
Fermion Proca Stars: Vector Dark Matter Admixed Neutron Stars

Cédric Jockel1, 2, ∗ and Laura Sagunski2, †

1Max Planck Institute for Gravitational Physics (Albert Einstein Institute),
Am Mühlenberg 1, 14476 Potsdam, Germany, European Union

2Institute for Theoretical Physics, Goethe University, 60438 Frankfurt am Main, Germany
(Dated: October 27, 2023)

Dark matter could accumulate around neutron stars in sufficient amounts to affect their global
properties. In this work, we study the effect of a specific model for dark matter – a massive and self-
interacting vector (spin-1) field – on neutron stars. We describe the combined systems of neutron
stars and vector dark matter using Einstein-Proca theory coupled to a nuclear-matter term, and
find scaling relations between the field and metric components in the equations of motion. We
construct equilibrium solutions of the combined systems, compute their masses and radii and also
analyse their stability and higher modes. The combined systems admit dark matter (DM) core
and cloud solutions. Core solutions compactify the neutron star component and tend to decrease
the total mass of the combined system. Cloud solutions have the inverse effect. Electromagnetic
observations of certain cloud-like configurations would appear to violate the Buchdahl limit. This
could make Buchdahl-limit violating objects smoking gun signals for dark matter in neutron stars.
The self-interaction strength is found to significantly affect both mass and radius. We also compare
fermion Proca stars to objects where the dark matter is modelled using a complex scalar field. We
find that fermion Proca stars tend to be more massive and geometrically larger than their scalar
field counterparts for equal boson masses and self-interaction strengths. Both systems can produce
degenerate masses and radii for different amounts of DM and DM particle masses.

I. INTRODUCTION

The nature of dark matter (DM) is one of the
large remaining open questions in physics. Even
though it constitutes roughly 26.8% of the total
energy density of the universe [1] and has a long
observational history [2], its properties remain
largely unknown. We currently know that DM likely
is a particle that is only interacting gravitationally
and weakly with standard model particles, and
that is invisible through electromagnetic radiation.
Large-scale structure formation in the universe
further suggests that DM is mostly cold, i.e., slowly
moving [2–5]. This makes it an integral part of the
standard model of cosmology.

Neutron stars (NSs) are used to probe a large
range of physical phenomena. They are dense
and compact remnants of heavy stars. Their high
densities make them excellent laboratories for prob-
ing gravitation and nuclear physics under extreme
conditions. They are characterized using the nuclear
matter equation of state (EOS). The EOS describes
the relation between pressure and energy density
of the matter found inside NSs. It is needed to
close the Tolman-Oppenheimer-Volkoff equations
[6, 7] that describe the density distribution of a
spherically symmetric static NS and the spacetime
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curvature. A significant constraint on the EOS
is the ability to produce NSs with masses larger
than two solar masses, 2M⊙. The most massive
NS known to date is PSR J0952−0607 with a mass
of M = 2.35+0.17

−0.17 M⊙ [8]. The lighter companion
of the binary system observed in the GW190814
gravitational wave event [9] was also proposed to
be the heaviest NS, with a mass of around 2.6M⊙.
But there is evidence that it might be the lightest
known black hole instead [10]. High maximum
NS masses require stiff EOS, where the nuclear
matter is difficult to compress and the energy den-
sity rises sharply with increasing pressure. Other
constraints include the measurements of the pulsars
PSR J0030+0451 [11] and J0740+6620 [12] by the
NICER telescope. They also favor a stiff EOS. In
contrast, the gravitational wave event GW170817
[13, 14] favors soft EOS which produce smaller NSs
that are more compact and more difficult to tidally
disrupt.

Additionally, it has been proposed to probe the
DM properties using NSs. For example, DM can
form a cloud or accumulate inside NSs as a core. In
sufficient amounts, it can modify the NS properties
such as mass, radius and tidal deformability. These
properties have been measured using telescopes
such as NICER and the gravitational wave detectors
LIGO, Virgo and KAGRA. This allows us to probe
the properties of DM such as its particle mass and
self-interaction strength (see, e.g., [15–20]). There
exist numerous candidates for DM particles. A
possible DM candidate is an additional bosonic field
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(scalar field or vector field), as was studied in [21–24].

The idea that an astrophysical object consists
of a mixture of fermionic and bosonic matter
goes back to [25, 26]. A multitude of different
models of these fermion boson stars (FBSs) have
since been investigated (see, e.g., [18, 27–30] for
reviews). In the simplest case, the fermionic and
bosonic components interact only gravitationally
(i.e., they are minimally coupled). This makes FBSs
interesting objects in the context of DM research
(see, e.g., [15, 31, 32]). They have been studied
in connection to NSs, where the NS provides the
fermionic component and a bosonic field provides
the bosonic component of the FBS [15, 31]. The
bosonic component can be modelled via, e.g., scalar
and vector fields.

FBSs have been studied with regard to their
stability [26]. Their dynamical properties were
explored in [33–38]. Numerical simulations aiming
to understand the gravitational wave signals were
performed by [38]. In all these cases, the NS
component was modelled using a perfect fluid and
a classical complex scalar field was used for the
bosonic component. However, understanding vector
fields is equally relevant for a number of reasons. If
DM is a spin-1 particle, it would be described using
a vector field. Some theories of modified gravity also
feature vector fields with similar behavior [39–43].
In this work, we therefore explore the effect of vector
fields on NSs.

Fermion boson stars can form in a variety of ways.
But in essence, the problem reduces to how one can
accumulate a large amount of scalar or vector fields
in and around a NS. One common motivation for
these fields is bosonic dark matter. It could arrange
itself around NSs as a cloud or inside NSs as a core.
NSs with DM cores could form

1) from an initial DM ‘seed’ through accretion of
baryonic matter [15, 44–46],

2) through mergers of NSs and boson stars [15],

3) through accretion of DM onto a NS and sub-
sequent accumulation in the center [15, 16, 27,
47, 48],

4) through the decay of standard model particles
inside the NS into DM [49–53].

NSs with clouds could form in a similar way, given
that either the DM is the dominant contribution
to the FBS or that the DM properties only allow
low-compactness configurations (e.g., when the
particle mass is small [15]). The fermionic and
bosonic components could conceivably be separated

from one another, e.g., during a supernova NS-kick
[54–57]. There, the stellar remnant gets ejected
and rapidly moves away from the remaining stellar
envelope. This process could allow for NSs with
a large range of possible DM-fractions. The DM
particles most interesting for FBSs are generally
(self-interacting) ultralight DM particles, weakly
interacting massive particles, dark photons [23, 24]
(as a candidate for vector DM) and axions [15, 58–
67].

Another formation channel is motivated through
theories of modified gravity. One way of producing
large amounts of scalar (or vector) fields is superra-
diance [39, 68]. Spontaneous scalarization [28, 69]
also provides a way of producing significant scalar
[28, 70] and vector1 [40, 41] field amplitudes. It
has also been studied explicitly in NSs [42, 43, 69]
and could be a way of forming systems with scalar
and vector fields. Scalarization might also take
place dynamically in the late stages of the evolution
of binary NS systems [71], forming either a black
hole or a FBS after merger (depending, e.g., on the
initial masses of the binary objects).

Self gravitating vector fields have already been
investigated. These objects are called Proca stars.
They are modelled by a complex vector field and
were first proposed by [72]. They can be thought
of as macroscopic condensates of spin-1 particles
[28]. Proca stars have been studied by a number of
groups analytically [73–75] and numerically [76, 77],
such as in merger simulations [78, 79]. Different
types of Proca stars with charge [80], rotation [72]
and with a quartic self-interaction potential [81]
were also considered. Other works [82–84] studied
shadow images of Proca stars in different scenarios.

In this work, we study the combined system
of a vector field and NS matter, which we call
fermion Proca stars (FPSs). Starting with an action
for complex vector fields coupled minimally to
gravity and nuclear matter, we derive a system of
differential equations and solve them numerically
(section IIA). We also pedagogically motivate
the boundary conditions (section II B), find an
analytical bound for the vector field amplitude and
derive scaling relations in the equations of motion
(section IIC). The equations are solved using a
shooting method and the integrator implemented
in our code (for the code, see [85]). The numerical
methods are also explained in section II E. We

1 In the case of vector fields, the process is also called spon-
taneous vectorization.
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show radial profiles of FPSs (section IIIA) and then
compute global quantities such as mass and radius
and compare them to astrophysical observations
(section III B). In section III C, we compare FPSs
to their counterpart with a scalar field. In the
following, we refer to the scalar case as ”fermion
boson stars” (FBSs). Finally, we compute higher
modes of FPSs and compute configurations with
different EOS (section IIID).

