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Abstract

Nicolai maps offer an alternative description of supersymmetric theories via nonlinear and nonlocal

transformations characterized by the so-called ‘free-action’ and ‘determinant-matching’ conditions. The

latter expresses the equality of the Jacobian determinant of the transformation with the one obtained

by integrating out the fermions, which so far have been considered only to quadratic terms. We argue

that such a restriction is not substantial, as Nicolai maps can be constructed for arbitrary nonlinear

sigma models, which feature four-fermion interactions. The fermionic effective one-loop action then gets

generalized to higher loops and the perturbative tree expansion of such Nicolai maps receives quantum

corrections in the form of fermion loop decorations. The ‘free-action condition’ continues to hold for the

classical map, but the ‘determinant-matching condition’ is extended to an infinite hierarchy in fermion

loop order. After general considerations for sigma models in four dimensions, we specialize to the case

of CPN symmetric spaces and construct the associated Nicolai map. These sigma models admit a

formulation with only quadratic fermions via an auxiliary vector field, which however does not simplify

the construction of the map.

http://arxiv.org/abs/2310.19946v1
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1 Introduction and summary

The Nicolai map T [1, 2, 3] is a (generically nonlocal and nonlinear) field transformation that relates super-

symmetric theories at different values of their parameters, say coupling constants g. In particular, it allows

one to compute the expectation value of any operator Y built from the bosonic fields φ at coupling g by

evaluating a free-field (g=0) correlator of the inversely transformed operator T−1Y ,1

〈
Y [φ]

〉
g

=
〈
(T−1
g Y )[φ]

〉
0

=
〈
Y [T−1

g φ]
〉

0
. (1.1)

Here, we indicated the value of the coupling as a subscript on the correlator and also on the symbol of the

map Tg : φ 7→ φ′[g, φ] = Tgφ. The second equality expresses the distributivity of the map, i.e. T (φ1φ2) =

(Tφ1) (Tφ2). In the expectation values of (1.1) it is understood that all anticommuting degrees of freedom ψ

have been integrated out.2 This means that the Nicolai map operates in a nonlocal bosonic theory with an

action

Sg[φ] = Sb
g [φ] + ~Sf

g[φ] , (1.2)

where the local part Sb
g is the bosonic piece of the original supersymmetric action SSUSY[φ, ψ] and exp{iSf

g}
arises from the path integral over the anticommuting fields in the partition function, both at coupling g. In

particular, Sf
g is in general nonlocal and suppressed by ~. So far in the literature only theories with quadratic

fermions have been considered, for which the integration over fermions can be formally carried out. As a

result, changing path-integral variables Y 7→ TgY on the right-hand side of (1.1) and sorting powers of ~,

one recovers the original defining properties of the Nicolai map,

Sb
0 [Tgφ] = Sb

g [φ] and Sf
0 − i tr ln

δTgφ

δφ
= Sf

g[φ] , (1.3)

which are called the ‘free-action’ and ‘determinant-matching’ property, respectively. We note that Sf
0 =

Sf
0[Tgφ] is a constant since this functional does not depend on the bosonic fields. The name ‘determinant-

matching’ was indeed coined because in theories with a flat target space integrating the quadratic fermions

out produces a fermionic (or Matthews–Salam–Seiler) determinant, which has to be matched by the Jacobian

determinant det
δTgφ

δφ
. Powers of ~ are fully explicit because the fermionic determinant sums all fermionic

loops in the bosonic background which is a one-loop exact operation. As a consequence, in the language

of the ‘Nicolai rules’ to construct the map, only tree diagrams appear, and for this reason it is sometimes

considered a classical construction.

In this paper we will show that the assumption of quadratic fermions is not necessary; Nicolai maps can be

constructed for supersymmetric actions with higher-order fermion terms as well. The price to pay is quantum

1The vanishing of the vacuum energy in supersymmetric theories properly normalizes 〈1〉g = 1.
2Auxiliary fields F may be kept as part of φ or eliminated, see below.
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corrections to the Nicolai map and a more general dependence on ~, which upsets the conditions (1.3). In

other words, the Nicolai map is a formal power series not only in g but also in ~,

Tgφ = T (0)
g φ +

∞∑

r=1

~
rT (r)
g φ , (1.4)

where r counts the number of fermion loops in the diagrammatic representation. With higher-order fermionic

terms in the action, the path integral over the anticommuting fields will produce an effective nonlocal action∑
r ~

rS
(r)
g [φ] extending the previous one-loop result ~Sf

g[φ] to all orders in ~. Revising the argument leading

from (1.1) to (1.3) we then find the combined identity

Sb
0 [Tgφ] + ~Sf

0 − i~ tr ln
δTgφ

δφ
= Sb

g [φ] +
∑

r

~
rS(r)

g [φ] . (1.5)

Inserting (1.4) into (1.5) and comparing powers in ~ one obtains an infinite hierarchy of ‘Nicolai-map condi-

tions’. The leading two represent the tree-level and one-loop contributions and read

Sb
0 [T (0)

g φ] = Sb
g [φ] and Sb

0 [Tgφ]
∣∣
O(~)

+ Sf
0 − i tr ln

δT (0)
g φ

δφ
= S(1)

g [φ] . (1.6)

Clearly, the ‘free-action condition’ is still valid for the classical part of the Nicolai map, but the ‘determinant-

matching condition’ receives a free-action contribution from the one-loop correction to the map, and there

are further conditions, each one balancing expressions of a fixed loop order.

