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We investigate the impact of post-adiabatic (1PA) terms on parameter estimation for extreme
and intermediate mass-ratio inspirals using state-of-the-art waveform models. Our analysis is the
first to employ Bayesian inference to assess systematic errors for 1PA waveforms. We find that
neglecting 1PA terms introduces significant biases for the (small) mass ratio ϵ ≳ 10−5 for quasi
circular orbits in Schwarzschild spacetime, which can be mitigated with resummed 3PN expressions
at 1PA order. Moreover, we show that the secondary spin is strongly correlated with the other
intrinsic parameters, and it can not be constrained for ϵ ≲ 10−5. Finally, we highlight the need
for addressing eccentric waveform systematics in the small-mass-ratio regime, as they yield stronger
biases than the circular limit in both intrinsic and extrinsic parameters.
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I. INTRODUCTION

One of the most promising sources for the Laser In-
terferometer Space Antenna (LISA), the first planned
space-based gravitational-wave detector, are extreme-
mass-ratio inspirals (EMRIs). An EMRI is the slow
inspiral of a stellar-mass compact object (CO) of mass
µ ∼ 100−2M⊙ into a massive black hole (MBH) with
mass M ∼ 105−7M⊙. The successful detection of an
EMRI within the LISA data stream will be a ground-
breaking achievement, offering outstanding tests of gen-
eral relativity and unique insights into the fundamental
nature of the central MBH [1–5]. Extracting the maxi-
mum information from LISA will only be possible with
sufficiently high-fidelity waveform models. The source
modeling of the gravitational-wave (GW) signal is ex-
ceptionally complicated, requiring sophisticated mathe-
matical techniques arising from black hole perturbation
theory and gravitational self-force (GSF) theory [6, 7].
Work in these areas dates back to the late 1950s, but,
to this day, the mathematical details for generic orbits
(eccentric and precessing inspirals) into rotating BHs,
when accounting for GW emission, are still being devel-
oped. Recent progress in this waveform-modeling pro-
gram includes rapid generation of waveforms [8–14], the
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inclusion of transient resonances [15–18] and of the small
companion’s spin [19–25], generation of adiabatic wave-
forms for generic orbits around a Kerr BH [15, 26] and
of some specific post-adiabatic corrections on generic
orbits [27], and generation of waveforms including all
effects at first post-adiabatic order in the case of quasi-
circular, nonspinning binaries [28].

Not only are EMRIs challenging to model, but they
prove to be one of the hardest problems in LISA data
analysis [29–31]. Due to the rich structure of the wave-
form and sheer volume of parameter space, grid-based
searches such as those used by LIGO will be impossi-
ble [32]. Furthermore, EMRI signals are typically long-
lived and may remain within the LISA sensitivity band
for multiple years. The number of cycles scales with the
inverse of the (small) mass ratio, ϵ = µ/M , implying
that one could observe hundreds of thousands of orbits.
Thus, we expect to constrain parameters to sub-percent
level precision [33, 34].

The detection and eventual characterization of an
EMRI signal require waveform models that are faith-
ful to the GW signal buried within the noise of the in-
strument. A detailed knowledge of the GSF is required,
which involves solving the Einstein field equations or-
der by order in powers of the small perturbative vari-
able ϵ ≪ 1. Using a two-timescale expansion [7, 35],
it has been shown that the CO’s orbital phase has an
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expansion of the form1

ϕ = ϵ−1ϕ0︸ ︷︷ ︸
0PA

+ ϕ1︸︷︷︸
1PA

+ ϵϕ2︸︷︷︸
2PA

+O(ϵ2). (1)

The leading order in this expansion represents the adi-
abatic (0PA) evolution, which can be understood as a
slow evolution of geodesic orbital parameters due to the
orbit-averaged dissipative piece of the first-order term
in the self-force (arising from the ∼ ϵ term in the met-
ric perturbation). The forcing functions that drive this
evolution have been computed at 0PA order for generic
bound orbits [15, 26, 36, 37]. However, it is known that
we also require the first post–adiabatic (1PA) contribu-
tion, ϕ1, to ensure sufficiently accurate waveform mod-
els [35, 38, 39]. This 1PA term involves not only the con-
servative and dissipative-oscillatory corrections at first
order in the mass ratio, but also the orbit-averaged dissi-
pative effects of the second-order self-force (arising from
the ∼ ϵ2 term in the metric perturbation). Finally, lin-
ear effects from the secondary spin and evolving spin
and mass of the primary feed into this 1PA term [22, 40].
Since the second post-adiabatic (2PA) corrections induce
a contribution to the orbital phase which scales linearly
with the mass ratio, they are deemed sufficiently small
to be unnecessary for parameter estimation of EMRIs.
Thus, knowledge of the second-order self-force correc-
tions (and linear corrections from the secondary spin) is
thought to be both necessary and sufficient for EMRI
data analysis. In 2021, a major breakthrough in ac-
curacy was achieved: the second-order metric pertur-
bation was computed, allowing the construction of the
first complete 1PA waveforms for quasicircular orbits
in Schwarzschild spacetimes [28] (building on Refs. [40–
42]). This waveform showed remarkable agreement with
numerical relativity (NR) waveforms, even for ϵ ∼ 10−1,
far outside the EMRI regime; we refer to Ref. [43] for a
thorough accuracy analysis.

It is crucial that EMRI waveforms are not only accu-
rate but also fast and computationally efficient, as typi-
cal Bayesian analysis requires ∼ 105−6 waveform evalua-
tions to infer the parameters that govern the underlying
true model. The vast parameter space of EMRIs (given
by fourteen parameters, excluding the small companion
spin) further adds to the complexity and computational
burden of Bayesian inference. In order to develop ap-
proaches to tackle the huge parameter space, and be-
cause self-force models were not available, several fast-
to-evaluate but approximate “kludge” models [44–46]

1 In this expansion, we have neglected the effect of resonances
that appear at fractional powers of the mass ratio O(ϵ−1/2).
For the class of orbits considered in this work, resonant orbits
do not exist and thus will be neglected.

were developed. Despite not being as faithful as self-
force waveforms, kludge models were essential for scop-
ing out early LISA science. These models have been
commonly employed in parameter estimation studies in
conjunction with very efficient, but unfortunately non-
robust systematic tests. Such systematic studies include
the Lindblom criteria [47], mismatches between wave-
forms, and the requirement that the orbital dephasing
between two different trajectories is ≲ 1 radian. More
sophisticated data analysis studies on EMRIs employed
Fisher Matrix-based estimates to quote precision mea-
surements of parameters [2, 20, 33, 34, 48–52] and bi-
ases on parameters arising from waveform modeling er-
rors [17, 53]. Fisher matrices are cheap to compute,
requiring a tiny number of waveform evaluations com-
pared to Bayesian inference. However, they are prone to
severe numerical instabilities [48], and they assume that
the underlying probability distribution of the parame-
ters is approximately Gaussian. The use of Bayesian
inference is not a silver bullet either: un-converged pos-
teriors can result in false conclusions, which can turn out
to be quite dangerous when forecasting LISA science.
However, if performed with care, the results can be in-
terpreted as more robust than other systematic tests
discussed in this paragraph.

Waveform models based on self-force calculations are
now emerging. Typically, these require an expensive
offline step involving the calculation of the self-force or
other post-adiabatic effects, and a more rapid online
step that computes the inspiral trajectory and the asso-
ciated waveform. The first waveform models that con-
tained partial post-adiabatic phasing information took
minutes to hours to evaluate [54–56], but more recently
near-identity averaging [11, 13, 14] and two-timescale
approaches [40] have reduced the calculation of the in-
spiral trajectory to a few seconds. Rapidly generating
waveforms that include the full mode content then re-
quires additional optimizations [9, 10].

The work presented here is a first of its kind. It is
the first waveform accuracy study to assess the require-
ment of post-adiabatic terms for LISA-focused stud-
ies based entirely on Bayesian inference. We employ
the state-of-the-art FastEMRIWaveforms (FEW) frame-
work [9, 10], which exploits the EMRI multiscale struc-
ture to quickly generate sub-second waveforms with ac-
curacy suitable for LISA data analysis. We also in-
corporate state-of-the-art second-order GSF results into
the FEW framework. Moreover, our analysis includes
the latest LISA response function [57], yielding second-
generation Time-Delay Interferometry (TDI) variables
with realistic orbits generated by the European Space
Agency [58]. Finally, we also use the most recent in-
strumental noise model given by the LISA mission re-
quirements team [59]. All computations presented in
this work exploit Graphical Processing Units (GPUs)
to accelerate the waveform and LISA response evalu-
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ation time to ≲ 1 second, making Bayesian inference
possible. Thus, we employ the most accurate EMRI
waveforms present in the literature to date. Armed with
these tools, our goal is to understand the importance of
the first post-adiabatic corrections when performing pa-
rameter estimation. Finally, we extended our analysis
for a class of intermediate mass-ratio inspirals (IMRIs),
in particular assuming the primary is a massive black
hole (MBH) with mass M ∼ 105−7M⊙ (like an EMRI)
while the smaller companion has mass µ ∼ 103M⊙

2.
The paper is organized as follows: in Sec. II we de-

scribe the approximate and exact waveform models used
throughout this work; Sec. III outlines the data analy-
sis schemes. The results are presented in Sec IV, more
specifically Sec. IV A on mismodeling post-adiabatic
templates and Sec. IVB on constraining the spin of the
smaller companion. Finally, we discuss the impact of
mismodeling adiabatic templates for eccentric orbits in
Sec. IV C. A comprehensive summary of the results is
given in Sec.V. Finally, we present a discussion along-
side the scope for future work in Sec. VI and Sec. VII
respectively.

Expert readers who do not wish to dig through the
details of the paper can instead skip straight to the main
plots, namely Fig. 1, circular orbit corner plots Figs. 2–
4 and eccentric orbit corner plots Figs. 5–6. We use
G = c = 1 units throughout the paper unless otherwise
stated.

II. WAVEFORM MODELS

We assume that the central body is a spinless BH
described by the Schwarzschild metric with line element

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2

+ r2
(
dθ2 + sin θ2dϕ2

)
. (2)

The binary’s smaller companion is a generic CO en-
dowed with spin; we do not make any assumption on
its internal composition.

To conform with Ref. [28], we find it convenient
in our computations to use the symmetric mass ratio
ν = µ/(M + µ)2 = ϵ/(1 + ϵ)2 = ϵ + O(ϵ2). The sym-
metric mass ratio ranges from 0 < ν ≤ 1/4 and has
been shown to provide a better agreement for binding
energy, fluxes, and waveforms when compared with nu-
merical relativity simulations for comparable mass bi-

2 We choose these masses for an IMRI to ensure that the corre-
sponding GW signal is within the LISA band. In general, both
components of an intermediate mass-ratio binary may be much
lighter [60, 61].

naries [28, 41, 42, 62]. However, it does not materi-
ally affect accuracy at the mass ratios we consider here.
We implement in FEW two 1PA waveforms specialized
to quasicircular orbits. The first one is a hybrid, ap-
proximate waveform, where the 0PA fluxes were com-
puted exactly (up to negligible numerical error) using
linear BH perturbation theory while the post-adiabatic
second-order self-force corrections are obtained by re-
summing a third-Post-Newtonian-order (3PN) expan-
sion. We label this model as cir0PA+1PA-3PN. The
second 1PA waveform is a state-of-the-art model that
includes all relevant 1PA terms: the second-order self-
force fluxes and binding energy corrections, computed
in Ref. [42] and Ref. [41], respectively, and the contri-
butions from the secondary spin, given in Refs. [19, 20].
This second waveform model is labeled as cir1PA. Fi-
nally, to allow for comparison between 0PA and 1PA
waveform models, we implement an adiabatic template
that we call cir0PA. This is identical to the cir1PA model
but with the post-adiabatic terms removed and setting
the spin of the secondary to zero.

