from correlators of ϕ itself.

B.3 Second-order correction to the stress tensor four-point function

Here we present in detail the computation of the second-order correction to the stress tensor
four-point function ⟨T (z1)T̄ (z2)T (z3)T̄ (z4)⟩λ. We have

⟨T (z1)T̄ (z2)T (z3)T̄ (z4)⟩(2)

=⟨(∂−1
z̄1 ∂z1Θ)(z1)T̄ (z2)(∂

−1
z̄3 ∂z3Θ)(z2)T̄ (z4)⟩(2)

=∂−1
z̄1 ∂z1∂

−1
z̄3 ∂z3

Ä
⟨T (z1)T (z3)⟩(0)⟨T̄ (z1)T̄ (z2)T̄ (z3)T̄ (z4)⟩(0)

ä
=− 10c

z613
∂−1
z̄1 ∂−1

z̄3

Ä
⟨T̄ (z1)T̄ (z2)T̄ (z3)T̄ (z4)⟩(0)connected

ä
− 10c

z613
∂−1
z̄1 ∂−1

z̄3

Ä
⟨T̄ (z1)T̄ (z2)⟩(0)⟨T̄ (z3)T̄ (z4)⟩(0) + (2 ↔ 3) + (2 ↔ 4)

ä
,

(B.27)

where we have used the CFT stress tensor four-point function

⟨T̄ (z1)T̄ (z2)T̄ (z3)T̄ (z4)⟩(0)connected =
c

z̄212z̄
2
13z̄

2
24z̄

2
34

+
c

z̄212z̄
2
14z̄

2
23z̄

2
34

+
c

z̄213z̄
2
14z̄

2
23z̄

2
24

. (B.28)

Next, we account for the contribution from the connected term (B.27). Performing the z̄1
anti-derivative of the connected term gives

∂−1
z̄1

Ä
⟨T̄ (z1)T̄ (z2)T̄ (z3)T̄ (z4)⟩(0)connected

ä
=− 2c

z̄223z̄
2
24z̄

2
34

ïÅ
log(z̄12)

Å
1

z̄23
+

1

z̄24

ã
+

1

z̄12

ã
+ (2 ↔ 3) + (2 ↔ 4)

ò
=− 2c

z̄223z̄
2
24z̄

2
34

ïÅ
log(µ2|z̄12|2)

Å
1

z̄23
+

1

z̄24

ã
+

1

z̄12

ã
+ (2 ↔ 3) + (2 ↔ 4)

ò
.

(B.29)

Further performing the z̄3 anti-derivative gives

c

z̄424

Åï
10 log(z̄12)(log(z̄23)− log(z̄34))

z̄224
+

4

z̄24z̄34
log(z̄12)−

4

z̄12z̄24
log(z̄34)

+

Å
(2z̄12 − z̄24)

z̄212z̄24
+

(2z̄23 + z̄24)

z̄223z̄24
+

z̄224
z̄212z̄

2
14

log(z̄13)

ã
+

6z̄12 − z̄24
z̄212z̄24

log(z̄23)−
6z̄23 + z̄24
z̄223z̄24

log(z̄12)

ò
+ (2 ↔ 4)

ã
.
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This expression is invariant under (2 ↔ 4), but not under (1 ↔ 3) nor z ↔ z̄ followed by
(z1 ↔ z2, z3 ↔ z4). As usual, we demand these symmetries and add holomorphic terms as
appropriate. The full result for the order c2 part is given by

1

z413z̄
4
24

ß
− 10

ï
10 log(µ2|z12|2)

[
log(µ2|z23|2)− log(µ2|z34|2)

]
z213z̄

2
24

+

Å
4

z213z̄24z̄34
+ (c.c., z1 ↔ z2, z3 ↔ z4)

ã
log(µ2|z12|2)

+

Å
− 4

z213z̄12z̄24
+ (c.c., z1 ↔ z2, z3 ↔ z4)

