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Pound-Drever-Hall Locking an Infrared Fibre Laser to a High-Finesse ULE
Cavity:

This thesis presents the implementation of the Pound-Drever-Hall (PDH) locking tech-
nique for stabilising a laser to a high-finesse optical reference cavity. The ultimate goal
is to realise a stable and accurate frequency reference for high-precision spectroscopy
experiments on highly charged ions in a superconducting Paul trap. This work details
the construction of a housing for the ultra-low expansion glass (ULE) resonator, as well
as the analysis of different intensity signals during the incoupling process and the initial
PDH operation. First successful locking was achieved, although with limited stability,
possibly due to insufficient feedback bandwidth or operating the cavity in air at the
current time. External perturbations such as temperature and pressure fluctuations that
could lead to the current instability and noise level were identified and work is ongoing
to improve these aspects, including by operating the cavity in vacuum for which the
housing is already prepared.

Pound-Drever-Hall-Kopplung eines Infrarot-Faserlasers an eine ULE-Kavitat
hoher Finesse:

In dieser Masterarbeit wird die Implementierung der Pound-Drever-Hall (PDH) Locking-
Methode zur Stabilisierung eines Lasers an einer optischen Referenzkavitat hoher Finesse
vorgestellt. Ziel ist es, eine stabile und genaue Frequenzreferenz fiir hochpréazise Spektrosko-
pieexperimente an hochgeladenen Ionen in einer supraleitenden Paul-Falle zu realisieren.
Im Verlauf dieser Arbeit werden die Konstruktion eines Gehéduses fiir den Glasresonator
(Ultra Low Expansion Glass, ULE), sowie die Analyse verschiedener Intensitétssignale
wéhrend des Einkopplungsprozesses und des ersten PDH-Betriebs beschrieben. Eine
erste erfolgreiche Feedback-Kopplung wurde umgesetzt, wenn auch mit eingeschrankter
Stabilitdt, was moglicherweise auf eine unzureichende Riickkopplungsbandbreite oder den
Betrieb der Kavitit in Luft zum gegenwértigen Zeitpunkt zuriickgefiihrt werden kann.
Externe Storeinfliisse wie Temperatur- und Druckfluktuationen, die zu der momentanen
Instabilitdt und dem Rauschpegel fithren kénnten, wurden identifiziert, und es wird
fortlaufend daran gearbeitet, diese Aspekte zu verbessern, auch durch Betrieb der Kavitét
im Vakuum, wofiir das Gehduse bereits ausgelegt ist.
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1 Introduction

1.1 Ultra-Stable Lasers

The invention and realisation of the laser in 1960 [1] provided a new tool with which light
could be generated with special properties — light could now be produced with very high
spatial and temporal coherence. This had a profound impact on numerous scientific fields
and transformed research, technology, and applications. Lasers are at the core of modern
optics and photonics research including quantum optics [2] and quantum information
processing [3], but they also play a crucial role in atomic and molecular physics [4, 5]
and metrology [6]. Furthermore, they have become an essential tool in other scientific
disciplines such as astronomy [7] and biology [8], as well as more application-oriented
areas such as medicine [9] and communications [10].

Spectroscopy describes the study of (electromagnetic) spectra resulting from the interac-
tion between matter and radiation. In the beginning, it consisted of investigations of
the solar spectrum [11] and the emission lines of heated substances [12]. However, with
the invention of lasers and the availability of a coherent and monochromatic light source,
precise and selective excitation of atomic and molecular systems are made possible. This
enables direct measurements of atomic structures, leading for instance to the development
of laser cooling [13].

Laser light can have some specialised properties, for instance it can be made to have
extremely high intensities with amplification and beam focusing. The light can also be
pulsed instead of supplying a constant intensity, which can be made as short as tens of
attoseconds [14]. Furthermore, pulsed lasers with specific phase relations can exhibit an
interesting pattern in their frequency spectrum. The equidistant peaks of the so called
frequency comb [15, 16] make direct and precise measurements of optical frequencies
possible.

Optical interferometry, exemplified by the Michelson interferometer [17], was also trans-
formed into a new tool of physics by the introduction of the laser. More types of
interferometers have emerged since then, and have proven to be a reliable method for
characterising and controlling laser light. The most notable and direct application of
laser interferometry is the detection of gravitational waves [18].

A widely used component in setups to stabilize lasers is the Fabry-Pérot interferometer.
Ultra-stable lasers are essential for optical atomic clocks [19] and provide an important
tool for precision tests of fundamental physics [20, 21]. A stabilised laser with a linewidth
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of less than 1Hz was reached in 1999 [22]. The research to develop more stable laser
setups continuously progresses, with cryogenic reference cavities to reduce thermal noise
or longer glass cavities to reduce thermal effects on the fractional frequency stability. In
2012, a fractional frequency instability of 10716 at short timescales has been achieved
with a cryogenic setup [23].

1.2 Highly Charged lons

An atomic system refers to an arrangement of a single nucleus that is surrounded by a
number of electrons. This includes neutral atoms with equal charge in the nucleus as in
the surrounding electrons, as well as charged ions where the number of electrons around
the same nucleon has changed. Every chemical element has at least as many different
charge states as it does electrons — focusing mainly on positively charged ions — many
of them highly charged with a large positive total charge. These highly charged ions
(HCIs) therefore make up largest fraction of possible atomic systems and, although they
are rare on earth, they amount to a large portion of the visible matter in the universe.
Their outer electrons are strongly bound to the nucleus and because many of the atomic
properties scale with the nuclear charge, they behave differently than their less charged
counterparts [24]. However, for most HCIs, many of their atomic transitions remain to
be discovered or measured accurately (this gap of knowledge has also been called the
‘sea of ignorance’ [25]).

Several HCI species have energy levels and transitions that show a high sensitivity to
the variation of the fine-structure constant ¢/« [26] or possible fifth force mediators [27],
making them interesting to fundamental research. Additionally, due to the strong binding
of the remaining electrons to the highly positively charged nucleus, the ion’s energy levels
are a lot less susceptible to external perturbations like Stark shifts. This makes them
useful for precision experiments where these outside influences have to be kept small and
well controlled. HCIs have been proposed as good optical clock candidates — the first
such clock has been realised in 2022 [28] — as well as good probe for new physics for the
aforementioned reasons [29].

To reach the precision necessary for these kinds of spectroscopic measurements, the HCIs
have to be cooled down to reduce motion-induced broadening of the transitions. They are
typically produced at high temperatures, e.g. inside an electron beam ion trap (EBIT)
where the ions remain in a gas cloud and constant collisions lead to temperatures of
hundreds of thousands or even millions of degrees Celsius [30]. Direct laser cooling of
HClIs is not possible due to the necessary fast-cycling electric-dipole (E1) transitions
being shifted to far shorter wavelengths into the X-ray regime where no laser sources
exist.
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1.3 The Cryogenic Paul Trap Experiment

The cryogenic Paul trap experiment (CryPTEx) at the Max-Planck-Institut fiir Kern-
physik in Heidelberg is designed to simultaneously trap HCIs and singly charged beryllium
ions [31]. The heart of the currently operating second iteration CryPTEx-II is made
up of a superconducting resonator that acts as a linear Paul trap [32, 33]. The goal is
to perform quantum logic spectroscopy [34] on a HCI trapped together with a single
beryllium ion.

The HCIs are produced in a Heidelberg compact EBIT [35] from which they extracted
and re-trapped in the cryogenic Paul trap. There, they form a Coulomb crystal with
laser cooled singly charged beryllium ions [36]. Since the HCIs share motional states
in the Paul trap with the beryllium ions, they are sympathetically cooled as well. This
includes Doppler cooling, along with ground-state cooling via Raman sideband cooling.

Once a Coulomb crystal of one HCI and one beryllium ion is cooled to the motional
ground state, one can apply quantum logic to perform spectroscopy. As in other types of
laser spectroscopy, the precision with which a transition frequency can be measured is
limited by the precision of the laser used to interrogate this transition.

A system of spectroscopy lasers and a frequency comb is ready to be implemented into
the setup. The goal is to expand the setup to include a stabilised reference laser to
increase the precision of the spectroscopic measurements.






2 Theory

This chapter will provide the relevant theoretical background for describing the locking
of a laser to a stable optical cavity. It will cover the description of light as a beam in
section 2.1 and the theory of optical resonators and the Pound-Drever-Hall technique in
section 2.2.

2.1 Beam Optics

The behaviour of light in simple optical setups can often be explained using ray optics,
where light is described with rays that follow simple geometrical rules. Each medium has
a refractive index n indicating the change from the speed of light in vacuum ¢ (where
n = 1). The time it takes the light ray to travel a certain path is the optical path length
and Fermat’s principle states that the light will travel the path where this is minimal.
Effects of the electromagnetic field and of the wavelength are neglected. The failure of
this approach is already evident in experiments such as the single or double slit, where
things like interference phenomena have to be considered. To describe these things,
including many more e.g. laser cavities, one needs to at the very least consider light as a
wave. The following discussion of wave and beam optics is mainly based on ref. [37].