We find that the vector field significantly affects
the NS properties and thus produces detectable sig-
natures. FPSs admit DM core and cloud solutions.
Small DM masses lead to DM clouds, and large
masses form DM cores. Core solutions compactify
the NS component. Cloud solutions lead to less
compact configurations. Some solutions appear to
violate the Buchdahl limit when only observing the
NS component.
We then compare FPSs (with a vector field) to FBSs
(with a scalar field). FPSs tend to be more massive
and geometrically larger than FBSs for equal boson
masses and self-interaction strengths. For a given
measurement, this would favor larger vector DM
masses (compared to scalar DM), because larger DM
masses produce smaller and less massive objects.
We find a significant amount of degenerate solutions
between different choices of FBSs, FPSs, the DM
properties and the EOS. For different boson masses
and DM-fractions, FPSs and FBSs can both be
degenerate with each other and also be degener-
ate with pure NSs with a different EOS. Using
scaling relations for pure boson stars and Proca
stars, we show that FBSs and FPSs are virtually
indistinguishable if the boson masses differ by a
factor of 1.671 and the DM has no self-interactions.
We confirm the existence of FPSs in higher modes
which are stable under linear radial perturbations.

Throughout this work, we use units where G =
c = M⊙ = 1 (also see Appendix A). The Einstein
summation convention for tensors is implied. This
paper is based on the Master thesis of Cédric Jockel
[86].

II. THEORETICAL BACKGROUND

A. Equilibrium Solutions

Ferion Proca stars (FPSs) are combined systems
of fermions and vector bosons, which interact only
gravitationally. They can be seen as a macroscopic
Bose-Einstein condensate which coexists with a NS
at the same point in space. We model FPSs using a
relativistic fluid for the NS component and a complex

vector field for the bosonic component. FPSs are
described by the Einstein-Proca system minimally
coupled to a matter term Lm,

S =

∫ √
−g

(
R

2κ
− 1

2
Fµν F̄

µν − V (AρĀ
ρ)− Lm

)
dx4 ,

(1)

where R is the Ricci curvature scalar, g is the deter-
minant of the spacetime metric gµν and κ = 8πG/c4

is a constant. The bar denotes complex conjuga-
tion. Fµν = ∇µAν − ∇νAµ is the antisymmetric

field strength tensor and V (AρĀ
ρ) is the vector field

potential. The latter depends solely on the magni-
tude of the vector field AρĀ

ρ.
By taking the variation of Eq. (1) with respect to
the inverse spacetime metric δgµν , one obtains the
Einstein equations

Gµν =κ
(
T (NS)
µν + T (A)

µν

)
, (2)

where T
(NS)
µν and T

(A)
µν are the energy-momentum

tensors describing the NS matter and the vector field
matter, respectively. The energy-momentum tensor
of the NS matter is taken to be that of a perfect
fluid:

T (NS)
µν = (e+ P )uµuν + Pgµν . (3)

P and e are the pressure and the energy density of
the fluid, respectively. The energy density e is re-
lated to the rest mass density ρ through e = ρ(1+ϵ),
where ϵ is the internal energy. uµ is the four-velocity
of the fluid. The energy-momentum tensor Eq. (3)
and the fluid flow Jµ := ρuµ are conserved (imply-
ing conservation of energy-momentum and of the rest
mass, respectively). This leads to the conservation
equations

∇µT
µν
(NS) = 0 , ∇µJ

µ = 0 . (4)

The conservation of the fluid flow Jµ allows us to de-
fine the conserved total rest mass of neutron matter,
which we call the fermion number Nf . We obtain
the fermion number by integrating the right part of
Eq. (4) over space,

Nf :=

∫ √
−g gtµJµdx

3 . (5)

The energy-momentum tensor of the vector field is
given by

T (A)
µν = Fµρ F̄

ρ
ν + F̄µρF

ρ
ν − 1

2
gµνF

ρσF̄ρσ (6)

+ gµνV (AρĀ
ρ) + V ′(AρĀ

ρ)(AµĀν +AνĀµ) ,
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where the derivative of the potential V is

V ′(AρĀ
ρ) :=

dV (AρĀ
ρ)

d(AρĀρ)
. (7)

The equations of motion (Proca equations) of the
vector field and the complex conjugate are computed
from the action Eq. (1) using the Euler-Lagrange
equations for a complex vector field. One obtains

∇µF̄µν = V ′(AρĀ
ρ)Āν , ∇µFµν = V ′(AρĀ

ρ)Aν .

(8)

The covariant derivative of Eq. (8) is zero, i.e.,
∇µ∇νFµν = 0. This leads to a dynamical constraint
on the field derivative, resembling the Lorentz condi-
tion used in the Maxwell and Proca equations (also
see [28, 72]):

∇νAν = −
∇ν
[
V ′(AρĀ

ρ)
]

V ′(AρĀ
ρ)

Aν . (9)

This constraint could be useful in numerical simu-
lations to track the numerical error and assess con-
straint violations of a given numerical scheme. The
global U(1)-symmetry in the Lagrangian Eq. (1) un-
der the transformation of the vector field Aµ (and

Āµ) gives rise to a conserved Noether current

jµ = i
(
F̄µνAν − FµνĀν

)
. (10)

The conserved quantity (i.e., the Noether charge) as-
sociated to Eq. (10) is obtained by integrating the
conservation equation ∇µj

µ = 0 over space,

Nb :=

∫ √
−ggtµjµdx

3 . (11)

Nb is called the boson number and is related to the
total number of bosons present in the system. It
can equivalently also be interpreted as the total rest
mass energy of the bosonic component of the FPS.

We proceed by solving the Einstein equations
Eq. (2) and the Proca equations Eq. (8) for spheri-
cally symmetric and static configurations in equilib-
rium. For that, we consider the spherically symmet-
ric ansatz for the spacetime metric

gµν = diag
(
−α2(r), a2(r), r2, r2 sin2(θ)

)
. (12)

We further assume the perfect fluid to be static, such
that the four-velocity can be written as

uµ =

(
− 1

α
, 0, 0, 0

)
, uµ = (α, 0, 0, 0) . (13)

For the vector field, we employ the harmonic phase
ansatz and a purely radial vector field (see [72, 75,
80, 81, 87]). The vector field is then given by

Aµ(t, x) = e−iωt(E(r), iB(r), 0, 0) , (14)

where ω is the vector field frequency and E(r), B(r)
are purely radial real functions.
Using the spherical symmetric metric ansatz Eq. (12)
together with the harmonic phase ansatz Eq. (14)
for the vector field, we solve the Einstein equations
and obtain the equations of motion. One obtains
an expression for the radial derivative of a(r) by re-
arranging the tt-component of Eq. (2). We then di-
vide the tt- and rr-components of Eq. (2) by α2 and
a2, respectively. We add both terms and find a di-
rect relation between the first radial derivatives of
a(r) and α(r). We use this to solve for the deriva-
tive of α(r).
The evolution equations for the vector field compo-
nents can be computed from the Proca equations
Eq. (8). It does not matter which equation of Eq. (8)
is used since the complex phase will cancel out and
will leave only the radial functions in both cases.
The ν = r component yields the equation of mo-
tion for E(r). The ν = t component of Eq. (8)
gives us the equation of motion for B(r). Finally,
the r-component of the conservation equation for the
energy-momentum tensor (left side of Eq. (4)) pro-
vides a differential equation for the pressure P (r).
For a more detailed derivation, we refer to [86]. The
full equations of motion for the Einstein-Proca sys-
tem coupled to matter are thus:
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a′ =
da

dr
=

a

2

[
(1− a2)

r
+ 8πra2

(
e+

1

α2a2
(E′ − ωB)2 + V (AρĀ

ρ) + 2V ′(AρĀ
ρ)
E2

α2

)]
, (15a)

α′ =
dα

dr
=

α

2

[
(a2 − 1)

r
+ 8πra2

(
P − 1

α2a2
(E′ − ωB)2 − V (AρĀ

ρ) + 2V ′(AρĀ
ρ)
B2

a2

)]
, (15b)

E′ =
dE

dr
= −V ′(AρĀ

ρ)
Bα2

ω
+ ωB , (15c)

B′ =
dB

dr
=

{
V ′′(AρĀ

ρ)

(
2B2a′

a3
+

2EE′

α2
− 2E2α′

α3

)
Bα2

ω
− V ′(AρĀ

ρ)

(
a2E +

2Bαα′

ω

)
−
(
a′

a
+

α′

α
− 2

r

)
(E′ − ωB)

}(
V ′′(AρĀ

ρ)
2

ω

B2α2

a2
+ V ′(AρĀ

ρ)
α2

ω

)−1

, (15d)

P ′ =
dP

dr
= − [e+ P ]

α′

α
. (15e)

This system of equations is closed by providing an
equation of state P (e) (or P (ρ, ϵ)) for the nuclear
matter part.
Note that all equations are first-order differential
equations. This is different to scalar FBSs where
an additional variable has to be introduced to make
the system first-order (see, e.g., [15, 31]). Another
difference is that no derivative of the potential enters
the equations of motion for the metric components
in the scalar field case, but it does for the vector field
case.
For the considered system and ansatz for the metric
Eq. (12) and vector field Eq. (14), the expressions
for the fermion number Eq. (5) and boson number
Eq. (11) simplify to

Nf = 4π

∫ Rf

0

aρr2dr , (16a)

Nb = 8π

∫ ∞

0

B
(ωB − E′)

αa
r2dr . (16b)