For any off-shell supersymmetric theory, there exists a formalism and a universal formula which provides

a formal power series expansion (in g) of the map and its inverse [4, 5, 6, 7, 8, 9, 10, 11].3 The key player is

the ‘coupling flow operator’

Rg[φ] =

∫
dx

(
∂gT

−1
g ◦ Tg

)
φ(x)

δ

δφ(x)
, (1.7)

where ‘x’ stands for all coordinates the fields depend on. This functional differential operator governs the

infinitesimal Nicolai map,

∂g
〈
Y [φ]

〉
g

=
〈(
∂g +Rg[φ]

)
Y [φ]

〉
g
. (1.8)

The first step towards its construction is the observation that, in off-shell supersymmetric chiral theories,

SSUSY[φ, ψ] = δα∆α[φ, ψ] ⇒ ∂gSSUSY[φ, ψ] = δα∂g∆α[φ, ψ] , (1.9)

where α is a spinor index (we are being schematic here on the notation of spinors) and ∆α is a certain

anticommuting local functional. Super Yang–Mills theories are more complicated because [∂g , δα] 6= 0, and

we exclude them in the following. Employing (1.9) and the supersymmetric Ward identity we integrate out

the anticommuting variables to read off the coupling flow operator

Rg[φ] =
i

~
∂g∆α[φ] δα =

i

~

∫
dx ∂g∆α[φ] δαφ(x)

δ

δφ(x)
, (1.10)

where the contraction indicates a fermionic expectation value to be taken.

Exponentiating the action of ∂g+Rg generates the (finite-flow) inverse Nicolai map. Alternatively, a

g-ordered exponential of −
∫ g

0 dg′ Rg′ directly yields the Nicolai map. In any case, the Rg action has to be

iterated, Rg1Rg2 · · ·Rgs
φ, which grafts full fermionic 2k-point functions onto previously generated diagrams.

For the Wess–Zumino model (quadratic in the fermions) this produces fermionic tree diagrams, dressed with

bosonic ‘leaves’. Still, fermion loops remain absent. For nonlinear sigma models, however, the graphical

expansion of the Nicolai map will feature fermionic trees with all kinds of fermion loops embedded. Thus it

3Under certain conditions the construction works also in the absence of off-shell supersymmetry, e.g. for super Yang–Mills

theory in dimensions 6 and 10 in the Landau gauge [8, 12, 13, 14].
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can no longer be considered a classical map. Nevertheless, at any power of the coupling g a finite number of

diagrams contributes to the Nicolai map, and we may still employ the universal formula to write it down. In

the following, this will be demonstrated for four-dimensional supersymmetric sigma models, first in general

and second for supersymmetric CPN models.

For the scope of this paper, relating the perturbative Nicolai map to the standard perturbative (Feynman)

expansion solely concerns the generation of diagrams. These are in general divergent and in most applications

require regularization. We assume that it has been been done in an appropriate way, e.g. via dimensional

regularization or with a UV cutoff.4 These aspects, and more generally the interplay between the Nicolai

map and regularization or renormalization, deserve further study.

There are several ways in which the work presented here can be further expanded or generalized. It would

be interesting to work out explicitly additional orders of the Nicolai map for CPN models presented here

and study in detail the higher-loop identities (1.5). Conceivably, then, the formalism presented here can be

naturally extended to gauge theories. Finally, a more ambitious goal is the application of the Nicolai map

to supergravity, which has been excluded so far owing to the four-fermion contributions, with the potential

application of shedding light on its UV behaviour.

The rest of the paper is organized as follows. Section 2 collects some general expressions for super-

symmetric nonlinear sigma models and its coupling flow operator. In Section 3 we specialize to CPN and

construct the associated Nicolai map in perturbation theory. A possibility of eliminating the four-fermion

interactions via auxiliary (Hubbard–Stratonovich) scalars or vectors is discussed in Section 4. We then com-

ment on the superfield origin of an auxiliary vector in CPN models and its relevance for the construction of

the perturbative Nicolai map.

2 Supersymmetric nonlinear sigma model

The prototypical supersymmetric field theory with higher-than-quadratic fermion terms in the action is the

supersymmetric nonlinear sigma model in (3+1)-dimensional Minkowski space [15], which is characterized

by a Kähler potential K(Φ†
a,Φ

a) and a superpotential W(Φa) for a collection

{Φa} = {Φ0,ΦA} = {Φ0,Φ1,Φ2, . . . ,ΦN} (2.1)

of N+1 chiral superfields, i.e. a, b, c, . . . = 0, 1, . . . , N and A,B,C, . . . = 1, . . . , N . Complex conjugation

raises or lowers target-space indices. Adopting the Wess–Bagger notation [16] their component expansion