ã
log(µ2|z34|2)

+

ÅÅ
2z̄12 − z̄24
z213z̄

2
12z̄24

+
2z̄23 + z̄24
z213z̄

2
23z̄24

+
z̄224

z213z̄
2
12z̄

2
14

ã
+ (c.c., z1 ↔ z2, z3 ↔ z4)

ã
log(µ2|z13|2)

+

Å
6z̄12 − z̄24
z213z̄

2
12z̄24

+ (c.c., z1 ↔ z2, z3 ↔ z4)

ã
log(µ2|z23|2)

+

Å
−6z̄23 + z̄24

z213z̄
2
23z̄24

+ (c.c., z1 ↔ z2, z3 ↔ z4)

ã
log(µ2|z12|2)

ò
+ (1 ↔ 3) + (4 ↔ 2) + (1 ↔ 3, 4 ↔ 2)

™
,

(B.30)
The order c3 part in (B.27), namely the contribution from the disconnected terms, is much
simpler, as given by

− 10c

z613
∂−1
z̄1 ∂−1

z̄3

Ä
⟨T̄ (z1)T̄ (z3)⟩(0)⟨T̄ (z2)T̄ (z4)⟩(0)

ä
− 10c

z613
∂−1
z̄1 ∂−1

z̄3

Ä
⟨T̄ (z1)T̄ (z2)⟩(0)⟨T̄ (z3)T̄ (z4)⟩(0) + (2 ↔ 4)

ä
=− 10c

z613
∂−1
z̄1 ∂−1

z̄3

Å
c2/4

z̄413z̄
4
24

ã
− 10c

z613
∂−1
z̄1 ∂−1

z̄3

Å
c2/4

z̄412z̄
4
34

+ (2 ↔ 4)

ã
=

c2

z413z̄
4
24

ï
−5c

12

1

z213z̄
2
13

− 5c

18

Å
z̄424

z213z̄
3
12z̄

3
34

+ (2 ↔ 4)

ãò
+ holomorphic in z1 or z3

=
c2

z413z̄
4
24

ï
−5c

12

Å
1

z213z̄
2
13

+
1

z224z̄
2
24

ã
− 5c

18

ÅÅ
z̄424

z213z̄
3
12z̄

3
34

+
z413

z̄224z
3
12z

3
34

ã
+ (2 ↔ 4)

ãò
.

(B.31)

We have thus completed the computation of the second-order correction to
⟨T (z1)T̄ (z2)T (z3)T̄ (z4)⟩λ.

C Useful Integrals

Here we compute some integrals used in constructing the expressions for the first and
second-order correction to a correlator of undeformed operators. Divergent integrals will be
regularized by cutting an infinitesimal disk of radius ε around the poles, evaluating, then
taking the limit ε → 0.
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C.1 Integrals for the first-order correction of undeformed operators

In the following, we will evaluate the integrals for computing the first-order correction to a
correlator of undeformed operators, namely integrals of the form

Irs̄mn̄ =

∫
d2x

(z − zm)r(z̄ − z̄n)s
=

i

2

∫
d2z

(z − zm)r(z̄ − z̄n)s
. (C.1)

For the case of r = 1, s = 1

I11̄mn̄ =
i

2

∫
d2z

(z − zm)(z̄ − z̄n)
=

i

2

∫
d2z

(z − zmn) z̄
=

i

2

∫
d2z∂z̄

Å
log z̄

(z − zmn) z̄

ã
= − i

2

∮
dz

log z̄

z − zmn
.

(C.2)

The integrand has a branch cut z = 0 → ∞ and a pole z = zmn, see Fig. 1

− i

2

∮
dz

log z̄

z − zmn
= IΛ + Il1+l2 + Iϵ0 + Iϵ1 , (C.3)

Figure 1: Contour for the r = 1, s = 1 integral.