To assess the potential impact of eccentricity on
EMRI data analysis, we additionally compare two other
adiabatic models: the fully relativistic 0PA waveform
available in the FEW package of the BHPToolkit [63]
and an approximate waveform that includes GW fluxes
known at 9PN [64]. We label the former as ecc0PA
and the latter as ecc0PA-9PN. The two models have
the same waveform amplitudes and geodesic orbital fre-
quencies and differ only in their expressions for the en-
ergy and angular momentum fluxes that drive the inspi-
ral. For more details on the ecc0PA model, we refer the
reader to Refs. [65, 66], while we provide the evolution
equations for the ecc0PA-9PN model in Sec. II B.

In the following subsections, we summarize the cir1PA
model and describe the approximations introduced in
cir0PA+1PA-3PN and ecc0PA-9PN. For all waveform
models, we follow the convention adopted in Ref. [66]
for the source reference frame, namely the orbital an-
gular momentum is set to be aligned to the z-axis of a
Cartesian frame centered on the MBH. In this way, the
motion is confined to the equatorial plane θ = π/2, and
the orbital plane does not precess.

A. Quasicircular inspirals with spinning secondary
to 1PA order

The equations of motion for EMRIs can be conve-
niently expanded in the small mass-ratio ϵ. At ze-
roth order, the motion of the binary components is
approximated by a free-falling point-particle in a fixed
background spacetime. Post-geodesic corrections arise
from the self-force (see Refs. [7, 67] for a comprehen-
sive review) and the coupling between the curvature
and spin of the smaller companion, called spin-curvature
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force [68–71]. The model we consider is specifically
based on a two-timescale formulation of this small-
ϵ expansion. See Refs. [35, 40] and Ref. [7] for a
comprehensive review. As the name suggests, a two-
timescale expansion assumes the existence of two dis-
parate timescales. The short one is the orbital timescale,
i.e. the orbital period of the secondary. The long
timescale is the radiation-reaction timescale. During
the inspiral, orbital quantities like the frequency, radius,
and waveform amplitudes evolve on the slow timescale,
at a rate of order O(ϵ). By contrast, orbital phases
evolve on the fast timescale, at a rate of order O(1).

In this section we summarize the orbital evolution in
this formulation through 1PA order, dividing the discus-
sion into conservative corrections and dissipative evolu-
tion.

1. Conservative corrections to orbital motion

We first summarize the conservative corrections to the
(slowly varying) constants of motion in the case of qua-
sicircular, equatorial orbits in the Schwarzschild space-
time. For more details on the interplay between the
self-force and spin-curvature force, see Ref. [22], while
for more details on the dynamics of spinning particles
in circular equatorial orbits, see [68, 72].

In general, if dissipation is neglected, a spinning
particle in Schwarzschild spacetime admits four con-
served quantities, which are the (normalized) energy
Ě = E/µ and the components of the (normalized) total
angular momentum J⃗/(µM) = (Jx, Jy, Jz)/(µM) [73,
74]. With our choice of reference frame, J⃗/(µM) =
(0, 0, Jz)/(µM), we define accordingly J̌ = Jz/(µM).
As initial conditions, we choose θ = π/2 and set the
secondary spin (anti-)aligned to the z-axis, which im-
plies that χ > 0 is aligned (χ < 0 is anti-aligned) to J⃗ ,
where χ is the secondary’s dimensionless spin param-
eter. Such conditions ensure that neither the orbital
plane nor the secondary spin precess [68, 75].

Hereafter, hatted quantities refer to dimensionless
variables normalized by M (as opposed to quantities
with checks, such as Ě, which are normalized with µ).
For example, Ω̂ϕ = MΩϕ and r̂ = r/M . The binding
energy Ě is the only first integral we need to model the
inspiral at 1PA order for our quasicircular orbital con-
figurations. It is convenient to parameterize the orbit
in terms of its orbital frequency Ω̂ϕ. The orbital radius
of the particle, r̂p, can then be written to linear order
in ν, at fixed frequency Ω̂ϕ, as

r̂p = r̂ + νχδr̂χ(Ω̂ϕ) + νδr̂SF(Ω̂ϕ). (3)

The leading-order term is the geodesic orbital radius,
r̂ = Ω̂

−2/3
ϕ , while the corrections δr̂χ(Ω̂ϕ) and δr̂SF(Ω̂ϕ)

are the linear shifts due to the secondary spin and to
the conservative first-order self-force, given by

δr̂χ = − 1√
r̂

(4)

and by Eq. (A8) of Ref. [40], respectively. We can sim-
ilarly expand Ě to first order in ν at fixed frequency:

Ě = Ě0 + νχĚχ
1 + νĚSF

1 , (5)

where Ě0 is the geodesic binding energy and Ěχ
1 is the

shift induced by the secondary spin [76], given by

Ě0 =
r̂ − 2√
r̂
√
r̂ − 3

− 1 , Ěχ
1 = − 1

r̂2
√
r̂ − 3

. (6)

Finally, ĚSF
1 is the correction to the binding energy in-

duced by the conservative piece of the first-order self-
force [77] (see Refs. [41, 43] for discussion).

2. Evolution equations

We now consider the binary evolution through 1PA
order, accounting for the slow evolution of due to dissi-
pation.

In our models, we neglect the evolution of the primary
mass and spin and second-order GSF horizon fluxes, the
latter of which are currently unknown. While these
effects appear formally at 1PA order, they have been
shown to have a numerically small effect compared to
the overall 1PA contribution to the inspiral [43, 78, 79],
so we can safely neglect them.

The azimuthal orbital phase Φϕ and the leading-order
orbital radius r̂ evolve according to the following cou-
pled set of equations:

dΦϕ

dt̂
= Ω̂ϕ(r̂) , (7)

dr̂

dt̂
= −ν

[
F0(r̂) + νF1(r̂)

]
. (8)

Here, F0(r̂) is the leading-order, adiabatic forcing term
given by F0(r̂) =

(
∂Ě0/∂r̂

)−1F0(r̂), where F0(r̂) is the
leading-order energy flux. The subleading, 1PA term
F1(r̂) is what differs between our two circular orbit mod-
els. For the complete 1PA model, cir1PA, we have

F1(r̂) = F SF
1 (r̂) + χFχ

1 (r̂). (9)

where

F SF
1 (r̂) = a(r̂)F1(r̂) + a(r̂)2

(
∂ĚSF

1

∂r̂

)
F0(r̂) , (10)

Fχ
1 (r̂) = a(r̂)Fχ

1 (r̂) + a(r̂)2
(
∂Ěχ

1

∂r̂

)
F0(r̂) , (11)



5

and a(r̂) =
(
∂Ě0/∂r̂

)−1. The post-adiabatic correc-
tions to the fluxes FSF

1 (r̂) and Fχ
1 (r̂) are, respectively,

generated by nonlinear (quadratic) terms in the field
equations [42] and by the secondary spin [20].

In the cir0PA+1PA-3PN model, F1(r̂) is approxi-
mated as

F1(r̂) = F 3PN
1 (r̂) + χFχ

1 (r̂), (12)

where F 3PN
1 has the same functional form as Eq. (10),

but it is constructed using analytic post-Newtonian ex-
pressions for the fluxes at 0PA and 1PA order, including
the self-force correction to the binding energy, in which
we retain relative 3PN order accuracy for each. The
adiabatic and post-adiabatic fluxes can be extracted by
taking the leading and next-to-leading-order-in-ν terms
in the 4PN fluxes recently computed in Ref. [80]. The
binding energy is computed using post-Newtonian self-
force expansions [81]. Explicitly, these are given in
App. B. It is crucially important that we treat the 3PN
flux terms and binding energy as polynomial approxi-
mants when used in Eq. (10), without further expanding
the geodesic quantity a(r̂). This is because a(r̂) is di-
vergent at the lightring, rendering its large-radius Tay-
lor expansion extremely inaccurate in the strong field,
which would corrupt the entire model.

The evolution equations for our adiabatic model are
obtained by simply setting the forcing function F1(r̂) to
zero in Eqs. (7-8). We label this model as cir0PA. Fi-
nally, we remark that for all mass-ratios considered in
this work, each inspiral terminates far (in radial coordi-
nate distance) from where the transition to plunge be-
gins [82–88], r̂− r̂isco ∼ ϵ2/5. This is important since our
two-timescale evolution equations cease to accurately
describe the trajectory around that point [43].

B. Non-spinning eccentric 0PA inspirals

In the eccentric case, the orbital radius r̂ oscillates on
the orbital timescale between a maximum value r̂max
and a minimum value r̂min, meaning it is not an ideal
quantity to evolve directly. Instead, we parameterize
the eccentric orbit using the slowly evolving semi-latus
rectum p and eccentricity e, which are defined in terms
of the slowly evolving maximum and minimum values
of the orbital radius:

p =
2r̂maxr̂min

(r̂max + r̂min)
, e =

r̂max − r̂min

r̂max + r̂min
. (13)

Note that in the circular orbit limit, e → 0 and p → r̂.
Due to the orbital-timescale radial motion, the wave-

form picks up an additional phase Φr which evolves
with the Boyer-Lindquist fundamental radial frequency
Ω̂r. Expressions for the fundamental frequencies

Ω̂ϕ(p, e) and Ω̂r(p, e) for eccentric geodesic orbits in
Schwarzschild spacetime can be found in Ref. [89]. In
practice we make use of the semi-analytic expressions in
terms of elliptic integrals in Refs. [90] which have been
implemented in the KerrGeodesics package [91].

The eccentric equations of motion at adiabatic order
can be written as

dΦϕ

dt̂
= Ω̂ϕ(p, e) , (14)

dΦr

dt̂
= Ω̂r(p, e) , (15)

dp

dt̂
= −ϵ

(
∂p

∂Ě0

FE
0 (p, e) +

∂p

∂J̌0
FJ

0 (p, e)

)
, (16)

de

dt̂
= −ϵ

(
∂e

∂Ě0

FE
0 (p, e) +

∂e

∂J̌0
FJ

0 (p, e)

)
, (17)

where FE
0 and FJ

0 are the leading-order total fluxes of
energy and angular momentum, respectively. We switch
back to the small mass ratio ϵ in the above equations
since both the vanilla FEW and ecc0PA-9PN models
are implemented in terms of ϵ instead of the symmetric
mass ratio ν. By employing the geodesic relations for
Ě0(p, e) and J̌0(p, e), i.e., [89]

Ě0(p, e) =

√
(p− 2)2 − 4e2

p(p− e2 − 3)
, (18)

J̌0(p, e) =
p√

p− e2 − 3
, (19)

one can obtain the various partial derivatives in Eqs. (14
- 17) by constructing a Jacobian and inverting so that(

∂p
∂Ě0

∂p
∂J̌0

∂e
∂Ě0

∂e
∂J̌0

)
=

(
∂Ě0

∂p
∂Ě0

∂e
∂J̌0

∂p
∂J̌0

∂e

)−1

(20)

=
1

∂Ě0

∂p
∂J̌0

∂e − ∂Ě0

∂e
∂J̌0

∂p

(
∂Ĵ0

∂e −∂Ě0

∂e

−∂Ĵ0

∂p
∂Ě0

∂p

)
.

