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Abstract: Dark matter could accumulate around neutron stars in sufficient amounts to affect their
global properties. In this work, we study the effect of a specific model for dark matter—a massive
and self-interacting vector (spin-1) field—on neutron stars. We describe the combined systems of
neutron stars and vector dark matter using Einstein–Proca theory coupled to a nuclear matter term
and find scaling relations between the field and metric components in the equations of motion.
We construct equilibrium solutions of the combined systems, compute their masses and radii, and
also analyze their stability and higher modes. The combined systems admit dark matter (DM) core
and cloud solutions. Core solutions compactify the neutron star component and tend to decrease
the total mass of the combined system. Cloud solutions have the inverse effect. Electromagnetic
observations of certain cloud-like configurations would appear to violate the Buchdahl limit. This
could make Buchdahl-limit-violating objects smoking gun signals for dark matter in neutron stars.
The self-interaction strength is found to significantly affect both mass and radius. We also compare
fermion Proca stars to objects where the dark matter is modeled using a complex scalar field. We
find that fermion Proca stars tend to be more massive and geometrically larger than their scalar
field counterparts for equal boson masses and self-interaction strengths. Both systems can produce
degenerate masses and radii for different amounts of DM and DM particle masses.

Keywords: self-interacting dark matter; ultralight bosons; dark matter admixed neutron stars; boson
stars; Proca stars; fermion boson stars; fermion Proca stars

1. Introduction

The nature of dark matter (DM) is one of the large remaining open questions in physics.
Even though it constitutes roughly 26.8% of the total energy density of the universe [1] and
has a long observational history [2], its properties remain largely unknown. We currently
know that DM is likely a particle that is only interacting gravitationally and weakly with
standard model particles, and that is invisible through electromagnetic radiation. Large-
scale structure formation in the universe further suggests that DM is mostly cold, i.e., slowly
moving [2–5]. This makes it an integral part of the standard model of cosmology.

Neutron stars (NSs) are used to probe a large range of physical phenomena. They
are dense and compact remnants of heavy stars. Their high densities make them excellent
laboratories for probing gravitation and nuclear physics under extreme conditions. They
are characterized using the nuclear matter equation of state (EOS). The EOS describes the
relation between pressure and energy density of the matter found inside NSs. It is needed
to close the system of differential equations—the Tolman–Oppenheimer–Volkoff (TOV)
equations [6,7]—that describe the density distribution of a spherically symmetric static NS
and the spacetime curvature. A significant constraint on the EOS is the ability to produce
NSs with masses larger than two solar masses, 2 M⊙. The most massive NS known to date
is PSR J0952−0607, with a mass of M = 2.35+0.17

−0.17 M⊙ [8]. The lighter companion of the
binary system observed in the GW190814 gravitational wave event [9] was also proposed
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to be the heaviest NS, with a mass of around 2.6 M⊙. However, there is evidence that it
might be the lightest known black hole instead [10]. High maximum NS masses require
a stiff EOS, where the nuclear matter is difficult to compress and the energy density rises
sharply with increasing pressure. Other constraints include the measurements of pulsars
PSR J0030+0451 [11] and J0740+6620 [12] by the NICER telescope. They also favor a stiff
EOS. In contrast, the gravitational wave event GW170817 [13,14] favors soft EOSs, which
produce smaller NSs that are more compact and more difficult to tidally disrupt.

Additionally, it has been proposed to probe the DM properties using NSs. For example,
DM can form a cloud or accumulate inside NSs as a core. In sufficient amounts, it can
modify the NS properties, such as mass, radius, and tidal deformability. These properties
have been measured using telescopes such as NICER and gravitational wave detectors
LIGO, Virgo, and KAGRA. This allows us to probe the properties of DM, such as its particle
mass and self-interaction strength (see, e.g., [15–21]). There exist numerous candidates for
DM particles. A possible DM candidate is an additional bosonic field (scalar field or vector
field), as was studied in [22–26].

The idea that an astrophysical object consists of a mixture of fermionic and bosonic
matter goes back to [27,28]. A multitude of different models of these fermion boson stars
(FBSs) have since been investigated (see, e.g., [18,29–32] for reviews). In the simplest
case, the fermionic and bosonic components interact only gravitationally through the
effects of their matter–energy content and without an explicit coupling (i.e., they are
minimally coupled). This makes FBSs interesting objects in the context of DM research
(see, e.g., [15,33,34]). They have been studied in connection to NSs, where the NS provides
the fermionic component and a bosonic field provides the bosonic component of the FBS
[15,33]. The bosonic component can be modeled via, e.g., scalar and vector fields. Another
possibility is to study the bosonic field as a fluid or gas of particles. Which treatment is used
depends mainly on the mass range of the supposed DM particle. With DM masses above
the eV scale, it is treated as a collection of particles or as a fluid. For DM masses ≪ eV, the
correlation length becomes larger than the average particle separation. Dark matter is then
best described as a macroscopic wave. We follow the second approach in this work. We
refer to [35] for a review of observational prospects of DM at different mass scales.

FBSs have been studied with regard to their stability [28]. Their dynamical properties
were explored in [36–41]. Numerical simulations aiming to understand the gravitational
wave signals were performed in [41]. In all these cases, the NS component was modeled
using a perfect fluid and a classical complex scalar field was used for the bosonic component.
However, understanding vector fields is equally relevant for a number of reasons. If DM
is a spin-1 particle, it would be described using a vector field. Some theories of modified
gravity also feature vector fields with similar behavior [42–46]. In these cases, the vector
field is usually directly coupled to the curvature. However, if the coupling is weak enough,
these fields could behave very similarly to minimally coupled fields. In this work, we
therefore explore the effect of minimally coupled vector fields on NSs.

Fermion boson stars can form in a variety of ways. However, in essence, the problem
reduces to how one can accumulate a large amount of scalar or vector fields in and around
an NS. One common motivation for these fields is bosonic dark matter. It could arrange
itself around NSs as a cloud or inside NSs as a core.

NSs with DM cores could form

(1) from an initial DM ’seed’ through accretion of baryonic matter [15,47–49];
(2) through mergers of NSs and boson stars [15];
(3) through accretion of DM onto an NS and subsequent accumulation in the center

[15,16,29,50,51];
(4) through the decay of standard model particles inside the NS into DM [52–56].

Points (3) and (4) in particular are highly model-dependent. Accretion and decay
rates depend on the DM particle interaction cross-sections and available decay channels.
Previous works, for example, [57], have shown, for the case of non-interacting scalar DM,
that old isolated neutron stars set strong bounds on the allowed scattering cross-section
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between light quarks and DM. This could in practice strongly disfavour the accumulation
of significant amounts of DM in an NS through accretion. NSs with clouds could form in a
similar way given that either the DM is the dominant contribution to the FBS or that the
DM properties only allow low-compactness configurations (e.g., when the particle mass is
small [15]). The fermionic and bosonic components could conceivably be separated from
one another, e.g., during a supernova NS kick [58–61]. There, the stellar remnant is ejected
and rapidly moves away from the remaining stellar envelope. This process could allow
for NSs with a large range of possible DM fractions. The DM particles most interesting for
FBSs are generally (self-interacting) ultralight DM particles, weakly interacting massive
particles, dark photons [24,25] (as a candidate for vector DM), and axions [15,35,62–70].

Another formation channel is motivated through theories of modified gravity. One
way of producing large amounts of scalar (or vector) fields is superradiance [42,71]. Spon-
taneous scalarization [30,72] also provides a way of producing significant scalar [30,73] and
vector ( in the case of vector fields, the process is also called spontaneous vectorization)
[43,44] field amplitudes. It has also been studied explicitly in NSs [45,46,72] and could
be a way of forming systems with scalar and vector fields. Scalarization might also take
place dynamically in the late stages of the evolution of binary NS systems [74], forming
either a black hole or an FBS after merger (depending, e.g., on the initial masses of the
binary objects).

Self-gravitating vector fields have already been investigated. These objects are called
Proca stars. They are modeled by a complex vector field and were first proposed by [75].
They can be thought of as macroscopic condensates of spin-1 particles [30]. Proca stars have
been studied by a number of groups analytically [76–78] and numerically [79,80], such as
in merger simulations [81,82]. Different types of Proca stars with charge [83], rotation [75],
and with quartic self-interaction potential [84] were also considered. Other works [85–87]
studied shadow images of Proca stars in different scenarios.

In this work, we study the combined system of a vector field and NS matter, which we
call fermion Proca stars (FPSs). Starting with an action for complex vector fields coupled
minimally to gravity and nuclear matter, we derive a system of differential equations
and solve them numerically (Section 2.1). We also pedagogically motivate the boundary
conditions (Section 2.2), find an analytical bound for the vector field amplitude, and derive
scaling relations in the equations of motion (Section 2.3). The equations are solved using
a shooting method and the integrator implemented in our code (for the code, see [88]).
The numerical methods are also explained in Section 2.5. We show radial profiles of FPSs
(Section 3.1) and then compute global quantities such as mass and radius and compare
them to astrophysical observations (Section 3.2). In Section 3.3, we compare FPSs to their
counterpart with a scalar field. In the following, we refer to the scalar case as ”fermion
boson stars” (FBSs). Finally, we compute higher modes of FPSs and compute configurations
with different EOSs (Section 3.4).