IΛ =
1

2

∫ 2π

0
Λeiθdθ

log Λ− iθ

Λeiθ − zmn
=

1

2

∫ 2π

0
dθ(log Λ− iθ) +

zmn

2

∫ 2π

0
dθ

log Λ− iθ

Λeiθ − zmn

= π log Λ− π2i+ 0;

Iϵ0 = −1

2

∫ 2π

0
ϵeiθdθ

log ϵ− iθ

ϵeiθ − zmn
→ 0;

Iϵ1 =
i

2

∮
|z−zmn|=ϵ

dz
log
Ä
z̄mn + ϵ2

z−zmn

ä
z − zmn

=
i

2

∮
|z′|=ϵ

dz′

z′
log

Å
z̄mn +

ϵ2

z′

ã
=

i

2

∮
|z′|=ϵ1

dz′

z′

ï
log z̄mn + log

Å
1 +

ϵ21
z′z̄mn

ãò
= −π log z̄mn − i

2

∞∑
n=1

1

n

∮
0

dz

zn+1

Å
ϵ21
z̄nm

ãn
= −π log z̄mn − 0;

Il1+l2 = − i

2

∫ Λ

ϵ
dx

log x

x− zmn
+

i

2

∫ Λ

ϵ
dx

log x− 2πi

x− zmn
= π

∫ Λ

ϵ

dx

x− zmn
= π log Λ− π log znm.

(C.4)
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Summing up

I11mn̄ = 2π log Λ− π log
Ä
− |zmn|2

ä
− π2i = 2π log Λ− π

î
log
Ä
− |zmn|2

ä
− πi
ó

= 2π log Λ− π log
Ä
− |zmn|2 eiπ

ä
= 2π (log Λ− log |zmn|) = −π log(|zmn|2/Λ2),

(C.5)

where Λ is an IR cutoff. For r = 1, s ≥ 1

I1s̄mn̄ =
i

2

∫
d2z

(z − zmn) z̄s
=

i

2

∫
|z|>|zmn|

d2z(
1− zmn

z

)
zz̄s

− i

2

∫
|z|<|zmn|

d2zÄ
1− z

zmn

ä
zmnz̄s

=
i

2

∫
|z|>|zmn|

d2z

zz̄s

∞∑
i=0

(zmn

z

)i
−
∫
|z|<|zmn|

d2z

zmnz̄s

∞∑
i=0

Å
z

zmn

ãi
=
i

2

∫
|z|>|zmn|

d2z
zs−1
mn

zsz̄s
− 0 =

∫ 2π

0
dθ

∫ ∞

|zmn|
ρdρ

zs−1
mn

ρ2s

=
π

1− s

zs−1
mn

ρ2s−2

∣∣∣∣∞
ρ=|zmn|

=
π

s− 1

1

z̄s−1
mn

.

Integrals with r ≥ 2, s ≥ 2 vanish because they are ∂r−1
zn ∂s−1

z̄m derivatives of the r = 1, s = 1

integral. We may also evaluate these by using the Stokes’ theorem

I1s̄mn̄ =
i

2

∫
d2z

(z − zmn) z̄s
= − i

2

1

s− 1

∫
d2z∂z̄

Å
1

(z − zmn) z̄s−1

ã
=
i

2

1

s− 1

ñ∮
|z|=Λ

dz

(z − zmn) z̄s−1
−
∮
|z−zmn|=ϵ

dz

(z − zmn) z̄s−1

ô
=0− i

2

1

s− 1

∮
|z−zmn|=ϵ

dz

(z − zmn)
Ä

ϵ2

z−zmn
+ z̄
äs−1

=− i

2

2πi

s− 1

1

z̄s−1
mn

+O(ϵ) =
π

s− 1

1

z̄s−1
mn

,

(C.6)

where the residue term O(ϵ) vanishes

O(ϵ) ∼
∮
|z−zmn|=ϵ

dz

(z − zmn)n
, n > 2 → O(ϵ) = 0. (C.7)

One may also obtain the same results by taking derivatives of the r = s = 1 integral w.r.t.
zm, zn

I1s̄mn̄ =
∂s−1
z̄n

(s− 1)!