In wave optics, light is treated as a real scalar wavefunction u(r,t), depending on the
position r = (x,y, z) in space and time t. The wavefunction is a solution to the scalar
wave equation

—u—Au=0, (2.1)

where A = 9% + 85 + 02 is the Laplace operator.

Often, a complex representation is used where u is the real part of a complex wavefunction
U(r,t) which allows for an easier description of the phase and amplitude in a single
quantity.

We will start by considering monochromatic waves where the time dependence is harmonic
with a singular frequency f! at every point in space. This allows for a factor of exp(i27 ft)

'For (near-)optical lightwaves one typically considers frequencies in the range of 3 - 10*! Hz to 3-10'° Hz.



CHAPTER 2. THEORY

(a) (b)

Figure 2.1: Wavefronts are the planes of constant phase of a wave in 3-dimensional space.
In this figure, we see the wavefronts in x and z of two different types of fundamental waves.
(a) This picture shows the wavefronts of an ideal plane wave propagating in z direction. The
wavefronts have no curvature — or rather a radius of infinity — and therefore, the propagation
direction which is perpendicular to the wavefronts is the same at every point. (b) Here, we
can see the wavefronts of a spherical wave originating at the centre. As the name suggests,
the wavefronts are spheres around the origin which have linearly increasing radii of curvature.
From its origin, this wave propagates in all spatial directions at the same time and can
therefore be described as maximally divergent.

to be separated from the general complex wavefunction, leaving a complex amplitude
that includes the amplitude and the phase which will only depend on position:

Ulr,t) = U(r)e?™/? (2.2)

Separating the spatial part — the complex amplitude U(r) — and the time-dependent part
in this way allows for the wave equation (2.1) to be converted into a time-independent
equation, the Helmholtz equation:

AU + KU =0. (2.3)

Planes where the phase of the wavefunction is constant — or rather a multiple m of 2w
(¢(r) = m27) — are called wavefronts. Some fundamental solutions to the Helmholtz
equation are plane and spherical waves, both named after the shape of their respective
wavefronts, which can be seen in figure 2.1.

They also illustrate the main problem when it comes to light transfer through free space,
of how to represent directed but focused laser beams. Plane waves have a well-defined
direction of propagation and do not diverge, but their expansion is infinite with constant
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intensity throughout — not physically feasible. Circular waves are spatially confined in
the way that the intensity peaks at the origin, yet they radiate out in all directions
isotropically and can therefore be described as infinitely divergent.

2.1.1 The Gaussian Beam

To realise and describe waves in a form where they have both a clear direction of
propagation and a limited spatial spread perpendicular to it, it is convenient to introduce
the concept of paraxial waves. Starting with a plane wave in z direction with wavevector
k = 2w /), we modulate its amplitude with slow-varying envelope A(r) such that locally
it can still be treated like a plane wave.

Ulr) = A(r)e ™ (2.4)
This envelope A(r) has to satisfy the paraxial Helmholtz equation:

0A
V3A—i2k— =0. 2.5
T ¢ 9z ( )
Here, V3, = 07 4 0; is the transversal Laplace operator. Equation (2.5) is derived from
the Helmholtz equation (2.3), where the second derivative of A with respect to z is
neglected due to the slow-varying nature of the envelope.

A solution to this equation is the Gaussian beam, which has the properties we are looking
for. It has a clear direction — with wavefronts that vary mainly along this path — and a
small angular dispersion with most of the power concentrated along the beam axis. The
solution can be derived via the paraboloidal wave, its complex amplitude is

A1 $2 + y2
Ulr)=— —ik —ik 2.6
(r) = - expl-ika] expl s (26)
where A; is a constant. This has the slow-varying envelope
Al . .1'2 + y2
Alr)=— —ik 2.7
r)="= expl L (27)

which satisfies the paraxial Helmholtz equation.

The complex envelope of the Gaussian beam is obtained from equation (2.7) by replacing
z with the so called g-factor q(z) = z + izp:

22+ y?
2(z +1i20)

A(r) = A1 exp l—m (2.8)

z+ 1z




CHAPTER 2. THEORY

The parameter zg that is introduced in this definition will be called the Rayleigh range
or Rayleigh length. To separate this envelope into its real (amplitude) and imaginary
(phase) part, one rewrites the complex g-factor of the Gaussian beam as

r 1 oz .20
0(z) " z+in 2+ 2+
B 1 Z_ 1
2 (1 + (20/2) ) 20 (1 + (2/20)2) (29)
— 1 )\
T R(2) Tw?(z)’

where the two functions R(z) and w(z) are defined as

R(z) = 2 (1 + (%)j , (2.10)
w(z):\/% \/1+<%>2 = wy 1+<Z—ZO>2. (2.11)

It can be shown that R(z) and w(z) are measures of the wavefronts’ radius of curvature
and the beam width, respectively. The g¢-factor with its real and imaginary part —
sometimes the real and imaginary part of its reciprocal are used instead — fully define
a Gaussian beam. It should be noted that here the beam is, without loss of generality,
centered around z = 0. If necessary, it can be changed to be at position 2z’ by modifying
the real part of ¢ with the translation z — z — 2.

Using the functions R(z) and w(z), the envelope can be written as

1 A P 22 + 92
Al =i (R(z) - Zﬂw2(2)> =P l‘”‘"m] exp [—wz—(@

After a series of transformations the first term can be rewritten as

Ay - ( 1 —3 ;\ ) = A i —? eiarctan(z/zo)
RE)  we) = A m wl) oy

Wo
= A() —

(2.12)

tarctan(z/zo)
w(z)” |

where Ag = —iA;/z0 was defined to simplify this formula.

The complex amplitude of a Gaussian beam follows as

2 2 2 2
wo 7ty LTty ) z )
U("') = A() w(z) exp [_ wz(z) 1 exp [—ka + zarctan(z—o) — zk‘z} . (214)

In the following, some properties of Gaussian beams will be discussed in more detail.
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Intensity profile
The beam intensity I follows from the complex amplitude as

I(r) =|U(r)]. (2.15)
From equation (2.14), it is clear that the second exponential describing the phase gets

cancelled out in the intensity. What is left is a Gaussian function in z- and y-direction
with varying amplitude and width along the beam axis.

w 2 l.Z 2

In figure 2.2, the beam profile is pictured for different positions z along the beam.

(2.16)

The peak intensity is always located on the beam axis, but its value changes for different
z. In figure 2.3, the behaviour of the maximum intensity |Ao|? (wo/w(z))? is shown.

Integrating the intensity over a plane perpendicular to the beam axis yields the power of
the beam at a position 2

/ / I(r)dady = ~| Ag[2ruw?. (2.17)
R2 2

As expected from energy conservation, this is independent of z.

Beam width and divergence

The amplitude of the Gaussian beam profile, as well as its width, change along the beam
axis z. From equation (2.16) we can see that w(z) corresponds to twice the standard
deviation of the Gaussian intensity profile. As a result, the 1/e? width of the intensity
at z, where the intensity has decreased by a factor of 1/e? ~ 0.135 compared to the
maximum, is 2w(z). Therefore, w(z) is also called the beam radius. We have seen its
dependence on z in equation (2.11):

w(z) =wp 1+ (i>2. (2.18)

20

The smallest beam width is reached at z = 0 where it becomes 2wy, this position along
the beam axis is called the beam waist. The beam width increases monotonically in
each direction, see figure 2.4 . For greater distances z > zy from the beam waist, the
divergence becomes linear with the relation

Wo

w(z) ~ —=z. (2.19)
20
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z=20

z=22

Intensity
Intensity

Intensity

—2 0 2 —2 0 2
Jt/wo Jt/wo

I/wo

Figure 2.2: Pictured above is the intensity profile of a Gaussian beam at different points
along its beam axis. From left to right, the points pictured are z = 0, z = 29, and z = 2z.
On the top are the cross section of the beam, and we can observe that the beam becomes
wider and weaker further from the origin. On the bottom, we can see the Gaussian profile
in x direction (the beam is symmetrical so this also matches the profile in y), where the

divergence and the decreasing intensity can be compared more easily.

Peak intensity
1

—4 -2 0
z /20

Figure 2.3: Peak intensity of a Gaussian beam along the beam axis — the z-axis. The
maximum intensity — in our definition of the Gaussian beam — is always located on this axis.
At a distance of zy from the origin, the peak intensity of the beam has decreased by a factor

of 2.

10
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-2 -1 0 1 2

z /20

Figure 2.4: The beam diameter 2w(z) coincides with the 1/e? width of the Gaussian profile
at position z. Therefore, the beam can be and is often visualised in space by this outline, like
in the picture above. At the beam waist (the origin), the beam diameter is at its minimum
of 2wy, while the beam diverges on both sides of the beam waist. Further from the beam
waist, the divergence becomes approximately linear with the angle 26y. Twice Rayleigh length
2zq is sometimes also called the depth of focus because in this region around the beam waist
(shaded darker than the rest of the beam in the picture) the light is the strongest and most
focused.