We find that the vector field significantly affects the NS properties and thus produces
detectable signatures. FPSs admit DM core and cloud solutions. Small DM masses lead to
DM clouds, and large masses form DM cores. Core solutions compactify the NS component.
Cloud solutions lead to less compact configurations. Some solutions appear to violate the
Buchdahl limit when only observing the NS component.

We then compare FPSs (with a vector field) to FBSs (with a scalar field). FPSs tend to be
more massive and geometrically larger than FBSs for equal boson masses and self-interaction
strengths. For a given measurement, this would favor larger vector DM masses (compared
to scalar DM) because larger DM masses produce smaller and less massive objects.

We find a significant amount of degenerate solutions between different choices in
FBSs, FPSs, the DM properties, and the EOS. For different boson masses and DM fractions,
FPSs and FBSs can both be degenerate with each other and also be degenerate with pure
NSs with a different EOS. Using scaling relations for pure boson stars and Proca stars, we
show that FBSs and FPSs are virtually indistinguishable if the boson masses differ by a
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factor of 1.671 and the DM has no self-interactions. We confirm the existence of FPSs in
higher modes, which are stable under linear radial perturbations.

Throughout this work, we use units where G = c = M⊙ = 1 (also see Appendix A).
The Einstein summation convention for tensors is implied. This paper is based on the
master’s thesis of Cédric Jockel [89].

2. Theoretical Background
2.1. Equilibrium Solutions

Fermion Proca stars (FPSs) are combined systems of fermions and vector bosons, which
interact only gravitationally. They can be seen as a macroscopic Bose–Einstein condensate
that coexists with an NS at the same point in space. We model FPSs using a relativistic
fluid for the NS component and a complex vector field for the bosonic component. FPSs
are described by the Einstein–Proca system minimally coupled to a matter term Lm,

S =
∫ √

−g
(

R
2κ

− 1
2

Fµν F̄µν − V(Aρ Āρ)−Lm

)
dx4 , (1)

where R is the Ricci curvature scalar, g is the determinant of the spacetime metric gµν, and
κ = 8πG/c4 is a constant. The bar denotes complex conjugation. Fµν = ∇µ Aν −∇ν Aµ is
the antisymmetric field strength tensor and V(Aρ Āρ) is the vector field potential. The latter
depends solely on the magnitude of the vector field Aρ Āρ.

By taking the variation of Equation (1) with respect to the inverse spacetime metric
δgµν, one obtains the Einstein equations

Gµν = κ
(

T(NS)
µν + T(A)

µν

)
, (2)

where T(NS)
µν and T(A)

µν are the energy–momentum tensors describing the NS matter and the
vector field matter, respectively. The energy–momentum tensor of the NS matter is taken to
be that of a perfect fluid:

T(NS)
µν = (e + P)uµuν + Pgµν . (3)

P and e are the pressure and the energy density of the fluid, respectively. The energy
density e is related to the restmass density ρ through e = ρ(1 + ϵ), where ϵ is the internal
energy. uµ is the four-velocity of the fluid. Energy–momentum tensor Equation (3) and the
fluid flow Jµ := ρuµ are conserved (implying conservation of energy–momentum and of
the restmass, respectively). This leads to the conservation equations

∇µTµν

(NS) = 0 , ∇µ Jµ
= 0 . (4)

The conservation of the fluid flow Jµ allows us to define the conserved total restmass
of neutron matter, which we call the fermion number Nf. We obtain the fermion number by
integrating the right part of Equation (4) over space,

Nf :=
∫ √

−g gtµ Jµdx3 . (5)

The energy–momentum tensor of the vector field is provided by

T(A)
µν = Fµρ F̄ρ

ν + F̄µρFρ
ν −

1
2

gµνFρσ F̄ρσ (6)

+ gµνV(Aρ Āρ) + V′(Aρ Āρ)(Aµ Āν + Aν Āµ) ,
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where the derivative of the potential V is

V′(Aρ Āρ) :=
dV(Aρ Āρ)

d(Aρ Āρ)
. (7)

The equations of motion (Proca equations) of the vector field and the complex con-
jugate are computed from action Equation (1) using the Euler–Lagrange equations for a
complex vector field. One obtains

∇µ F̄µν = V′(Aρ Āρ)Āν , ∇µFµν = V′(Aρ Āρ)Aν . (8)

The covariant derivative of Equation (8) is zero, i.e., ∇µ∇νFµν = 0. This leads to a
dynamical constraint on the field derivative, resembling the Lorentz condition used in the
Maxwell and Proca equations (also see [30,75]):

∇ν Aν = −
∇ν

[
V′(Aρ Āρ)

]
V′(Aρ Āρ)

Aν . (9)

This constraint could be useful in numerical simulations to track the numerical error
and assess constraint violations of a given numerical scheme. The global U(1) symmetry
in the Lagrangian Equation (1) under the transformation of vector field Aµ (and Āµ) gives
rise to a conserved Noether current

jµ = i(F̄µν Aν − Fµν Āν) . (10)

The conserved quantity (i.e., the Noether charge) associated to Equation (10) is ob-
tained by integrating conservation equation ∇µ jµ = 0 over space,

Nb :=
∫ √

−ggtµ jµdx3 . (11)

Nb is called the boson number and is related to the total number of bosons present
in the system. It can equivalently also be interpreted as the total restmass energy of the
bosonic component of the FPS.

We proceed by solving Einstein equations Equation (2) and Proca equations Equation (8)
for spherically symmetric and static configurations in equilibrium. For that, we consider
the spherically symmetric ansatz for the spacetime metric

gµν = diag
(
−α2(r), a2(r), r2, r2 sin2(θ)

)
. (12)

We further assume the perfect fluid to be static, such that the four-velocity can be
written as

uµ =

(
− 1

α
, 0, 0, 0

)
, uµ = (α, 0, 0, 0) . (13)

For the vector field, we employ the harmonic phase ansatz and a purely radial vector
field (see [75,78,83,84,90]). The vector field is then provided by

Aµ(t, x) = e−iωt(E(r), iB(r), 0, 0) , (14)

where ω is the vector field frequency and E(r), B(r) are purely radial real functions.
Using the spherical symmetric metric ansatz Equation (12) together with the harmonic

phase ansatz Equation (14) for the vector field, we solve the Einstein equations and obtain
the equations of motion. One obtains an expression for the radial derivative of a(r) by
re-arranging the tt-component of Equation (2). We then divide the tt- and rr-components
of Equation (2) by α2 and a2, respectively. We add both terms and find a direct relation
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between the first radial derivatives of a(r) and α(r). We use this to solve for the derivative
of α(r).

The evolution equations for the vector field components can be computed from Proca
equations Equation (8). It does not matter which equation of Equation (8) is used since
the complex phase will cancel out and will leave only the radial functions in both cases.
The ν = r component yields the equation of motion for E(r). The ν = t component of
Equation (8) provides us the equation of motion for B(r). Finally, the r-component of the
conservation equation for the energy–momentum tensor (left side of Equation (4)) provides
a differential equation for the pressure P(r). For a more detailed derivation, we refer to [89].
The full equations of motion for the Einstein–Proca system coupled to matter are thus:

a′ =
da
dr

=
a
2

[
(1 − a2)

r
+ 8πra2

(
e +

1
α2a2 (E′ − ωB)2 + V(Aρ Āρ) + 2V′(Aρ Āρ)

E2

α2

)]
, (15a)

α′ =
dα

dr
=

α

2

[
(a2 − 1)

r
+ 8πra2

(
P − 1

α2a2 (E′ − ωB)2 − V(Aρ Āρ) + 2V′(Aρ Āρ)
B2

a2

)]
, (15b)

E′ =
dE
dr

= −V′(Aρ Āρ)
Bα2

ω
+ ωB , (15c)

B′ =
dB
dr

=

{
V′′(Aρ Āρ)

(
2B2a′

a3 +
2EE′

α2 − 2E2α′

α3

)
Bα2

ω
− V′(Aρ Āρ)

(
a2E +

2Bαα′

ω

)
−

(
a′

a
+

α′

α
− 2

r

)
(E′ − ωB)

}(
V′′(Aρ Āρ)

2
ω

B2α2

a2 + V′(Aρ Āρ)
α2

ω

)−1

, (15d)

P′ =
dP
dr

= −[e + P]
α′

α
. (15e)

This system of equations is closed by providing an equation of state P(e) (or P(ρ, ϵ))
for the nuclear matter part.

Note that all equations are first-order differential equations. This is different to scalar
FBSs, where an additional variable has to be introduced to make the system first-order (see,
e.g., [15,33]). Another difference is that no derivative of the potential enters the equations
of motion for the metric components in the scalar field case, but it does for the vector
field case.