(21)

Explicit expressions are available in Ref. [26]. Note that
this procedure will give a singular expression for the rate
of change of e in the circular orbit limit, e = 0. However,
it is well established that for adiabatic inspirals [92],
quasicircular orbits remain quasicircular and so we can
simply use de/dt̂ = 0 in this special case.

The only difference between the two eccentric models
is the expressions for the total energy and angular mo-
mentum fluxes. For the ecc0PA model, we numerically
solve the Teukolsky equations for the energy and angu-
lar momentum fluxes to infinity and down the horizon
generated by a point particle on a geodesic orbit with a
given value of p and e. We do this for multiple points in
the (p, e) parameter space and interpolate using splines



6

so that the fluxes can be rapidly evaluated when solving
the eccentric equations of motion. For more details, see
Sec. IV A of Ref. [9].

By contrast, the ecc0PA-9PN model uses analytic PN
expansions of the fluxes of energy and angular momen-
tum to infinity. These are valid to leading order in the
mass ratio and relative 9PN order [64], and are available
in the PostNewtonianSelfForce package of the BHP-
Toolkit [93]. The PN series contain expansions in eccen-
tricity to at least order e10, with some PN components
having even higher order expansions up to e30.

We highlight that the cir0PA model and ecc0PA
model will not agree in the limit as e → 0 because the
former is expanded in ν whereas the latter is expanded
in ϵ. For our purposes, this is not a problem: we will
only directly compare waveforms expanded in the same
small perturbative variable, e.g., cir0PA with cir1PA
(ν) and ecc0PA with ecc0PA-9PN (ϵ). We checked that
recovery of a cir0PA model with an ecc0PA model (at
e = 0) yields a bias on the secondary mass µ. In turn,
such bias results in a biased mass ratio ϵbias given by

ϵbias ≈ ϵtrue − 2ϵ2true. (22)

Since νtrue = ϵtrue/(1+ϵtrue)
2 ∼ ϵtrue−2ϵ2true+O(ϵ3), we

recovered the symmetric mass-ratio, as expected. If the
1PA components were known for eccentric orbits, then
it would not matter whether the equations of motion
were expanded in ϵ or ν (for the range of mass ratios we
consider).

C. Waveform models

In the Teukoslky formalism, the gravitational wave-
form detected by an observer at infinity in the
Schwarzschild spacetime can be written as [26]

h+ − ih× =
µ

DS

∑
ℓ,m,n

Aℓmn(p(t), e(t))Yℓm(ϑ, φ)e−iΦmn(t) ,

(23)

where DS is the source’s luminosity distance from the
detector, Aℓmn ≡ 2Ẑ∞

ℓmn/ω̂
2
mn, and Ẑ∞

ℓmn = M2Z∞
ℓmn,

the latter being the inhomogenous solution of the radial
Teukoslky equation in the limit r̂ → ∞. Here the GW
frequency ω̂mn is defined as ω̂mn = mΩ̂ϕ + nΩ̂r. In
practice, the mode amplitudes Aℓmn are interpolated
across the p − e space using a neural network [9, 10].
To determine the waveform mode content, the modes
are cumulatively summed in order of decreasing power.
This summation is truncated at a threshold value of (1−
κ) times the total power of the modes, with κ a tunable
parameter. Only the modes that pass this threshold
are included in the waveform computation (for further
details see [9, 10]).

For our circular orbit runs, we have checked that the
mode content of injected waveforms and model template
waveforms are identical. This is to ensure consistency
between waveforms and to make sure that biases are not
a feature of missing important modes between waveform
models in the analysis. When generating waveforms, we
use the default mode selection parameter κ = 10−5 in
FEW, resulting in the same 12 ℓm-modes for all cir-
cular orbit-based waveforms present in this work. The
number of modes scales considerably with increasing ec-
centricity (see Fig. 4 in [9]); this will be discussed in
Sec. IV C.

Since our waveform represents an evolving source,
we do not have a decomposition into discrete frequen-
cies, but a multi-voice decomposition where the evolving
“voices” are found by solving the equations of motion
for the phases Φϕ(t) and Φr(t) and summing together
as Φmn(t) = mΦϕ(t) + nΦr(t).

The functions Yℓm(ϑ, φ) appearing in Eq. (23) are
the spin-weighted spherical harmonics for spin weight
s = −2 [94], while the angles (ϑ, φ) identify the di-
rection of the detector in the source reference frame.
Due to the LISA constellation’s motion, the sources’
sky positions are measured with respect to a suitable
solar system barycentric (SSB) frame attached to the
ecliptic [95]. We adopt the same convention as Ref. [66]
and label the binary’s sky position and the direction of
binary’s angular momentum as (θS , ϕS) and (θK , ϕK),
respectively. The viewing angle φ is set to φ = −π/2,
which implies that cosϑ can then be written in terms of
the constant angles (θS , ϕS) and (θK , ϕK) as

cosϑ = − cos θS cos θK − sin θS sin θK cos(ϕS − ϕK) .
(24)

The initial phases of the waveform are then entirely de-
termined by the angles Φϕ0

and Φr0 . Notice that the
angles (θS , ϕS) and (θK , ϕK) also appear in the LISA
response function [57] and [9].

1. 1PA waveforms for circular orbits

In the circular orbit case, we no longer have a radial
phase and its corresponding harmonic contribution, so
the waveform model simplifies to

h+ − ih× =
µ

DS

∑
ℓ,m

Aℓm(r̂(t))Yℓm(ϑ, φ)e−imΦϕ(t) .

(25)

Note that at 1PA order, there will also be order-mass-
ratio corrections to the waveform amplitudes Aℓm =

A(0)
ℓm+ϵA(1)

ℓm+O(ϵ2). GW interferometers are much more
sensitive to fluctuations in frequency, rather than am-
plitude, especially for asymmetric binaries with ϵ ≪ 1.
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As such, including sub-leading corrections to the or-
bital phase is more important than to the amplitudes.
Since the largest mass ratio we consider is ϵ ∼ 10−3,
we can safely neglect 1PA corrections to the amplitudes
in our parameter estimation studies. For this reason,
we employed Eq. (25) for our all circular orbit models:
cir1PA, cir0PA+1PA-3PN and cir0PA with amplitudes
computed at adiabatic order.

III. LISA DATA ANALYSIS

GW data analysis relies on three crucial ingredients:
GW waveforms, a description of the time-evolving in-
strument response to the incoming waves, and an ac-
curate characterization of the noise. In this section,
we describe our model for the LISA response function
and the noise process, ultimately leading to the Whittle-
likelihood.

A. The data stream of LISA

The projection of the polarised GW signals onto the
LISA arms depends on the geometry of the instrument,
which changes in time due to the spacecraft’s motion.
The LISA response function is then a dynamical quan-
tity in both the time and frequency domain, and clearly
much more complicated than the “static” response of
ground-based detectors. Such a feature introduces se-
vere complexities to the accurate modeling and efficient
computation of the LISA response function. By project-
ing the incoming GWs onto the arm-lengths of the detec-
tor, one can model the deformations across the six LISA
links between the individual craft. It is then possible to
construct a first set of time-shifted second-generation
TDI variables, which massively suppress the laser noise
(by ∼ 8 orders of magnitude). These variables can be
linearly combined to construct a further set of TDI vari-
ables (A,E, T ) [96, 97], which are uncorrelated in their
noise properties. In our work, we use the TDI variables
(A,E, T ) [97, 98].

The data streams can then be written as

d(X)(t) = h(X)
e (t;θtr) + n(X)(t) , X = {A,E, T},

(26)
where h

(X)
e denotes the true deterministic signal with

true parameters θtr for the X TDI observable. We use
lisa-on-gpu, a framework to compute the response of
the LISA instrument to the incoming GWs available
at [57], which generates the three TDI variables. We
employ the most realistic orbits of the LISA crafts gener-
ated by the European Space Agency (ESA) [58]. These
numerically computed orbits take into account gravita-
tional attractions from relevant celestial bodies in our

solar system and are built to minimize the “breathing” of
the LISA interferometer arms. Such orbits have approx-
imately equal and constant arm-lengths, resulting in mi-
nor correlations between noise components [99] that we
neglect in favor of computational efficiency [57]. If these
correlations are mismodeled, then the injected mismod-
eled noise realizations will impact the statistical errors
of the recovered parameters [34, 100, 101]. This is not a
problem in our analysis because, as we will explain later
on, we consider zero-noise injections. Furthermore, the
signal-to-noise ratio is weakly impacted when mismod-
eling the noise process3.

B. Noise process and likelihood

We assume that the noise in each channel is a zero-
mean, weakly stationary, ergodic, Gaussian random pro-
cess with noise covariance matrix (in the domain of pos-
itive frequencies) [102, 103]

⟨ñ(X)(f)[ñ(X)(f ′)]⋆⟩ = 1

2
δ(f − f ′)S(X)

n (f ′) , (27)

with tilded quantities representing Fourier transforms of
the time-domain data, i.e.,

ã(f) =

∫ ∞

−∞
dt a(t)e−2πift . (28)

In Eq. (27), ⟨·⟩ denotes an ensemble averaging process,
δ is the Dirac delta function and S

(X)
n (f) is the (one-

sided) power spectral density (PSD) of the instrumen-
tal noise process for each channel X = {A,E, T}. In
our analysis, we use the latest SciRDv1 model noise
PSD [104] and second-generation TDI variables with a
python implementation available in [105]. Finally, we
assume that the PSDs for each channel X = {A,E, T}
are all known and fixed.

Furthermore, we neglect noise correlations between
each TDI channel, i.e., ⟨n̂X(f)[n̂Y (f ′)]⋆⟩ = 0 for X ̸=
Y [57, 96, 98]. Under our assumptions, we can write the
Whittle-likelihood for a known PSD S

(X)
n (f) as [106,

107]

log p(d|θ) ∝ −1

2

∑
X={A,E,T}

(d− hm|d− hm)(X) (29)

with approximate model templates h
(X)
m and noise-

weighted inner product (a|b)(X) given by [107]

(a|b)X = 4Re

∫ ∞

0

ã(X)(f)(b̃(X))⋆(f)

S
(X)
n (f)

df. (30)

3 This was demonstrated in the case of gaps, where correlations
between noise components are severe and cannot be neglected.
For more information, see Chap. 8 in [34].