Rf denotes the fermionic radius (i.e., the radius of
the NS component). It is defined by the radial po-
sition at which the pressure P of the NS component
reaches zero. The total gravitational mass is defined
in the limit of large radii, imposing that the solu-
tion asymptotically converges to the Schwarzschild
solution

Mtot := lim
r→∞

r

2

(
1− 1

(a(r))2

)
. (17)

B. Initial Conditions

We derive the boundary conditions of equations
Eq. (15a)-Eq. (15e) at r = 0 and at r = ∞. The val-
ues at the origin will later serve as initial conditions

for the numerical integration. We first consider the
equations of motion in the limit r → 0 while impos-
ing regularity at the origin (i.e., the solution must
not diverge). We first analyze equation Eq. (15a).
The term proportional to 1/r dominates at small
radii and will diverge if r → 0. Thus, the only way
to maintain regularity is to set a(r = 0) = 1. It di-
rectly follows that a′(r = 0) = 0. Similarly, equation
Eq. (15b) leads to α′(r = 0) = 0. The exact value of
α(r = 0) = α0 is a priori undetermined and can be
chosen in a way thought suitable. We will elaborate
on this in section II B.
The initial conditions for the vector field components
E(r) and B(r) can be obtained in a similar manner.
We first consider Eq. (15d). In the limit r → 0,
the term proportional to 1/r dominates and regu-
larity then demands that E′ = ωB. It follows that
B′(r = 0) = 0. This result can be inserted into
Eq. (15c), which leads to the relation

E′ =ωB = −V ′(AρĀ
ρ)
Bα2

ω
+ ωB

=⇒ 0 = V ′(AρĀ
ρ)Bα2 .

(18)

Since at r = 0, α(r = 0) ̸= 0 and V ′ ̸= 0 in general,
this relation can only be fulfilled if we demand that
B(r = 0) = 0. Plugging this relation into Eq. (15c)
yields E′(r = 0) = 0. The central value of the field
E′(r = 0) = E0 is therefore undetermined by the
equations of motion, and thus is a free parameter of
the theory.
A similar analysis at large distances reveals the
boundary conditions at r → ∞ for all variables. We
impose an asymptotically flat spacetime. This re-
quires that a(r → ∞) = α(r → ∞) = 1. All terms
proportional to r in Eq. (15a) and Eq. (15b) must
vanish at infinity to fulfill the flat-spacetime limit.
Therefore, the vector field components must vanish
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at infinity, E(r → ∞) = 0 and B(r → ∞) = 0.
Pressure P (r), energy density e(r) and rest mass
density ρ must be zero outside the NS component
of the FPS. This will happen at the fermionic radius
Rf . We summarize all boundary conditions in the
following:

lim
r→∞

a(r) = 1 , a(0) = 1 ,

lim
r→∞

α(r) = 1 , α(0) = α0 ,

lim
r→∞

E(r) = 0 , E(0) = E0 ,

lim
r→∞

B(r) = 0 , B(0) = 0 ,

ρ(r > Rf) = 0 , ρ(0) = ρc .

(19)

The initial condition for the metric component
α(0) = α0 is fixed by its behavior at infinity.

C. Analytical Results

For a scalar (fermion) boson star, one can scale
the field frequency ω to absorb the initial value of
α0 so that it may be set to one (see, e.g., [15]). We
investigate whether a similar scaling relation also ex-
ists for FPSs. We find that the equations of motion
Eq. (15a)-Eq. (15e) are invariant when simultane-
ously scaling the following variables as

α̃ = σα , ω̃ = σω , Ẽ = σE , where σ ∈ R .
(20)

The potential V (AρĀ
ρ) is always invariant with re-

spect to this scaling because

AρĀ
ρ =

(
B2

a2
− E2

α2

)
=

(
B2

a2
− Ẽ2

α̃2

)
. (21)

The invariance of Eq. (15a)-Eq. (15e) under the
scaling relation Eq. (20) thus allows us to choose
σ in such a way that the initial condition for
α(0) = α0 may be set to α0 = 1 2. We will make
use of this relation in the numerical analysis. All
pre-scaling physical values can be recovered from
the asymptotic behavior of α(r → ∞) by performing
the inverse transformation to Eq. (20). Note that
the expression for total gravitational mass Eq. (17)
is not affected by this scaling.
In contrast to the scaling relation of boson stars
with a scalar field, where only the frequency ω and
the metric component α are re-scaled, the vector

2 Or one could, in principle, also re-scale E0 to always be
equal to one.

field component E is also affected in the case of
Proca stars. To our knowledge, this is the first time
the scaling relation Eq. (20) has been mentioned
explicitly (apart from the Master thesis [86] which
precedes this work). [81] briefly mentioned scal-
ing the frequency but not the vector field component.

We also report an analytical bound on the cen-
tral vector field amplitude E(0) = E0. Equations
Eq. (15c) and Eq. (15d) govern the dynamics of the
vector field. Note that the term in the denominator
of the equation of motion for B(r) Eq. (15d) could
in some cases lead to singularities. We analyze the
behavior of the denominator by setting it equal to
zero. This leads to a remarkable behavior when con-
sidering a quartic self-interaction potential V of the
form

V (AµĀ
µ) = m2AµĀ

µ +
λ

2
(AµĀ

µ)2 , (22)

where m is the mass of the vector boson and λ is
the self-interaction parameter. We insert the poten-
tial Eq. (22) into the singular term in Eq. (15d) and
obtain (

E2

α2
− 3B2

a2

)
=

m2

λ
. (23)

This expression holds for all radii. We analyze its
behavior in the limit r → 0 by applying the initial
conditions given in Eq. (19). One obtains a critical
value for the central field amplitude E0:

E0,crit =
mα0√

λ
=

α0√
8πΛint

. (24)

We here also defined the dimensionless interaction
parameter Λint = λ/8πm2. This expression consti-
tutes an analytical upper bound for the central am-
plitude of the vector field. This means that any FPS
with initial conditions for the field larger than E0,crit

will be physically forbidden, since Eq. (15d) will be-
come singular and diverge. This result matches the
analytical bound found by [81].
The relation implies that for strong self-interaction
strengths Λint, the allowed range for Proca stars be-
comes increasingly small and vanishes in the limit of
very strong self-interactions. This fact could conceiv-
ably be used to constrain the vector field parameters
m and λ. For example, a maximal vector field ampli-
tude implies a maximal amount of accretion of vector
bosons until the system becomes unstable. The field
would then either dissipate to infinity, shed the ex-
cess vector field component, or collapse into a black
hole. We leave a thorough investigation for future
work.
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D. Stability Criterion

Every FPS solution is characterized by the initial
values for the central density ρc and the central value
of the vector field E0. When studying them in astro-
physical contexts, the question of stability of FPSs
naturally arises. The stability of pure Proca stars
and NSs to radial perturbations is well known (see
[72] for Proca stars). The stable and unstable solu-
tions are separated by the point at which the total
gravitational mass reaches its maximum with regard
to the central density ρc (for NS) and the central
field E0 (for Proca stars).
Since FPSs are two-parameter solutions, the stability
criterion needs to be modified. It was first presented
for scalar FBSs by [88] (also see [28] for a review).
But the criterion is more general and can also be
applied to systems of two gravitationally interacting
fluids. This is why we apply it here for FPSs.
The idea behind the generalized stability criterion
is to find extrema in the total number of particles
(fermion number Nf or boson number Nb) for a fixed
total gravitational mass. The transition between sta-
ble and unstable configurations is given by the point
at which

dNf

dσ
=

dNb

dσ
= 0 , (25)

where d/dσ denotes the derivative in the direction of
constant total gravitational mass (see [88]). Up to a
normalization factor, Eq. (25) can be written as

dNf

dσ
∝ −∂Mtot

∂ρc

∂Nf

∂E0
+

∂Mtot

∂E0

∂Nf

∂ρc
. (26)

If one is only interested in the precise points where
FPSs become unstable, the unspecified normaliza-
tion factor in Eq. (26) becomes irrelevant, since the
whole relation is set to zero.
In summary, the stability criterion Eq. (25) can be
used to discriminate between astrophysically stable
and unstable FPS solutions. When perturbed, un-
stable solutions will either collapse to a black hole,
dissipate to infinity or migrate to a stable solution
through internal re-configuration (see [28]).

E. Numerical Methods

In this work, we solve the equations Eq. (15a)-
Eq. (15e) numerically to obtain self-consistent FPS
solutions. We have implemented the algorithm in
our code [15, 85]. The equations have one parameter
undetermined by the boundary conditions Eq. (19),
namely the vector field frequency ω. We use a
shooting-algorithm to find ω numerically. For
given ρc and E0, there exist only discrete values

of ω, such that the boundary conditions at infinity
Eq. (19) are fulfilled. These discrete values are
called eigenvalues or modes. There are infinitely
many of these modes. They are characterized by the
number of roots (i.e., zero-crossings) the field E(r)
has. Usually we are only interested in the lowest
mode, since only it is believed to be dynamically
stable [28]. The lowest mode of the vector field
always has one root in E(r). The following algo-
rithm can however be used to find any desired mode.