For the considered system and ansatz for metric Equation (12) and vector field
Equation (14), the expressions for fermion number Equation (5) and boson number
Equation (11) simplify to

Nf = 4π
∫ Rf

0
aρr2dr , (16a)

Nb = 8π
∫ ∞

0
B
(ωB − E′)

αa
r2dr . (16b)

Rf denotes the fermionic radius (i.e., the radius of the NS component). It is defined
by the radial position at which the pressure P of the NS component reaches zero. It is also
possible to define the bosonic radius Rb. It is defined as the radius where 99 % of the bosonic
restmass Nb (see Equation (16b)) is contained. Using these definitions, we gain the ability
to discriminate between DM core and cloud solutions. Core solutions have Rf > Rb and
cloud solutions have Rf < Rb. The total gravitational mass is defined in the limit of large
radii, imposing that the solution asymptotically converges to the Schwarzschild solution

Mtot := lim
r→∞

r
2

(
1 − 1

(a(r))2

)
. (17)

2.2. Initial Conditions

We derive the boundary conditions of equations Equations (15a)–(15e) at r = 0 and
at r = ∞. The values at the origin will later serve as initial conditions for the numerical
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integration. We first consider the equations of motion in the limit r → 0 while imposing
regularity at the origin (i.e., the solution must not diverge). We first analyze equation
Equation (15a). The term proportional to 1/r dominates at small radii and will diverge
if r → 0. Thus, the only way to maintain regularity is to set a(r = 0) = 1. It directly
follows that a′(r = 0) = 0. Similarly, equation Equation (15b) leads to α′(r = 0) = 0. The
exact value of α(r = 0) = α0 is a priori undetermined and can be chosen in a way thought
suitable. We will elaborate on this in Section 2.2.

The initial conditions for the vector field components E(r) and B(r) can be obtained in
a similar manner. We first consider Equation (15d). In the limit r → 0, the term proportional
to 1/r dominates and regularity then demands that E′ = ωB. It follows that B′(r = 0) = 0.
This result can be inserted into Equation (15c), which leads to the relation

E′ =ωB = −V′(Aρ Āρ)
Bα2

ω
+ ωB

=⇒ 0 = V′(Aρ Āρ)Bα2 .
(18)

Since at r = 0, α(r = 0) ̸= 0 and V′ ̸= 0 in general, this relation can only be
fulfilled if we demand that B(r = 0) = 0. Plugging this relation into Equation (15c) yields
E′(r = 0) = 0. The central value of the field E′(r = 0) = E0 is therefore undetermined by
the equations of motion and thus is a free parameter of the theory.

A similar analysis at large distances reveals the boundary conditions at r → ∞ for
all variables. We impose an asymptotically flat spacetime. This requires that a(r → ∞) =
α(r → ∞) = 1. All terms proportional to r in Equations (15a) and (15b) must vanish at
infinity to fulfill the flat spacetime limit. Therefore, the vector field components must vanish
at infinity, E(r → ∞) = 0 and B(r → ∞) = 0. Pressure P(r), energy density e(r), and
restmass density ρ must be zero outside the NS component of the FPS. This will happen at
the fermionic radius Rf. We summarize all boundary conditions in the following:

lim
r→∞

a(r) = 1 , a(0) = 1 ,

lim
r→∞

α(r) = 1 , α(0) = α0 ,

lim
r→∞

E(r) = 0 , E(0) = E0 ,

lim
r→∞

B(r) = 0 , B(0) = 0 ,

ρ(r > Rf) = 0 , ρ(0) = ρc .

(19)

The initial condition for the metric component α(0) = α0 is fixed by its behavior at infinity.
We also note a popular and widely employed alternative to the self-consistent wave

treatment of DM performed in this work—two-fluid formalism (see, e.g., [21,91,92]). In
there, the nuclear matter and the DM are both modeled as perfect fluids, which only interact
gravitationally. One can then solve the Einstein equations and obtain a set of modified
TOV equations that describe the density distribution of both fluids. Although simplistic,
this formalism has the advantage that it is easy to implement, numerically cheap, and is
applicable to a wide range of fermionic and bosonic DM models. It is also possible to use
arbitrary effective EOSs for the dark matter. A disadvantage of this model is that it ignores
possible wave properties of ultralight DM, which we study in this work. It is also only
possible to study non-excited ground states of the wave-like DM. Further, some emerging
properties like the maximal bound on the vector field amplitude (see Equation (24)) would
not be captured by two-fluid formalism.

2.3. Analytical Results

For a scalar (fermion) boson star, one can scale the field frequency ω to absorb the initial
value of α0 so that it may be set to one (see, e.g., [15]). We investigate whether a similar
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scaling relation also exists for FPSs. We find that equations of motion Equations (15a)–(15e)
are invariant when simultaneously scaling the following variables as

α̃ = σα , ω̃ = σω , Ẽ = σE , where σ ∈ R . (20)

The potential V(Aρ Āρ) is always invariant with respect to this scaling because

Aρ Āρ =

(
B2

a2 − E2

α2

)
=

(
B2

a2 − Ẽ2

α̃2

)
. (21)

The invariance of Equations (15a)–(15e) under the scaling relation Equation (20) thus
allows us to choose σ in such a way that the initial condition for α(0) = α0 may be set
to α0 = 1 ( or one could, in principle, also re-scale E0 to always be equal to one). We
will make use of this relation in the numerical analysis. All pre-scaling physical values
can be recovered from the asymptotic behavior of α(r → ∞) by performing the inverse
transformation to Equation (20). Note that the expression for total gravitational mass
Equation (17) is not affected by this scaling.

In contrast to the scaling relation of boson stars with a scalar field, where only the
frequency ω and the metric component α are re-scaled, the vector field component E is also
affected in the case of Proca stars. To our knowledge, this is the first time scaling relation
Equation (20) has been mentioned explicitly (apart from the master’s thesis [89], which
precedes this work). Moreover, [84] briefly mentioned scaling the frequency but not the
vector field component.

We also report an analytical bound on the central vector field amplitude E(0) = E0.
Equations (15c) and (15d) govern the dynamics of the vector field. Note that the term in
the denominator of equation of motion for B(r) Equation (15d) could in some cases lead to
singularities. We analyze the behavior of the denominator by setting it equal to zero. This
leads to a remarkable behavior when considering a quartic self-interaction potential V of
the form

V(Aµ Āµ) = m2 Aµ Āµ +
λ

2
(Aµ Āµ)2 , (22)

where m is the mass of the vector boson and λ is the self-interaction parameter. We insert
potential Equation (22) into the singular term in Equation (15d) and obtain(

E2

α2 − 3B2

a2

)
=

m2

λ
. (23)

This expression holds for all radii. We analyze its behavior in the limit r → 0 by
applying the initial conditions provided in Equation (19). One obtains a critical value for
the central field amplitude E0:

E0,crit =
mα0√

λ
=

α0√
8πΛint

. (24)

We also defined here the dimensionless interaction parameter Λint = λ/8 πm2. This
expression constitutes an analytical upper bound for the central amplitude of the vector
field. This means that any FPS with initial conditions for the field larger than E0,crit will be
physically forbidden since Equation (15d) will become singular and diverge. This result
matches the analytical bound found in [84].

The relation implies that, for strong self-interaction strengths Λint, the allowed range
for Proca stars becomes increasingly small and vanishes in the limit of very strong self-
interactions. This fact could conceivably be used to constrain vector field parameters m and
λ. For example, a maximal vector field amplitude implies a maximal amount of accretion
of vector bosons until the system becomes unstable. The field would then either dissipate
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to infinity, shed the excess vector field component, or collapse into a black hole. We leave a
thorough investigation for future work.

2.4. Stability Criterion

Every FPS solution is characterized by the initial values for the central density ρc and
the central value of the vector field E0. When studying them in astrophysical contexts, the
question of stability of FPSs naturally arises. The stability of pure Proca stars and NSs
to radial perturbations is well-known (see [75] for Proca stars). The stable and unstable
solutions are separated by the point at which the total gravitational mass reaches its
maximum with regard to the central density ρc (for NS) and the central field E0 (for
Proca stars).

Since FPSs are two-parameter solutions, the stability criterion needs to be modified. It
was first presented for scalar FBSs by [93] (also see [30] for a review). However, the criterion
is more general and can also be applied to systems of two gravitationally interacting fluids.
This is why we apply it here for FPSs.

The idea behind the generalized stability criterion is to find extrema in the total number
of particles (fermion number Nf or boson number Nb) for a fixed total gravitational mass.
The transition between stable and unstable configurations is provided by the point at which

dNf
dσ

=
dNb
dσ

= 0 , (25)

where d/dσ denotes the derivative in the direction of constant total gravitational mass
(see [93]). Up to a normalization factor, Equation (25) can be written as

dNf
dσ

∝ −∂Mtot

∂ρc

∂Nf
∂E0

+
∂Mtot

∂E0

∂Nf
∂ρc

. (26)

If one is only interested in the precise points where FPSs become unstable, the unspec-
ified normalization factor in Equation (26) becomes irrelevant since the whole relation is
set to zero.

In summary, stability criterion Equation (25) can be used to discriminate between
astrophysically stable and unstable FPS solutions. When perturbed, unstable solutions will
either collapse to a black hole, dissipate to infinity, or migrate to a stable solution through
internal re-configuration (see [30]).