8

Given a model template hm, we define the effective
SNR with respect to the true signal he as

ρeff
AET (θ) =

 ∑
X={A,E,T}

(he|hm(θ))2(X)

(hm(θ)|hm(θ))(X)

1/2

, (31)

with exact templates he evaluated at the true parame-
ters θtr. The maximum of Eq. (31) is given when θ = θtr
and there are no mismodeling errors, i.e., hm ≡ he for
all θ. This maximum is the optimal matched filtering
SNR, given by [108]

ρopt
AET =

 ∑
X={A,E,T}

(he|he)(X)

1/2

, (32)

where he is evaluated at the true parameters θtr. The
optimal SNR over each TDI stream X = {A,E, T} de-
notes the average power of the signal when compared
to the root-mean-square average of the noise floor. The
greater the SNR of the signal he in Eq. (26), the greater
the likelihood of claiming detection. Previous works
[33, 109] set, rather arbitrarily, the SNR threshold to
claim detection as ρAET ≳ 20. The sources selected in
this work are well above this threshold, with ρAET ∼ 70
in the EMRI regime and ρAET ∼ 340 in the IMRI
regime.

C. Bayesian parameter estimation

Parameter estimation in GW astronomy is typically
performed using Bayesian inference. At the heart of
Bayesian statistics lies Bayes’ theorem, which, up to a
normalization factor, is given by

log p(θ|d) ∝ log p(d|θ) + log p(θ) . (33)

On the right-hand side, p(d|θ) is the likelihood function,
a probability distribution that describes the probability
of observing the data stream given the parameters. Un-
der our assumptions about the noise, we can use the
Whittle-likelihood in Eq. (29). The density p(θ) is the
prior probability distribution representing a-priori be-
liefs on the parameter set θ before observing the data
stream d. We opt for uninformative, uniform prior dis-
tributions for θ. Finally, the quantity p(θ|d) is the
sought-for posterior distribution reflecting our beliefs on
the parameters after our observations. The goal is then
to generate auto-correlated samples from the posterior
density p(θ|d) in order to compute summary statistics.

Our analysis employs Markov-Chain Monte-Carlo
(MCMC) techniques to sample from the posterior dis-
tribution. In particular, we use the eryn sampler [110,
111], which is based on the emcee [112] code. Our pro-
posal distribution is the default stretch proposal [113].

MCMC algorithms for EMRI inference are non-trivial,
so we describe in more details our codes in App. A. In
Sec. A 1 we give a brief overview of the eryn and emcee
samplers, discussing their strengths and weaknesses for
the simulations presented in this work.

The initial samples are chosen so that θ(0) ≈ θtr since
our goal is to identify potential biases close to source
parameters, rather than perform a search. More details
on our choice of starting coordinates and prior choices
(see Eq. (A2)) are given in App. A 2. Given a chain of
samples θ(i) ∼ p(θ|d), we define our “best-fit parame-
ters” as the maximum a posteriori (MAP) point esti-
mate θbf = argmaxθ{p(θ|d)}. The best-fit parameters
give the best “match” between the model template and
the observed data stream d. In other words, when us-
ing non-informative uniform priors, θbf maximizes both
the likelihood function and posterior density. If the re-
covered parameters θbf ̸= θtr then the MAP estimate θ
gives a biased point estimate of the true source param-
eters θtr.

We neglect the instrumental noise n(X)(t) present in
Eq. (26), which implies that the Whittle-likelihood re-
duces to

log p(d|θ) ∝ −1

2

∑
X={A,E,T}

(he − hm|he − hm)(X). (34)

In this way, we focus on the impact of biases on the pa-
rameters arising due to waveform mismodeling, which
may otherwise be obfuscated by nuisance statistical fluc-
tuations given by noise realizations. We also neglect the
confusion noise sourced by galactic dwarf binaries [114]
since it has not been implemented yet in the latest PSD
S
(X)
n [104, 105]. If the white-dwarf background were

included, the SNR of the signals would be lower, result-
ing in wider posteriors on the parameters. Nevertheless,
the impact of the white-dwarf background on the SNR
is marginal, hence it would not significantly affect our
key results.

D. Waveform systematics and detection

We now outline our systematic tests used to com-
pare waveform models. We begin first by describing our
main systematic test defined in a Bayesian framework.
We will then describe alternate statistical tests that are
present in the literature.

For a probability density p(θ|d), we define the 68%
credible set, Cp(θ|d), of the samples as the probability
P (θ ∈ Cp(θ|d)) = 0.68. Let p̃(θ|d) represent an ap-
proximate model posterior, generated through inference
using approximate model waveforms. We then define



9

the systematic test

C[i] =

{
1 θitr ∈ Ĉp̃(θi|d),

0 otherwise,
(35)

where Ĉp̃(θi|d) is the estimated marginalized approxi-
mate posterior credible interval for parameter θi. Equa-
tion (35) generalizes the Cutler-Vallisneri CV crite-
rion [53], since it accounts for non-Gaussian features in
the posterior that are not captured by a Fisher Matrix-
based approach. If C[i] = (0)1 for all recovered pa-
rameters θibf, then a waveform model is (un)suitable for
parameter estimation. Put simply, if the true parameter
is not contained within the 68% credible interval gener-
ated using approximate waveforms, then the waveform
model is not suitable for statistical inference. An exam-
ple is given in Fig. 7 in App. A. We stress that Eq. (35)
is SNR dependent, since the size of the interval will
increase (decrease) with a decrease (increase) of SNR.
Since these analyses are computationally expensive, we
adopted astrophysically motivated SNRs. One can de-
duce, as a very rough approximation, how the criterion
(35) changes for brighter or dimmer sources by reducing
the size of the credible interval as the SNR increases.

We now describe further quantities that are used to
draw comparisons between waveform models. The over-
lap function between two waveforms h

(X)
1 and h

(X)
2 is

defined as

O(h
(X)
1 , h

(X)
2 ) =

(h1|h2)(X)√
(h1|h1)(X)(h2|h2)(X)

. (36)

Then, over all channels X = {A,E, T}, the total mis-
match between two waveform models h1 and h2 is

MAET (h1, h2) = 1−

√√√√1

3

∑
X={A,E,T}

O2(h1, h2) ,

where M = 0 (M = 1) indicates that h1 and h2 are
identical (orthogonal). In a similar way, we define

M(inj) = MAET (he(θtr), hm(θtr)) , (37)

M(bf) = MAET (he(θtr), hm(θbf)) . (38)

We remark here that (38) is the usual fitting factor,
computed after stochastically identifying parameters θbf
that minimize the mismatch function.

It is usual to perform systematic studies between
waveform models by analyzing the difference of orbital
phase, called dephasing, between two trajectories of the
CO. We define two types of dephasing in Φϕ: one be-
tween two trajectories at the injected parameters θtr
(Eq. (39)); and one between the two trajectories at in-

ferred parameters θbf (Eq. (40)):

∆Φ(inj) = Max{Φexact
ϕ }θ=θtr − Max{Φmodel

ϕ }θ=θtr ,

(39)

∆Φ(bf) = Max{Φexact
ϕ }θ=θtr − Max{Φmodel

ϕ }θ=θbf .

(40)

Eq. (39) is the usual quantity used to estimate the ac-
curacy requirements of EMRI waveforms. We comment
that the two equations above are evaluated over the
same time of observation.

Finally, we refer to the accumulated SNR normalised
by the optimal SNR as the quantity

ρ(inj)/ρ(opt) = ρeff
AET (θtr)/ρ

opt
AET , (41)

ρ(bf)/ρ(opt) = ρeff
AET (θbf)/ρ

(opt)
AET , (42)

for ρeff
AET (θ) and ρopt defined in Eq. (31) and Eq. (32),

respectively. The equations above represent the frac-
tion of SNR (normalised between 0 and 1) accumulated
throughout the inspiral. The quantity in Eq. (42) is
useful to determine whether a reference true waveform
model is detectable by an approximate model. The
quantities in Eqs. (37 - 42) will be useful to compare
against our Bayesian inference results.

IV. RESULTS

We now present our results on the Bayesian parame-
ter inference with complete circular 1PA and mismod-
eled eccentric 0PA waveforms. In Sec. IVA, we will
investigate the impact of mismodeling EMRI templates
by neglecting some (or all) of the post-adiabatic correc-
tions. In Sec. IV B, we will then focus our attention on
constraining the secondary spin parameter. Finally, in
Sec. IV C we will describe the impact of mismodeling
0PA eccentric templates.

The inferred parameters are the following: the red-
shifted masses M and µ, the initial radial coordinate and
initial phase r0/M and Φϕ0 , respectively (both defined
at time t = 0), the luminosity distance to the source DS,
the source sky position (θS, ϕS) and the orientation of
the orbital angular momentum (θK, ϕK). Waveforms are
generated in the source frame and transformed to the
SSB frame via the response function. For the sake of
clarity, if a model includes the spin of the secondary as
a parameter it will be denoted “w/ spin” and otherwise
“w/o spin”. In Sec. IVA, we will only infer the sec-
ondary spin χ using the cir1PA w/ spin model, whereas
in Sec. IV B we will infer the secondary spin with all
approximate models. For sections IV A and IVB, con-
figurations for each of the mass ratios and the relative
SNR can be found in Table I.
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Config. ϵ M [M⊙] r0/M DS [Gpc] Tobs [yrs] ρAET

(1) 10−5 106 10.6025 1.0 2.0 70

(2) 10−4 106 15.7905 2.0 1.5 65

(3) 10−3 5 · 106 16.8123 1.0 1.0 340

Table I. Here we tabulate injection EMRI/IMRI parameters
for all waveforms in sections IVA and IV B. The IMRI con-
figuration is given by the last row in the table. For each
case, we use identical extrinsic parameters: θS = π/3, ϕS =
π/4, θK = 2, ϕK = 5,Φϕ0 = 1.5. The secondary spin is fixed
to the fiducial value χ = 0.5.

Details of our sampling algorithm can be found in
App. A, including starting points and prior bounds. In
this analysis, we will use the emcee sampler due to the
simplicity of the likelihood structure in the case of cir-
cular orbits.

A. Systematic biases — missing 1PA terms for
quasicircular orbits

We first consider the impact of using mismodeled
waveform templates on LISA science when attempting
to extract full 1PA waveforms within the data stream.

For each mass ratio ϵ = {10−5, 10−4, 10−3} with re-
spective parameters given by Table I, we perform four
parameter estimation simulations. We inject a true ref-
erence signal cir1PA with (w) spin and recover with the
following models each without (w/o) secondary spin

hm =


cir1PA w/o spin,
cir0PA+1PA-3PN w/o spin,
cir0PA w/o spin.

(43)

The results for each studied mass ratio ϵ =
{10−5, 10−4, 10−3} are displayed (from top to bottom
respectively) in Fig. 1. In each of the three panels, the
top rows (blue posteriors) are exact marginalized pos-
teriors, generated when injecting and recovering with
the exact model cir1PA w/ spin where the spin on the
secondary is sampled over. We do not present the pos-
teriors on the extrinsic parameters as they display near-
to-zero bias with respect to the true parameters. The
non-Gaussian features and shifts to the true posterior
are a feature of the secondary spin, which will be dis-
cussed in Sec. IV B. We begin by discussing the case
with the smallest mass ratio, ϵ = 10−5.