The angle of this divergence is 26y ~ 2w/ 29, assuming small angels, and doubled for the
total divergence which is symmetrical around the beam axis. It is pictured in figure 2.4
as well.

The parameter wyp, called the waist radius, was defined in equation (2.11) as

wo = ﬂ y (2.20)
T
and seeing as how wg and zg relate to each other, the divergence changes with the
waist radius as 26y o 1/wg. The smaller the waist radius, the steeper the angle of the
divergence. Additionally, a beam with a longer wavelength is more divergent than a
beam with the same parameters and a shorter wavelength.

Depth of focus

As seen, the minimum of the beam width is reached at the beam waist at z = 0 and
increases in both directions along the beam path. One Rayleigh length away from the
beam waist, at z = zg, the width has increased by /2 and the peak intensity is halved.
The area near the beam waist, within zy on either side, is the focus of the Gaussian beam
and the length 2z, twice the Rayleigh length, is called the depth of focus.

11
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Wavefronts

Going back to the complex amplitude in equation (2.14), before eliminating the parts
with the phase information by only looking at the intensity profile, we now have a closer
look at the phase of the wave, and at the planes of constant phase — the wavefronts. The
phase ¢ of the Gaussian beam has three contributing terms that we can identify from
equation (2.14) as

z2 + y2
2R(z)

o(r) =kz — arctan<i> +k

(2.21)
20

The first term here we can identify as the phase of a simple plane wave, while the other
two terms introduce a modification to this.

On the beam axis only the first two terms contribute, and in comparison with a plane
wave (that only has a phase of kz), the Gaussian beam is out of phase by up to + /2.
This is called the Gouy effect, or the Gouy phase. How this phase retardation changes
along the beam can be seen in figure 2.5.

The third term in equation (2.21) introduces a bending to the wavefronts off the beam
axis. It can be shown that the function R(z) corresponds closely to the radius of curvature
of the wavefronts. The graph of R(z) as well as the wavefronts can be seen in figure 2.5.
Around the waist, the behaviour of the wavefronts is close to that of plane waves with
the radius of curvature going towards infinity, whereas further along the beam axis they
resemble those of a spherical wave.

Beam quality

A Gaussian beam has the lowest divergence possible in free space for a given waist size.
To give a simple measure of the quality of a real measured beam, one can therefore
compare the product of its measured waist diameter 2w,, and divergence 20,, to those of
a Gaussian beam.

2wg - 26, 4N/
This is called the M2-factor. Gaussian beams have the smallest possible divergence for a
given waist diameter, hence M? > 1.

It should be noted at this point that this derivation of the Gaussian beam can also be
done for electromagnetic optics. Instead of the scalar constants A, one has vectors that
represent the electric or magnetic field.

12
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Figure 2.5: (a) Gaussian wavefronts along z. The dashed lines represent the wavefronts of a
plane wave. It is easy to see that along the beam axis z (along which the wavefronts are
symmetrical), there is a phase difference between the Gaussian beam and the plane wave. It
is determined by the second term in equation (2.21) and is visualised below. (b) The Gouy
phase describes the phase retardation on the beam axis of a Gaussian beam with respect to a
plane wave. It vanishes at the beam waist and increases to a maximum of + 7 /2 on each side.
(c) This plot shows the radius of curvature R(z) of the Gaussian wavefronts for different
positions along the beam, according to equation (2.10). To the left of the beam waist, the
radius is negative while on the right side it is positive. At the beam waist it becomes infinite
which corresponds to a wavefront with no curvature. The dashed line shows the radius of
curvature for the wavefronts of a spherical wave. We can see that further away from the
beam waist, the wavefronts of a Gaussian beam resemble those of a spherical wave.

13
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2.1.2 Optical Components and Transfer Matrices

Optical components that a beam propagates through change its geometry. There are
several ways to describe the transformation to the beam mathematically, one of which
will be briefly discussed here.

Transfer matrices are 2 x 2 matrices, typically used in geometrical (ray) optics for paraxial
waves in an assumed planar geometry. It simplifies the mathematical propagation of rays
through a large series of optical elements by representing the properties of the ray in a
vector and assigning every optical component a matrix that transforms the vector. A
chain of optical components becomes the multiplication of several matrices. The vector
describing the ray consists of a position x and an angle 6 with respect to the optical

T2 A B I1
-8 6
N——

Transfer matrix,
or product of
transfer matrices
Different optical components, as well as a propagation through free space, are represented

by different types of transfer matrices, the most common of which are shown in table 2.1.

For the propagation of Gaussian beams, the same matrices can be used. Again, the
light beam itself is represented by a vector, in the case of Gaussian beams it is (g, 1),
with the g-factor that was introduced in equation (2.9). In addition to multiplying this
by a matrix, there is also a normalisation factor to keep the second vector entry at 1.
Therefore, the transformation can be calculated via

9 1 A B 1
(1) =caro & 5) (%) o2

_ Aqp+B

= q2

Despite this different calculation of the propagation, it is still possible to multiply several
matrices before determining the new ¢ using equation (2.25).

2.1.3 Gaussian Modes

The Gaussian beam seen above is a special solution to the paraxial Helmholtz equation,
but it is far from the only one. Several other solutions that exist even share the wavefronts
of the Gaussian beam.

We will see later in section 2.2.1 that matching wavefronts to the radii of spherical mirrors
is relevant for incoupling light into optical resonators — one can therefore also speak of
resonator modes.

14
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Table 2.1: Shown below are the transfer matrices for different optical components as well as
for free space propagation. The advantage of using transfer matrices lies in the possibility
that for large optical setups with several different components, the propagation of a ray or
beam does not have to be carried out step by step. Rather, the transfer matrices of the
individual components can be multiplied first and then the propagation can be made with
just the one resulting transfer matrix.

Optical element Transfer matrix
. . 1 d
Free space propagation over distance d 0 1
. . 10
Reflection from a flat mirror 01
. . . . . . 1 0
Reflection from a spherical mirror with effective radius Reg 2
ReH
. . 1 0
Thin lens with focal length f -
7

First, we consider the Gaussian beam envelope A(r) from equation (2.8). This envelope
can be modulated with some real functions X(-), Y(-), and Z(-) in z, y, and z. If the
modulation is of the form

Allr) = X (ﬂ%) y <\/§$> ¢iZ() A(r) (2.26)
then the corresponding beam exhibits a non-Gaussian intensity distribution but shares the
wavefronts with the Gaussian beams. The paraxial Helmholtz equation puts additional
constraints on the modulating functions, which leads — after some transformations and
substitutions — to the Hermite equation for X and ), solved by the Hermite polynomials
Hy(-). A solution can be denoted by a tuple (I, m) where

X()=H(-) (2.27)

V() =Hp(), (2.28)
with Z following as

Z(z) = (I + m)arctan (Z—ZO) . (2.29)

The complex amplitude of the so called Hermite-Gaussian (HG) beam of order (I,m) is
thus

30)
- exp l—z’k x;R—iEZy)Q +i(l+m+1) arctan(%) - z'k:z] )

15
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HGoo HG HGo HGsg

HGo, HGy, HGy, HGs,

HGo2 HGi2 HGay HGs,

Figure 2.6: The first few orders of Hermite-Gaussian modes are depicted, where the order (0,0)
is the fundamental Gaussian beam. They are derived by modulating the amplitude of the
Gaussian beam and solving the paraxial Helmholtz equation which they are a complete set of

solutions for.
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Figure 2.7: If cylindrical coordinates are used in the derivation of further modes, one arrives
at the Laguerre-Gaussian modes, the first few orders of which are shown here. Again, the
order (0,0) produces the fundamental Gaussian beam.
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2.2. Optical Resonators

We can see that the Gouy phase shift is stronger than that of the Gaussian beam by a
factor of 1 4+ 1+ m. The intensity distributions of the first few Hermite-Gaussian modes
are depicted in figure 2.6.

The Hermite-Gaussian modes are a complete set of solutions of the paraxial Helmholtz
equation, meaning every other solution can be expressed as a linear combination of these
modes. They are not the only complete set — with a similar derivation, using cylindrical
coordinates instead of x and y, one arrives at a different set of solutions, the so called
Laguerre-Gaussian beams. They are also numbered by a pair of indices (I, m), denoting
the radial and azimuthal index, respectively, and the factor determining the stronger
Gouy phase shift is 14204 |m|. The intensity distributions of the lowest order LG beams
are displayed in figure 2.7.

2.2 Optical Resonators

Optical resonators or resonant optical cavities are systems of optical components where
incoupled light continuously repeats a closed path. They confine a light field in the direc-
tions perpendicular to their propagation. Different configurations of optical resonators
exist — they can be waveguided or through free space; or they can have a ring-like or linear
arrangement. The repeated reflections and their superposition within the resonator leads
to the formation of discrete modes with different resonant frequencies. One differentiates
between longitudinal modes and transversal modes, both of which are discussed below.