2.5. Numerical Methods

In this work, we solve equations Equations (15a)–(15e) numerically to obtain self-
consistent FPS solutions. We have implemented the algorithm in the code [88], which was
developed by the authors of [15]. The equations have one parameter undetermined by
boundary conditions Equation (19), namely the vector field frequency ω. We use a shooting
algorithm to find ω numerically. For given ρc and E0, there exist only discrete values of
ω, such that the boundary conditions at infinity Equation (19) are fulfilled. These discrete
values are called eigenvalues or modes. There are infinitely many of these modes. They are
characterized by the number of roots (i.e., zero crossings) the field E(r) has. Usually, we are
only interested in the lowest mode since only it is believed to be dynamically stable [30].
The lowest mode of the vector field always has one root in E(r). The following algorithm
can, however, be used to find any desired mode.

We integrate the system of ordinary differential equations Equations (15a)–(15e) using
a fifth order accurate Runge–Kutta–Fehlberg solver for some fixed value of ω. The vector
field will then diverge towards positive or negative infinity at some finite radius. The
system only converges at infinity if any mode is hit directly. However, this is impossible to
achieve numerically with finite precision. We thus make use of this diverging property to
find the wanted frequency mode. When the frequency ω is close to the wanted mode, the
divergence will happen at increasingly large radii, the closer the chosen value for ω is to
the mode. A higher accuracy in finding ω will therefore push the divergence to larger radii.
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When ω is not exactly tuned to the mode, the vector field profile E(r) will diverge towards
+∞ or −∞ and change its direction of divergence when ω passes a mode. The direction
of divergence depends on which mode is solved for. For modes with an even number of
roots, the field will diverge to +∞ if the frequency ω is below the mode, and it will diverge
to −∞ if ω is above the mode. This will be reversed for all modes with an odd number
of roots. By making use of the direction of divergence, we gain a binary criterion to find
the correct mode. The value of ω can then be adapted—increased or decreased—based
on the direction of divergence and the wanted mode. This procedure requires to integrate
the system of equations multiple times with different values for ω until the correct value
is found.

We implement this method in our code [88] using a bisection algorithm, which con-
verges exponentially fast. We start with upper and lower values of ω, which are guaranteed
to be smaller/larger than the wanted value of ω at the mode. In practice, lower and upper
bounds of ωbound = [1, 10] have proven to be numerically robust. We then perform the
bisection search by taking the middle value of ω in this range and counting the number
of roots in E(r) at each step. This also allows us to discriminate between different modes
and to target specific modes by demanding a certain number of roots in the field E(r). The
bisection is complete when the current value of ω found through bisection is close enough
to the value of the mode. In our experience, the absolute accuracy needed to obtain robust
solutions is on the order of ∆ω = |ωmode − ωbisection| ≈ 10−15.

Once a sufficiently accurate frequency ω is found, we modify the integration, such
that E(r) and B(r) are set to zero at a finite radius r∗B. This radius r∗B is defined at the point
where the field E(r) and its derivative E′(r) are small. This roughly corresponds to the last
minimum of E(r) before it diverges. Also note that this is different to the bosonic radius Rb
defined previously. The condition can be summarized as the point where E(r∗B)/E0 < 10−4

and E′(r∗B) ≪ 1. This is necessary because the interplay of the vector field and the NS matter
can complicate the numerical solution. In some parts of the parameter space, especially for
small initial densities ρc, the vector field could diverge while still inside the NS component,
i.e., before the pressure P(r) reaches zero (within numerical precision; we consider the
pressure to be zero when P < 10−15). This divergence would make finding physical values
such as the fermionic radius Rf impossible. Therefore, we artificially set E = B = 0 for
r > r∗B. This allows us to circumvent the divergence and accurately resolve the rest of the
NS component. Note that the divergence of the vector field only happens because it is
impossible to perfectly tune ω to the exact value within numerical precision. If ω could
be found exactly, the divergence would not happen. Setting the vector field to zero at
some radius r∗B is thus simply a way to maintain numerical stability of our algorithm. The
condition was chosen so that the remaining contribution of the vector field to the other
quantities (i.e., the metric components) is minimized. We have tested this method for
different thresholds and confirmed that all extracted results are the same.

After integrating the solution to radii outside the matter sources (i.e., where E = B =
P = 0), we can extract global observables such as the total gravitational mass and radius. The
outside of the source is located at radii r larger than both the fermionic radius Rf and r∗B. In this
regime, neither the NS matter nor the vector field contribute significantly. There, we can ex-
tract total gravitational mass Mtot Equation (17) and then compute integrals Equations (16a)
and (16b) to obtain the fermion/boson numbers Nf, Nb.

The vector field convergence condition E(r∗B)/E0 < 10−4 cannot be fulfilled for some
configurations due to numerical precision limits. This generally happens for small initial
field values E0 ≲ 10−4, where the vector field extends far outside the NS component. In
these cases, we extract the total gravitational mass Mtot =

1
2 rext(1 − a−2(rext)) at the point

where its derivative has a global minimum. When the vector field diverges, the metric
components also do, as well as Mtot. By taking the point where the derivative of the
mass has a global minimum, which roughly corresponds to where the vector field and its
derivative is closest to zero, we obtain the best possible estimate of the mass of the system
before the divergence.
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During our numerical analysis, we encountered the phenomenon that the bisection
algorithm to find the frequency ω could fail for some specific initial conditions for E0 and
ρc. We found this to be the case due to the bisection algorithm jumping over multiple
modes in one iteration step. The wanted mode was then skipped and ended up outside
the bisection bounds. The bisection then converged on an unwanted ω-value, or ended up
failing entirely. We solved this problem by employing a backup algorithm that activates if
the bisection fails. It restarts the bisection for ω but with different lower and upper bounds
of ωbound. We tested the backup algorithm for 4800 FPS configurations with different vector
field masses m and self-interaction strengths Λint = λ/8 πm2 with equally distributed
initial conditions for E0 and ρc. We found that 330 (≈ 6.8 %) of all configurations needed
one restart of the bisection, and only 3 (≈ 0.06 %) of all configurations needed two restarts.
In none of the tested cases, the bisection had to be restarted three times or more.

3. Results

We consider FPSs with a quartic self-interaction potential of the same form as in
Equation (22). We further define the effective self-interaction parameter Λint = λ/8 πm2.
The parameter Λint is a useful measure for the self-interaction strength and parametrizes
scaling relations for the total gravitational mass Mmax ≈ 1.058 M2

p/m [75] (for small
Λint) and Mmax ≈

√
Λint ln(Λint) M2

p/m [84] (for large Λint). These scaling relations and
numerical pre-factors can be derived numerically by fitting the configurations of maximum
mass for a given m and Λint to postulated scaling behaviors. Note that parameter Λint was
originally introduced in the context of pure Proca stars and thus the scaling relations will
not be generally valid for the mixed system. They can, however, be useful to understand
the limiting cases where the FPS is dominated by the bosonic component. Nonetheless,
we regard Λint to be a useful measure to compare different choices in the mass and self-
interaction strength. The self-interaction parameter Λint in our work differs from the one
used in [84] by a factor of two, even though they are defined in the same way. This is
because a different normalization technique was used for the vector field.

We hereafter investigate models with parameters in the order of m ≈ 1.34 · 10−10 eV
and Λint ≈ 0 − 100. This mass range is chosen because in this work we want to study DM
that behaves as a macroscopic wave on typical neutron star length scales. Therefore, the
correlation length of the ultralight DM particle is on the scale of km. Due to our units of
c = G = M⊙ = 1, lengths are measured in units of half the Schwarzschild radius of the Sun
(≈ 1.48 km). Then, the reduced Compton wavelength of the bosonic field is also measured
in these units. m = 1 in our code units thus corresponds to 1.336 · 10−10 eV (see a detailed
explanation in Appendix A). The range for the self-interaction parameter was chosen so
that it fulfills the observational constraints for the DM cross-section of 1 cm2/g obtained
from the Bullet Cluster [94,95]. The choice in Λint is thus consistent with observations as
long as it fulfills

πΛ2
intm =

λ2

64πm3 =
1
4

σ

m
!
< 1

cm2

g
⇐⇒ (27)

Λint
!
< 8.5 · 1025

(
σ/m

cm2/g

) 1
2
(

1.34 · 10−10 eV
m

) 1
2

.

Note that, in our conventions, the units of Λint are [solar gravitational radius] divided
by [1.336 · 10−10 eV]. We held that the total cross-section of a self-interacting (scalar) particle
is σ = λ2/16 πm2. This should provide a sufficient order of magnitude estimate for the
cross-section for the vector particle too.

For most calculations, we use the DD2 equation of state (with electrons) [96], taken
from the CompOSE database [97], to describe the NS component. It was chosen because it is
widely used by a number of groups and thus is well-known in the literature. The DD2 EOS
is based on a relativistic mean-field model with density-dependent coupling constants,
which has been fitted to the properties of nuclei and results from Brueckner–Hartree–Fock
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calculations for dense nuclear matter. Therefore, the DD2 EOS also describes the EOS of
pure neutron matter from chiral effective field theory (see [98]). For the purpose of our
investigations, the particular choice in the nuclear equation of state is not of importance
and has no effect on our general conclusions.