Referring to the top panel of Fig. 1, we see that both
the approximate models cir1PA w/o spin (green) and
cir0PA + 1PA-3PN w/o spin (red) are suitable for pa-
rameter estimation of full 1PA waveforms. Each poste-
rior shows statistically insignificant biases at ρAET ∼ 70

with Eq. (35) resulting in C = 1 for all parameters. Re-
markably, the parameters of the exact cir1PA w/ spin
model can be correctly inferred, with statistically in-
significant biases, by the cir0PA+1PA-3PN model. We
remind the reader that the latter contains 0PA infor-
mation with a 1PA term approximated by a resummed
3PN expansion. The last row of the top panel in Fig. 1
shows a cir1PA w/ spin model recovered with our least
faithful model, cir0PA w/o spin. The intrinsic param-
eters show statistically significant biases with C = 0,
but the recovered parameters are very similar to the
true ones. For example, given the true primary mass,
M = 106M⊙, our best-fit parameter is only ∼ 10M⊙
away in magnitude. This quantitatively confirms that
adiabatic models would be fine for detection purposes,
but not for statistical inference.

We now discuss our simulations for ϵ ∼ 10−4, given
by the middle panel in Fig. 1. The marginalized Gaus-
sians in the top row of the middle panel all exhibit
heavy tails. This is due to correlations between the
intrinsic parameters and secondary spin, which will be
discussed in Sec. IVB. Since the approximate models
do not contain spin, there are no such correlations and
the resultant posteriors resemble their familiar Gaussian
shapes for high SNRs. With all approximate model tem-
plates, we see significant biases (C = 0) across the intrin-
sic parameters when neglecting post-adiabatic terms at
ρAET ∼ 65. The most dramatic bias arises when using
the cir0PA w/o spin model to recover the exact cir1PA
w/ spin reference model. We conclude here that our
approximate models summarized in Eq. (43), without
secondary spin, are unsuitable for parameter estimation.

Finally, we considered an IMRI with ϵ = 10−3, given
by the bottom panel in Fig. 1. There are clear differ-
ences between the top row (inject/recover with exact
model) and the bottom three rows where we recover
the reference model with approximations (43) absent of
spin. In the top row of the bottom panel, the marginal-
ized posteriors are not Gaussian and are non-trivially
skewed. This is a result of strong correlations between
the intrinsic parameters and the secondary spin. The
Gaussian posteriors on the second and third rows, rep-
resenting model templates cir1PA w/o spin and cir0PA
+ 1PA-3PN w/o spin, show significant deviations from
the true parameters with respect to their own statistical
uncertainty (1σ width). From the approximate model
distributions, the uncertainties on the recovered pa-
rameters are exceptionally small, reflected by the tight
marginalized distributions. This is a consequence of ne-
glecting the important correlations with the secondary
spin. The recovered parameters are undoubtedly biased:
the true intrinsic parameters do not lie within their 68%
credible interval. Interestingly, the recovered parame-
ters are contained within the 68% credible interval of the
marginalized true posterior distribution, implying that
they are consistent with the true parameter distribution.
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Figure 1. Marginalized posteriors with shaded 68% credible intervals generated by injecting a true reference model cir1PA
and recovering using different models with different mass ratios. The top panel is with ϵ = 10−5, middle panel ϵ = 10−4

and bottom panel ϵ = 10−3. (Blue:) recovery with the true reference model cir1PA and sampling over the secondary
spin parameter. (Green:) recovery using the cir1PA without spin. (Red:) recovery with cir0PA+1PA-3PN without spin.
(Purple:) recovery with cir0PA (purely adiabatic) waveform. The black vertical dashed line indicates the true parameters.
These simulations used parameters given by Table I for Configs. (1), (2) and (3) are given by the top row, middle row, and
bottom row respectively. Orbital dephasings, mismatches, accumulated SNRs, and maximum log-likelihood values can be
found in Table II.
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ϵ Model Waveform ∆Φ(inj) ∆Φ(bf) M(inj) M(bf) ρ(inj)/ρ(opt) ρ(bf)/ρ(opt) logL(inj) logL(bf)

10−5

Cir1PA w/o spin 0.779 0.0165 0.143 4.497× 10−5 83.4% 99.9% −846 -0.250

Cir0PA 1PA-3PN w/o spin 0.786 0.00179 0.163 4.293× 10−6 81.5% 99.8% −943 -0.0324

Cir0PA w/o spin 3.002 0.00532 0.889 2.412× 10−6 6.4% 99.8% −4800 -0.0234

10−4

Cir1PA w/o spin 3.994 0.00702 0.511 8.601× 10−6 30.3% 99.9% -5019 -0.336

Cir0PA 1PA-3PN w/o spin 4.310 0.0179 0.486 1.26× 10−4 34.2% 99.9% -4799 -0.441

Cir0PA w/o spin 13.093 0.0354 0.653 2.573× 10−5 19.0% 99.9% -5506 -0.122

10−3

Cir1PA w/o spin 4.518 0.00559 0.922 3.643× 10−6 3.3% 99.9% -112938 -0.226

Cir0PA 1PA-3PN w/o spin 4.882 0.0218 0.949 3.443× 10−5 3.4% 99.9% -112827 -2.132

Cir0PA w/o spin 14.958 0.153 0.938 6.854× 10−3 4.9% 99.1% -122173 -524.798

Table II. Here we present a summary of computed statistics for various mass ratios ϵ = {10−5, 10−4, 10−3} (first column)
when comparing an injected cir1PA waveform and approximate model templates (second column). We compute the orbital
dephasings (Eqs. 39-40) (third and fourth columns); mismatch (Eqs. 37-38) (fifth and sixth columns); accumulated SNRs
(Eqs. 41-42) (seventh and eighth columns); and, finally the log-likelihood function, Eq. (34), at the injected/recovered
parameters. The top, middle, and bottom panels of this table correspond to the top, middle, and bottom panels of Fig. 1,
respectively.

This is alarming: not only are the incorrect parameters
recovered, but our confidence that they are the “correct”
ones is largely inflated due to the tightness of the pos-
teriors. Finally, we see that the cir0PA w/o spin model
features much stronger biases and constraints than both
the cir0PA + 1PA-3PN w/o spin and cir1PA w/o spin
models. In light of Eq. (35), we conclude that all models
are unsuitable for parameter inference of the cir1PA w/
spin model at ρAET ∼ 340.

In Table II, we give a summary of details regard-
ing the individual MCMC simulations for each small-
mass-ratio binary configuration presented in Table I.
The details of the specific computations can be found
in the caption of the table. One of the main features
of this table is the small mismatch, and accumulated
SNR normalized by the optimal SNR. In the worst case,
M ∼ 10−3 and ρ(bf)/ρ(opt) ∼ 99.1% for ϵ = 10−3,
between the injected cir1PA waveform and adiabatic
cir0PA w/o spin model evaluated at the recovered pa-
rameters. This approximate template nearly matches
the optimal matched filtering SNR, the SNR that would
be attained if the exact model was used during inference.
This is further evidence that, for quasicircular binaries,
adiabatic models could be used for detection purposes.
Finally, we remark from Table II that all unbiased re-
sults satisfy the condition ∆Φ(inj) ≲ 1 radian.

B. Constraining the secondary spin

We now focus our attention on constraining the spin
χ of the CO. Similar to Sec. IVA, we study each mass
ratio ϵ = {10−5, 10−4, 10−3} with parameters given by
Table I, and perform three parameter estimation simu-
lations. The injection is a cir1PA w/ spin model, and
approximate waveforms are similar to (43) but with spin
included:

hm =

{
cir0PA+1PA-3PN w/ spin,
cir0PA w/ spin.

(44)

Our corner plots for each of the ϵ = {10−5, 10−4, 10−3}
are displayed in Figs. 2, 3 and 4, respectively. We will
first discuss the ϵ = 10−5 case.

From Fig. 2, we see that the parameter χ cannot be
constrained for the ϵ = 10−5 case at ρAET ∼ 70. The
marginalized posterior distribution for χ is almost flat.
This implies that our posterior information is not dom-
inated by the likelihood (a function of the data), but
instead dominated by the prior (a function of the pa-
rameters, irrespective of the data). We have tested var-
ious values of χ = {−1, 0.5, 0, 0.5, 1}, and in no situa-
tion can the secondary spin be constrained. The exact
model cir1PA w/ spin and approximate cir0PA + 1PA-
3PN w/ spin model are indistinguishable. When recov-
ering the exact cir1PA w/ spin with the exact model
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itself and the approximate cir0PA + 1PA-3PN w/ spin
model, statistically insignificant biases to the intrinsic
parameters are observed. For the case with mass ratio
ϵ = 10−5, the spin on the secondary can be compen-
sated by the minor tweaking of the intrinsic parame-
ters. Finally, we report statistically significant biases
when employing the cir0PA w/ spin model to extract
parameters from a cir1PA waveform. These biases are
consistent with the top panel and fourth row of Fig. 1.
To conclude, neither the exact model nor approximate
model templates are able to detect the presence of the
spin on the smaller companion for a mass ratio ϵ = 10−5

and ρAET ∼ 70.
Our results for mass ratio ϵ = 10−4 with ρAET ∼ 65

are given in Fig. 3. The secondary spin has a more no-
ticeable impact, and it can be constrained when using
model templates given by cir1PA w/ spin and cir0PA +
1PA-3PN w/ spin. From the 2D marginalized posteri-
ors, it is evident that the distributions on the intrinsic
parameters and secondary spin are not Gaussian due to
the presence of heavy tails, highlighting strong correla-
tions between these parameters. Recall the red posterior
in the middle panel of Fig. 1, where biases on parameters
were observed if we recovered a cir1PA w/ spin template
using a cir0PA + 1PA-3PN w/o spin model. We see
from the red posterior in Fig. 3 that including the spin
on the cir0PA + 1PA-3PN model eliminates the biases
on parameters, making it completely indistinguishable
from the true cir1PA w/ spin model. This indicates that
the cir0PA + 1PA-3PN would be suitable for parameter
estimation, only if the secondary spin parameter was
included in the approximate model [115]. Finally, we
see that the cir0PA w/ spin model fails to constrain the
secondary spin, with biases consistent with the second
panel and fourth row of Fig. 1. Thus, neglecting 1PA
components of the GSF will have a detrimental effect
on recovering the spin of the smaller companion.

To conclude this section, we now discuss the impact of
the secondary spin on IMRIs with a mass ratio ϵ = 10−3

with ρAET ∼ 340. Our results are displayed in Fig. 4 for
each of the various model templates. In contrast to the
previous results for smaller mass-ratios, here we find the
only waveform suitable for parameter estimation is the
exact model cir1PA w/ spin. The cir0PA + 1PA-3PN
w/spin model yields biases on the intrinsic parameters
and the secondary spin, although it accounts for correla-
tions between the parameters. By contrast, the cir0PA
w/ spin model exhibits significantly stronger biases be-
cause it does not correctly represent such correlations
due to the lack of 1PA information. This can be seen
in the 2D marginalized posteriors. The “hard cut-offs”
observed in the two posteriors for cir1PA w/ spin and
cir1PA + 1PA-3PN w/ spin are due to the spin on the
secondary reaching the prior bounds. These cut-offs are
not physical but merely a sampling artifact. We remark
here that had we chosen a uniform prior with more sup-

port, say χ ∈ [−2, 2], then we could have made a wrong
conclusion on the nature of the spinning companion us-
ing the cir0PA + 1PA-3PN w/ spin model. This analysis
suggests that the bias on the secondary spin is unac-
ceptable for all approximate models and one must be
careful, in this case, of using PN results to approximate
the 1PA components of the self-force. For IMRIs, it
is essential that we have full access to 1PA waveforms
when performing parameter estimation.