Optical resonators have numerous applications, the most important is that they are the
basic building block for lasers, where a gain medium is placed inside the cavity to generate
coherent light. Other applications include the selection of a certain optical frequency
or intensity profile by selecting the relevant mode [38, 39], using the high intracavity
intensities for non-linear optical effects [40, 41], cavity ring-down spectroscopy to measure
low-level losses [42], or using them as short-term frequency standards [23, 43].

2.2.1 Fabry-Pérot Resonator

The derivations presented in this section are based on [37] and [44].

A stable optical cavity consists of two (or sometimes more) mirrors in which the light
will eventually replicate itself. Two parallel mirrors arranged at a distance d make up the
most simple form of linear resonator, often called a Fabry-Pérot resonator or cavity. An
incoming beam can be effectively coupled into the fundamental cavity mode if it fulfills
the following two incoupling conditions:

1. Matching the spatial dimensions of the incoming beam to that of the fundamental
cavity mode. This is related to the different transversal electromagnetic (TEM)
modes of the resonator.
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Figure 2.8: This figure demonstrates conditions of spatial incoupling into a planar-spherical
cavity of length d. To match the wavefronts to the surface of both mirrors, the waist of
the Gaussian beam has to coincide with the planar mirror. The Rayleigh length zy (and
hence the waist radius wy) follows from the radius of curvature Ry of the spherical mirror, as
equation (2.34) reduces to 2§ = d(Rg — d) for Ry = oo.

2. Ensuring that the phase of the light is self-reproducing after one round-trip inside

the cavity. This leads to standing waves inside linear resonators and to their
longitudinal modes.

Strictly speaking, the definition of a Fabry-Pérot cavity specifies two planar mirrors, the
name is, however, also often used for a linear arrangements of two curved mirrors — such
is the case here. For a Fabry-Pérot cavity made up of two mirrors with radii of curvature
Ry and Rs, the first condition concerning the spatial replication is fulfilled if the light
beam’s wavefront coincides with the mirror surfaces. In this case, the reflected beam
exactly overlaps with the incident beam and no amount of cycles of the light back and

forth results in the light beam leaving the resonator. This spatial incoupling is visualised
in figure 2.8.

Since the beam’s wavefront radius R(z) has to match the mirror curvatures R; and Rp
at a distance d from each other, we can, with the help of equation (2.10), write

29 — 21 = d, (2.31)

R(z1) =2 (1 n <z—(1’>2> — R, (2.32)

1+ <2>2> = Ry. (2.33)
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2.2. Optical Resonators

Note the convention in equation (2.32) for negative radius of curvature to the left of the
beam waist, while both R; and Ry are assumed to be positive for concave mirrors. The
mirror positions with respect to the beam waist are given by z; and 29, and zy denotes
the beam’s Rayleigh length.

To determine these three unknown parameters, the above equations (2.31) to (2.33) can
be rewritten as

d(Ry — d)(Ry — d)(R1 + Ry — d)

2 _ 2.34

%0 (R1 + Ry — 2d)? 7 (239
—d(Ry — d)

— 2.

21 Rl—I—RQ—Qd’ ( 35)
d(Ry — d)

=’ 2.36

2 R+ Ry — 2d ( )

This fully defines the beam in the cavity setup — if the solution above exists. If that is
not the case, if for a mirror configuration of Ry, Rs, and d it is not possible for the beam
to replicate itself and to match the Gaussian beam’s wavefronts to the mirrors, then the
cavity is called unstable.

The configurations where no stable cavity setup is possible can be most easily expressed
using the so called g-parameters

d
gi = <1 + E) , where 1 =1,2, (2.37)

the stability condition can be written as

0<gig2<1. (2.38)

At this point, it should be mentioned that it is also possible to determine the beam
parameters with the matrix formalism that was briefly introduced in section 2.1.2. The ¢
parameter of the matching Gaussian beam will be mapped onto itself by equation (2.25)
with the transfer matrix made up of the cavity components.

With the spatial condition taken care of, we neglect it henceforth and only consider the
light field of a plane wave as we take a closer look at the second criterion. The resonance
condition for a monochromatic standing wave of wavelength A and frequency f = ¢/ in
a linear resonator is

A c

n-—=d < f=n—

. (2.39)

where c is the speed of light and n is a natural number. Is this condition fulfilled, the wave
forms a standing wave inside the resonator, for each n a different number of oscillations
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Figure 2.9: Stability diagram for linear cavities of length d with two spherical mirrors, where
the region of stability parameters g; and g2 (see equation (2.37)) allowing a self-replicating
beam, is marked in green. Some cavity geometries are pointed out, from top to bottom
there are: a planar cavity where Ry = Ry = o0; the region of spherical-planar cavities where
either Ry = oo or Ry = o0; a confocal cavity where Ry = Ry = d; a concentric cavity
where R1 = RQ = d/2

between the mirrors. These are called the longitudinal modes of the resonator. It is easy
to see that the frequencies of neighbouring resonator modes differ by

c
= —. 2.4
VESR 2 ( 0)

This is called the free spectral range vpgg of the cavity.

To understand the light field inside and after the resonator, one first considers the two
mirrors with finite reflectivities for the electric field r1 and 9. To simplify the formulas,
they are assumed to be the same here, r1 = ro = r. Each time the light encounters a
mirror, a part of it gets reflected and another part is transmitted, according to the mirror
reflectivity; this is visualised in figure 2.10. The incoming light with amplitude Ey enters
the cavity through one of the mirrors, its amplitude being t- Ey on its first passage, with
the transmission coefficient ¢ = v/1 — r? (assuming no losses) of the mirrors. For each
cycle inside the resonator, the amplitude decreases. Once the light has passed through
the resonator in both directions, the resulting field £ can be described by

E; =12 €e¥tE,, (2.41)
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Figure 2.10: Scheme of a Fabry-Pérot resonator of length d. Here, all the light beams that
would overlap in reality are shown separately. A part of the incoming beam Ej is reflected
at the first mirror, while the other part enters the resonator. Inside the cavity, the light is
reflected back and forth with some of the intensity leaking out of the resonator at every
reflection, such that after m such cycles it is described by E,,. The outgoing light adds to
the total transmission or reflection, depending on which mirror the light leaks out off.

where

Y = 47de/c = 27Tf/VFSR (2.42)

is the phase shift relative to the incidental wave, accumulated during one round trip. For
each successive cycle, an additional factor of 72 €9 needs to be considered such that after
m round trips the electric field has become

E,, = r?™ ™PLE, . (2.43)

The total electric field E in the resonator results from the superposition of the electric
fields after m revolutions in the resonator:

NS (2 ip\™ 2
m=0
This results in an intensity I inside the optical resonator of?

PlEl* (1 =r?)|E?
|1 —7r2e@2 1474 —2r2cosp’

I=|E?= (2.45)

2To get the actual physical intensity from the electric light field, a factor of cneo/2 is missing. Since the
absolute value is irrelevant here, this factor is neglected.
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Defining the maximum intensity Inax and the cavity’s finesse F2 as

| Eol?
Imax = m and (246)
r

= 2.4
1—7“2’ ( 7)

and using the definition of the free spectral range from equation (2.40), equation (2.45)
can be rewritten as

Imax

= Ty @FmP sl o) (245)
This so called spectral response of the resonator can be seen in figure 2.11 for optical
cavities with different finesse. It can be noted that the intensity peaks that repeat
every free spectral range are thinner the higher the finesse is. A higher finesse indicates
higher mirror reflectivities which leads to more back-and-forth cycles of the light inside
the resonator that contribute to the interfering fields. The more additional fields can
counteract the incoming field, the closer the resonance condition has to be met and the
narrower the peaks are. For sharp resonances (F > 1), the peaks can be approximated
by a Lorentzian function that has the full width half maximum (FWHM)

VFSR
Av = 2.49
v F Y ( )

called the cavity linewidth.

The transmitted light is similar to the added up light inside the resonator, except for an
additional factor of ¢ for each cycle, as a small fraction of the built-up light leaves the
cavity. For the total transmitted light Firans and its intensity lirans follows, analogous to
the derivations above,

> L \m t2F,
_ 2 _ip 2 _ 0
Eirans = mX::O ()" B = T3 (2.50)
E 2
Itrans = | 0| (2.51)

L+ (2F/m)2sin(rf/vesw)

Besides the fields in and after the resonator, the reflected field E,.q counterpropagating
to the incoming light is also of interest. A part of the incoming light is reflected before
even entering the cavity and interferes with the light that leaks from inside the cavity
every cycle. Therefore, the sum for the total reflected light field follows as

el . \Nm t2
Ereﬁ = T‘E() — Z (r2 elgp) —E()
r
=l (2.52)
t2rEge'?