(in x coordinates) reads

Φa = φa + iθσmθ̄ ∂mφ
a + 1

4θ
2θ̄2

✷φa +
√

2θ ψa − i√
2
θ2∂mψ

aσmθ̄ + θ2F a =: φa + Ξa , (2.2)

where Weyl spinor indices α, α̇ = 1, 2 are suppressed. We note that Ξ3 = 0. For the purpose of this paper

the superpotential is not essential (although it can easily be added), and thus we omit any F -term in the

action and restrict ourselves to the Kähler potential in the supersymmetric D-term action

SSUSY =

∫
d4x L with L =

∫
d2θ d2θ̄ K(Φ†

a,Φ
a) . (2.3)

We further define the functional ∆ given by

∆ =

∫
d4x M with M =

∫
dθ d2θ̄ K(Φ†

a,Φ
a) , (2.4)

so that

L = − 1
4

(
1+κ

2 δαMα + 1−κ
2 δ̄α̇M̄α̇

)
+ total derivative , (2.5)

4In particular, the perturbative non-renormalizability of the nonlinear sigma models described here is not of concern.
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with a free parameter κ controlling the relative weight of the chiral against antichiral contribution.5

We introduce the notation

K := K(φ∗
a, φ

a) and Kcd...
ab... := ∂

∂φa
∂
∂φb · · · ∂

∂φ∗

c

∂
∂φ∗

d

· · ·K . (2.6)

Expanding
K = K +Ka Ξa +Ka Ξ̄a +Ka

b ΞbΞ̄a + 1
2Kab ΞaΞb + 1

2K
ab Ξ̄aΞ̄b

+ 1
2K

a
bc ΞbΞcΞ̄a + 1

2K
bc
a ΞaΞ̄bΞ̄c + 1

4K
ab
cd ΞaΞbΞ̄cΞ̄d

= . . .+ θ̄2θM + θ2θ̄ M̄ + θ2θ̄2 L
(2.7)

and employing the identity

✷K = KAB ∂mφ
∗
A∂

mφ∗
B +KAB ∂mφ

A∂mφB + 2KA
B ∂mφ

∗
A∂

mφB +KA
✷φ∗

A +KA✷φA , (2.8)

we read off the component lagrangian

L = Kb
a

[
−∂mφa∂mφ∗

b − i
2ψ

aσm∂mψ̄b + i
2∂mψ

aσmψ̄b + F aF ∗
b

]

+ 1
2K

c
ab

[
iψbσmψ̄c ∂mφ

a − ψaψbF ∗
c

]
+ 1

2K
ab
c

[
iψ̄b σ̄

mψc∂mφa − ψ̄aψ̄b F
c
]

+ 1
4K

ab
cd ψ̄aψ̄b ψ

cψd

= Kb
a

[
−∂mφa∂mφ∗

b − i
2ψ

aσm∇mψ̄b + i
2 ∇mψ

aσmψ̄b + F aF ∗
b

]

− 1
2K

c
ab ψ

aψbF ∗
c − 1

2K
ab
c ψ̄aψ̄b F

c + 1
4K

ab
cd ψ̄aψ̄b ψ

cψd

(2.9)

with target-space covariant derivative on spinors defined as

Kb
a ∇mψ

a = Kb
a ∂mψ

a +Kb
cd ∂mφ

cψd , (2.10)

and we also obtain the penultimate component

M =
√

2Kb
a

[
ψaF ∗

b − iσmψ̄b ∂mφ
a
]

+ 1√
2
Kbc
a ψa ψ̄bψ̄c , (2.11)

which are both manifestly invariant under Kähler transformations K 7→ K + Λ + Λ†.

In order to simplify the coupling-flow operator, it is advisable to also integrate out the auxiliary F a by

inserting its classical value

Kb
a F

∗
b = 1

2K
cd
a ψ̄cψ̄d ⇒ F a = 1

2 (K−1)ab K
b
cd ψ

cψd (2.12)

back into L and M, which produces

L = Kb
a

[
−∂mφa∂mφ∗

b − i
2ψ

aσm∇mψ̄b + i
2 ∇mψ

aσmψ̄b
]

+ 1
4R

ab
cd ψ̄aψ̄b ψ

cψd (2.13)

with the Riemann tensor

Rabcd = Kab
cd −Kr

cd(K
−1)srK

ab
s (2.14)

as well as

M = −i
√

2Kb
a σ

mψ̄b ∂mφ
a +

√
2Kbc

a ψa ψ̄bψ̄c . (2.15)

We note that the invertibility of the Kähler metric is not needed in the final expression for the coupling-flow

operator. Still, as we shall see, if redundant target coordinates are employed we must constrain them (‘fix

a gauge’) and also introduce a coupling g into the Kähler potential K in order to obtain a perturbative

expansion for the Nicolai map.