We integrate the system of ordinary differential
equations Eq. (15a)-Eq. (15e) using a fifth order
accurate Runge-Kutta-Fehlberg solver for some
fixed value of ω. The vector field will then diverge
towards positive or negative infinity at some finite
radius. The system only converges at infinity if any
mode is hit directly. But this is impossible to achieve
numerically with finite precision. We thus make
use of this diverging property to find the wanted
frequency mode. When the frequency ω is close to
the wanted mode, the divergence will happen at
increasingly large radii, the closer the chosen value
for ω is to the mode. A higher accuracy in finding
ω will therefore push the divergence to larger radii.
When ω is not exactly tuned to the mode, the
vector field profile E(r) will diverge towards +∞ or
−∞ and change its direction of divergence when ω
passes a mode. The direction of divergence depends
on which mode is solved for. For modes with an
even number of roots, the field will diverge to +∞
if the frequency ω is below the mode, and it will
diverge to −∞ if ω is above the mode. This will
be reversed for all modes with an odd number of
roots. By making use of the direction of divergence,
we gain a binary criterion to find the correct mode.
The value of ω can then be adapted – increased or
decreased – based on the direction of divergence
and the wanted mode. This procedure requires to
integrate the system of equations multiple times
with different values for ω, until the correct value is
found.
We implement this method in our code [85] using a
bisection algorithm, which converges exponentially
fast. We start with upper and lower values of ω,
which are guaranteed to be smaller/larger than the
wanted value of ω at the mode. In practice, lower
and upper bounds of ωbound = [1, 10] have proven
to be numerically robust. We then perform the
bisection search by taking the middle value of ω in
this range and counting the number of roots in E(r)
at each step. This also allows us to discriminate
between different modes and to target specific modes
by demanding a certain number of roots in the field
E(r). The bisection is complete when the current
value of ω found through bisection is close enough
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to the value of the mode. In our experience, the
absolute accuracy needed to obtain robust solutions
is on the order of ∆ω = |ωmode − ωbisection| ≈ 10−15.

Once a sufficiently accurate frequency ω is found,
we modify the integration, such that E(r) and B(r)
are set to zero at a finite radius r∗B . This radius r∗B
is defined at the point where the field E(r) and its
derivative E′(r) are small. This roughly corresponds
to the last minimum of E(r) before it diverges.
The condition can be summarized as the point
where E(r∗B)/E0 < 10−4 and E′(r∗B) ≪ 1. This is
necessary because the interplay of the vector field
and the NS matter can complicate the numerical
solution. In some parts of the parameter space, es-
pecially for small initial densities ρc, the vector field
could diverge while still inside the NS component,
i.e., before the pressure P (r) reaches zero (within
numerical precision, we consider the pressure to
be zero when P < 10−15). This divergence would
make finding physical values such as the fermionic
radius Rf impossible. Therefore, we artificially set
E = B = 0 for r > r∗B . This allows us to circumvent
the divergence and accurately resolve the rest of the
NS component. The condition was chosen so that
the remaining contribution of the vector field to
the other quantities (i.e., the metric components) is
minimized. We have tested this method for different
thresholds and confirmed that all extracted results
are the same.

After integrating the solution to radii outside the
matter sources, we can extract global observables
such as the total gravitational mass and radius.
The outside of the source is located at radii r larger
than both the fermionic radius Rf and r∗B . In this
regime, neither the NS matter nor the vector field
contribute significantly. There, we can extract the
total gravitational mass Mtot Eq. (17) and then
compute the integrals Eq. (16a) and Eq. (16b) to
obtain the fermion/boson numbers Nf , Nb.
The vector field convergence condition
E(r∗B)/E0 < 10−4 cannot be fulfilled for some
configurations due to numerical precision limits.
This generally happens for small initial field values
E0 ≲ 10−4, where the vector field extends far outside
the NS component. In these cases, we extract the
total gravitational mass Mtot =

1
2rext(1− a−2(rext))

at the point where its derivative has a global
minimum. When the vector field diverges, also the
metric components do, and with it also Mtot. By
taking the point where the derivative of the mass
has a global minimum, which roughly corresponds
to where the vector field and its derivative is closest
to zero, we get the best possible estimate of the
mass of the system before the divergence.

During our numerical analysis, we encountered the
phenomenon that the bisection algorithm to find the
frequency ω could fail for some specific initial con-
ditions for E0 and ρc. We found this to be the case
due to the bisection algorithm jumping over multi-
ple modes in one iteration step. The wanted mode
was then skipped and ended up outside the bisec-
tion bounds. The bisection then converged on an
unwanted ω-value, or ended up failing entirely. We
solved this problem by employing a backup algo-
rithm that activates if the bisection fails. It restarts
the bisection for ω but with different lower and up-
per bounds of ωbound. We tested the backup al-
gorithm for 4800 FPS configurations with different
vector field masses m and self-interaction strengths
Λint = λ/8πm2 with equally distributed initial con-
ditions for E0 and ρc. We found that 330 (≈ 6.8%)
of all configurations needed one restart of the bi-
section, and only 3 (≈ 0.06%) of all configurations
needed two restarts. In none of the tested cases, the
bisection had to be restarted three times or more.

III. RESULTS

We consider FPSs with a quartic self-interaction
potential of the same form as in Eq. (22). We
further define the effective self-interaction param-
eter Λint = λ/8πm2. The parameter Λint is a
useful measure for the self-interaction strength and
parametrizes scaling relations for the total gravita-
tional mass Mmax ≈ 1.058M2

p/m [72] (for small Λint)

and Mmax ≈
√
Λint ln(Λint)M

2
p/m [81] (for large

Λint). Note that the parameter Λint was originally
introduced in the context of pure Proca stars and
thus the scaling relations will not be generally valid
for the mixed system. They can however be useful
to understand the limiting cases where the FPS is
dominated by the bosonic component. Nonetheless,
we regard Λint to be a useful measure to compare
different choices of the mass and self-interaction
strength. The self-interaction parameter Λint in our
work differs from the one used in [81] by a factor of
two, even though they are defined in the same way.
This is because a different normalization was used
for the vector field.

We hereafter investigate models with parameters
in the order of m ≈ 1.34 · 10−10 eV and Λint ≈
0 − 100. This mass range is chosen so that the re-
duced Compton wavelength of the bosonic field is
half the Schwarzschild radius of the Sun. m = 1 in
our code units then corresponds to 1.336 · 10−10 eV
(see a detailed explanation in Appendix A). The
range for the self-interaction parameter was chosen
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so that it fulfills the observational constraints for the
DM cross-section of 1 cm2/g obtained from the Bul-
let Cluster [89, 90]:

πΛ2
intm =

λ2

64πm3
=

σ

m

!
< 1

cm2

g

⇐⇒ Λint

!
< 1050

√
1.3410−10 eV

m
. (27)

For most calculations, we use the DD2 equation
of state (with electrons) [91], taken from the Com-
pOSE database [92], to describe the NS component.
It was chosen because it is widely used by a number
of groups and thus is well known in the literature.
The DD2 EOS is based on a relativistic mean-field
model with density-dependent coupling constants,
which has been fitted to the properties of nuclei and
results from Brueckner-Hartree-Fock calculations for
dense nuclear matter. Therefore, the DD2 EOS de-
scribes also the EOS of pure neutron matter from
chiral effective field theory (see [93]). For the pur-
pose of our investigations, the particular choice of
the nuclear equation of state is not of importance
and has no effect on our general conclusions.

A. Radial Profiles

We compute the radial profiles of FPSs. In
particular, we consider the radial dependence of
the pressure P (r) and the vector field components
E(r), B(r). Even though the radial distribution of
physical quantities can not yet be observed directly
(although one could infer the DM distribution
using the geodesic motion of light [94]), a good
understanding of the internal structure of FPSs can
be used to deduce their global quantities and vice
versa. Knowledge about the internal distribution is
also relevant for numerical applications. Another
reason we include the radial profiles here is to
facilitate reproducibility of this work and for the
sake of code-validation for future works.
Radial profiles of pure Proca stars have already
been discussed by [72] and for the case of a quartic
self-interaction potential like Eq. (22) by [81]. We
used the results of [81] in particular to verify that
our code [85] reproduces the results correctly and
consistently.

In Figure 1, we show radial profiles of the pressure
P (r) (orange) and the vector field components
E(r) (black), B(r) (blue) of the zeroth mode of
different FPSs with potential Eq. (22). In the left
panel, we take a boson mass of m = 1.34 · 10−10 eV
and an interaction strength of Λint = 0. The
FPSs have central densities of ρc = 5ρsat (where

ρsat = 2.7 · 1014 g/cm3 is the nuclear saturation
density) and varying central vector field amplitudes
E0. The radial profile of a pure NS is shown with
the orange continuous line and has no corresponding
vector field (because it would be zero everywhere).
The presence of the DM can be seen to compactify
the NS component with increasing central field
amplitude E0. The field forms a DM core configu-
ration.
In the right panel of Figure 1, all parameters are left
equal except for the vector boson mass, which is set
to m = 1.34 · 10−11 eV . Due to the low DM mass,
the correlation length increases, which increases the
size of the vector field component and forms a DM
cloud configuration. Since the amount of energy
density of the vector field is distributed inside and
outside the NS component, the effect on the radius
is small. At around r = 11.5 km, a kink can be
seen in the radial profile of the field component
B(r). This point coincides with the point where
the fermionic radius of the FBS is located. This
illustrates the gravitational back-reaction between
the vector field and the NS component of the FBS.