We conclude this section by briefly discussing the im-
pact of first post-adiabatic effects on small-mass-ratio
binaries with ϵ < 10−5. Although the main sources
considered in this work are small-mass-ratio binaries
with ϵ ∈ [10−5, 10−3], we have also studied a strong-
field EMRI with ϵ = 10−6 at an SNR ρAET ∼ 23.
Our analysis indicates that the secondary parameter
cannot be constrained and that parameter estimation
studies can be conducted with 0PA waveforms. That is,
the 1PA components of the self-force are negligible for
such small mass-ratios. We do not present our posterior
results here, but the result can be extrapolated from
0PA results of Fig. 1. The primary mass M shows the
strongest level of bias, with value approximately ∼ ϵM .
For a mass ratio ϵ = 10−6, the bias on the primary
mass M is O(1M⊙). This bias is well contained within
the statistical error given by the approximate posterior,
making 0PA waveforms suitable for parameter estima-
tion. This implies that the true parameter is contained
within the 68% credible interval of the 0PA approximate
posterior, satisfying Eq. (35) with C = 1. We conclude
that adiabatic waveforms are suitable for both search
and characterizing 1PA waveforms at ϵ = 10−6, at least
for quasicircular systems with nonspinning primaries.

In the analysis above we have tested three
specific EMRI/IMRI configurations at mass-ratios
ϵ ∈ {10−6, 10−5, 10−4, 10−3} with SNR ρAET ∈
{22, 70, 65, 340} respectively. We remind the reader that
the conclusions in the four paragraphs above are gov-
erned by two quantities: (1) the specific configuration
of parameters describing the system, the resultant SNR
and (2) the geometry of the inspiral and resultant wave-
form. Our Schwarzschild inspirals are strong-field orbits
with trajectories evolved to within r̂ ∼ 6.27. However,
the orbits could evolve much closer to the horizon for
a spinning primary. The increase in the number of or-
bits, compounded with closer-horizon geometry, would
increase significantly the precision in parameters and
the SNR. This is strongly supported by work in [33],
see Fig. 6 and Fig. 11. See also Ref. [116] for a detailed
discussion on enhancements on parameter precision for
circular orbits into rotating MBHs. For more complex
orbits, it is then expected that one could achieve SNRs
exceeding those of what we present here. As a result, the
accuracy requirements on EMRIs would become more
stringent.

On the other hand, some might view our choices of
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luminosity distances as overly optimistic. We assume
a flat-ΛCDM cosmological model with matter density
Ωm = 0.274, dark energy density ΩΛ = 0.726 and Hub-
ble constant H0 = 70.5km s−1 Mpc. Our choices for
the luminosity distances DS ∈ {1, 2}Gpc correspond to
small redshifts zS = {0.203, 0.371}, less than zS = 1. By
comparison, zS = 1 corresponds to a luminosity distance
of DS(zS = 1) = 6.716Gpc. Fig. 9 in Ref. [33] repre-
sents the redshift distributions of detected EMRI events
assuming 12 distinct astrophysical models. All such dis-
tributions are peaked between zS ∈ [1, 2]. Thus, our
choices represent golden EMRIs: strong-field in their or-
bital characteristics and placed at low redshifts zS ≪ 1.
Assuming an astrophysically relevant luminosity dis-
tance DS = 6.67, the SNR of our sources would decrease
significantly since ρ ∼ 1/DL. In fact, our ϵ = 10−5 case
in Table 1 would only reach an SNR ρAET ∼ 11, which
is lower than the detection threshold for EMRIs.

This highlights a fundamental point. Since the sta-
tistical error on the parameters scales with the SNR,
one can choose an SNR ∼ 20 for ϵ = 10−5 such that
0PA waveforms are suitable for parameter estimation

of 1PA waveforms. For a more relevant, but still quite
small, luminosity distance DS ∼ 3Gpc, corresponding
to zS = 0.52, ρAET ∼ 20 for ϵ = 10−5. The true pa-
rameter could then be within the 68% credible interval
of the purple posterior in Fig. 1. For such a system
we could then conclude that adiabatic waveforms are
suitable for both detection and parameter extraction of
1PA waveforms. Similarly, one could place the source
at exceptionally low redshift zS = 2.5 × 10−4, giving a
luminosity distance DS = 0.01 Gpc and increasing the
SNR by a factor of 100 in the ϵ = 10−5 case. The spin-
ning secondary may be observable in such a situation,
but the probability that such an EMRI will be observed
is essentially zero according to [33].

In conclusion, we have chosen parameter sets such
that all of our orbits are astrophysically sound, allowing
us to draw reasonable conclusions. Within the range of
realistic sources, we have focused on ones that are loud
enough to be of most interest for high-precision science.
The high-accuracy models built by the self-force com-
munity naturally aim for these golden EMRIs (and IM-
RIs), which have high SNRs and are in the strong-field
regime.
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Figure 2. (Mass ratio ϵ = 10−5): Here we inject an EMRI waveform with spinning CO on a circular orbit with parameters
M = 106M⊙, µ = 10M⊙, r0/M = 10.6025, DS = 1Gpc and extrinsic parameters given in the caption of Table I. The
magnitude of the spinning secondary is χ = 0.5, the SNR is ρAET ∼ 70 and the time of observation is Tobs = 2 years. The
blue, red, and purple parameter posteriors are generated when recovering with a cir1PA w/ spin model, cir0PA + 1PA-3PN
w/ spin model, and cir0PA w/ spin model, respectively. The black vertical lines indicate the true parameters. The take-home
message is that the spin of the secondary cannot be constrained for ρAET = 70 and the models considered here.
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Figure 3. (Mass ratio ϵ = 10−4): Here we inject an EMRI waveform with spinning CO on a circular orbit with parameters
M = 106M⊙, µ = 100M⊙, r0/M = 15.7905, DS = 2Gpc and extrinsic parameters given in the caption of Table I. The
magnitude of the secondary spin is χ = 0.5, the SNR is ρAET ∼ 65 and the time of observation is Tobs = 1.5 years. The blue,
red, and purple parameter posteriors are generated when recovering with a cir1PA w/ spin model, cir0PA + 1PA-3PN w/
spin model, and cir0PA w/ spin models respectively. The black vertical lines indicate the true parameters. The take-home
message here is that the spin of the secondary can be constrained using either the cir1PA w/ spin or cir1PA + 1PA-3PN w/
spin model. The cir0PA w/ spin model yields significant biases and cannot constrain the spin of the secondary.
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Figure 4. (Mass ratio ϵ = 10−3): Here we inject an EMRI waveform with spinning CO on a circular orbit with parameters
M = 5 · 106M⊙, µ = 5000M⊙, r0/M = 16.81230, DS = 1Gpc and extrinsic parameters given in the caption of Table I.
The magnitude of the secondary spin is χ = 0.5, the SNR is ρAET ∼ 340 and the time of observation is Tobs = 1 year.
The blue, red, and purple parameter posteriors are generated when recovering with a cir1PA w/ spin model, cir0PA +
1PA-3PN w/ spin model, and cir0PA w/ spin model, respectively. The black vertical lines indicate the true parameters. The
take-home message here is that all 1PA terms (including the spin on the secondary) must be included to perform parameter
estimation. The PN approximated waveform cir0PA + 1PA-3PN w/ spin shows significant biases and yields biased results on
the secondary spin. The cir0PA w/ spin model is unable to account for correlations and constrain the spin on the secondary
body.
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C. Systematic biases — mismodeling evolution of
eccentric orbits

Our previous analyses focus on a very restricted class
of binary configurations, and it is not obvious how our
results will extend to more generic systems. In this sec-
tion we begin to explore that question by assessing the
potential impact of mismodeling EMRI waveforms for
eccentric orbits. As 1PA models do not yet exist for
eccentric orbits, we inject waveforms with our adiabatic
ecc0PA model (see Sec. II B) and attempt to recover
them with our approximate ecc0PA-9PN model. We
consider injected waveforms with various values of ec-
centricity e = {0, 0.01, 0.1, 0.2}.

The trajectories are evolved using a low-eccentricity
9PN expansion, exhibiting slow convergence as the ec-
centricity increases. We do not consider eccentricities
e > 0.2 for two reasons. The first is the potential for
the PN expansion to break down, yielding artificially in-
flated biases that could be less severe in reality. The sec-
ond reason is the enormous difficulty for the sampler to
converge to the point of highest likelihood. For e = 0.3,
we noticed that the number of secondary maxima in
the likelihood surface grew significantly in comparison
to e ∈ {0.1, 0.2}. This means that the individual chains
of the sampler got stuck for ∼ O(103) iterations even
with ∼ 10 temperatures (see App. A for more details).
Whether this is an artifact of eccentricity itself, or the
PN expansion breaking down, is unclear. For the afore-
mentioned reasons, we consider weak-field orbits with
low eccentricities to avoid exaggerating the impact of
eccentricity when mismodeling templates.

For all cases presented in this section, the injected
waveforms’ parameters are set to M = 106M⊙, µ =
10M⊙, and initial semi-latus rectum p0 = 9.86. The tra-
jectories are evolved for Tobs = 1 year until a final semi-
latus rectum of p ∼ 8.1 is reached. We do not evolve
the trajectories further than this point due to the break-
down of the PN expansions in the strong-field regime.
We choose the same extrinsic parameters as presented
in Table I, but with luminosity distance DL = 0.7Gpc
and initial radial phase Φr0 = 3 for all cases. For
each eccentricity e = {0, 0.01, 0.1, 0.2}, Eq. (39) gives
a dephasing on the order ∆Φ(inj) ≈ {14, 15, 19, 35} ra-
dians, respectively, between the two models. Finally,
the number of modes in the waveform for both models,
#modes, for each chosen eccentricity e is (e,#modes) =
{(0, 12), (0.01, 12), (0.1, 60), (0.2, 94)} respectively. Fi-
nally, both circular and eccentric waveform models yield
similar SNRs on the order of ρAET ∼ 70. The details of
how we used eryn for our eccentric parameter estima-
tion simulations are presented in App. A.

We begin with the circular orbit case with the result
shown in Fig. 5. The details on the individual runs
can be found in the caption. We treat the parameters

e = 0 and Φr0 = 3 as known, and we do not sample
over them. The intrinsic parameters exhibit statisti-
cally significant biases, whereas the extrinsic parameters
are unbiased. Notice that the “directions” of the biases
are similar to those presented when recovering (circu-
lar) post-adiabatic waveforms with adiabatic templates
in Fig. 1. Figure 5 will be our reference figure when
making direct comparisons with eccentric orbits.

We perform a series of similar simulations of recov-
ering an exact adiabatic model (ecc0PA), with an ap-
proximate (ecc0PA-9PN) model template with small to
moderate eccentricities e = {0.01, 0.1, 0.2}. The case
with e = 0.01 is qualitatively similar to Fig. 5, so we will
not present it here. The results for e = 0.2 are shown
in Fig. 6. All the intrinsic parameters show severe lev-
els of biases, stronger compared to the circular orbits.
Furthermore, unlike the circular case, the angular pa-
rameters {θS , ϕS , θK , ϕK} and initial phases {Φϕ0

,Φr0}
show statistically significant levels of bias. It should
be noted that the magnitude of the biases on all pa-
rameters increases significantly between the e = 0 and
e = 0.2 cases presented in Fig. 5 and Fig. 6, respectively.