5This freedom is R symmetry: a D-term can be reached in two ways, by applying either δα to Mα or δ̄α̇ to M̄α̇.
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Suppose now that SSUSY features terms of order 2k in the ψ fields, with k = 1, 2, . . .. Then, ∂gMα has

terms of the form ψ2k−1. Since δα acting on φ is linear in ψ, the contraction in

Rg = − i
4~

∫
dy

∫
dx

{
1+κ

2 ∂gMα(y) δα(x) + 1−κ
2 ∂gM̄α̇(y) δ̄α̇(x)

}
(2.16)

signifies a fermionic 2k-point function in the φ background, with 2k−1 legs fused. For a flat target space,

we look at Wess–Zumino chiral models, and fermions appear only quadratically in the action. Thus, k=1

implies only a full fermion propagator in (1.10),

ψ̄β̇b (x′) ψaα(x) ≡ ~ (G
(g)
2 )aβ̇bα(x′, x) , (2.17)

which contains all Feynman diagrams connected by a single fermion line with external φ legs. Expanding the

full fermion propagator in powers of g, one obtains chains of free fermion propagators, with vertices encoding

the coupling to the bosonic background. No fermion loops arise. In case of a curved target space, instead,

we face a nonlinear sigma model, whence SSUSY has terms quadratic (k=1) as well as quartic (k=2) in the

fermions. In this case, a ψ3 contribution in Mα produces a correlator of a composite ψ3 with another ψ in

the bosonic background, which then occurs in (1.10),

ψbβ(x′)ψ̄γ̇c (x′)ψ̄δ̇d(x
′) ψaα(x) ≡ ~

2(G
(g)
4 )baγ̇δ̇cdβα(x′, x) , (2.18)

which contains all Feynman diagrams connecting a triple fermion vertex with another fermion. We note that

both G
(g)
2 and G

(g)
4 include diagrams with fermion loops generated by the four-fermion coupling. Expanding

in powers of g and taking into account the ψ4 interaction in SSUSY, we encounter fermion loop diagrams in

the graphical expansion of the coupling flow operator and hence of the Nicolai map.

3 Supersymmetric CPN model

Let us become more concrete and specialize to a maximally symmetric Kähler target, namely the complex

projective space CPN ≃ SU(N+1)
SU(N)×U(1) . It is embedded into CN+1 ∋ φa by the identification φa ∼ λφa with

λ ∈ C∗, which yields the Kähler potential

K(φ∗
a, φ

a) =
µ2

g
log

[ g
µ2

φ∗φ
]

with φ∗φ ≡ φ∗
aφ

a , (3.1)

where g is a dimensionless coupling, and µ is a mass parameter accounting for the dimensionality of φ.6 The

superfield extension identifies Φa ∼ Λ Φa with a complex chiral superfield Λ. For later use, we introduce the

abbreviations

f−1
g := g

µ2 φ
∗φ and Πb

a := δba − φbφ∗

a

φ∗φ
, (3.2)

in terms of which the derivatives of K are as follows,

Kb
a = fg Πb

a , Kbc
a = −2f2

g
g
µ2 φ

(bΠc)
a , Kcd

ab = 4f3
g
g2

µ4 φ
(cΠ

d)
(aφ

∗
b) − 2f2

g
g
µ2 Π

(c
(aΠ

d)
b) . (3.3)

We remark that Πb
a φ

a = 0 = φ∗
b Πb

a implements the projection transversal to the ‘radial direction’ of the

identification φa ∼ λφa.

As it stands, this Kähler potential is singular in the g → 0 limit. In order to set up a perturbation theory

around flat CN , we need to select a point on CPN and pick coordinates φA ∈ CN centered around it. An

appropriate superfield choice fixing the above redundancy is

Φ0 =

√
µ2

g
⇔

{
φ0, ψ0, F 0

}
=

{√
µ2

g
, 0, 0

}
, (3.4)

6There really is only one (dimensionful) parameter M2 = µ2/g; we introduce the dimensionless coupling g only for later

convenience. Also, µ2 need not be positive.

5



which leaves us with N proper (super)coordinates

ΦA = φA + iθσmθ̄ ∂mφ
A + 1

4θ
2θ̄2

✷φA +
√

2θ ψA − i√
2
θ2∂mψ

Aσmθ̄ + θ2FA (3.5)

and a well-behaved Kähler potential

K(φ∗
A, φ

A) =
µ2

g
log

[
1 +

g

µ2
φ̂∗φ̂

]
= φ̂∗φ̂ − 1

2
g
µ2

(
φ̂∗φ̂

)2
+ O(g2) with φ̂∗φ̂ ≡ φ∗

Aφ
A . (3.6)

Observing that (3.4) effectively reduces the summation ranges in (2.9) and (2.11) to 1, . . . , N , i.e. a, b, . . . →
A,B, . . ., we only need to insert

KB
A = fg ΠB

A , KBC
A = −2f2

g
g
µ2 φ

(BΠ
C)
A , KCD

AB = 4f3
g
g2

µ4 φ
(CΠ

D)
(Aφ

∗
B) − 2f2

g
g
µ2 Π

(C
(AΠ

D)
B) (3.7)

with f−1
g = 1 + g

µ2 φ̂
∗φ̂ and

ΠB
A = δBA − fg

g
µ2 φ

Bφ∗
A ⇒ ΠB

A φ
A = fg φ

B and φ∗
B ΠB

A = fg φ
∗
A . (3.8)

The elimination of the auxiliary F via (2.12) commutes with the coordinate choice for M,