3.1. Radial Profiles

We compute the radial profiles of FPSs. In particular, we consider the radial depen-
dence of the pressure P(r) and the vector field components E(r), B(r). Even though the
radial distribution of physical quantities can not yet be observed directly (although one
could infer the DM distribution using the geodesic motion of light [99]), a good understand-
ing of the internal structure of FPSs can be used to deduce their global quantities and vice
versa. Knowledge about the internal distribution is also relevant for numerical applications.
Another reason we include the radial profiles here is to facilitate reproducibility of this
work and for the sake of code validation for future works.

Radial profiles of pure Proca stars have already been discussed by [75] and for the case
of a quartic self-interaction potential like Equation (22) by [84]. We used the results of [84]
in particular to verify that our code [88] reproduces the results correctly and consistently.

In Figure 1, we show radial profiles of the pressure P(r) (orange) and the vector field
components E(r) (black), B(r) (blue) of the zeroth mode of different FPSs with potential
Equation (22). In the left panel, we take a boson mass of m = 1.34 · 10−10 eV and an
interaction strength of Λint = 0. The FPSs have varying central vector field amplitudes
E0 and central densities of ρc = 5ρsat. Here, we take ρsat = mnnnuc ≈ 2.5 · 1014 g/cm3 to
be the nuclear saturation density, with mn being the neutron mass and nnuc = 0.15 fm−3

the average nuclear number density. The radial profile of a pure NS is shown with the
orange continuous line and has no corresponding vector field (because it would be zero
everywhere). The presence of the DM can be seen to compactify the NS component with
increasing central field amplitude E0. The field forms a DM core configuration.
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Figure 1. Left panel: Radial profiles of the pressure P(r) (orange) and the vector field components
E(r) (black), B(r) (blue) of the zeroth mode of different FPSs with potential Equation (22). The boson
mass is m = 1.34 · 10−10 eV and Λint = 0. The FPSs have a central density of ρc = 5ρsat and varying
central vector field amplitudes E0. The pressure has been re-scaled by a factor of 3 for convenience.
The DM forms a core and compactifies the fermionic component. Right panel: Same as in the left
panel, but this time the vector boson mass is set to m = 1.34 · 10−11 eV. The DM forms a cloud around
the fermionic component. The radius of the fermionic component is barely affected by the field. A
kink can be seen in the profile for B(r) at roughly 11.5 km. This corresponds to the point where the
fermionic radius is located. This illustrates the gravitational backreaction between the vector field
and NS matter.

In the right panel of Figure 1, all the parameters are left equal except for the vector
boson mass, which is set to m = 1.34 · 10−11 eV. Due to the low DM mass, the correla-
tion length increases, which increases the size of the vector field component and forms
a DM cloud configuration. Since the amount of energy density of the vector field is dis-
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tributed inside and outside the NS component, the effect on the radius is small. At around
r = 11.5 km, a kink can be seen in the radial profile of the field component B(r). This point
coincides with the point where the fermionic radius of the FBS is located. This illustrates
the gravitational backreaction between the vector field and the NS component of the FBS.

In Figure 2, we show radial profiles of the pressure P(r) (orange) and the vector field
components E(r) (black), B(r) (blue) of an FPS. In the left panel, we show an FPS in the first
mode, which can be identified by the fact that the E(r) component crosses the x-axis twice
and B(r) crosses it once. The boson mass is m = 1.005 · 10−10 eV and Λint = 0. This time,
the central density is taken to be ρc = 4ρsat, and the central vector field amplitudes vary.
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Figure 2. Left panel: Radial profiles of the pressure P(r) (orange) and the vector field components
E(r) (black), B(r) (blue) of the first mode of different FPSs with potential Equation (22). The boson
mass is m = 1.005 · 10−10 eV and Λint = 0. The FPSs have a central density of ρc = 4ρsat and varying
central vector field amplitudes E0. The pressure has been re-scaled by a factor of 3 for convenience.
Right panel: Radial profiles of the pressure P(r) (orange) and the vector field components E(r)
(black), B(r) (blue) of FPSs in the zeroth mode with potential Equation (22). The boson mass is
m = 1.34 · 10−10 eV and the self-interaction strength is Λint = 50. The FPSs have a central density
of ρc = 5ρsat and varying central vector field amplitudes E0. The pressure has been re-scaled
by a factor of 3 for convenience. Due to the analytical bound on E0 Equation (24), the maximal
amplitude is roughly E0,crit ≈ 0.0282. The limited field amplitude strongly limits the effect on the
fermionic component.

The right panel of Figure 2 shows an FPS in the zeroth mode with a vector boson
mass of m = 1.34 · 10−10 eV and a self-interaction strength of Λint = 50. The maximal
amplitude is roughly E0,crit ≈ 0.0282 due to the analytical bound on E0; see Equation (24).
The limited field amplitude strongly limits the possible effect on the fermionic component
and thus on the fermionic radius, especially in the limit of large Λint. It may therefore be
difficult to detect strongly self-interacting vector DM within an NS if one only considers
measurements of the fermionic radius. It is also conceivable that the maximum amplitude
E0,crit implies a maximum amount of possible accretion of vector DM, which could be used
to set bounds on the DM self-interaction strength. We leave the analysis of this aspect for a
future work.

3.2. Stable Solutions

We compute a grid of FPSs with different central densities ρc and central vector field
amplitudes E0. Using the array of solutions, we compute the stability curve using stability
criterion Equation (26). The stable solutions can then be filtered and analyzed further.

This can be seen in the left panel of Figure 3, where we compute FPSs with quartic self-
interaction potential Equation (22) with m = 1.34 · 10−10 eV and Λint = 0. We additionally
compute the stability curve using stability criterion Equation (26). The stability curve
defines the boundary between stable and unstable configurations under linear radial
perturbations. The shape of the stability curve for FPSs is qualitatively very similar to the
case of scalar FBSs (compare to [15]). For pure neutron stars and Proca stars, respectively,
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the curve converges on the ρc- and E0-axes at the point where the non-mixed configurations
have their maximum gravitational masses. We take only the FPSs inside the stability region,
enclosed by the stability curve, and plot them in a mass–radius (MR) diagram. This leads
to the graph in the right panel of Figure 3.
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Figure 3. Left panel: Total gravitational mass of different FPSs as a function of the restmass density ρc

and central vector field amplitude E0. Additionally, we show contours of constant gravitational mass.
The black line corresponds to the stability curve, which separates stable solutions (in the lower left
region) from unstable solutions (everywhere else). Right panel: Mass–radius diagram displaying the
fermionic radius vs. the total gravitational mass for FPS configurations that are within the stability
region displayed in the left panel. Each point corresponds to a single configuration and is color-coded
according to the DM fraction Nb/(Nb + Nf). The solid black–white line shows the mass–radius curve
for pure fermionic matter. In both cases, a vector field with mass of m = 1.34 · 10−10 eV and no
self-interactions was considered in addition to the DD2 EOS for the fermionic part.

We see that stable FPS configurations form an MR region instead of an MR curve
(which would be the case for single-fluid systems). The stable configurations form core or
cloud solutions, depending on their DM fraction Nb/(Nb + Nf). A DM core is present if
the bosonic component is geometrically smaller than the fermionic component (i.e., when
Rb < Rf). The opposite is true for cloud configurations. The FPSs with high DM fractions
have masses of roughly 1 M⊙. This is higher than for scalar FBSs with equal boson mass m
(compare to [15]). This can be explained through the different scaling relations for pure
Proca stars and boson stars.

Another point where FPSs differ from FBSs is the existence of maximal amplitude
E0,crit Equation (24) for the vector field. When increasing the self-interaction strength
Λint, the maximal possible vector field amplitude shrinks. This affects the shape of the
stability curve.

In Figure 4 (left panel), we show such a case where the self-interaction strength is
Λint = 5. The stability curve does not reach the E0-axis anymore but instead rises vertically
from the pure NS configurations until it reaches the FPSs with maximal central vector
field amplitude E0,crit ≈ 0.089. We have manually extended the stability curve so that it
proceeds horizontally until it reaches the E0-axis. It is noteworthy that this behavior starts
at surprisingly small self-interaction strengths and persists up to higher Λint.

In principle, a third behavior of the stability curve of FPSs is also conceivable. For some
specific Λint, it should be possible that the stability curve does not admit one continuous
shape like in Figures 3 and 4 but that the stability curve is cut into two parts, namely one
part that starts at the E0-axis and then rises to reach the edge where E0,crit is located and
another part that starts at the ρc-axis and then rises roughly vertically until it too reaches
the analytical bound for the vector field amplitude E0,crit (think of a horizontal line cutting
through the stability curve in Figure 3 at, e.g., E0 = 0.06). During our testing, we did not
find any case where the stability curve follows this behavior. However, there is also no
reason that we are aware of as to why such a behavior of the stability curve should be
forbidden. This is why we presume that such a case might exist.
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We compute various FPSs with different values of vector boson masses m = {1, 10,
0.1} × 1.34 · 10−10 eV and self-interaction strengths Λint = {0, 10, 100}. We chose the same
parameter values as in [15] to allow for easy comparability. In Figure 5, we show the mass
and fermionic radii of all stable FPS configurations in an MR diagram. In Figure 6, we
show the mass plotted against the effective gravitational radius RG. It is defined as the
radius where 99 % of the total restmass Nf + Nb is contained. The stable solutions have
been obtained using stability criterion Equation (26). Note the different axis scaling in the
figures. It was chosen such that the relevant trends and features of the solutions can be
seen well.