—rBy—
1 — r2eiv

3This definition of the finesse is valid for low-loss and high reflectivity cavities (1 —r < 1).
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Figure 2.11: Maximum intensity build up inside Fabry-Pérot cavities of the same length and
different finesse, depending on the incoming light frequency. This is sometimes also called
the spectral response of a cavity. As expected, it exhibits a periodic behaviour, with peaking
intensities repeating every free spectral range vpsg. We can see clearly that the width of
the peaks depend on the finesse, with much thinner peaks for higher values of finesse. Both
the behaviour of the transmitted cavity light and the maximum intensities inside the cavity
can be described by this graph, as they are proportional to each other (see equations (2.48)
and (2.51)). However, the maximum value of the transmitted light for loss-less mirrors is
equal to that of the incoming light, whereas the intracavity intensities can be much higher,
increasing further with higher finesse.

The difference in sign between the two terms follows from the 180° phase jump the light
wave gets when reflected from a material with a higher refraction index, like the light
inside the cavity propagating through air or vacuum, reflected at a mirror made of glass.
Hence, the incoming light reflecting from the inside of the mirror before entering the
cavity does not get this phase shift.

Dividing the reflected field by the total incoming light Ey, we get the so called reflection
coefficient F'(w), typically given as a function of the angular light frequency w. After
some transformations it reads

Eren 1 — e
=T — .
Ey 1 — r2eiv

F(w) = (2.53)
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2.2.2 Pound-Drever-Hall Locking

Lasers are nearly monochromatic, but they have a spectrum of noise that through
frequency fluctuations contributes to a finite linewidth. Hence, there are different
timescales that broaden the laser’s spectrum. While a faster noise — usually caused by
statistical processes in the laser medium — broadens the laser linewidth, slower noise —
e.g. due to external perturbations or temperature changes — can cause ‘jitters’ or drifts
of the spectral line.

A reduction of noise can be achieved by constantly measuring the difference from the
desired frequency (this is usually called the error) and to electronically feed this back to
the laser to steer it toward the target value. Optimal results are achieved if the bandwidth
of the electronic servo is larger than the dominant noise in the laser’s noise spectrum.

A resonator, such as described above, can be used for stabilisation of a laser wavelength,
given it is more stable than the laser source. This involves keeping the length of the
cavity very stable and, with a feedback loop, keeping the laser’s wavelength in the
resonance condition. Utilising the transmission signal, which peaks at the resonance, is
inconvenient for a number of reasons. To generate a feedback signal, there are at least
two measurements required per cycle. Additionally, the transmission depends on the
total incoming power, so the feedback would be susceptible to power fluctuations.

A widely used method for stabilising a laser to an optical resonator is the so called
Pound-Drever-Hall (PDH) technique, named after Robert Pound, Ronald Drever, and
John Lewis Hall. The first instance of this method being used was in 1983 by Drever
and Hall [43]. Some decades earlier, a similar technique was invented and used by Pound
in the microwave regime [45].

The reflection intensity of a monochromatic beam or wave has a minimum at the resonance
frequency, the phase difference to the incoming field has a zero crossing, as was seen in
equation (2.53). For a locking feedback, one ideally wants a zero crossing in the measured
signal, but the phase is not normally accessible. Instead, the incoming light is modulated
such that the interference with reflected sidebands extracts the phase information from
the reflection signal.

A typical PDH scheme can be seen in figure 2.12. The following mathematical approach
is based on ref. [46].

The incoming light field 2™/t = ™! is modulated in its phase with an RF oscillation;
typically this is achieved with an electro-optical modulator. Neglecting the spatial
distribution of the beam, the incident light field reads

Einc = Eg e — Epetthsintomt) (2.54)

Here, § is the modulation depth which determines the strength of the modulation whereas
wm denotes the modulation frequency. With the help of the Bessel functions, this formula
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Figure 2.12: Shown here is a basic Pound-Drever-Hall (PDH) feedback loop for locking a
laser to an optical cavity. Laser light is sent through an electro-optical modulator (EOM) for
phase modulation with a sine signal to generate sidebands and is then coupled into the cavity.
A combination of a polarising beam splitter (PBS) and a quarter-waveplate (\/4) ensures
that the light in the two propagation directions — incoming and reflected from the cavity —
can be distinguished. The incoming light goes straight through the PBS while the reflected
light, consisting of reflected carrier and sidebands, is sent to a photodetector (PD). In the
picture, the arrows next to the laser beam illustrated in red indicate the polarisation of the
light that makes this possible. The sinusoidal signal driving the phase modulator is mixed
with this reflected signal (its phase can be adjusted with a phase shifter denoted with ).
This demodulates the signal and shifts the interference between the carrier and the sidebands
to a dc signal which is then isolated with a low-pass filter. A PID controller translates the
resulting error signal into a feedback signal for the laser.

can be simplified. The Bessel functions J, (), represented with the integral definition,
read

1 T . ,
Jn(B) / eifsin(r) g=ina gy, (2.55)

:ﬁ .

This representation shows that the Bessel functions are the Fourier series coefficients of
the function e*#5n(*) hence we can write

Eine = Eo eiwteﬁ sin(wmt)
_ EO eiwt Z Jn(ﬂ)einwmt (256)
n=—00

~ EO [JO(B) eiwt 4+ Jl (/8) ei(w“l‘UJm)t + J—l(ﬁ) ei(w—wm)t} )
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In the last step, indices n other than 0 and +1 were neglected, which is a good approx-
imation for § < 1. This also demonstrates that in first order, the light can be treated
as three beams with different frequencies, a carrier of frequency w and two sidebands
with w &+ wpy.

For the reflection of this modulated light, the sidebands are considered separately, as
they each have different reflection coefficients depending on their frequency according to
equation (2.53).

Ere = Eo [F(w)Jo(8) €' + F(w + wn) Jy(5) €/ Hon !
, (2.57)
+ F(w —wm)J-1(8) e’(w—wm)t} '

After this light is reflected from the optical cavity, the intensity is measured with a
photodetector, for instance a photodiode. To get the intensity, the light field is squared.
Several algebraic transformations later, it reads

Lien = | Exen|”
= IC|F(W)|2 + L[ F(w + Wm)|2 + L[ F(w — wm)|2
+ 2/ I I, Re [F(w) F*(w + wm) — F*(w)F(w — wm)] cos(wmt)  (2.58)
+ 2/ I I T [F(w) F* (W + wm) — F* (W) F(w — wm)] sin(wmt)
+ (2w terms).

To improve legibility, the intensities of the carrier and the sidebands were defined as

I. = J§(B)|Eo|* and (2.59)
Iy = J3(B)| Eo|* = J2,(B)| Eo|?, (2.60)

respectively. The sum of three waves of different frequency result in contributions to the
intensity that oscillate in time at multiples of the modulation frequency in addition to a
constant part. The terms in equation (2.58) oscillating with the modulation frequency wp,
come from the interference of the carrier and each sideband. There is also a term
oscillating with 2wy from the sidebands interfering with each other, but this is not
important for the PDH method and therefore neglected here.

A photodetector of high enough bandwidth records all parts of equation (2.58), and the
relevant parts with cos(wmt) and sin(wpt) are isolated with a mixer and a subsequent
low-pass filter. A mixer generates a product of the inputs, one of them is the measured
reflected intensity, while the other is the oscillation that has also been used for the
phase-modulation. We remember that the product of two sine waves (or two cosine
waves) is the sum of a cosine of the difference of the frequencies and a cosine of the
summed up frequencies, hence, after mixing the reflection signal with an oscillation of
wm, the resulting signal has a constant part which can be isolated with a low-pass filter.
A phase shifter for the mixing oscillation is typically installed in the setup to ensure
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Figure 2.13: A PDH error signal according to equation (2.61), such that the modulation
frequency wn, is large compared to the cavity linewidth. In this graph, the modulation
frequency corresponds to about 30 linewidths and 5% of the FSR.

matching phases, otherwise a necessary phase shift needs to be introduced via delay
lines.

For a modulation frequency high enough to ensure that the resonances of the sidebands
and the carrier are distant enough from each other, the relevant term in equation (2.58)
becomes purely imaginary. The cosine term becomes negligible and with suitable phase
matching of the mixing signal and subsequent low-pass filtering the resulting error signal e
is therefore

€ = 2/I.I, Im [F(w)F*(w + wm) — F*(w)F(w — wm)] - (2.61)

This can be seen in figure 2.13. The signal has a zero crossing and a linear behaviour at
the resonance frequency.

Near the resonance, where the reflection coefficient of the sidebands becomes 1, equa-
tion (2.61) can be simplified to

e =2I.I, 2Im [F(w)]
VI r(r? —1) sine (2.62)

1474 —2r2 cosg
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Linearly expanding this equation around the resonance leads to the following expression:

r
€ER 4\/ ICIS mgp

4 w
= —/I.I, —
T’ % A

= 8\/ I I i’
Av

where the expressions for the round trip phase ¢, the finesse F and the cavity line-
width Av — see equations (2.42), (2.47) and (2.49), respectively — were used.