In Figure 2, we show radial profiles of the pressure
P (r) (orange) and the vector field components E(r)
(black), B(r) (blue) of an FPS. In the left panel, we
show an FPS in the first mode, which can be iden-
tified by the fact that the E(r) component crosses
the x-axis twice and B(r) crosses it once. The boson
mass is m = 1.005 · 10−10 eV and Λint = 0. This
time, the central density is taken to be ρc = 4ρsat
and the central vector field amplitudes vary.
The right panel of Figure 2 shows an FPS in the ze-
roth mode with a vector boson mass of m = 1.34 ·
10−10 eV and a self-interaction strength of Λint = 50.
The maximal amplitude is roughly E0,crit ≈ 0.0282
due to the analytical bound on E0, see Eq. (24).
The limited field amplitude strongly limits the pos-
sible effect on the fermionic component and thus on
the fermionic radius, especially in the limit of large
Λint. It may therefore be difficult to detect strongly
self-interacting vector DM within a NS if one only
considers measurements of the fermionic radius. It is
also conceivable that the maximum amplitude E0,crit

implies a maximum amount of possible accretion of
vector DM, which could be used to set bounds on the
DM self-interaction strength. We leave the analysis
of this aspect for a future work.

B. Stable Solutions

We compute a grid of FPSs with different central
densities ρc and central vector field amplitudes E0.
Using the array of solutions, we compute the stabil-



10

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Radius r [km]

0.050

0.025

0.000

0.025

0.050

0.075

0.100

0.125

E(
r),

 B
(r)

 [M
p]

 a
nd

 1 3P
(r)

 [G
eV

/fm
3 ]

E(r), E0 = 0.05
E(r), E0 = 0.1
B(r), E0 = 0.05
B(r), E0 = 0.1
1
3P(r), pure NS
1
3P(r), E0 = 0.05
1
3P(r), E0 = 0.1

0 5 10 15 20 25 30
Radius r [km]

0.050

0.025

0.000

0.025

0.050

0.075

0.100

0.125

E(
r),

 B
(r)

 [M
p]

 a
nd

 1 3P
(r)

 [G
eV

/fm
3 ]

E(r), E0 = 0.05
E(r), E0 = 0.1
B(r), E0 = 0.05
B(r), E0 = 0.1
1
3P(r), pure NS
1
3P(r), E0 = 0.05
1
3P(r), E0 = 0.1

FIG. 1. Left panel: Radial profiles of the pressure P (r) (orange) and the vector field components E(r) (black),
B(r) (blue) of the zeroth mode of different FPSs with potential Eq. (22). The boson mass is m = 1.34 · 10−10 eV and
Λint = 0. The FPSs have a central density of ρc = 5ρsat and varying central vector field amplitudes E0. The pressure
has been re-scaled by a factor of 3 for convenience. The DM forms a core and compactifies the fermionic component.
Right panel: Same as in the left panel, but this time the vector boson mass is set to m = 1.34 · 10−11 eV . The DM
forms a cloud around the fermionic component. The radius of the fermionic component is barely affected by the field.
A kink can be seen in the profile for B(r) at roughly 11.5 km. This corresponds to the point where the fermionic
radius is located. This illustrates the gravitational back-reaction between the vector field and NS matter.
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FIG. 2. Left panel: Radial profiles of the pressure P (r) (orange) and the vector field components E(r) (black),
B(r) (blue) of the first mode of different FPSs with potential Eq. (22). The boson mass is m = 1.005 · 10−10 eV and
Λint = 0. The FPSs have a central density of ρc = 4ρsat and varying central vector field amplitudes E0. The pressure
has been re-scaled by a factor of 3 for convenience. Right panel: Radial profiles of the pressure P (r) (orange)
and the vector field components E(r) (black), B(r) (blue) of FPSs in the zeroth mode with potential Eq. (22). The
boson mass is m = 1.34 · 10−10 eV and the self-interaction strength is Λint = 50. The FPSs have a central density
of ρc = 5ρsat and varying central vector field amplitudes E0. The pressure has been re-scaled by a factor of 3 for
convenience. Due to the analytical bound on E0 Eq. (24), the maximal amplitude is roughly E0,crit ≈ 0.0282. The
limited field amplitude strongly limits the effect on the fermionic component.

ity curve using the stability criterion Eq. (26). The
stable solutions can then be filtered and analyzed
further.
This can be seen in the left panel of Figure 3, where
we compute FPSs with a quartic self-interaction

potential Eq. (22) with m = 1.34 · 10−10 eV and
Λint = 0. We additionally compute the stability
curve using the stability criterion Eq. (26). The
stability curve defines the boundary between stable
and unstable configurations under linear radial
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FIG. 3. Left panel: Total gravitational mass of different FPSs as a function of the restmass density ρc and central
vector field amplitude E0. The black line corresponds to the stability curve, which separates stable solutions (in
the lower left region) from unstable solutions (everywhere else). Right panel: Mass-radius diagram displaying the
fermionic radius vs the total gravitational mass for FPS configurations that are within the stability region displayed
in the left panel. Each point corresponds to a single configuration and is colour-coded according to the DM-fraction
Nb/(Nb + Nf). The solid black-white line shows the mass-radius curve for pure fermionic matter. In both cases, a
vector field with mass of m = 1.34 · 10−10 eV and no self-interactions was considered in addition to the DD2 EOS for
the fermionic part.
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FIG. 4. Left panel: Total gravitational mass of different FPSs as a function of the restmass density ρc and central
vector field amplitude E0, with m = 1.34 · 10−10 eV and Λint = 5. The black line corresponds to the stability curve,
which separates stable solutions (in the lower left region) from unstable solutions (everywhere else). The stability
curve reaches configurations with the maximum possible vector field amplitude E0,crit ≈ 0.089. This is a feature
unique to FPSs. Right panel: Mass-radius diagram displaying the fermionic radius vs the total gravitational mass
for FPS configurations that are within the stability region displayed in the left panel. Each point corresponds to a
single configuration and is colour-coded according to the DM-fraction Nb/(Nb+Nf). The solid black-white line shows
the mass-radius curve for pure fermionic matter. A vector field with mass of m = 1.34 · 10−10 eV and Λint = 5 was
considered in addition to the DD2 EOS for the fermionic part.

perturbations. The shape of the stability curve for
FPSs is qualitatively very similar to the case of
scalar FBSs (compare to [15]). For pure neutrons
stars and Proca stars, respectively, the curve con-
verges on the ρc- and E0-axis at the point, where

the non-mixed configurations have their maximum
gravitational masses. We take only the FPSs inside
the stability region, enclosed by the stability curve,
and plot them in a (mass-radius) MR diagram. This
leads to the graph in the right panel of Figure 3.
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We see that stable FPS configurations form an MR
region instead of an MR curve (which would be
the case for single-fluid systems). The stable con-
figurations form core or cloud solutions, depending
on their DM-fraction Nb/(Nb + Nf). The FPSs
with high DM-fractions have masses of roughly
1M⊙. This is higher than for scalar FBSs with
equal boson mass m (compare to [15]). This can be
explained through the different scaling relations for
pure Proca stars and boson stars.

Another point where FPSs differ from FBSs
is the existence of a maximal amplitude E0,crit

Eq. (24) for the vector field. When increasing the
self-interaction strength Λint, the maximal possible
vector field amplitude shrinks. This affects the
shape of the stability curve.
In Figure 4 (left panel), we show such a case
where the self-interaction strength is Λint = 5.
The stability curve does not reach the E0-axis any
more, but instead rises vertically from the pure NS
configurations until it reaches the FPSs with maxi-
mal central vector field amplitude E0,crit ≈ 0.089.
We have manually extended the stability curve so
that it proceeds horizontally until it reaches the
E0-axis. It is noteworthy that this behavior starts
at surprisingly small self-interaction strengths and
persists up to higher Λint.
In principle, also a third behavior of the stability
curve of FPSs is conceivable. For some specific Λint,
it should be possible that the stability curve does
not admit one continuous shape like in Figure 3 or
Figure 4, but that the stability curve is cut into two
parts. Namely, one part which starts at the E0-axis
and then rises to reach the edge where E0,crit is
located, and another part which starts at the ρc-axis
and then rises roughly vertically until it too reaches
the analytical bound for the vector field amplitude
E0,crit (think of a horizontal line cutting through
the stability curve in Figure 3 at, e.g., E0 = 0.06).
During our testing, we did not find any case where
the stability curve follows this behavior. However,
there is also no reason that we are aware of why such
a behavior of the stability curve should be forbidden.
This is why we presume that such a case might exist.