∫
d2x

(z − zn)(z̄ − z̄m)
= −

∂s−1
z̄m

(s− 1)!
π log(|zmn|2/Λ2) =

π

s− 1

1

z̄s−1
mn

. (C.8)

Collecting results gives

⟨X⟩(1) =
∑
m ̸=n

⟨

Ñ
log(|zmn|2/Λ2)∂zm∂z̄n −

∑
s≥2

1

s− 1

L̄s−2,n∂zm
z̄s−1
mn

−
∑
r≥2

1

r − 1

Lr−2,m∂z̄n
zr−1
nm

é
X⟩(0)

+
∑
m=n

⟨

Ñ
log(ε2/Λ2)∂zm∂z̄n −

∑
s≥2

1

s− 1

L̄s−2,n∂zm
εs−1

−
∑
r≥2

1

r − 1

Lr−2,m∂z̄n
εr−1

é
X⟩(0).

(C.9)
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The dependence on the IR cutoff cancels upon summation over all fields due to translational
invariance

∑
m ∂zm⟨X⟩ =

∑
n ∂z̄n⟨X⟩ = 0. This can be seen by rewriting

∑
m=n log(ε

2/Λ2)∂zm∂z̄n
as
∑

m ̸=n log(ε
2/Λ2)∂zm∂z̄n .

C.2 Integrals for the second-order correction of undeformed operators

To obtain the second-order correction, we need to evaluate the following integral11
(
−1

2

)
1
π

∫
d2x⟨

(
r

s−1
Lr−2,mL̄s−2,nL̄t−2,i

(z−zm)r+1(z̄−z̄n)s−1(z̄−z̄i)t
+ (c.c.)

)
X⟩(0), for s > 1;(

−1
2

)
1
π

∫
d2x⟨

(
r
Lr−2,mL̄−1,nL̄t−2,i

(z−zm)r+1(z̄−z̄i)t
log(µ2|z − zn|2) + (c.c.)

)
X⟩(0), for s = 1.

(C.10)

We assume that zm ̸= zn ̸= zi since the cases where they coincide can be obtained by taking
limits. Here, we only have to evaluate the s = 1 integral since the rest can be obtained by
taking derivatives.

Note that log(µ2|z− zn|2) = log(µ(z− zn)) + log(µ(z̄− z̄n)). We will first evaluate the
terms with log(µ(z − zn)). They can be further divided into two groups: those with t = 1

and those with t > 1. As usual, we only have to evaluate the former; the rest is obtained
by taking derivatives.

The integral involving log(µ(z − zn)) can be evaluated via Stokes’ theorem:

1

π

∫
d2x

log(µ(z − zn))

(z − zm)r+1(z̄ − z̄i)

=
1

π(−r)

i

2

∫
d2z∂z

Å
log(µ(z − zn))

(z − zm)r(z̄ − z̄i)

ã
− 1

π(−r)

i

2

∫
d2z

∂z log(µ(z − zn))

(z − zm)r(z̄ − z̄i)

=− 1

2πir

Ç
−
∮
|z−zi|=ϵ

−
∮
|z−zn|=ϵ

−
∮
|z−zm|=ϵ

+

∮
ln

+

∮
|z|=Λ

å
dz̄

log(µ(z − zn))

(z − zm)r(z̄ − z̄i)

+
1

πr

i

2

∫
d2z

1

(z − zm)r(z − zn)(z̄ − z̄i)
, (C.11)

where the contour of the
∮
ln

integral runs along the branch cut of log(µ(z − zn)). We will
start by evaluating the contour integrals. The