M = −i
√

2KB
A
/∂φA ψ̄B +

√
2KBC

A ψA ψ̄Bψ̄C

= −i
√

2 fg ΠB
A
/∂φA ψ̄B − 2

√
2 f2

g
g
µ2 φ

C ΠB
A ψ

A ψ̄Bψ̄C ,
(3.9)

but not so for the lagrangian (2.9) because (2.14) requires invertibility of the Kähler metric Kb
a, which is

degenerate in the redundant coordinates. However, after choosing (3.4) we simply obtain

KB
A F

∗
B = 1

2K
CD
A ψ̄C ψ̄D ⇒ FA = 1

2 (K−1)ABK
B
CD ψCψD with (K−1)ABK

B
C = δAC (3.10)

with an inverse K−1 on CPN and hence a four-fermion interaction

1
4R

AB
CD ψ̄Aψ̄B ψCψD with RABCD = KAB

CD −KR
CD(K−1)SRK

AB
S . (3.11)

The CPN Riemannn tensor computes to (c.f. (3.7))

RABCD = −2f2
g
g
µ2 Π

(A
(CΠ

B)
D) = − g2

µ4

(
KA
CK

B
D +KA

DK
B
C

)
. (3.12)

Working out the details one arrives at

L = fg ΠB
A

[
−∂mφA ∂mφ∗

B − i
2 (ψA/∂ψ̄B + ψ̄B /̄∂ψ

A) + i
2 fg

g
µ2 (ψAφC/∂φ∗

Bψ̄C + ψ̄Bφ
∗
C
/̄∂φAψC)

]

+ i
2 f

2
g
g
µ2 ΠB

A ψ
A(φC/∂φ∗

C − φ∗
C
/∂φC) ψ̄B + 1

4 f
2
g
g
µ2

[
ψCσmΠA

C ψ̄A
][
ψDσmΠB

Dψ̄B
]
,

(3.13)

where we have employed the Fierz identity

[ψ̄Aψ̄B] [ψCψD] = − 1
2 [ψCσmψ̄A] [ψDσmψ̄B] . (3.14)

We now have all the ingredients for constructing the Nicolai map. Remembering that

δαφ
A =

√
2ψAα , δαφ

∗
A = 0 , δ̄α̇φA = 0 , δ̄α̇φ∗

A =
√

2 ψ̄α̇A (3.15)

the coupling-flow operator takes the form

Rg = − i
4~

√
2

∫
dy

∫
dx

{
1+κ

2 ∂gMα(y) ψAα(x) δ
δφA(x) + 1−κ

2 ∂gM̄α̇(y) ψ̄Aα̇(x) δ
δφ∗

A
(x)

}

= − 1
2~

∫
dy

∫
dx 1+κ

2

{
∂g(fg ΠB

A) /∂αα̇φ
A(y) ψ̄α̇B(y) ψDα(x) δ

δφD(x)

− 2i ∂g(f
2
g
g
µ2 ΠB

A)φC(y)ψAα (y) ψ̄Bα̇(y) ψ̄α̇C(y) ψDα(x) δ
δφD(x)

}

− 1
2~

∫
dy

∫
dx 1−κ

2

{
∂g(fg ΠB

A) /̄∂
α̇α
φ∗
B(y)ψAα (y) ψ̄Dα̇(x) δ

δφ∗

D
(x)

− 2i ∂g(f
2
g
g
µ2 ΠB

A)φ∗
C(y) ψ̄α̇B(y)ψAα(y)ψCα (y) ψ̄Dα̇(x) δ

δφ∗

D
(x)

}

(3.16)
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with full fermionic correlators indicated by the contractions, see (2.17) and (2.18).

Let us take a look at first order in the coupling g,

(Tgφ)A(x) = φA(x) − g (Rgφ)|Ag=0(x) + O(g2) . (3.17)

We compute

(Rgφ)|Ag=0(x) = 1+κ
4~µ2

∫
dy

{
φ∗
B(φB/∂αα̇φ

C + φC/∂αα̇φ
B) ψ̄α̇C(y) ψAα(x) + 2iφC ψBα ψ̄Bα̇ ψ̄

α̇
C(y) ψAα(x)

}
,

(Rgφ
∗)|g=0

A (x) = 1−κ
4~µ2

∫
dy

{
φB(φ∗

B
/̄∂
α̇α
φ∗
C + φ∗

C
/̄∂
α̇α
φ∗
B)ψCα (y) ψ̄Aα̇(x) + 2iφ∗

C ψ̄
α̇
B ψ

Bα ψCα (y) ψ̄Aα̇(x)
}
,

(3.18)

where now the contractions are free-field ones,

σmαα̇ ψ̄
α̇
C(y) ψAα(x) = −2~ δAC ∂

m
✷

−1(y−x) = σ̄mα̇α ψAα (y) ψ̄Bα̇(x) ,

ψBα ψ̄Bα̇ ψ̄
α̇
C(y) ψAα(x) = ~

2(N+1) δAC ∂m✷
−1(y−z) ∂m✷−1(y−x)

∣∣
z=y

,
(3.19)

and arrive at the classical map

(T (0)
g φ)A(x) = φA(x) + 1+κ

2
g
µ2

∫
dy φ∗

B ∂m(φBφA)(y) ∂m✷
−1(y−x) + O(g2) ,

(T (0)
g φ∗)A(x) = φ∗

A(x) + 1−κ
2

g
µ2

∫
dy φB ∂m(φ∗

Bφ
∗
A)(y) ∂m✷

−1(y−x) + O(g2) ,

(3.20)

while the four-fermion contraction yields the leading (or one-loop) quantum contribution