We compute various FPSs with different values
of the vector boson masses m = {1, 10, 0.1} ×
1.34 · 10−10 eV and self-interaction strengths Λint =
{0, 10, 100}. We chose the same parameter values as
in [15] to allow for easy comparability. In Figure 5,
we show the mass and fermionic radii of all stable
FPS configurations in an MR diagram. In Figure 6,
we show the mass plotted against the effective gravi-
tational radius RG. It is defined as the radius where
99% of the total rest mass Nf+Nb is contained. The

stable solutions have been obtained using the stabil-
ity criterion Eq. (26).
We hereafter discuss some general trends and com-
pare the results to the one obtained for scalar FBSs.
The following analysis should thus be explicitly com-
pared to figures 2 and 3 in [15].
We find that many of the general conclusions regard-
ing FBSs can also be applied to FPSs. FPSs with
small DM-fractions are dominated by the fermionic
component, leading to only small changes in the
fermionic radius. In the case of DM dominated
FPSs, the solutions behave similar to pure Proca
stars. This leads to higher masses as compared to
FBSs, where the total gravitational mass of pure bo-
son stars will be roughly half that of a Proca star
with the same boson mass, as can be seen well for
the cases where m = {1, 0.1}×1.34 ·10−10 eV . FPSs
can thus reach higher total gravitational masses as
compared to FBSs with the same DM mass and
self-interaction strength. For m = 1.34 · 10−9 eV ,
the bosonic component is concentrated inside the
fermionic one and forms a DM core. Even small
amounts of DM can have a significant impact on the
fermionic radius, since the whole vector field is con-
centrated entirely inside the NS component. More
massive DM particles can thus have larger effects on
the fermionic radius compared to low-mass DM at
similar DM-fractions. This is due to the cloud-like
structure of low-mass DM. For small DM masses,
the majority of the DM will be concentrated outside
the NS part – due to its larger correlation length –
and will thus have smaller effects on the fermionic
radius. The smaller the mass and the larger the self-
interaction strength, the more likely the formation
of a DM cloud is. The opposite is true for DM core
solutions. FPSs tend to produce configurations with
larger total masses compared to scalar FBSs. Their
halos also extend to larger radii, as can be seen from
the gravitational radius in Figure 6.
In general, the gravitational radius of FPSs is larger
in size as compared to scalar FBSs (compare to
Figure 3 in [15]). The larger gravitational radius
suggests that FPS have larger tidal deformabilities,
compared to their scalar field counterparts (FBS)
with equal m and Λint. This is because objects with
larger radii are generally favored to tidally disrupt.
This could favor higher vector boson masses com-
pared to the corresponding scalar boson mass in the
case of FBSs. A future quantitative analysis of the
tidal deformability of FPSs is needed to definitively
verify this hypothesis.
When considering the gravitational radius of FPSs
with small boson masses of m = 1.34 ·10−11 eV (bot-
tom row of Figure 6), the transition between DM-
dominated and NS-dominated configurations ap-
pears more abrupt than in the FBS case (compare to
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FIG. 5. Relation between total gravitational mass Mtot and fermionic radius Rf for different FPSs. The rows
correspond to bosonic masses of m = {1, 10, 0.1} × 1.34 · 10−10 eV , columns correspond to self-interactions of Λint =
{0, 10, 100} respectively. We use the DD2 EOS for the fermionic part. Notice the different scale of the bottom plots.
The gray region marks the Buchdahl limit, where no stable NS can exist. Observing only Rf of these systems would
appear to violate the Buchdahl limit, even though the FPS as a whole does not.
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FIG. 6. Relation between total gravitational mass Mtot and effective gravitational radius RG for different FPSs.
RG is the radius where 99% of the total rest mass is contained. The rows correspond to bosonic masses of m =
{1, 10, 0.1} × 1.34 · 10−10 eV , columns correspond to self-interactions of Λint = {0, 10, 100} respectively. We use the
DD2 EOS for the fermionic part. Notice the different scales of the bottom plots. For pure NSs, because the crust
has comparatively low density, RG is significantly smaller than Rf (compare to Figure 5). RG tends to be higher as
compared to scalar FBSs for equal boson masses and self-interaction strength (compare to Figure 3 in [15]).
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Figure 3 in [15]). For example, when starting with a
system with a DM-fraction of roughly 0% or 80%, in-
creasing the DM-fraction by small amounts can mas-
sively impact the total mass and gravitational radius
of the combined system.
Finally, note the outlier points in Figure 6 for m =
1.34 · 10−11 eV and Λint = 100 at roughly RG =
350 km. These are likely to be numerical artifacts
and should thus not be regarded as physical. This is
to be expected since for small DM masses and large
self-interactions, the numerical solution gets increas-
ingly difficult. This problem could be avoided by
using smaller step-sizes and higher numerical preci-
sion. But this would also lead to longer run-times of
the code.

C. Comparison with Scalar FBS

We show MR relations of FPSs and scalar FBSs
with fixed DM-fractions Nb/(Nb +Nf).
In the left panel of Figure 7, we show different FPSs
with constant DM-fractions. The DDS EOS [91] was
used for the NS component. For the vector boson,
we chose masses of m = {1, 0.1} × 1.34 · 10−10 eV
and no self-interactions. This figure should be
explicitly compared to Figure 5 (left panel) in [15]
as the same masses and DM-fractions were chosen.
The MR curve of a pure NS with the DD2 EOS
(black line) is shown as a reference. Depending
on the boson mass, FPSs can have increased or
decreased maximum total gravitational mass when
there is vector DM present. FPSs tend to produce
configurations with larger gravitational masses
compared to FBSs with equal parameters (mass,
self-interaction and DM-fraction). This is not
surprising when considering the scaling relations of
pure boson stars and Proca stars, respectively. The
gravitational mass scales like Mmax ≈ 0.633M2

p/m

for pure boson stars and like Mmax ≈ 1.058M2
p/m

for pure Proca stars, where m is the mass of the
scalar/vector boson, respectively. The presence of
light bosonic DM can help to increase the total
gravitational mass of a NS. This can make EOS
which do not fulfill the observational constraints for
the maximum NS mass viable again. Vector DM
has a larger effect on the gravitational mass than
scalar DM and thus smaller amounts of vector DM
are needed to produce an equal increase in the total
gravitational mass.
In the right panel of Figure 7, we show different
FPSs (orange and green lines) and FBSs (blue lines)
for different boson masses, no self-interactions and
constant DM-fractions Nb/(Nb + Nf). We used
the DDS EOS [91] for the NS component. The
parameters were chosen in a way to illustrate the de-

generacies that can arise from different DM models
or EOS for the NS component. For example, FPSs
and FBSs with boson masses of m = 1.34 · 10−11 eV
(dashed lines) produce virtually indistinguishable
mass-radius relations, when the FPSs and the FBSs
have a DM-fraction of 60% and 75% respectively.
A similar behavior can be seen for the cases where
the boson mass is m = 1.34 · 10−10 eV (dot-dashed
lines). Here, FBSs with 15% DM-fraction produce
similar MR curves to FPSs with 20% DM-fraction.
In addition, the resulting MR curves are comparable
to the curve corresponding to a pure NS with the
KDE0v1 EOS [95]. They also match the curve
corresponding to an FPS with 10% DM-fraction and
a vector boson mass of m = 2.24 · 10−10 eV (green
line).
In conclusion, FPSs can produce degenerate results
in the MR plane with both FBSs and pure NS, given
that different DM-fractions and EOS are allowed.
Additional observables, such as the tidal deforma-
bility, are needed to break the degeneracy. However,
it seems difficult to prevent degenerate solutions
from existing in general, since FPSs themselves can
be degenerate with other FPS-solutions that have
different boson masses and DM-fractions.

We further explore the degeneracy between FPS
and FBS solutions. In Figure 8, we show the sta-
ble FBS and FPS solutions in an MR diagram. We
used the scaling relations of the maximum mass for
pure boson stars (Mmax ≈ 0.633M2

p/m) and pure

Proca stars (Mmax ≈ 1.058M2
p/m) to match the

boson masses in a way that both FPSs and FBSs
will have the same gravitational mass in the pure
boson star/Proca star limit. To guarantee match-
ing solutions in this limit, we chose a scalar boson
mass of m = 1.34 · 10−10 eV and we chose a mass of
1.058 ÷ 0.633 ≈ 1.671 times the mass of the scalar
boson – i.e. m = 2.24 · 10−10 eV – for the vector
boson. We find a high degree of similarity between
the MR region of FBSs and FPSs with the scaled
masses. This makes both solutions almost indistin-
guishable. The small differences present between the
left and right panel of Figure 8 can be attributed to
a slightly different grid-spacing used for the initial
conditions ρc, ϕc (and ρc, E0). This can be seen in
the MR regions at small total gravitational masses
Mtot < 0.5M⊙ and also at radii Rf > 15 km. The
color shading further reveals a different distribution
of DM-fractions for a givenMtot and Rf , even though
the difference is small.
We expect a similar behavior to hold when consid-
ering different scalar and vector boson masses (with
zero-self-interaction), given that they differ by the
same factor of ≈ 1.671. This adds further confidence
to the observation that FBSs and FPSs might be