(2.63)

2.2.3 Limits and Noise

Following from equation (2.63), a small deviation Jf of the laser frequency from the
resonance leads to a signal of

2dF §
e =8/ I Iy — of .
A S
Additionally, it can be shown that a change in the length of the resonator dd has a
comparable effect on the error signal, and in total it can be written as

B 24F (6f  od
de = 8\/ ICIS T (7 + E) . (265)

For a given error signal, it is impossible to determine if the source is frequency noise or
cavity noise. However, the point of the zero crossing is insensitive to changes in the laser
power, response of the photodetector that measures the reflection signal, the modulation
depth 8 and frequency wp, and the phase difference of the signals going into the mixer.

(2.64)

On the order of the modulation frequency wy,, there is a sensitivity to fluctuations in the
sideband power, decreasing for higher frequency. By increasing the modulation frequency,
this noise source can usually be reduced so it is not relevant anymore.

One noise source that cannot be reduced this way, due to its flat frequency spectrum,
is shot noise. As it results from the quantisation of the light itself, it introduces a
fundamental limit to how noiseless an error signal can be. An estimation for the spectral
density of the shot noise of the error signal S, is given by

S, = ,/2% 21 , (2.66)

where h is the Planck constant. In equation (2.63) we saw the linear relation of the error
signal to the frequency near the resonance, hence, this noise translates to noise on the
frequency as

Vhet 1

_ - 2,
i 8 Fdy, (2.67)
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The frequency cannot be resolved any better, therefore, feedback to the laser via the
PDH method can never be more stable than this. It should be noted, that the shot noise
for the frequency does not depend on the power of the sidebands, and only on that of
the carrier.

Since fluctuations in the laser frequency and in the cavity length cannot be distinguished,
another fundamental limitation to the frequency stabilisation has to be considered. The
Brownian motion of the cavity components sets the limit of the stability that can be
achieved in terms of cavity length. More details on this noise limit can be found in
references [23, 47].

Here, we will briefly mention some external factors that introduce noise to the length
of the cavity and therefore limit the achievable uncertainty of the laser frequency for a
certain setup. The first chapter of [48] gives a good outline of the different effects.

Temperature instabilities can cause a change in the cavity length due to thermal
expansion effects. These can be transferred to the cavity spacer through thermal radiation
and conduction via air or mounting material. The conduction is small for standard
interface materials (including viton) and therefore the conduction through the connections
to the mounting can be neglected. For a cavity in vacuum the main heat transfer is via
thermal radiation. Thermal shielding stages around the resonator are desirable; they are
thermalised from the environment through conduction so ideally they have a large volume
and a low thermal conductivity, the latter is also applicable for its supporting structures.
A better thermal isolation leads to the resonator length to be sless sensitive to short term
temperature fluctuations, which is expressed by the so called thermal response time.

External vibrations that are transferred to the cavity can deform it and change its
length. This contributes more to the instability the longer the cavity spacer is. The exact
effects depend highly on the cavity and mounting geometries and require investigation
through simulation. A good isolation from vibrations is necessary for high precision.

The pressure changes the refraction index n of the rest gas inside the cavity and therefore
the optical path length. According to [49], a total change in pressure AP is proportional
to a fractional change in refractive index An/n with

A
2~ 265107 AP[mbar] . (2.68)
n

Therefore, fractional pressure fluctuations contribute less to the frequency instability the
lower the absolute pressure is.

For cavities with a high finesse, the intracavity power increases. A large power leads
to localised heating of the cavity mirrors which can change the cavity length through
thermal expansion.

So called residual amplitude modulation (RAM) can be caused by etalons — optical
elements with parallel surfaces that act as their own optical resonator — in the beam
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path. This can lead to an additional amplitude modulation at the frequency of the PDH
phase modulation and would lead to an instable offset in the error signal which directly
leads to frequency instabilities in the locked laser.
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3 Stabilisation Setup

The CryPTEx-SC experiment this work is part of, as introduced in section 1.3, aims
to realise the ground-level cooling and high precision spectroscopy of HClIs inside a
superconducting Paul trap. A narrower linewidth of the spectroscopy laser leads to a
decreasing uncertainty of the spectroscopic measurement and can be achieved by directly
PDH locking the spectroscopy laser itself to a stable cavity or locking it to a separate
stabilised laser.

The work in this thesis marks the first endeavour to realise a stable reference laser in our
laboratory to improve future spectroscopy experiments. This chapter gives an overview
of the optical cavity and the first mounting (section 3.1), the optical setup that was
constructed and the electronics that were used (section 3.2), as well as improvements
that have been done or are planned in the near future (section 3.3).

3.1 Optical Cavity and Mounting

The optical resonator used in this work was supplied to our group at the MPIK as
a loan from the Physikalisch-Technische Bundesanstalt (PTB)!. Figure 3.1 shows a
render of this resonance cavity. It is a linear resonator consisting of one planar and one
spherical mirror, where the latter has a radius of curvature (ROC) of 1m. A large ROC
leads — according to equations (2.34) to (2.36) — to a relatively large spot size on the
mirror surfaces, which in turn results in less thermal noise [50]. The silicon mirrors have
a dielectric high-reflection (HR) coating for 1550 nm facing the inside of the resonator
and an anti-reflection (AR) coating for the same wavelength facing the outside. They
are optically contacted to a cylindrical ultra-low expansion glass (ULE) spacer that
has a length of 100 mm. The finesse of the cavity is at least 100 000, which indicates a
reflectivity of > 99.997 % for each mirror and results in a cavity linewidth of < 15kHz.

The coefficient of thermal expansion (CTE) of ULE glass is, as the name suggests, very
low. For temperatures from 0°C to 40 °C its magnitude stays below 30 - 1072 K—! with a
zero-crossing around a temperature of 20 °C. Since the mirrors are made of silicon, which
at room temperature has a CTE of about 2.6 - 107 K~!, the CTE and general expansion
behaviour of the total cavity differs from that of the spacer alone. Therefore, the zero
crossing temperature changes to around 160 K, and the CTE at room temperature on of
the order of hundreds of 1072 K. [52]

'Thanks goes to Thomas Legero and Piet O. Schmidt.
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Figure 3.1: Rendered picture of the cavity spacer and mirrors used in this work. The spacer
is made of ultra-low expansion (ULE) glass and has a length of 10cm. The highly reflective
silicon mirrors on each side form a planar-spherical optical cavity. They have an anti-reflection
coating on the outer side and the spherical mirror has a radius of curvature (ROC) of 1 m.
On the side of the cavity spacer, the mounting holes of the cavity can be seen. Their position
is optimised to have the least change in length between the mirrors for external vibrations
transmitted through the mounting points. [51]

The cylindrical ULE spacer has four mounting holes (see figure 3.1), two on each side
along the cavity, slightly below the horizontal symmetry plane. The positions of these
holes have been optimised such that the length change of the light path between the
mirrors is minimal for transferred external vibrations through the support structure,
compare to [53].

Steel pins were constructed to hold the cavity via the mounting holes, where viton rings
provide the only point of contact at the centre of the holes. These pins are held by a
bronze chamber that surrounds the cavity (see figure 3.2).

The housing in the current setup consists of a hollow bronze cylinder of diameter 100 mm
and thickness 22 mm with bronze lids, mounted to the optical table with aluminium feet.
The lids have laser windows fitted into the centre. This chamber acts as a shield from
external temperature fluctuations. Additionally it has seals all around the screws and
openings and is therefore isolated from the outside air and fluctuations due to air flows.
While not under vacuum at the time of this thesis, it was built with a potential added
vacuum pumping system in mind and should be able to reach a low vacuum.
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3.1. Optical Cavity and Mounting

Figure 3.2: Depicted above is the central part of the current bronze cavity housing with the
pins used to hold the cavity, visible inside. The white teflon rods do not touch the cavity
spacer once it is properly mounted, but help with the process of mounting as well as provide
impact protection in case of sudden movements should the mounted cavity be moved. Viton
rings on the mounting pins form the point of contact to the spacer and due to their elasticity
help reduce the vibrations transferred from the surroundings to the cavity.

Figure 3.3: (a) Mounted cavity inside the bronze housing. (b) When the lids on the front
and back are in place, this provides some protection from air flows and short term temperature
fluctuations.
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Figure 3.4: Schematic overview of the main electronics used in the setup. For more details
on the optical components, see figure 3.5. Most of the necessary electronical components
for a PDH setup are included in one PDH module. It contains the rf oscillator and amplifier
driving the EOM, and the elements needed to process the reflection signal picked up by
a photodiode with large enough bandwidth. This includes a phase shifter (¢), mixer and
subsequent low-pass filter (LP) which transforms the reflection signal into the PDH error
signal. This is sent to a PID controller regulating the laser piezo to close the feedback loop.
In addition, the error signal is viewed on an oscilloscope together with the cavity transmission
signal picked up by a second photodiode. The AOM frequency is supplied by a separate signal
generator and amplifier including a frequency modulation input that can also be used for the
feedback signal.