0 2 4 6 8
ρc [ρsat]

0.00

0.02

0.04

0.06

0.08

E
0
 [M

p
]

1.0
0

1.
18

1.
18 1.

70

2.2
0

2.40

0.0

0.5

1.0

1.5

2.0

2.5

Total Gravitioanl M
ass [M

¯ ]

0 5 10 15 20
Fermionic Radius [km]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

To
ta

l G
ra

vi
ta

tio
na

l M
as

s [
M

¯
]

Bu
ch

da
hl

 lim
it

FPS Configurations
Pure DD2

0.0

0.2

0.4

0.6

0.8

1.0

Dark M
atter M

ass Fraction

Figure 4. Left panel: Total gravitational mass of different FPSs as a function of the restmass density
ρc and central vector field amplitude E0, with m = 1.34 · 10−10 eV and Λint = 5. Additionally, we
show contours of constant gravitational mass. The black line corresponds to the stability curve,
which separates stable solutions (in the lower left region) from unstable solutions (everywhere
else). The stability curve reaches configurations with the maximum possible vector field amplitude
E0,crit ≈ 0.089. This is a feature unique to FPSs. Right panel: Mass–radius diagram displaying the
fermionic radius vs. the total gravitational mass for FPS configurations that are within the stability
region displayed in the left panel. Each point corresponds to a single configuration and is color-coded
according to the DM fraction Nb/(Nb + Nf). The solid black–white line shows the mass–radius
curve for pure fermionic matter. A vector field with mass of m = 1.34 · 10−10 eV and Λint = 5 was
considered in addition to the DD2 EOS for the fermionic part.

We hereafter discuss some general trends and compare the results to the one ob-
tained for scalar FBSs. The following analysis should thus be explicitly compared to
Figures 2 and 3 in [15].

We find that many of the general conclusions regarding FBSs can also be applied to
FPSs. FPSs with small DM fractions are dominated by the fermionic component, lead-
ing to only small changes in the fermionic radius. In the case of DM-dominated FPSs,
the solutions behave similarly to pure Proca stars. This leads to higher masses as com-
pared to FBSs, where the total gravitational mass of pure boson stars will be roughly half
that of a Proca star with the same boson mass, as can be seen well for the cases where
m = {1, 0.1} × 1.34 · 10−10 eV. FPSs can thus reach higher total gravitational masses as
compared to FBSs with the same DM mass and self-interaction strength.

For m = 1.34 · 10−9 eV, the bosonic component is concentrated inside the fermionic
one and forms a DM core. Even small amounts of DM can have a significant impact on
the fermionic radius since the whole vector field is concentrated entirely inside the NS
component. More massive DM particles can thus have larger effects on the fermionic radius
compared to low-mass DM at similar DM fractions. This is due to the cloud-like structure
of low-mass DM. For small DM masses, the majority of the DM will be concentrated outside
the NS part—due to its larger correlation length—and will thus have smaller effects on the
fermionic radius. The smaller the mass and the larger the self-interaction strength, the more
likely the formation of a DM cloud is. The opposite is true for DM core solutions. FPSs
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tend to produce configurations with larger total masses compared to scalar FBSs. Their
halos also extend to larger radii, as can be seen from the gravitational radius in Figure 6.
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Figure 5. Relation between total gravitational mass Mtot and fermionic radius Rf for different FPSs.
The rows correspond to bosonic masses of m = {1, 10, 0.1} × 1.34 · 10−10 eV, and columns correspond
to self-interactions of Λint = {0, 10, 100}, respectively. We use the DD2 EOS for the fermionic part.
Notice the different scale of the bottom plots. The gray region marks the Buchdahl limit, where no
stable NS can exist. Observing only Rf of these systems would appear to violate the Buchdahl limit,
even though the FPS as a whole does not.

In general, the gravitational radius of FPSs is larger in size as compared to scalar FBSs
(compare to Figure 3 in [15]). The larger gravitational radius suggests that FPS have larger
tidal deformabilities compared to their scalar field counterparts (FBS) with equal m and
Λint. This is because objects with larger radii are generally favored to tidally disrupt. This
could favor higher vector boson masses compared to the corresponding scalar boson mass
in the case of FBSs. A future quantitative analysis of the tidal deformability in FPSs is
needed to definitively verify this hypothesis.

When considering the gravitational radius of FPSs with small boson masses of
m = 1.34 · 10−11 eV (bottom row of Figure 6), the transition between DM-dominated and
NS-dominated configurations appears more abrupt than in the FBS case (compare to
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Figure 3 in [15]). For example, when starting with a system with a DM fraction of roughly
0% or 80%, increasing the DM fraction by small amounts can massively impact the total
mass and gravitational radius of the combined system.
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Figure 6. Relation between total gravitational mass Mtot and effective gravitational radius RG for
different FPSs. RG is the radius where 99% of the total restmass is contained. The rows correspond
to bosonic masses of m = {1, 10, 0.1} × 1.34 · 10−10 eV, and columns correspond to self-interactions
of Λint = {0, 10, 100}, respectively. We use the DD2 EOS for the fermionic part. Notice the different
scales of the bottom plots. For pure NSs, because the crust has comparatively low density, RG is
significantly smaller than Rf (compare to Figure 5). RG tends to be higher as compared to scalar FBSs
for equal boson masses and self-interaction strength (compare to Figure 3 in [15]).

Finally, note the outlier points in Figure 6 for m = 1.34 · 10−11 eV and Λint = 100 at
roughly RG = 350 km. These are likely to be numerical artifacts and should thus not be
regarded as physical. This is to be expected since, for small DM masses and large self-
interactions, the numerical solution becomes increasingly difficult. This problem could be
avoided by using smaller step sizes and higher numerical precision. However, this would
also lead to longer runtimes of the code.
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3.3. Comparison with Scalar FBS

We show MR relations of FPSs and scalar FBSs with fixed DM fractions Nb/(Nb + Nf).
In the left panel of Figure 7, we show different FPSs with constant DM fractions. The

DD2 EOS [96] was used for the NS component. For the vector boson, we chose masses
of m = {1, 0.1} × 1.34 · 10−10 eV and no self-interactions. This figure should be explicitly
compared to Figure 5 (left panel) in [15] as the same masses and DM fractions were chosen.
The MR curve of a pure NS with the DD2 EOS (black line) is shown as a reference. Depend-
ing on the boson mass, FPSs can have increased or decreased maximum total gravitational
mass when there is vector DM present. FPSs tend to produce configurations with larger
gravitational masses compared to FBSs with equal parameters (mass, self-interaction, and
DM fraction). This is not surprising when considering the scaling relations of pure boson
stars and Proca stars, respectively. The gravitational mass scales like Mmax ≈ 0.633M2

p/m
for pure boson stars and like Mmax ≈ 1.058M2

p/m for pure Proca stars, where m is the
mass of the scalar/vector boson, respectively. The presence of light bosonic DM can help to
increase the total gravitational mass of an NS. This can create EOSs that do not fulfill the
observational constraints for the maximum NS mass viable again. Vector DM has a larger
effect on the gravitational mass than scalar DM, and thus smaller amounts of vector DM
are needed to produce an equal increase in the total gravitational mass.
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Figure 7. Left panel: Mass–radius relations of FPSs with the DD2 EOS [96] for vector boson masses
m = {1, 0.1} × 1.34 · 10−10 eV, no self-interactions, and constant DM fractions Nb/(Nb + Nf). This
figure should be compared to Figure 5 (left panel) in [15] as the same masses and DM fractions were
chosen. The orange band marks the observational constraint of J0952-0607 [8] and the percentage
numbers denote the respective DM fractions. Right panel: Mass–radius relations of FPSs (orange and
green lines) and FBSs (blue lines) with the DD2 EOS for different boson masses, no self-interactions,
and different DM fractions. The black lines correspond to the pure NSs with the DD2 EOS and
KDE0v1 EOS [100], respectively. FPS and FBS solutions with different masses and DM fractions can
both be degenerate with each other, or also degenerate with pure NSs with a different EOS.

In the right panel of Figure 7, we show different FPSs (orange and green lines) and
FBSs (blue lines) for different boson masses, no self-interactions, and constant DM fractions
Nb/(Nb + Nf). We used the DD2 EOS [96] for the NS component. The parameters were
chosen in a way to illustrate the degeneracies that can arise from different DM models or EOSs
for the NS component. For example, FPSs and FBSs with boson masses of m = 1.34 · 10−11 eV
(dashed lines) produce virtually indistinguishable mass–radius relations when the FPSs and
the FBSs have a DM fraction of 60% and 75% respectively. A similar behavior can be seen for
the cases where the boson mass is m = 1.34 · 10−10 eV (dot-dashed lines). Here, FBSs with
15% DM fraction produce similar MR curves to FPSs with 20% DM fraction. In addition,
the resulting MR curves are comparable to the curve corresponding to a pure NS with the
KDE0v1 EOS [100]. They also match the curve corresponding to an FPS with 10% DM fraction
and a vector boson mass of m = 2.24 · 10−10 eV (green line).
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In conclusion, FPSs can produce degenerate results in the MR plane with both FBSs and
pure NS given that different DM fractions and EOSs are allowed. Additional observables,
such as tidal deformability, are needed to break the degeneracy. However, it seems difficult
to prevent degenerate solutions from existing in general since FPSs themselves can be
degenerate with other FPS solutions that have different boson masses and DM fractions.