The biases on the extrinsic parameters for eccentric
orbits stem from two effects. The first is the corre-
lations between the parameters, which are more pro-
nounced compared to circular orbits. Unlike the cir-
cular orbit case, the intrinsic and extrinsic parameter
spaces are not orthogonal: minor tweaks to the intrin-
sic parameters can be compensated by minor tweaks in
the extrinsic parameters. The second reason is that the
orbital evolution is more complex, resulting in a LISA-
responsed waveform with a richer structure in compar-
ison to its circular counterpart. A biased result on
the intrinsic parameters (mainly eccentricity) will in-
duce modulations to the approximate model template.
Minor shifts to the angular parameters will induce fur-
ther modulations due to the presence of the LISA re-
sponse function. The tweaking of the angular param-
eters in response to the biases in the intrinsic param-
eters appears to minimize the mismatch between the
two signals. This can be explored by comparing the
ecc0PA waveform at the true parameters and ecc0PA-
9PN waveform at the recovered parameters, but fixing
the angular parameters {θS , ϕS , θK , ϕK} to their true
values. We obtain mismatches M ∼ 0.283 and accu-
mulated SNR ρ(bf w/ inj angles)/ρ(opt) ∼ 68%, indicating
that the two waveforms quickly go out of phase. Com-
paring the true ecc0PA signal with ecc0PA-9PN evalu-
ated at the recovered parameters, including the recov-
ered angular parameters, yields M ∼ 10−2 and accu-
mulated SNR ρ(bf)/ρ(opt) ∼ 98%, indicating that the
approximate model template remains in phase with the
true reference signal for a much longer duration.

For circular orbits, there are weak correlations be-
tween the intrinsic and extrinsic parameters, demon-
strated by the marginalized 2D distributions in Fig. 5.
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Minor shifts to the intrinsic parameters will not affect the harmonic structure, and thus there will be no biases
across the extrinsic parameters.
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Figure 5. (Circular Orbits:) Here we consider as injection an ecc0PA model (vanilla adiabatic FEW) with parameters
M = 106M⊙, µ = 10M⊙, r0/M = 9.6, e = 0. The trajectory evolves for one year and terminates at a radial coordinate
of r0/M ≈ 8.1, giving an SNR ρAET ∼ 70. We treat parameters related to eccentricity {e = 0,Φr0 = 3} as known. The
blue posterior is generated through recovery using the injected model and the red posterior is built using the approximate
ecc0PA-9PN model. The black vertical lines indicate the location of the true parameters.
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V. SUMMARY

In this section, we summarize the results presented
in Sec. IV. For the configuration of parameters in this
work (see Table I), adiabatic templates are not suitable
for EMRI parameter estimation, where the exact model
contains full post-adiabatic information. Adiabatic tem-
plates though, are suitable for detection purposes in all
cases. We also highlight the performance of suitably
re-summed third-order PN expansions when approxi-
mating the 1PA components of the self-force. For mass
ratios ϵ = 10−5 and ϵ = 10−4, such approximate PN-
based models are suitable for EMRI data analysis (at
least for the simple binary configurations we consider),
assuming that the spin on the smaller companion is in-
cluded. We also found that such PN-based approxi-
mate waveforms break down within the IMRI regime
ϵ = 10−3, where full post-adiabatic information on the
model templates is required. Neglecting the spin on the
secondary and/or the 1PA components of the self-force
results in both significant biases and fictitiously tighter
constraints on parameters. This is due to neglecting
the significant correlations between the secondary spin
and intrinsic parameters. We conclude that the spin
of the secondary should always be retained and only
post-adiabatic templates should be used to characterize
post-adiabatic models.

The feasibility of constraining the secondary spin was
then discussed. For ϵ = 10−5, the secondary spin can-
not be constrained for our choice of SNR ρAET ∼ 70,
whereas, for ϵ = 10−4 and ϵ = 10−3, it could be con-
strained at ρAET ∼ 65 and ρAET ∼ 340, respectively. In
the IMRI regime, the secondary spin and intrinsic pa-
rameters exhibit strong correlations, which significantly
degrade the precision measurement of the intrinsic pa-
rameters.

Finally, we investigated the impact of mismodeling
eccentric binaries. By injecting an adiabatic eccentric
waveform and recovering with a ninth-order PN-based
waveform, we observed severe biases across both the in-
trinsic and extrinsic parameters, whereas only the in-
trinsic parameters are biased for purely circular orbits.
It is impossible to say, for now, how this will translate
when using 0PA waveforms for inference on 1PA wave-
forms. However, we expect that the severity of the bi-
ases with respect to circular orbits will increase across
the full parameter space. We conclude here that care
must be taken for both the modeling and parameter in-
ference of eccentric 1PA waveforms.

VI. DISCUSSION

This paper presented, for the first time, a detailed
Bayesian study using MCMC with state-of-the-art first

post-adiabatic EMRI and IMRI waveforms for circular
orbits in the Schwarzschild spacetime. We showed that
neglecting 1PA terms will induce statistically signifi-
cant biases in the parameters. However, we can still
detect and characterize the first post-adiabatic wave-
form in the data stream using adiabatic waveform mod-
els with biased parameters. We have confirmed that
adiabatic waveforms are only suited for detection pur-
poses (at least for 10−5 ≲ ϵ ≲ 10−3). The systematic
errors are subjectively quite small for adiabatic wave-
forms and small mass-ratios4, and might not be rele-
vant for some astrophysical applications like population
studies [117, 118]. However, applications within fun-
damental physics (like testing alternative/modified the-
ories of gravity [119–122], investigating the nature of
massive black holes [123–125], the presence of additional
fields [4, 126, 127], and so on) crucially rely on both
precise and accurate measurements of the binary pa-
rameters. Even relatively small statistically significant
systematic errors could spoil the enormous scientific po-
tential of EMRIs. Thus, first post-adiabatic waveforms
are essential in order to reap the full scientific rewards
of EMRI data analysis.

Bayesian methods are the gold standard technique
when studying waveform systematics because they do
not introduce any approximations from a statistical
point of view. Fisher matrices, the Lindblom criterion,
overlaps/mismatches, and orbital dephasings must be
used with caution. Such systematic tests are suitable
for exploration and gaining insight into the accuracy of
the waveform models, but conclusions must be taken
lightly with respect to their accurate Bayesian counter-
part. Fisher matrices are hard to accurately compute for
EMRIs (see the works of Refs. [4, 17, 72, 116]), poten-
tially leading to false conclusions on biases and precision
statements of parameters. Mismatches give no informa-
tion about potential biases on parameters, and fully op-
timized fitting factors such as Eq. (38) can only be calcu-
lated through stochastic sampling algorithms. Similarly,
the Lindblom criterion is overly conservative [128], and
if taken at face value could force unreasonably stringent
accuracy requirements on waveform templates. Finally,
comparisons of the orbital dephasings between two mod-
els are performed at the trajectory level, and so neglect
the waveform structure, SNR of the source or correla-
tions between parameters. These systematic studies tell
an important story, but proper Bayesian inference com-
pletes the picture. For example, we have shown that the
posterior densities of EMRIs and IMRIs can yield non-
Gaussian features when the secondary spin is included,

4 For example, the top panel of Fig. 1 shows that we can recover
the primary mass M = 106M⊙ with a bias on the order of
∼ 10M⊙.
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becoming ever more dramatic as ϵ ≫ 10−5. No other
systematic test can reveal such interesting features.

This importance of Bayesian methods can be seen
in Sec. IV A, which presents the parameter distribu-
tions from mis-modelling in Fig. 1 and the associated
summary statistics in Table II. We highlight from this
analysis that statistically significant biases are not ob-
served when the orbital dephasing ∆Φ(inj) ≲ 1 radi-
ans (see Eq. (39)). From the top panel and bottom
row of Fig. 1, for ϵ = 10−5, the orbital dephasing be-
tween the 0PA and 1PA waveforms is ∼ 3 radians. We
see that strong biases are observed, yet a concrete de-
tection is made with accumulated SNR at the best-fit
parameters ρ(bf)/ρ(opt) ∼ 99.8%. This is further ex-
emplified in the bottom panel, where there is a ∼ 15
radian difference between the 0PA and 1PA waveforms
and ρ(bf)/ρ(opt) ∼ 99.1%, resulting in a clear detection.
This is comforting to see, as it implies that the require-
ments often used by the modelling community (e.g., that
orbital phase errors should be ∆ϕ ≲ 1/SNR rad [129])
may be too stringent. However, the orbital trajecto-
ries completely neglect the SNR of the system, a cru-
cial ingredient for both detection and parameter estima-
tion. Relying on only orbital dephasing should be taken
with caution. Similarly, large mismatches between the
approximate and exact waveform model (for identical
parameter values) might suggest that the waveform is
not detectable with the approximate model. But this is
not the case: Table II contradicts it, giving small mis-
matches M ∼ 10−3 at the recovered parameters for the
largest of mass ratios ϵ = 10−3 even though there are
large mismatches M ∼ 0.938 at the injected parame-
ters. In conclusion, our results reinforce that Bayesian
inference is key to making significant claims about ap-
proximations of waveforms.

Another outcome of our work is that we have shown
the importance of including the secondary spin param-
eter in our waveform models. Although it appears im-
possible to constrain at mass ratios ϵ ≤ 10−5, a mea-
surement can be made at higher mass ratios ϵ ≥ 10−4.
Correlations between the intrinsic parameters and the
secondary spin are significant, leading to degraded mea-
surements for IMRIs only if the spin parameter is in-
cluded. We have demonstrated that neglecting the sec-
ondary spin causes not only a bias but fictitiously tight
constraints on the other intrinsic parameters. This be-
comes more prominent as the mass ratio increases. Fur-
thermore, we have shown that knowledge of the 1PA
components of the GSF is essential when trying to mea-
sure the secondary spin. It may not possible to make
definite conclusions on the potential constraints on the
secondary spin for genetic orbits without including other
post-adiabatic terms.

Finally, we assessed the importance of eccentricity
when mismodeling eccentric templates. At the mo-
ment, only some self-force contributions at 1PA are

known for eccentric orbits, therefore it is not possible
yet to make tests similar to Sec. IV A and Sec. IVB.
Instead, we injected an adiabatic waveform and at-
tempted to recover with an approximate adiabatic wave-
form with trajectories evolved through 9PN fluxes ex-
panded in eccentricity. For low to moderate eccentric-
ities, e ∈ {0, 0.01, 0.1, 0.2}, it is clear that the severity
of the biases worsens in comparison to the circular orbit
case as e increases (cf. Figs. 5 and 6). For moderate ec-
centricities, biases are observed across the entire param-
eter space, notably in the angular parameters and initial
phases. Such biases in the sky position would be unac-
ceptable for studies within cosmology, where the con-
struction of galaxy catalogs allows one to infer cosmo-
logical parameters, such as the Hubble constant [130].
Our analysis show that the inclusion of eccentricity will
complicate the picture. More work is required on the
self-force and data analysis front to understand the im-
pact of these orbits on EMRI parameter estimation.