(T (1)
g φ)A(x) = −i g

µ2
1+κ

2 (N+1)

∫
dy φA(y) ∂m✷

−1(y−z) ∂m✷−1(y−x)
∣∣
z=y

+ O(g2) ,

(T (1)
g φ∗)A(x) = −i g

µ2
1−κ

2 (N+1)

∫
dy φ∗

A(y) ∂m✷
−1(y−z) ∂m✷−1(y−x)

∣∣
z=y

+ O(g2) ,

(3.21)

The generalized free-action condition in (1.6) means that

Sb
0 [T (0)

g φ] = −
∫
∂m(Tgφ)A ∂m(Tgφ

∗)A
!
= −

∫
fg ΠB

A ∂mφ
A ∂mφ∗

B = Sb
g [φ] , (3.22)

which is met to first order in g because both sides are equal to

−
∫ {

∂mφ
A ∂mφ∗

A − g
µ2 φ

∗
B (φB ∂mφ

A + φA ∂mφ
B) ∂mφ∗

A + O(g2)
}

(3.23)

and κ cancels out. For the one-loop matching in (1.6) we obtain the O(g) contributions

Sb
0 [Tgφ]

∣∣
O(~)

= i g
µ2 (N+1)

∫ {
1
2φ

Aφ∗
A δ(0) + κ

2

(
φA✷φ∗

A − φ∗
A✷φ

A
)
✷

−1(0)
}
,

−i tr ln
δT (0)

g φ

δφ
= i g

µ2 (N+1)

∫ {
1
2φ

Aφ∗
A δ(0) − κ

2

(
φA✷φ∗

A − φ∗
A✷φ

A
)
✷

−1(0)
}
,

S(1)
g [φ] = i g

µ2 (N+1)

∫ {
φAφ∗

A δ(0)
}
,

(3.24)

which verifies the condition again with the expected cancellation of κ. In (3.24) we use the regularization-

dependent quantities δ(0) ≡ δ(4)(x−x) and ✷
−1(0) ≡ ✷

−1(x−x), which contribute to a mass shift and

wavefunction renormalization, respectively.7 We kept them in this form to maintain the discussion as general

as possible and to illustrate the matching at first order.

7In dimensional regularization both contributions vanish in a massless theory such as the one under consideration. With a

UV cutoff they are quartically and quadratically divergent, respectively.
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By choosing κ=+1 or κ=−1 we have the freedom to shift the Nicolai map entirely to φA or φ∗
A alone,

respectively. A graphical representation of the Nicolai map to order g2 looks as follows,

Tgφ = + g + g2


 +


 + · · ·

+ ~g + ~g2


 +


 + · · ·

+ ~
2g2


 + +


 + · · ·

+ O(g3) .

(3.25)

Here, the thick dot at the left end of each diagram stands for the argument x of the map, other vertex positions

are integrated over. Solid lines are free fermion propagators /∂✷−1 or /̄∂✷−1, and wavy lines represent bosonic

field insertions φ or φ∗. One of the bosonic legs emanating from each vertex not sourcing a loop carries a

derivative (not shown). For the full ‘Nicolai rules’, one of course needs to add target-space indices, spinor

traces, and weight factors. All diagrams shown above already appear in the first application of Rg on φ. We

see that in the ~ expansion of the map an r-loop contribution arises first at order gr, so that at each given

order in perturbation theory only a finite number of diagrams contribute, as expected.

4 Adding an auxiliary vector field

In some field theories with four-fermion interactions one can ‘resolve’ the latter through a coupling with an

auxiliary field A: the Hubbard–Stratonovich transformation. Schematically, one adds to an action with a

(ψ̄ψ)2 term an auxiliary-field coupling (ψ̄ψ −A)2, schematically

ψ̄ i∂ψ + 1
4g(ψ̄ψ)2 −→ ψ̄ i∂ψ + 1

2g A ψ̄ψ − 1
4gA

2 = ψ̄ i(∂ − i
2gA)ψ − 1

4gA
2 . (4.1)

The four-fermion term has been cancelled, but eliminating A brings it back. Hence, the only price is an

additional auxiliary field (or several of them). Filling in the indices in our schematic argument and allowing

for the fierzing (3.14), we see that the transformation requires our four-fermion term (3.11) to be ‘factorizable’,

i.e.

RABCD = λs (m̄i)
AB (mi)CD + λv (ℓI)

A
(C (ℓI)BD) (4.2)

with some coefficients λs and λv and indices i and I counting several such terms. For target geometries with

this property we can remove the four-fermion interaction by introducing a bunch of complex scalar and real

vector auxiliary fields

Ai = (mi)CD ψ
CψD and AIm = (ℓI)BD ψ

Dσmψ̄B , (4.3)

respectively.