We further explore the degeneracy between FPS and FBS solutions. In Figure 8, we
show the stable FBS and FPS solutions in an MR diagram. We used the scaling relations
of the maximum mass for pure boson stars (Mmax ≈ 0.633M2

p/m) and pure Proca stars
(Mmax ≈ 1.058M2

p/m) to match the boson masses in a way that both FPSs and FBSs will
have the same gravitational mass in the pure boson star/Proca star limit. To guarantee
matching solutions in this limit, we chose a scalar boson mass of m = 1.34 · 10−10 eV
and we chose a mass of 1.058 ÷ 0.633 ≈ 1.671 times the mass of the scalar boson—i.e.,
m = 2.24 · 10−10 eV—for the vector boson. We find a high degree of similarity between the
MR region of FBSs and FPSs with the scaled masses. This makes both solutions almost
indistinguishable. The small differences present between the left and right panel of Figure 8
can be attributed to slightly different grid spacing used for the initial conditions ρc, ϕc (and
ρc, E0). This can be seen in the MR regions at small total gravitational masses Mtot < 0.5 M⊙
and also at radii Rf > 15 km. The color shading further reveals a different distribution of
DM fractions for a given Mtot and Rf, even though the difference is small.
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Figure 8. Left panel: Mass–radius diagram displaying the fermionic radius vs. the total gravitational
mass for stable FBS configurations with scalar boson mass of m = 1.34 · 10−10 eV and no self-interaction.
Each point corresponds to a single configuration and is color-coded according to the DM fraction
Nb/(Nb + Nf). The solid black–white line shows the mass–radius curve for pure fermionic matter,
modeled by the DD2 EOS. Right panel: Mass–radius diagram displaying the fermionic radius vs. the
total gravitational mass for stable FPS configurations with vector boson mass of m = 2.24 · 10−10 eV
and no self-interaction. Each point corresponds to a single configuration and is color-coded according
to the DM fraction Nb/(Nb + Nf). The solid black–white line shows the mass–radius curve for pure
fermionic matter. The vector boson mass was chosen so that, in the limit of pure boson stars/Proca
stars, the same total gravitational mass is produced. Both diagrams show only marginal differences.

We expect a similar behavior to hold when considering different scalar and vector
boson masses (with zero self-interaction) given that they differ by the same factor of ≈1.671.
This adds further confidence to the observation that FBSs and FPSs might be difficult to
distinguish since a given solution might be another system but with different boson mass
(or DM fraction).

Similar scaling relations also exist for boson stars and Proca stars in the limit of
large self-interactions Λint. A similar procedure might therefore be possible when also
matching the self-interaction strength appropriately. An independent measurement of the
DM particle mass would break this degeneracy to a certain degree. However, it would
also be necessary to constrain the self-interaction strength and the DM fraction through
other means, for example, using correlations of the DM abundance in the galactic disk
(see [101,102]) or using the bound on the maximal vector field amplitude.
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The scaling behavior between (fermion) boson stars and (fermion) Proca stars also
suggests another application. If it persists for large non-zero self-interactions, it might
be possible to also use the effective bosonic EOS derived by Colpi et al. [103] to model
(fermion) Proca stars. Since the EOS by Colpi et al. was originally derived for a scalar field,
one would then have to scale the boson mass by a factor of 1.671 and the self-interaction by
an appropriate amount. The necessary scaling for the self-interaction will be dictated by
the scaling relations for pure boson stars (Mmax ≈ 0.22

√
Λint M2

p/m [103]) and Proca stars
(Mmax ≈

√
Λint ln(Λint) M2

p/m [84]) at large self-interaction strengths. We note, however,
that great care is needed since Proca stars technically do not exist in the limit of large
self-interactions (see the analytical bound on vector field amplitude Equation (24)). We
plan to study this aspect in the future.

3.4. Higher Modes and Different EOSs

We broaden our analysis to FPSs with different EOSs for the fermionic component and to
FPSs where the bosonic component exists in a higher mode. Higher modes are usually assumed
to be unstable, but, as numerical simulations of scalar boson stars have shown [37,104], higher
modes might be dynamically stable when gravitationally interacting in a multi-component
system. We therefore start by considering FPSs in the first and second mode in Figure 9.
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Figure 9. Left panel: Mass–radius diagram displaying the fermionic radius vs. the total gravitational
mass for stable FPS configurations in the first mode with vector boson mass of m = 1.34 · 10−10 eV
and no self-interaction. Each point corresponds to a single configuration and is color-coded according
to the DM fraction Nb/(Nb + Nf). The solid black–white line shows the mass–radius curve for pure
fermionic matter. Right panel: Mass–radius diagram displaying the fermionic radius vs. the total
gravitational mass for stable FPS configurations in the second mode with vector boson mass of
m = 1.34 · 10−10 eV and no self-interaction. Each point corresponds to a single configuration and
is color-coded according to the DM fraction Nb/(Nb + Nf). The solid black–white line shows the
mass–radius curve for pure fermionic matter.

In the left panel of Figure 9, we show the total gravitational mass and the fermionic
radius of stable FPS configurations, where the bosonic component is in the first mode
(as opposed to the ground mode, which is the zeroth mode). The vector boson mass is
m = 1.34 · 10−10 eV, and the self-interaction is set to zero. We first note the fact that stable
solutions under linear radial perturbations, according to stability criterion Equation (26),
exist at all. This is a non-trivial statement as higher modes of Proca stars (and also of scalar
boson stars) are usually believed to be unstable. Note, however, that stability criterion
Equation (26) is merely a necessary condition for stability and that there could be additional
conditions that must be fulfilled for a solution to be stable in higher modes. Also, our
stability analysis does not consider the dynamical stability of the higher modes. They might
thus be unstable in non-static scenarios. It is, however, possible that the higher modes of the
bosonic part might be stabilized through the gravitational interaction with the fermionic
part of the FPS. In general, solutions in higher modes need energy to be supported or
excited. Otherwise, they would decay to the ground mode. The authors of [104] explicitly
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studied the stability of higher modes for scalar boson stars with multiple scalar fields. They
investigated cases where one field is in the ground mode and another is in the excited
state. They found that the excited mode is stable if the charge of the conserved Noether
current (which can also be interpreted as the particle number or the total restmass; see
Equation (11)) of the ground mode is larger than the Noether charge of the excited mode:
Nground > Nexcited. If this logic also holds for mixed systems of fermions and bosons, this
would imply an additional stability condition that the fermion number Nf must be larger
than the boson number Nb of the FPS in the excited mode. We further refer to chapter 3.7 in
[30] for a more detailed review.

The FPSs in the first mode exhibit higher gravitational masses in the configurations
dominated by the bosonic component, compared to FPSs in the zeroth mode (compare
to Figure 3). The numerical value of the frequency ω in the higher mode is also larger
than the frequency in lower modes. This behavior is consistent with earlier works, which
studied pure Proca stars analytically [84] and numerically [79]. They also observed that
higher frequencies lead to larger total gravitational mass. The left panel of Figure 9 shows
a number of outlier points at around 11 km and 2.3 M⊙. These are likely numerical artifacts
due to the increased difficulty in finding accurate numerical solutions for higher modes.

The right panel of Figure 9 shows stable FPS configurations in the second mode. The
vector boson mass is m = 1.34 · 10−10 eV and the self-interaction is set to zero. Here also,
the existence of stable solutions is to be acknowledged. In the limit of high DM fractions,
the FPSs converge to the solution of pure Proca stars and reach total gravitational masses
of roughly 2.5 times that of Proca stars in the zeroth mode (compare to Figure 3). In
comparison to the case in the first mode (left panel of Figure 9), the quality of the overall
solution can be seen to deteriorate further. We believe the outlier points at roughly <13 km
and 1 M⊙ to be non-physical numerical artifacts. The outlier points coincide with the
solutions in the zeroth mode. This suggests that our solver did not find the second mode in
these cases and converged on the zeroth mode instead. Solutions of FPSs in even higher
modes should therefore be considered with great care. The difficulty in obtaining accurate
numerical solutions is likely to increase further for higher modes. The quality of the
solution is, however, sufficient to gain a qualitative understanding of FPSs in higher modes.
In conclusion, higher modes are stable under linear radial perturbations and increase the
total gravitational mass of FPSs by substantial amounts.