16

8 10 12 14 16 18
Fermionic Radius [km]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
To

ta
l G

ra
vi

ta
tio

na
l M

as
s [

M
¯

]

0%

10%

20%

60%

75%

PSR J0952 0607

pure DD2
m= 1.34 · 10−10 eV

m= 1.34 · 10−11 eV

8 10 12 14 16 18
Fermionic Radius [km]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

To
ta

l G
ra

vi
ta

tio
na

l M
as

s [
M

¯
]

0%

0%
15%

20%

75%

60%

10%

PSR J0952 0607

pure DD2
pure KDE0v1
FBS m= 1.34 · 10−10 eV

FPS m= 1.34 · 10−10 eV

FBS m= 1.34 · 10−11 eV

FPS m= 1.34 · 10−11 eV

FPS m= 2.24 · 10−10 eV

FIG. 7. Left panel: Mass-radius relations of FPSs with the DDS EOS [91] for vector boson masses m = {1, 0.1} ×
1.34·10−10 eV , no self-interactions and constant DM-fractions Nb/(Nb+Nf). This figure should be compared to Figure
5 (left panel) in [15] as the same masses and DM-fractions were chosen. The orange band marks the observational
constraint of J0952-0607 [8] and the percentage numbers denote the respective DM-fractions. Right panel: Mass-
radius relations of FPSs (orange and green lines) and FBSs (blue lines) with the DD2 EOS for different boson masses,
no self-interactions and different DM-fractions. The black lines correspond to the pure NSs with the DD2 EOS
and KDE0v1 EOS [95] respectively. FPS and FBS solutions with different masses and DM-fractions can both be
degenerate with each other, or also degenerate with pure NSs with a different EOS.
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FIG. 8. Left panel: Mass-radius diagram displaying the fermionic radius vs. the total gravitational mass for stable
FBS configurations with scalar boson mass of m = 1.34 · 10−10 eV and no self-interaction. Each point corresponds
to a single configuration and is color-coded according to the DM-fraction Nb/(Nb + Nf). The solid black-white
line shows the mass-radius curve for pure fermionic matter, modeled by the DDS EOS. Right panel: Mass-radius
diagram displaying the fermionic radius vs. the total gravitational mass for stable FPS configurations with vector
boson mass of m = 2.24 · 10−10 eV and no self-interaction. Each point corresponds to a single configuration and is
color-coded according to the DM-fraction Nb/(Nb +Nf). The solid black-white line shows the mass-radius curve for
pure fermionic matter. The vector boson mass was chosen so that in the limit of pure boson stars/Proca stars, the
same total gravitational mass is produced. Both diagrams show only marginal differences.

difficult to distinguish since a given solution might
be another system but with different boson mass (or
DM-fraction).
Similar scaling relations also exist for boson stars
and Proca stars in the limit of large self-interactions

Λint. A similar procedure might therefore be possi-
ble when also matching the self-interaction strength
appropriately. An independent measurement of the
DM particle mass would break this degeneracy to a
certain degree. But it would also be necessary to
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constrain the self-interaction strength and the DM-
fraction through other means. For example using
correlations of the DM abundance in the galactic disk
(see [96, 97]) or using the bound on the maximal vec-
tor field amplitude.
The scaling behavior between (fermion) boson stars
and (fermion) Proca stars also suggests another
application. If it persists for large non-zero self-
interactions, it might be possible to use the effec-
tive bosonic EOS derived by Colpi et al. [98] also
to model (fermion) Proca stars. Since the EOS by
Colpi et al. was originally derived for a scalar field,
one would then have to scale the boson mass by a
factor of 1.671 and the self-interaction by an appro-
priate amount. The necessary scaling for the self-
interaction will be dictated by the scaling relations
for pure boson stars (Mmax ≈ 0.22

√
Λint M

2
p/m [98])

and Proca stars (Mmax ≈
√
Λint ln(Λint)M

2
p/m [81])

at large self-interaction strengths. We however note
that great care is needed since Proca stars techni-
cally do not exist in the limit of large self-interactions
(see the analytical bound on the vector field ampli-
tude Eq. (24)). We plan to study this aspect in the
future.

D. Higher Modes and Different EOS

We broaden our analysis to FPSs with different
EOS for the fermionic component and to FPSs where
the bosonic component exists in a higher mode.
Higher modes are usually assumed to be unstable,
but as numerical simulations of scalar boson stars
have shown [34, 99], higher modes might be dynam-
ically stable when gravitationally interacting in a
multi-component system. We therefore start by con-
sidering FPSs in the first and second mode in Fig-
ure 9.
In the left panel of Figure 9, we show the total
gravitational mass and the fermionic radius of stable
FPS configurations, where the bosonic component is
in the first mode (as opposed to the ground mode,
which is the zeroth mode). The vector boson mass
is m = 1.34 · 10−10 eV , and the self-interaction is set
to zero. We first note the fact, that stable solutions
under linear radial perturbations, according to the
stability criterion Eq. (26), exist at all. This is a non-
trivial statement as higher modes of Proca stars (and
also of scalar boson stars) are usually believed to be
unstable. Note that our stability analysis does not
consider the dynamical stability of the higher modes.
They might thus be unstable in non-static scenarios.
It is however possible that the higher modes of the
bosonic part might be stabilized through the gravita-
tional interaction with the fermionic part of the FPS.
The FPSs in the first mode exhibit higher gravita-

tional masses in the configurations dominated by the
bosonic component, compared to FPSs in the zeroth
mode (compare to Figure 3). The numerical value of
the frequency ω in the higher mode is also larger than
the frequency in lower modes. This behavior is con-
sistent with earlier works, which studied pure Proca
stars analytically [81] and numerically [76]. They
also observed that higher frequencies lead to larger
total gravitational mass. The left panel of Figure 9
shows a number of outlier points at around 11 km
and 2.3M⊙. These are likely numerical artifacts due
to the increased difficulty of finding accurate numer-
ical solutions for higher modes.
The right panel of Figure 9 shows stable FPS con-
figurations in the second mode. The vector boson
mass is m = 1.34 · 10−10 eV and the self-interaction
is set to zero. Here also, the existence of stable so-
lutions is to be acknowledged. In the limit of high
DM-fractions, the FPSs converge to the solution of
pure Proca stars and reach total gravitational masses
of roughly 2.5 times that of Proca stars in the zeroth
mode (compare to Figure 3). In comparison to the
case in the first mode (left panel of Figure 9), the
quality of the overall solution can be seen to deterio-
rate further. We believe the outlier points at roughly
< 13 km and 1M⊙ to be non-physical numerical arti-
facts. The outlier points coincide with the solutions
in the zeroth mode. This suggests that our solver
did not find the second mode in these cases and
converged on the zeroth mode instead. Solutions of
FPSs in even higher modes should therefore be con-
sidered with great care. The difficulty of obtaining
accurate numerical solutions is likely to increase fur-
ther for higher modes. The quality of the solution is
however sufficient to gain a qualitative understand-
ing of FPSs in higher modes. In conclusion, higher
modes are stable under linear radial perturbations
and increase the total gravitational mass of FPSs by
substantial amounts.

We investigate the effect that different EOS have
on FPSs. In Figure 10, we use the APR EOS [100]
for the fermionic part. We chose a vector boson mass
of m = 1.34·10−10 eV with no self-interaction for the
bosonic part. In the left panel, we notice that the
shape of the stability curve (black curve) is affected
by the choice of the EOS. On the ρc-axis, it converges
to a value of around 7.5ρsat. This is higher than
the corresponding value of ρc when the DD2 EOS is
used (compare to Figure 3) because the APR EOS is
softer than the DD2 EOS. This means that the nu-
clear matter is easier to compress and higher central
densities can be supported by the EOS. The easier
compressibility also shows itself through smaller NS
radii (see the right panel). In the limit of pure Proca
stars, the stability curve converges to the same value
as it does when the DD2 EOS is used (compare to
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FIG. 9. Left panel: Mass-radius diagram displaying the fermionic radius vs. the total gravitational mass for stable
FPS configurations in the first mode with vector boson mass of m = 1.34 · 10−10 eV and no self-interaction. Each
point corresponds to a single configuration and is color-coded according to the DM-fraction Nb/(Nb + Nf). The
solid black-white line shows the mass-radius curve for pure fermionic matter. Right panel: Mass-radius diagram
displaying the fermionic radius vs. the total gravitational mass for stable FPS configurations in the second mode with
vector boson mass of m = 1.34 · 10−10 eV and no self-interaction. Each point corresponds to a single configuration
and is color-coded according to the DM-fraction Nb/(Nb + Nf). The solid black-white line shows the mass-radius
curve for pure fermionic matter.
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FIG. 10. Left panel: Total gravitational mass of different FPSs as a function of the rest mass density ρc and central
vector field amplitude E0. The black line corresponds to the stability curve, which separates stable solutions (in the
lower left region) from unstable solutions (everywhere else). The qualitative behavior of the stability curve of is similar
to the case with the DD2 EOS (see Figure 3) Right panel: Mass-radius diagram displaying the fermionic radius vs.
the total gravitational mass for FPS configurations that are within the stability region displayed in the left panel.
Each point corresponds to a single configuration and is color-coded according to the DM-fraction Nb/(Nb +Nf). The
solid black-white line shows the mass-radius curve for pure fermionic matter. In both cases, a vector field with a mass
of m = 1.34 · 10−10 eV and no self-interactions was considered in addition to the APR EOS [100] for the fermionic
part.