3.2 Optical Setup and Electronics

The laser that is used in this work is a 1550 nm fibre laser? that has previously been used
as part of a laser cooling setup for beryllium (similar to ref. [40]). The previous setup
included a laser amplifier module that was necessary for the nonlinear optical application
but that is not needed — and was therefore not used — in this work. A wavelength of
1550 nm is useful because the frequency comb that we want to lock to this laser® has
a centre frequency of 1560 nm and therefore no extension of the comb is necessary to
generate a beat note with the stabilised laser light.

2NKT Photonics Koheras Adjustik E15 System
3Toptica DFC
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3.2. Optical Setup and Electronics

In section 2.2.2 we have seen the different optical and electrical elements that are needed
for a PDH setup locking laser light to a stable cavity. The necessary phase modulation
was performed with an electro-optical modulator? that was connected to a PDH module®
which supplies the rf oscillation as well as provides the phase shifter and mixer for the
processing of the reflection signal. Said reflection signal is recorded with an amplified
photodiode® and sent to the PDH module. A PID controller” then sends the resulting
error signal to the piezo input of the laser and hereby closes the feedback loop.

Additionally to the electrical components mentioned in section 2.2.2, an acousto-optical
modulator® (AOM) is added in this specific setup. An AOM is used to shift the frequency
of the light that passes through by the frequency of an acoustic wave, typically in the
radio frequency range. In the case of the described setup, the AOM is operated at 80 MHz.
Applying the stabilisation signal to modulate the AOM frequency also closes the PDH
feedback loop. This potentially enables a faster feedback and will be discussed further in
section 5.2. A schematic overview of the electronics setup is depicted in figure 3.4.

For the optical setup, the scheme can be seen in figure 3.5. The laser light is guided to
the cavity setup by an optical fibre and passes through a fibre coupled AOM, before it
is then coupled out into free space. Optical isolators prevent reflected light to go back
into the fibre and damage the laser. The EOM that is used is free space, and is operated
at a frequency of 8 MHz, this defines the distance of the laser’s carrier frequency to the
sidebands.

Together, the lens and the last two mirrors before the light reaches the resonator are
used to couple the laser into the cavity.

To separate the reflected light from the incoming light and send it to the relevant
photodiode, a combination of a polarised beam splitter (PBS) and a quarter waveplate is
used. The laser first passes straight through the PBS, making all the traversing light
linearly polarised horizontal to the laser table. For light polarised linearly at an angle of
45 deg to its fast and slow axes, a quarter waveplate changes the light’s linear polarisation
to a circular polarisation. After reflecting from the cavity, the polarisation of the laser
is still circular, but with the opposite sense of rotation. This leads to, with a second
pass through the quarter waveplate, a transformation back into a linearly polarised light
beam, but this time perpendicular to the table. Therefore, the light is reflected at the
PBS and can be registered on the photodiode. The polarisation of the laser light at
the different positions is indicated in figure 3.5 as arrows (and dots in the case of linear
polarisation perpendicular to the laser table) next to the beam path.

{QUBIG PM7-SWIR-1_8

S5QUBIG ADU module

5Thorlabs DET20C2

"Toptica PID 110

8Gooch & Housego FIBER-Q T-M080-0.4C2J-3-F2S
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Figure 3.5: Schematic overview of the laser setup. The function of many components
has already been addressed in figure 2.12. For the actual setup on the laser table, some
components are added, such as an additional acousto-optical modulator (AOM) which shifts
the laser frequency and can therefore also be used to apply the PDH feedback to the light.
In our case this AOM is fibre-coupled and the laser enters free space subsequently. Two
optical isolators have been added before and after the EOM to prevent reflected laser light to
propagate back into the laser since this could damage it. Placing it after the EOM avoids
etaloning effects due to the EOM crystal's reflective surface. The mirrors (labelled M) with
numbers 3 and 4 are used to guide the light into the resonator, with the help of the apertures
Al and A2, while the lens ensures spatial mode overlap. The transmission can also be
monitored via a camera as well as a photodiode (PD). The reflected signal is separated from
the incoming light with a polarised beam splitter (PBS) and a quarter waveplate (A/4) with
the arrows next to the beam indicating the polarisation of the light; more details on this are
in the text.
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3.3. Improvements to the Setup

3.3 Improvements to the Setup

The current cavity housing already adds a degree of isolation of the cavity from the
environment, but can be further improved for future operation of the setup. An important
next step is to put the cavity under vacuum. As was mentioned in section 2.2.3, pressure
fluctuations, especially at standard pressure, can introduce large amounts of potential
noise and drifts. The housing was already built with this possibility in mind, and its
design includes seals around the screws and lids.

The bronze housing already provides one degree of isolation of the resonator from the
environment. The points of contact from the mounting to the cavity spacer is through
viton rings on the mounting pins, making temperature changes through conduction at
this point negligible, however, temperature fluctuations can still affect the cavity through
radiative heat transfer from the housing and conduction through the air. It is therefore of
interest to add more temperature control and insulation to the setup, while putting the
cavity under vacuum would remove one mode of heat transfer. An additional insulation
layer has recently been built to cover the bronze structure, protecting it from radiatively
transmitted heat. However, the conduction cannot be disregarded here, as this frame
remains mounted onto the laser table. A second heat shield encompassing the whole
structure could be a future solution to improve upon this [54].

The permanent addition of a camera — used when coupling light into the resonator by
observing the spacial mode — was made recently. Previously, a camera to monitor the
transmission had been temporarily available on loan. After it was used for the first
successful incoupling (details on this in the following chapter), the alignment had to not
be changed again. Hence, this did not allow for changes that would impact the laser
setup or move the resonator, including setting up a vacuum system and changing the
cavity housing.

The positions of the mounting holes already ensure that the mounting is as insensitive to
external vibrations as possible, but further improvements can be made if the cavity spacer
or its mounting are passively or even actively isolated from external vibrations. Passive
isolation consists of mechanical frequency filters like springs, this is already somewhat
included in the design of the pins themselves due to the viton’s elasticity but can be
extended to include their shape (see [53]). This becomes especially important to consider
once the setup is connected to vacuum pumps which can add a lot of new external
perturbations, unless after the initial pumping, for continuous operation, a pump with
no moving parts is chosen (e.g. an ion getter pump).
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4 Incoupling and Mode-Matching

This chapter begins in section 4.1 with describing the alignment of the laser with the
resonator to couple the fundamental Gaussian mode into the cavity. Afterwards, the
frequency calibration of the intensity signals from scans over the laser frequency, captured
with photodiodes on an oscilloscope, is detailed in section 4.2. Finally, in section 4.3
some of the transmitted intensity signals are examined.

4.1 Fundamental Cavity Mode and Laser Alignment

As a first step, the beam parameters of the fundamental transversal cavity mode need
to be determined. Matching the incoming laser beam to these specifications ensures a,
good and efficient incoupling into the resonator. As seen in section 2.2.1, specifically in
equations (2.34) to (2.36), the spatial dimensions of the fundamental mode are fixed by
the cavity geometry.

In our setup we have a planar-spherical cavity, with the more detailed specifications
described in the previous chapter. The cavity’s spherical mirror has a radius of curvature
(ROC) Ry of 1m and distance 100 mm to the planar mirror. The ROC of the planar
mirror is considered to be R; = oo, which immediately simplifies the above mentioned
equations to

2 =d(Ry—d), (4.1)
21 = 0, (42)
29 = d. (43)

This means the Rayleigh length of the Gaussian beam needed is 300 mm. At our
wavelength of 1550 nm this corresponds to a beam waist radius of 385 um (see definition
of wp in equation (2.20)) with the waist located at the surface of the flat mirror. On the
second mirror, the beam radius is 406 pm.

The same result can be achieved with the methods using transfer matrices that were
introduced in section 2.1.2. To do this, one first has to calculate the transfer matrix of
the whole cavity T, by multiplying the matrices for the two mirrors with the matrix for
free space propagation in between.

Tc = Tprop(d) : Tcurved (RQ) . Tprop(d) : Tﬂat ’ (4-4)
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Figure 4.1: (a) Initial beam profile, measured with a beam profiler between the EOM and
the mirrors used to couple into the cavity. (b) A 2D Gaussian fit shows a beam width
of 0.897 mm in z direction and 1.087 mm in y direction which is large enough to mostly
neglect the dispersion along the path of the laser on the table.

where Torop(d), Teurved (R2), and Tqay, denote the transfer matrices for free space propaga-
tion of distance d, reflection from a curved mirror of radius Ry, and reflection from a flat
mirror, respectively, according to table 2.1. To find the fundamental mode, the g-factor
that is mapped onto itself has to be found. This is given by the solution to the equation

~Teng+Teqao

. 4.5
Te21q+Te22 (4.5)

This is a quadratic formula in ¢ that can easily be solved, and yields
¢=04¢300mm, (4.6)

which is the same result for the Rayleigh length — and therefore also the waist radius — as
above. It also sets the position of the beam waist on the surface of the flat mirror.