We investigate the effect that different EOSs have on FPSs. In Figure 10, we use the
APR EOS [105] for the fermionic part. We chose a vector boson mass of m = 1.34 · 10−10 eV
with no self-interaction for the bosonic part. In the left panel, we notice that the shape of the
stability curve (black curve) is affected by the choice in the EOS. On the ρc-axis, it converges
to a value of around 7.5ρsat. This is higher than the corresponding value of ρc when the
DD2 EOS is used (compare to Figure 3) because the APR EOS is softer than the DD2 EOS.
This means that the nuclear matter is easier to compress and higher central densities can
be supported by the EOS. The easier compressibility also shows itself through smaller NS
radii (see the right panel). In the limit of pure Proca stars, the stability curve converges
to the same value as it does when the DD2 EOS is used (compare to Figure 3). The MR
region shows a similar qualitative behavior as in the DD2 case. The high DM fraction limit
in particular shows a convergence to the solution to pure Proca stars. The APR EOS also
allows higher central amplitudes of the vector field E0, compared to the DD2 EOS with
equal boson mass and self-interaction strength.

Figure 11 shows different FPS configurations where the FSG EOS [96] was used for
the fermionic part. For the bosonic part, we used a boson mass of m = 3.01 · 10−11 eV and
no self-interaction. The FSG EOS is a soft EOS and thus reaches higher central densities ρc
for pure NSs. It is excluded by current observational constraints (see Figure 7) as it cannot
produce pure NSs with masses of M = 2.35+0.17

−0.17 M⊙ [8]. However, adding DM to the pure
NSs can significantly increase the maximum gravitational mass of the combined system.
The FSG EOS is then able to reach the observational bound on the maximum NS mass in
the presence of DM. In fact, the MR curve of the pure DD2 EOS is entirely contained within
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the stability region of the FPSs with the FSG EOS. This again raises the point that some FPS
solutions are degenerate with some NS solutions (see Figure 8), when allowing for different
DM fractions and DM masses. Another factor complicating the identification of the EOS
vs. the DM effects is that the presence of dark matter might change the fermionic radius
produced by a given EOS. For example, [92] found that the presence of self-interacting and
repulsive fermionic dark matter can lead to nearly indistinguishable fermionic radii for
different EOS. To figure out whether and which types of mixed DM–NS systems might
exist, it will be crucial to perform sophisticated parameter searches of the system and obtain
more measurements to constrain the DM and NS properties in future studies.
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Figure 10. Left panel: Total gravitational mass of different FPSs as a function of the restmass density
ρc and central vector field amplitude E0. Additionally, we show contours of constant gravitational
mass. The black line corresponds to the stability curve, which separates stable solutions (in the lower
left region) from unstable solutions (everywhere else). The qualitative behavior of the stability curve
is similar to the case with the DD2 EOS (see Figure 3). Right panel: Mass–radius diagram displaying
the fermionic radius vs. the total gravitational mass for FPS configurations that are within the stability
region displayed in the left panel. Each point corresponds to a single configuration and is color-coded
according to the DM fraction Nb/(Nb + Nf). The solid black–white line shows the mass–radius curve
for pure fermionic matter. In both cases, a vector field with a mass of m = 1.34 · 10−10 eV and no
self-interactions was considered in addition to the APR EOS [105] for the fermionic part.
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Figure 11. Left panel: Total gravitational mass of different FPSs as a function of the restmass density
ρc and central vector field amplitude E0. Additionally, we show contours of constant gravitational
mass. The black line corresponds to the stability curve, which separates stable solutions (in the lower
left region) from unstable solutions (everywhere else). Right panel: Mass–radius diagram displaying
the fermionic radius vs. the total gravitational mass for FPS configurations that are within the stability
region displayed in the left panel. Each point corresponds to a single configuration and is color-coded
according to the DM fraction Nb/(Nb + Nf). The solid black–white line shows the mass–radius curve
for pure fermionic matter. In both cases, a vector field with a mass of m = 3.01 · 10−11 eV and no
self-interactions was considered in addition to the FSG EOS [96] for the fermionic part.
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4. Conclusions

In this work, we studied the impact that bosonic dark matter (DM) has on the mass
and radius of neutron stars (NSs). DM was modeled as a massive self-interacting complex
vector field. DM was further assumed to only interact gravitationally with the fermionic
neutron star matter. We derived the equations of motion describing static spherically
symmetric fermion Proca stars (FPSs) and computed their properties numerically. We also
found a scaling relation between the frequency, vector field, and metric components, and
we derived an analytical upper bound on the vector field amplitude.

We showed that the presence of the vector field can lead to core-like and to cloud-like
solutions. Core-like solutions can increase the compactness of the NS component. For some
configurations, observing only the fermionic radius and the total gravitational mass would
appear to violate the Buchdahl limit. We found core-like solutions for vector boson masses
of m ≳ 1.34 · 10−10 eV and small self-interactions Λint = λ/8 πm2. Cloud-like solutions
appeared when m ≲ 1.34 · 10−11 eV and Λint is large. For some small boson masses
m ≲ 1.34 · 10−11 eV, the presence of DM can significantly increase the total gravitational
mass while leaving the fermionic radius approximately constant.

We computed radial profiles of FPSs and found that the existence of a maximum
possible vector field amplitude limits the effect of DM on the NS when the self-interaction
Λint is large. The maximum amplitude implies a maximum possible amount of vector
boson DM accretion and could thus be used to set bounds on the DM properties.

We also compared FPSs to FBSs with a scalar field. We used the same parameters as
in [15] to simplify the comparison. For stable FPS configurations, we found that many of
the general qualitative trends that apply to FBSs also apply to FPSs. However, vector DM
leads to higher FPS masses and larger gravitational radii for equal m and Λint. This could
also imply a larger tidal deformability in FPSs compared to FBSs. Also, a measurement
of the gravitational radius would favor larger vector boson masses compared to scalar
boson masses.

For FPS configurations of constant DM fraction, we found that the effect of vector DM
on the NS properties (total gravitational mass and fermionic radius) is larger compared
to FBSs with equal DM fraction, mass m, and self-interaction strength Λint. One therefore
needs a larger amount of scalar DM to cause the same effect as vector DM. For different
boson masses and DM fractions, we found that FPSs and FBSs can both be degenerate with
each other and also be degenerate with pure NS with a different EOS.

We found an especially high degree of similarity between FBS solutions with no self-
interaction and a boson mass of m = 1.34 · 10−11 eV with FPS solutions where the vector
boson mass is larger by a factor of 1.671. We expect the similarity in the behavior to also
hold for different boson masses (and also for non-zero self-interactions), as long as the
vector boson mass is scaled accordingly by the right factor.

These similarities also hint towards a possibility to also use the effective EOS by
Colpi et al. [103] for (fermion) Proca stars. We note, however, that great care is needed since
Proca stars do not exist in the limit of large self-interactions (see the analytical bound on
vector field amplitude Equation (24)). The similarities between FBSs and FPSs might also
be useful for numerical applications. Scalar (fermion) boson stars are easier to implement
and numerically cheaper to solve than FPSs. One could then simply solve the equations for
scalar (fermion) boson stars with a re-scaled mass (and self-interaction parameter Λint) to
compute the properties (Mtot, Rf) of (fermion) Proca stars.

The prevalence of degenerate solutions highlights the importance of measuring addi-
tional observables, such as the tidal deformability, to break the degeneracies.

We confirmed the existence of higher modes that are stable under first-order radial
perturbations. We found that higher modes lead to higher total gravitational masses
of the mixed FPS systems. Using FPSs with different EOSs for the fermionic part, we
explicitly confirmed that, for certain DM masses, previously excluded EOSs are able to
fulfill observational bounds if DM is present. Mixed systems of bosonic DM and NS matter
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can therefore be consistent with all the current observational constraints if suitable boson
masses and self-interaction strengths are chosen.
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Appendix A. Units

In this work, we use units in which the gravitational constant, the speed of light,
and the solar mass are set to G = c = M⊙ = 1. As a direct consequence, distances are
measured in units of ≈ 1.48 km, which corresponds to half the Schwarzschild radius of the
Sun (also called the gravitational radius of the Sun). The Planck mass is Mp =

√
h̄c/G ≈

1.1 × 10−38M⊙. Since G = c = M⊙ = 1, it follows that h̄ ≈ 1.2 × 10−76 ̸= 1.
Boson stars (with a scalar field) are described using the Klein–Gordon equation, which

in SI units and flat spacetime reads (□− (mc/h̄)2)ϕ = 0. The term mc/h̄ is the inverse
of the reduced Compton wavelength λc = h̄/mc, which sets the typical length scale for
the system even in the self-gravitating case. We assume that the typical length scale of the
boson is similar to the gravitational radius GM⊙/c2, which in the case of mass scales of
∼1 M⊙ is approximately 1.48 km. With m = h̄/cλc, this therefore leads to a mass scale of
the bosonic particle of 1.336 · 10−10 eV. Previous works such as, e.g., [15,33], thus specify
the mass of the scalar particle in these units. A mass of m = 1 in our numerical code [88]
then also corresponds to 1.336 · 10−10 eV. This choice in the boson mass then automatically
leads to boson stars with masses in the range of ∼ 1 M⊙. The same reasoning can also be
applied to the case where the boson is a vector boson. This is valid since all components of
a vector field also fulfill the Klein–Gordon equations individually.
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