VII. FUTURE WORK

The work presented here has only scratched the sur-
face of EMRI accuracy requirements. Clearly, it is es-
sential to repeat this analysis once second-order self-
force results become available for more generic orbits.
Indeed, generic orbits may break potential degeneracies
with the secondary spin parameter, leading to improved
constraints at smaller mass ratios ϵ ∼ 10−5. We have
also shown remarkable success with the use of resummed
PN expansions when approximating the 1PA compo-
nents in the context of parameter estimation. For mass
ratios ϵ ≳ 10−4, one could perform preliminary stud-
ies on the secondary spin parameter, assuming suitable
1PA-nPN results were available for more general or-
bits. Moreover, we observed that, due to correlations,
the secondary spin parameter deteriorates the precision
with which the intrinsic parameters can be recovered. It
would then be interesting to understand whether there
exist degeneracies between the secondary spin and the
scalar charge due to extra scalar fields, which may spoil
the precision measurements on the latter [4, 5, 127].

The field of EMRI systematics can now answer some
crucial practical questions for modeling EMRI wave-
forms. For instance, calculating the first-order self-force
for generic Kerr inspirals is very expensive with just
a single point in the parameter space taking O(104)
CPU hours [27]. One then has to repeat this calcula-
tion many times across the 4-dimensional generic Kerr
parameter space to produce interpolants for the 0PA
equations of motion, and then repeat the process at
1PA. It is important to estimate the required accuracy
at each point, the minimum number of points, and their
optimal placement, for both the 0PA and 1PA contribu-
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tions in order to avoid biasing parameters significantly.
The choice of a suitable interpolation method is impor-
tant as well. It is still up for debate whether to use
Chebychev-interpolation methods (which have favorable
convergence properties) or less expensive splines.

We conclude by discussing one last topic that is still
relatively untouched: the EMRI search problem. The
search problem has been “solved” in extremely simpli-
fied circumstances by various groups within the LISA
community [131–134]. The underlying noise properties
were well understood and tight priors were placed on
the parameters to recover. Furthermore, many of these
groups exploited the analytical features of the injected
model (the self-inconsistent “Analytical Kludge” wave-
forms from Ref. [95]), and the known structure of the
likelihood local maxima to reach the global maximum
indicating the true parameters. It is unknown whether
fully relativistic waveforms will simplify or complicate
the search problem. EMRI search is a difficult open
problem, the authors hope that work can restart on this
vital research topic thanks to the advent of FEW and
access to accurate waveforms.
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Appendix A: MCMC implementation details

1. eryn and emcee

As discussed in Sec. III C, our analysis employs
ensemble-based Markov-Chain Monte-Carlo (MCMC)
techniques to sample from the posterior distribution.
We use a mixture of emcee and eryn, depending on the
complexity of the orbits. Both samplers apply an affine
transformation to the posterior distribution to produce
a new density that is far easier to sample from. This
is very useful for EMRIs since the intrinsic parameters
are usually highly correlated. On all runs, we used fifty
individual walkers, where each walker represents an in-
dividual chain that explores the available prior space set
to be uniform over a range of values. One difficulty with
this approach, for EMRIs, is that multiple chains could
become stuck on secondary maxima of the likelihood
surface. These secondary maxima appear due to non-
trivial overlap with the underlying signal and the model
template. An MCMC technique lessens the impact of
these secondary maxima is parallel-tempering, which we
describe below.

A significant advantage of eryn over emcee is the
implementation of parallel tempering, a technique that
“heats” the likelihood in order to mitigate the secondary
maxima structure of the log-likelihood function. Defin-
ing a set of N “temperatures” T = {1, . . . , TN}, one can
deploy a collection of N sets of walkers, one set for each
temperature. Each set of walkers explore (in parallel) a
tempered distribution, given by

p(θ|d) ∝ p(d|θ)1/T p(θ), (A1)

where T ∈ T is an individual temperature. When T =
1, the (cool) chains would sample from the true posterior
density. For intermediate temperatures 1 < T < TN ,
the likelihood itself is smoothed out so the individual
(hot) chains, corresponding to those intermediate tem-
peratures, are less likely to get stuck on local maxima.
In the limit as T → ∞, the walkers would sample from
the prior distribution p(θ).

The individual chains are sent out in parallel, where
samples corresponding to that specific chain are either
accepted/rejected depending on a specific acceptance
criterion (given by Eq. (19) in [110]). Then, to further
encourage mixing, individual points (known as states)
of individual chains may also swap between individ-
ual temperatures based on a swapping criterion (see
Eq. (20) in [110]). The overall idea of parallel temper-
ing is to lessen the probability of getting stuck on local
maxima by encouraging movement between the chains.
Once the algorithm is complete, we discard all samples
with temperatures T ̸= 1 and only use samples from
the true posterior θ(i) ∼ p(d|θ)p(θ) at T = 1. The
only disadvantage of using parallel-tempered MCMC
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over vanilla MCMC is the computational cost. The com-
putational cost of parallel-tempered MCMC algorithms
scale linearly with the numbers of temperatures. This
was the main reason for our choice of using emcee for
the simpler circular orbit runs presented in this paper.

It is well known that the likelihood surface of EM-
RIs is notoriously multi-modal (for instance, see Fig.12
in [31]), and it is not uncommon to get “stuck” on sec-
ondary likelihood maxima during the sampling stage of
the posterior. We found that emcee performed fine when
dealing with EMRIs in circular orbits. The small pa-
rameter space and the small number of modes present in
the waveform model ensured that individual chains con-
verged to the maximum likelihood point quickly without
getting stuck. Only in the most extreme of runs, where
we search for 1PA templates possessing spin using adi-
abatic templates did we observe individual walkers get
stuck on secondary modes. For individual walkers stuck
on nuisance modes, those walkers were removed from the
set of chains to ensure that we extract summary statis-
tics described by the parameters governing the highest
point in likelihood. However, when we focused our at-
tention on eccentric orbits in Schwarzschild, the use of
emcee ultimately led to failure. This was due to indi-
vidual chains remaining stuck on secondary modes for
∼ thousands of iterations. We found success using eryn,
with five temperatures T = {1, . . . , 5} when analyzing
the eccentric orbit cases.

To be clear, we refer to the “convergence” of an ensem-
ble sampler when those individual walkers, in our case
50, reach approximately the same value of log-likelihood
for at least ∼ 1, 000 iterations. For the simulations
present in Fig. 1, the maximum log-likelihood values
attained are given by the last column of Table II. If the
log-likelihood does not climb in value past 1,000 itera-
tions, we deem the sampler to have converged to the cor-
rect stationary distribution. In other words, we apply
the “thick-pen” procedure; we refer the reader to [142]
for discussion of this procedure (and a plethora of other
convergence diagnostic tests).

2. Starting points, prior choices, burn-in and
computational cost

Starting points: For each walker, the initial states
(samples) were chosen such that θ(0) ≈ θtr. Starting
this close to the true parameters is reasonable: our goal
is to identify the impact on parameter estimation when
inaccurate EMRI/IMRI waveforms are employed, rather
than perform a search.

Prior choices: We determine the prior ranges as fol-
lows. We first perform inference on the exact waveform
model using an exact model template. With knowledge
of the true parameters, we can set vague prior bounds as
our starting coordinates θ(0) are very close to the true

parameters. This will result in a reference exact poste-
rior that can be used for comparison between approxi-
mate posteriors computed through the use of inaccurate
model templates. From the exact posterior samples, we
can identify how well we can constrain parameters given
Monte-Carlo estimates of the posterior standard devia-
tion ∆θibf for θi ∈ Θ, the parameter space of the studied
EMRI.

The statistical uncertainty of parameters is domi-
nated by the leading-order piece of the self-force, the
adiabatic component. It is expected in the high-SNR
regime, to a reasonable approximation, that the sta-
tistical uncertainty of waveforms exhibiting full post-
adiabatic information should be similar to that of adia-
batic waveforms. With this in mind, when performing
inference with approximate model templates, we set re-
strictive prior bounds

θi ∼ θitr + 25U [−∆θibf,∆θibf] . (A2)

We found the prior (A2) to be suitably wide enough to
allow for proper sampling of approximate distributions,
but narrow enough to stop the sampler from sampling
enormous regions of parameter space where it may get
lost/stuck. The prior ranges given by Eq. (A2) were
essential when performing the eccentric runs presented
in Sec. IV C. When performing inference on the sec-
ondary spin of the compact object, we set a uniform
prior χ ∼ U [−1, 1] and only focus on secondary black
hole counterparts.

Burn-in: Once (all) the chains had converged to a
point of sufficiently high likelihood for a sufficient num-
ber of iterations, the earlier, exploratory, samples from
the chains are discarded. This is the process of “burn-
in”, which ensures that the only samples that remain
are those from the correct stationary distribution. The
number of samples that were discarded as burn-in was
usually set as a post-processing step. After each run ter-
minated, we would analyze each chain’s log-likelihood,
apply the “thick-pen” procedure, and discard early iter-
ations that were used to explore the posterior. From the
final set of samples, it is then possible to extract sum-
mary statistics such as the point maximum a-posteriori
estimate θbf, marginalised credible intervals, posterior
variance etc.

Computational cost: All simulations were per-
formed on NVIDIA a100 or a30 GPUs, whichever were
available at the time. The computational cost of the al-
gorithm largely depended on two factors: the complex-
ity of the orbit and whether eryn or emcee was used.
The circular orbit runs presented here, using emcee,
usually finished in ∼ 6 hours. The eccentric runs using
eryn took around ∼ 2 days. This extra cost was due to
the number of temperatures required (in our case five)
for the eccentric case and also the number of modes
present in the eccentric waveform summation stage of
FEW.
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Figure 7. A simple example showing the biased criterion Eq. (35) in use. The blue Gaussian represents the true model
posterior, where an exact waveform he (with zero-noise injection) has been used to infer the true parameter θ = 1. Red
and purple Gaussians represent the posterior distributions of two approximate waveforms hm red(θtr) and hm purple(θtr),
respectively, with different levels of bias. The red Gaussian envelopes the true parameter within the 1σ width, or 68%
credible interval Cp(θ|d), given by the red shaded region. Hence the recovered parameter is consistent with statistical shifts
due to the noise, and the hm red(θtr) waveform is suitable for data analysis. On the other hand, the true parameter is not
contained within the 1σ or 68% credible interval of the purple posterior. This means that the approximate model waveform
hm purple(θtr) is not suitable for parameter estimation.

Appendix B: Post-Newtonian expressions for 1PA
forcing

In the 3PN model of the 1PA forcing term we use
post-Newtonian expressions for the fluxes at leading and
next-to-leading order in the mass-ratio. The explicit
expressions we use are

F0 =
32x5

5

[
1− 1247

336
x+ 4πx3/2 − 44711

9072
x2 − 8191

672
πx5/2+

(
6643739519

69854400
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16π2

3
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105
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]
, (B1)

F1 =
32x5
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41π2
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214745π
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+
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+
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log(r̂)

)
x4

]
, (B2)

where x = 1
r̂ and γ is the Euler–Mascheroni constant. Note that these expressions are only used in the 1PA
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forcing term F1 in Eq. (8), as written in Eq. (10), not in the 0PA forcing term F0.
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