This is actually the case for all hermitian symmetric spaces [17, 18].8 Therefore, these geometries allow

for an auxiliary-field reformulation. The complex projective spaces CPN treated above are the maximally

symmetric compact examples, and indeed (3.12) shows that a single real vector auxiliary Am suffices. Ac-

tually, the Hubbard–Stratonovich trick can be slightly generalized by shifting A by an arbitrary function of

8See [19] for a more general review on nonlinear realization and hidden local symmetries.
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bosonic fields. We make use of this option and choose

Am = 1
µ2 fg

[
iφC∂mφ

∗
C − iφ∗

C ∂mφ
C + ψA ΠB

A σm ψ̄B
]
, (4.4)

where the form of the (arbitrary) bosonic contribution will be justified later on. With some algebra this

yields the enhanced lagrangian

L̃ = −fg ΠB
A∂mφ

A∂mφ∗
B + 1

4f
2
g
g
µ2 (φA∂mφ

∗
A − φ∗

A∂mφ
A)2 + i

2fg g (φA∂mφ
∗
A − φ∗

A∂mφ
A)Am − 1

4gµ
2AmA

m

− i
2fg ΠB

A(ψA/∂ψ̄B + ψ̄B /̄∂ψ
A) − 1

2fg gΠB
A ψ

A /A ψ̄B + i
2f

2
g
g
µ2 ΠB

A(ψAφC/∂φ∗
Bψ̄C + ψ̄Bφ

∗
C
/̄∂φAψC) .

(4.5)

There exists an instructive superfield formulation [17, 18],

S̃SUSY =

∫
d4x L̃ with L̃ =

∫
d2θ d2θ̄

{
egV Φ†

aΦ
a − µ2 V

}
, (4.6)

and corresponding expressions for ∆̃ and M̃, where the auxiliary real vector superfield V with compo-

nents (C,L,Am, λ, χ,D) expands in x coordinates as

V = −C− iθχ+iθ̄χ̄− i
2θ

2L+ i
2 θ̄

2L∗ +θσmθ̄Am− iθ2θ̄
[
λ̄+ i

2
/̄∂χ

]
+iθ̄2θ

[
λ+ i

2
/∂χ̄

]
− 1

2θ
2θ̄2

[
D+ 1

2✷C
]
. (4.7)

The action (4.6) enjoys a complexified local U(1) invariance under

V 7→ V + iΛ − iΛ† and Φa 7→ e−igΛ Φa (4.8)

with a chiral superfield parameter Λ. The coordinate choice (3.4) is not compatible with the Wess–Zumino

gauge, and it completely breaks the gauge symmetry. Indeed, eliminating the vector superfield by its algebraic

equation of motion,

V = −1

g
log

[ g
µ2

Φ†
aΦ

a
]

= − 1

µ2
K[Φa,Φ†

a] , (4.9)

brings back the original action (2.3) with the CPN Kähler potential (3.1) (up to a constant). We can interpret

the action (4.6) and the gauge transformation (4.8) as a way of performing the CPN identification of scalar

superfields under complex chiral parameters: the supergauge transformation realizes in a supersymmetric

fashion a complex U(1) ∋ eiα(x)+β(x) local transformation which extends the standard gauge invariance to a

symmetry under conformal rescaling.

Let us go now to the component level and eliminate auxiliary fields F , L, χ, λ, C and D from the action

by their equations of motion, e.g.

F a = −ψa ψ
bφ∗

b

φ∗φ
, χ = − i

√
2
g

ψaφ∗

a

φ∗φ
, g e−gC φ∗φ = µ2 . (4.10)

After lengthy but straightforward computations we arrive at

L̃ = fg Πb
a

{
−Dmφ

aDmφ∗
b − i

2

[
ψa /Dψ̄b + ψ̄b /̄Dψ

a
]

+ i
2

1
φ∗φ

[
ψaφc /Dφ∗

b ψ̄c + ψ̄bφ∗
c
/̄Dφaψc

]}

+ 1
4f

2
g
g
µ2

(
φaDmφ

∗
a − φ∗

aDmφ
a)2

(4.11)

where Dm = ∂m − i
2 g Am is a U(1)-covariant derivative. We note that Πb

aDmφ
a = Πb

a∂mφ
a. For the

penultimate components we find

M̃ = −i
√

2 fg Πb
a
/Dφa ψ̄b + i

√
2f2
g
g
µ2 (φb /Dφ∗

b − φ∗
b
/Dφb)φaψ̄a . (4.12)

Both L̃ and M̃ are manifestly gauge invariant. We are left with the fields φa, ψa and Am. Eliminating the

latter via its equation of motion

µ2Am = fg
[
iφc∂mφ

∗
c − iφ∗

c∂mφ
c + Πb

a ψ
aσmψ̄b

]
⇔ iφcDmφ

∗
c − iφ∗

cDmφ
c = −Πb

a ψ
aσmψ̄b (4.13)
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reverts to the four-fermion interaction, so we keep Am in the lagrangian. Notice that the value of Am in

(4.13) is exactly (4.4).