Figure 3). The MR region shows a similar qualitative
behavior as in the DD2 case. The high DM-fraction
limit in particular shows a convergence to the solu-
tion to pure Proca stars. The APR EOS also allows
higher central amplitudes of the vector field E0, com-

pared to the DD2 EOS with equal boson mass and
self-interaction strength.
Figure 11 shows different FPS configurations where
the FSG EOS [91] was used for the fermionic part.
For the bosonic part, we used a boson mass of
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FIG. 11. Left panel: Total gravitational mass of different FPSs as a function of the rest mass density ρc and central
vector field amplitude E0. The black line corresponds to the stability curve, which separates stable solutions (in
the lower left region) from unstable solutions (everywhere else). Right panel: Mass-radius diagram displaying the
fermionic radius vs. the total gravitational mass for FPS configurations that are within the stability region displayed
in the left panel. Each point corresponds to a single configuration and is color-coded according to the DM-fraction
Nb/(Nb + Nf). The solid black-white line shows the mass-radius curve for pure fermionic matter. In both cases, a
vector field with a mass of m = 3.01 · 10−11 eV and no self-interactions was considered in addition to the FSG EOS
[91] for the fermionic part.

m = 3.01·10−11 eV and no self-interaction. The FSG
EOS is a soft EOS and thus reaches higher central
densities ρc for pure NSs. It is excluded by current
observational constraints (see Figure 7), as it cannot
produce pure NSs with masses of M = 2.35+0.17

−0.17 M⊙
[8]. However, adding DM to the pure NSs can sig-
nificantly increase the maximum gravitational mass
of the combined system. The FSG EOS is then able
to reach the observational bound on the maximum
NS mass in the presence of DM. In fact, the MR
curve of the pure DDS EOS is entirely contained
within the stability region of the FPSs with the FSG
EOS. This again raises the point that some FPS so-
lutions are degenerate with some NS solutions (see
Figure 8), when allowing for different DM-fraction
and DM masses. To figure out whether and which
types of mixed DM-NS systems might exist, it will be
crucial to perform sophisticated parameter searches
of the system and obtain more measurements to con-
strain the DM and NS properties in future studies.

IV. CONCLUSIONS

In this work, we studied the impact that bosonic
dark matter (DM) has on the mass and radius
of neutron stars (NSs). DM was modeled as a
massive, self-interacting complex vector field. DM
was further assumed to only interact gravitation-
ally with the fermionic neutron star matter. We
derived the equations of motion describing static

spherically symmetric fermion Proca stars (FPSs)
and computed their properties numerically. We
also found a scaling relation between the frequency,
vector field and metric components, and we derived
an analytical upper bound on the vector field
amplitude.

We showed that the presence of the vector field
can lead to core-like and to cloud-like solutions.
Core-like solutions can increase the compactness
of the NS component. For some configurations,
observing only the fermionic radius and the total
gravitational mass would appear to violate the
Buchdahl limit. We found core-like solutions for
vector boson masses of m ≳ 1.34 · 10−10 eV and
small self-interactions Λint = λ/8πm2. Cloud-like
solutions appeared when m ≲ 1.34 · 10−11 eV
and Λint is large. For some small boson masses
m ≲ 1.34 · 10−11 eV , the presence of DM can
significantly increase the total gravitational mass
while leaving the fermionic radius approximately
constant.
We computed radial profiles of FPSs and found that
the existence of a maximum possible vector field
amplitude limits the effect of DM on the NS when
the self-interaction Λint is large. The maximum
amplitude implies a maximum possible amount of
vector boson DM accretion and could thus be used
to set bounds on the DM properties.

We also compared FPSs to FBSs with a scalar
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field. We used the same parameters as in [15] to
simplify the comparison. For stable FPS configura-
tions, we found that many of the general qualitative
trends that apply to FBSs also apply to FPSs. But
vector DM leads to higher FPS masses and larger
gravitational radii for equal m and Λint. This could
also imply a larger tidal deformability of FPSs
compared to FBSs. Also, a measurement of the
gravitational radius would favor larger vector boson
masses compared to scalar boson masses.
For FPS configurations of constant DM-fraction,
we found that the effect of vector DM on the NS
properties (total gravitational mass and fermionic
radius) is larger compared to FBSs with equal
DM-fraction, mass m and self-interaction strength
Λint. One therefore needs a larger amount of scalar
DM to cause the same effect as vector DM. For
different boson masses and DM-fractions, we found
that FPSs and FBSs can both be degenerate with
each other and also be degenerate with pure NS
with a different EOS.
We found an especially high degree of similarity
between FBS solutions with no self-interaction and
a boson mass of m = 1.34 · 10−11 eV with FPS
solutions where the vector boson mass is larger by
a factor of 1.671. We expect the similarity in the
behavior to hold also for different boson masses
(and also for non-zero self-interactions), as long as
the vector boson mass is scaled accordingly by the
right factor.
These similarities also hint towards a possibility to
use the effective EOS by Colpi et al. [98] also for
(fermion) Proca stars. We however note that great
care is needed since Proca stars do not exist in the
limit of large self-interactions (see the analytical
bound on the vector field amplitude Eq. (24)). The
similarities between FBSs and FPSs might also be
useful for numerical applications. Scalar (fermion)
boson stars are easier to implement and numerically
cheaper to solve than FPSs. One could then simply
solve the equations for scalar (fermion) boson
stars with a re-scaled mass (and self-interaction
parameter Λint) to compute the properties (Mtot,
Rf) of (fermion) Proca stars.
The prevalence of degenerate solutions highlights
the importance of measuring additional observables,
such as the tidal deformability, to break the degen-
eracies.

We confirmed the existence of higher modes that
are stable under first-order radial perturbations. We
found that higher modes lead to higher total grav-
itational masses of the mixed FPS systems. Using

FPSs with different EOS for the fermionic part, we
explicitly confirmed that for certain DM masses, pre-
viously excluded EOS are able to fulfill observational
bounds if DM is present. Mixed systems of bosonic
DM and NS matter can therefore be consistent with
all current observational constraints if suitable boson
masses and self-interaction strengths are chosen.

ACKNOWLEDGMENTS

The authors acknowledge support by the Deutsche
Forschungsgemeinschaft (DFG, German Research
Foundation) through the CRC-TR 211 ‘Strong-
interaction matter under extreme conditions’–
project number 315477589-TRR 211. CJ acknowl-
edges support by the Hermann-Wilkomm-Stiftung
2023.

Appendix A: Units

In this work, we use units in which the gravita-
tional constant, the speed of light and the solar mass
are set to G = c = M⊙ = 1. As a direct consequence,
distances are measured in units of ≈ 1.48 km, which
corresponds to half the Schwarzschild radius of the
Sun (also called the gravitational radius of the Sun).

The Planck mass is Mp =
√

ℏc/G ≈ 1.1×10−38M⊙.
Since G = c = M⊙ = 1 it follows that ℏ ≈
1.2× 10−76 ̸= 1.
Boson stars (with a scalar field) are described using
the Klein-Gordon equation, which in SI units and
flat spacetime reads (□− (mc/ℏ)2)ϕ = 0. The term
mc/ℏ is the inverse of the reduced Compton wave-
length λc = ℏ/mc, which sets the typical length scale
for the system even in the self-gravitating case. We
assume that the typical length scale of the boson is
similar to the gravitational radius GM⊙/c

2, which in
the case of mass scales of ∼ 1M⊙ is approximately
1.48 km. With m = ℏ/cλc, this therefore leads to a
mass scale of the bosonic particle of 1.336 ·10−10 eV .
Previous works such as, e.g., [15, 31] thus specify the
mass of the scalar particle in these units. A mass of
m = 1 in our numerical code [85] then also corre-
sponds to 1.336 · 10−10 eV . This choice of the boson
mass then automatically leads to boson stars with
masses in the range of ∼ 1M⊙. The same reasoning
can also be applied to the case where the boson is a
vector boson. This is valid since all components of
a vector field also fulfill the Klein-Gordon equations
individually.
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and J. A. Font, Phys. Rev. D 105, 063005 (2022),
arXiv:2110.11997 [gr-qc].

[32] A. Nelson, S. Reddy, and D. Zhou, JCAP 07, 012
(2019), arXiv:1803.03266 [hep-ph].

[33] F. Di Giovanni, S. Fakhry, N. Sanchis-Gual, J. C.
Degollado, and J. A. Font, Phys. Rev. D 102,
084063 (2020), arXiv:2006.08583 [gr-qc].

[34] F. Di Giovanni, S. Fakhry, N. Sanchis-Gual, J. C.
Degollado, and J. A. Font, Class. Quant. Grav. 38,
194001 (2021), arXiv:2105.00530 [gr-qc].

[35] S. Valdez-Alvarado, C. Palenzuela, D. Alic, and
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