∮
|z−zm|=ϵ,

∮
|z−zn|=ϵ integrals vanish because

they are proportional to integrals around infinitesimal circles surrounding the singularities
of log(µ(z − zn)) and 1/(z − zm)r at z = zn and z = zm, respectively. These are given by∮

|z−zn|=ϵ
dz̄ log(µ(z − zn)) = lim

ϵ→0

∫ 2π

0
dθ ϵe−iθ log(µϵeiθ)

= lim
ϵ→0

∫ 2π

0
dθ ϵe−iθ(log(µϵ) + iθ) = lim

ϵ→0
2πϵ = 0,

and ∮
|z−zn|=ϵ

dz̄
1

(z − zm)r
= lim

ϵ→0

∮
|z−zn|=ϵ

dθ ϵe−iθ 1

(ϵeiθ)r
= 0. (C.12)

11There is also a trivial integral, namely − 1
2π

∫
d2x⟨OTT̄ (z) dX⟩(0), which is simply

1
2

Ä∑
a̸=b dza,zb

ä2
⟨X⟩(0) = 1

2
⟨dX⟩(0) .
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The
∮
|z−zi|=ϵ integral is straightforward

1

2πir

∮
|z−zi|=ϵ

dz̄
log(µ(z − zn))

(z − zm)r(z̄ − z̄i)
= −1

r

log(µzin)

zrim
. (C.13)

The integral along the branch cut of log(µ(z − zn)) is given by

− 1

2πir

∮
ln

dz̄
log(µ(z − zn))

(z − zm)r(z̄ − z̄i)
=

1

r

∫ Λ

xn

dx
1

(z − zm)r(z̄ − z̄i)

∣∣∣∣
y=yn

. (C.14)

This term cancels out a term that appears in the computation of 1
π

∫
d2x log(µ(z̄−z̄n))

(z−zm)r+1(z̄−z̄i)
.

Next, we evaluate the integral around the large circle at infinity

− 1

2πir

∮
|z|=Λ

dz
log(µ(z − zn))

(z − zm)r(z̄ − z̄i)
∼ − 1

2πir

∫ 2π

0
Λeiθdθ

log(µΛ) + iθ

(Λeiθ)rΛe−iθ
→ 0, (C.15)

which vanishes for all values of r after taking the Λ → ∞ limit.
Now, we proceed to the three-pole integral in the second line of (C.11). We only have

to calculate the integral for r = 1, as the general result can be obtained by taking ∂zm
derivatives. Using the decomposition rule

1

(z − zm)(z − zn)
=

1

zmn

Å
1

z − zm
− 1

z − zn

ã
, (C.16)

we can express the three-pole integral with r = 1 in terms of the two-pole integrals Irs̄mn̄ we
have already encountered

1

πr

i

2

∫
d2z

1

(z − zm)(z − zn)(z̄ − z̄i)

=
1

πr

i

2

1

zmn

∫
d2z

Å
1

z − zm
− 1

z − zn

ã
1

z̄ − z̄i
= −1

r

1

zmn
log

|zim|2

|zin|2
.

Taking derivatives w.r.t. zm yields

∂r−1
zm

(r − 1)!

1

r

1

zmn
log

|zim|2

|zin|2
= −1

r

Å
1

zrnm
log

z̄im
z̄in

− 1

zrim
Φ(

znm
zim

, 1, r)

ã
. (C.17)

We can now proceed to the terms with log(µ(z̄ − z̄n))

1

π

∫
d2x

log(µ(z̄ − z̄n))

(z − zm)r+1(z̄ − z̄i)
=

1

π(−r)

i

2

∫
d2z∂z

Å
log(µ(z̄ − z̄n))

(z − zm)r(z̄ − z̄i)

ã
=− 1

(2πi)r

Ç
−
∮
|z−zn|=ϵ

−
∮
|z−zi|=ϵ

+

∮
ln

+

∮
|z|=Λ

å
dz̄

log(µ(z̄ − z̄n)))

(z − zm)r(z̄ − z̄i)
.