Instead, we now employ the local supersymmetric U(1)C invariance to fix one of the chiral superfields,

Φ0 =
√

µ2

g
, which explicitly connects the auxiliary-superfield formulation with our coordinate choice (3.4) for

the nonlinear sigma model. It is not hard to see that this gauge fixing comes with a trivial Faddeev–Popov

determinant. The gauge-fixed lagrangian then indeed agrees with (4.5). Using the identities ΠB
Aφ

A = fgφ
B

and g
µ2φ

Aφ∗
A = f−1

g − 1 as well as

φcDφ∗
c − φ∗

cDφ
c = φC∂φ∗

C − φ∗
C∂φ

C + if−1
g µ2A ,

Πb
aDφ

aψ̄b = ΠB
ADφ

Aψ̄B + i
2fg g Aφ

Aψ̄A ,
(4.14)

we also obtain

M̃ = −i
√

2fg ΠB
A
/∂φA ψ̄B + i

√
2f2
g
g
µ2 (φC/∂φ∗

C − φ∗
C
/∂φC)φAψ̄A −

√
2fg g /Aφ

Aψ̄A . (4.15)

Again, we can set up the Nicolai map. Employing

δαY =
√

2ψα
δY
δφ

+ δαAm
δY
δAm

, (4.16)

with a rather complicated expression for δαAm, which we shall not reproduce here, and

µ2

√
2
∂gM̃α = if2

gφ
Bφ∗

B
/∂αα̇φ

A ψ̄α̇A + if3
g (1− g

µ2φ
Cφ∗

C)φB/∂αα̇φ
∗
B φ

Aψ̄α̇A − µ2f2
g
/Aαα̇φ

Aψ̄α̇A , (4.17)

we may compose the coupling flow operator

R̃g = − i
4

1+κ
2

∫
dy ∂gM̃(y)α δ

α − i
4

1−κ
2

∫
dy ∂g

¯̃M(y)α̇ δ̄α̇ , (4.18)

with the contractions now being defined in a (φ,A) background.

It appears that we can arrive at a purely classical Nicolai map, in the sense described in the Introduction.

After all, the fermions appear just quadratically in the lagrangian (4.11). To leading order in the coupling g,

it looks as follows,

(Tgφ)A(x) = φA(x) − 1+κ
2

g
µ2

∫
dy

[
φB(φ∗

B∂mφ
A−φA∂mφ∗

B)+iµ2Amφ
A

]
(y) ∂m✷−1(y−x)+ O(g2) , (4.19)

and similarly for (TgA)m. Checking the free-action condition

∫
∂m(Tgφ)A ∂m(Tgφ

∗)A
!
=

∫ {
fgΠ

B
A ∂mφ

A ∂mφ∗
B − 1

4f
2
g
g
µ2 (φC∂mφ

∗
C−φ∗

C∂mφ
C)2

− i
2fg g (φC∂mφ

∗
C−φ∗

C∂mφ
C)Am + 1

4gµ
2AmA

m
} (4.20)

we obtain the first-order requirement
∫ {

(φ∗φ)(∂φ∗·∂φ) + 1+κ
2 (φ∂φ∗)·(φ∂φ∗) + 1−κ

2 (φ∗∂φ)·(φ∗∂φ) + 1+κ
2 iµ2A·(φ∂φ∗) − 1−κ

2 iµ2A·(φ∗∂φ)
}

!
=

∫ {
(φ∗φ)(∂φ∗·∂φ) + (φ∗∂φ)·(φ∂φ∗) − 1

4

[
µ2A− i(φ∂φ∗−φ∗∂φ)

]
·
[
µ2A− i(φ∂φ∗−φ∗∂φ)

]}
,

(4.21)

where the dots indicate Lorentz contractions, and the round brackets enclose target coordinate contractions.

We observe that the left-hand side is linear in A while the right-hand side is quadratic. Matching both sides

(and cancelling κ) requires putting

µ2Am
!
= i

(
φC∂mφ

∗
C − φ∗

C∂mφ
C

)
+ O(g) + O(~) , (4.22)
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which agrees with the equation of motion (4.13) after integrating out the fermions! The crux of the mismatch,

however, lies in the absence of A in the free action, which renders the g → 0 limit singular for the auxiliary

field. In other words, the propagator for A is proportional to 1
g
, which upsets the perturbative expansion

in g (not in powers of the fields) of correlation functions, with or without the Nicolai map. The remedy is to

integrate out the auxiliary vector A and work with an effective theory of φ alone. This, however, revives the

four-fermion interaction: the classical solution (4.13) shows that A yields a fermion loop, and the ultralocal

propagator 〈A(x)A(y)〉 ∼ δ(x−y) glues two such loops together, effectively reproducing the four-fermion

interaction. Therefore, the auxiliary-field reformulation of the supersymmetric nonlinear sigma models does

not simplify the Nicolai map in the end.

Let us conclude with a comment on the N=1 case. We have the accidental isomorphism CP1 ≃ S2, the

real 2-sphere, which is maximally symmetric in the real sense and whose Riemann tensor admits therefore

the standard decomposition Riem = gg − gg in real coordinates. In this case indices A,B, . . . have only one

value and Π ≡ fg. Correspondingly, the four-fermion term of the lagrangian (3.13) takes the form

Lψ4 = − 1
2f

3
g
g
µ2 ψψ ψ̄ψ̄ , (4.23)

which can be resolved by means of a standard Hubbard–Stratonovich auxiliary complex scalar A ∼ ψψ. Of

course, the clash with the perturbative expansion in g described in (4.20)-(4.21) applies also in this case.
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