Likewise, we find the contributing terms to be

1

(2πi)r

∮
|z−zi|=ϵ

dz̄
log(µ(z̄ − z̄n))

(z − zm)r(z̄ − z̄i)
= −1

r

log(µz̄in)

zrim
, (C.18)
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and

− 1

(2πi)r

∮
ln

dz̄
log(z̄ − z̄n)

(z − zm)r(z̄ − z̄i)
= −1

r

∫ Λ

xn

dx
1

(z − zm)r(z̄ − z̄i)

∣∣∣∣
y=yn

, (C.19)

where the latter cancels out the term in (C.14).12 Collecting results, we conclude that the
s = 1, t = 1 integrals are given by

1

π

∫
d2x

log(µ2|z − zn|2)
(z − zm)r+1(z̄ − z̄i)

= −1

r

ï
log(µ2|zin|2)

zrim
+

Å
1

zrnm
log

z̄im
z̄in

+
1

zrim
Φ(

znm
zim

, 1, r)

ãò
.

(C.20)

where Φ( znm
zim

, 1, r) denotes the Lerch transcendent. For s = 1, t > 1, this becomes

1

π

∫
d2x

log(µ2|z − zn|2)
(z − zm)r+1(z̄ − z̄i)t

=
∂t−1
z̄i

(t− 1)!

1

π

∫
d2x

log(µ2|z − zn|2)
(z − zm)r+1(z̄ − z̄i)

=
1

r(t− 1)

Ç
1

z̄t−1
ni zrim

+
1

zrnmz̄t−1
mi

− 1

zrnmz̄t−1
ni

å
.

(C.21)

The s > 1, t = 1 integrals can be obtained by taking derivatives w.r.t. z̄n

1

π

∫
d2x

(z − zm)r+1(z̄ − z̄n)s−1(z̄ − z̄i)
=

∂s−1
z̄n

(s− 2)!(−1)

1

π

∫
d2x

log(µ2|z − zn|2)
(z − zm)r+1(z̄ − z̄i)

=− 1

r

1

z̄s−1
in

Å
1

zrim
− 1

zrnm

ã
.

(C.22)
Further derivation gives the integrals with s > 1, t > 1, which are

1

π

∫
d2x

(z − zm)r+1(z̄ − z̄n)s−1(z̄ − z̄i)t
=

∂t−1
z̄i

(t− 1)!

1

π

∫
d2x

(z − zm)r+1(z̄ − z̄n)s−1(z̄ − z̄i)

=− (1− s)t−1

r(t− 1)!

1

z̄s+t−2
in

Å
1

zrim
− 1

zrnm

ã
,

(C.23)
where ab ..=

∏b−1
p=0(a− p), with the exception of 0b ≡ 1. We have completed the evaluation

of all the integrals. The final step is to combine these results into the complete expression
for ⟨X⟩(2). By attaching the corresponding Virasoro generators to the integrals, we can
write down the final results for the integrals in (C.10) as

1
2⟨
ß [

log(µ2|zin|2)
zrim

+
Ä
log(z̄im/z̄in)

zrnm
+ 1

zrim
Φ( znm

zim
, 1, r)

ä]
Lr−2,mL̄−1,nL̄−1,i + (c.c.)

™
X⟩(0)

for (s, t) = (1, 1),
1
2⟨
ß

(1−s)t−2

(t−1)!

[
1

z̄s+t−2
in

Ä
1

zrnm
− 1

zrim

ä
+

δs,1
zrnmz̄t−1

mi

]
Lr−2,mL̄s−2,nL̄t−2,i + (c.c.)

™
X⟩(0)

for (s, t) ̸= (1, 1) and s > 0, t > 0.

(C.24)
These expressions constitute the second-order correction to ⟨X⟩λ.

12If one actually calculates this integral, one will yield anomalous expressions that spoil rotational invari-
ance, more specifically expressions containing (z̄in − zmn).
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