After ascertaining the beam parameters needed to couple into the fundamental cavity
mode, the optical setup that realises this beam needs to be calculated — this typically
consists of an arrangement of lenses. As a first step, the initial beam has to be measured
for the NIR fibre laser used here, this was done with a beam profiler!. The resulting
profile can be seen in figure 4.1.

'Thorlabs BP209TR1/M
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4.1. Fundamental Cavity Mode and Laser Alignment

To figure out the lens with the appropriate focal length f, we can calculate its influence
on the beam with the corresponding transfer matrix. For a large initial Rayleigh
length — meaning a very slowly diverging beam, usually a good approximation for a free
space tabletop laser setup such as we have here — the position of the beam waist can be
neglected, or rather the position of the lens is taken to be at the beam waist. This means
the initial g-factor can be taken as ¢ = izg. The resulting g-factor ¢’ is, according to the
transfer matrix formalism and a lenses transfer matrix (see equation (2.25) and table 2.1,
respectively), given by

/ / / q Z(% / 2
q =z +1izy = = — f—l—i—ZO. 4.7
07 (=1/f)g+1 2+ f? 25+ f? (.7)
2 2,
distance to new new Rayleigh
beam waist length

For large zp, the resulting Rayleigh length can be approximated as

2 2
26: 2f 2Z(]%f—.
Zo+f ZO

(4.8)

For a given initial beam and a particular final parameter that has to be reached, the
appropriate lens to achieve this has the focal length

™

3 wo wy - (4.9)

f = ZO 26 =
With the initial waist diameter in x and y direction wp and wgy in the described setup
measured as (see figure 4.1)

wo = 897 pm, (4.10)
wo,y = 1087 pm, (4.11)

and the waist of the fundamental cavity mode being calculated as
w( = 385 pm, (4.12)

the lens that has to be used for spatial incoupling has a focal length of

fz =700mm, (4.13)
fy = 848 mm, (4.14)
f=774mm. (4.15)

For the last value, the average of the values calculated with the two different initial beam
widths was taken. A lens of focal length 750 mm, the closest to the needed value that
was acquired, was put into at the appropriate distance (starting with the focal length
of the lens and later optimising the positioning for the most efficient incoupling) to the
cavity into the setup. The difference in beam radius in x and y direction is not very large
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Figure 4.2: Some of the first transmitted intensity signals observed with a photodiode after
the cavity. The distance of the peaks to each other cannot be derived from these figures alone,
the calibration between the (monitor) scan voltage and frequency difference is described in
the text and the results can be seen in figure 4.4. Varying the AOM frequency and observing
the shifts immediately revealed the mode distances to be much smaller than the FSR.

and should not majorly impede the incoupling, however, if one wants to correct this it, a
cylindrical lens can be added to the setup.

Spatially overlapping the incoming laser beam with the fundamental Gaussian mode also
involves moving the beam to the right position and propagation direction. First, add
two apertures, directly in front of the cavity, and the furthest distance possible on the
laser table before reaching a mirror (they are indicated in figure 3.5) with the central
position matching the cavity axis. This is done by aligning the resonator axis with a line
of threaded holes on the laser table and measuring the height of its central axis. The
apertures are fixed to this height and their posts are directly screwed onto the table
along the chosen line.

Aligning the laser beam to the apertures can already give rise to some transversal modes
being visible in the transmission signal through the cavity if the laser is scanned over a
large enough frequency range (ideally more than a FSR). If no transmission is visible,
then the next step consists of overlapping the incoming with the reflected beam along
their shared beam path.
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4.1. Fundamental Cavity Mode and Laser Alignment

(a) (b) (c)

Figure 4.3: Pictures taken with a SWIR camera behind the cavity. The pictured lowest order
modes are the ones that can still be seen after optimising the incoupling for the fundamental
mode. During the optimisation process many modes of much higher orders could be observed.
(a) Fundamental mode TEMgg, (b) TEMo1, (€) TEMgz. It should be noted that due to the
rotational symmetry of the resonator, all orientations of higher modes of the same total order
(including rotationally symmetrical ones such as 'donut’ modes) couple into the cavity at the
same frequency and can be observed on the camera interchangeably in no particular order or
pattern.

In figure 4.2 we can see an example of the expected first transmission signal visible on an
oscilloscope. The scan over the frequency was performed via the piezo of the laser and
a laserlock module?. The transmitted signals on the photodiode do not have sufficient
information to determine the number of the different modes, the only information is
how well they can be coupled in, i.e. how high their transmission signal can be made to
be. We expect the fundamental 00 mode to have largest possible transmission due to
it having the largest mode overlap with the incident beam. If the incoupling has to be
done with just this information, then one has to strategically optimise the transmission
of different peaks, using the incoupling mirrors, until one is found where the transmission
peaks at least twice (typically even more) as high as other peaks, and where most higher
order modes vanish.

For high-finesse cavities this can be challenging, and it was in fact not possible to find
the fundamental mode with just the information of the photodiode in our setup. What is
needed in this case is the spatial resolution of the transmission with which the different
order modes can be distinguished by their intensity distribution. A short wave infrared
(SWIR) camera® was used to monitor the shape of the transmission simultaneously to
the photodiode — this concurrent measurement setup was included in figure 3.5.

2TEM Messtechnik LaseLock 3.0
3For the first incoupling, the SWIR camera that was used was the svs-vistek ex0990MGE which was
later replaced with the Xenics Bobcat320-TEO.
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CHAPTER 4. INCOUPLING AND MODE-MATCHING

Using the camera and therefore the mode information, an iterative process leads to
incoupling the fundamental mode in very few steps. The transmitted modes are examined
with the camera and the one of the lowest order is identified. Using the incoupling
mirrors — the two last mirrors before the resonator — the transmission peak of this
lowest mode measured with the photodiode is maximised. A new examination of all
the transmitted modes will show modes of lower order than before. Usually, this does
not have to be repeated often until the 00 mode, recognisable by the single Gaussian
intensity peak, is one of the new emerging mode after optimising for a low order mode.
Figure 4.3 shows some low order modes — the three lowest order modes in fact — that can
be observed on the camera during this process.

The incoupling efficiency of the fundamental mode can then be optimised for a final
time. During this step, it is also useful to optimise the lens position for the highest
transmission.

4.2 Frequency Calibration

In the following sections, we want to view the oscilloscope data not depending on time as
the raw data is saved but depending on the frequency over which the laser was scanned.
This section will briefly discuss the two methods for this conversion used in the relevant
plots for the rest of the chapter.

For the first method, the laser frequency was shifted with the AOM — typically running at
80 MHz, although it shows less but still good transmission at 70 MHz — and the change in
positions of the peaks (with respect to the monitor voltage) was recorded. The monitor
voltage, proportional to the scan voltage output connected to the laser piezo, was recorded
as well, the peak position along this scanned voltage is the value depicted in figure 4.4.
Therefore, to apply this conversion to a dataset, the monitor voltage needs to be recorded
simultaneously.

Furthermore, this calibration needs data from different scans taken successively for each
of the AOM settings. As we observe frequent drifts of the resonance peaks, either caused
by external influences/perturbations or drifts of the laser itself, successive measurements
even taken quickly after one another can be distorted. Therefore, we need to choose
between fewer measurements to hopefully prevent too much drifting between them, but
still taking enough for a reasonable calibration. The presented measurements were taken
at 80 MHz, 75 MHz and 70 MHz and then one additional at 80 MHz to compare possible
drifts.

For measurements in chapter 5, the EOM is used to introduce sidebands of a known
frequency (here 8 MHz) to the laser light. If these can be observed at their shifted
resonance in the same scan as the main carrier, these resonance positions can be used for
the conversion. This is more convenient since this does not need separate measurements,
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4.3. Transmitted Intensity Signals
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Figure 4.4: Calibration for conversion between monitor scan voltage and frequency offset.
The AOM was used to change the laser frequency and the position of the resonance peak
along the (monitor) scan voltage was recorded for the different values. Since separate scans
for the different AOM settings are necessary, the drifts of the resonance peaks that are
observed (often larger than the shifts recorded here due to the AOM frequencies) can distort
the calibration. Hence only a small number of frequency points were taken to minimise the
time of the measurements. The first and last scan were both taken at 80 MHz to get a
measure of the size of the shift during the measurement. As we can see in the figure, there
seems to have been a small drift during the successive measurements but they still agree
well enough to fit a calibration line. The error bars stem from the position of quite noisy
resonance peaks.

which largely eliminates the effect of the drifts. On the timescale of a single scan, they
can be neglected.

4.3 Transmitted Intensity Signals

In figure 4.5, the transmission signal on the photodiode of the lowest three modes (the
TEMO00, TEMO01 and TEMO02 depicted in figure 4.3) can be seen. The distance of their
resonance frequencies seems to be equidistant. In fact, from this graph it can be measured
to be

AV()(LOl = 143.9(3) MHZ, (416)
between the TEMgy and the TEMg; modes and

AI/OLOQ = 1449(3) MHZ, (417)
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Figure 4.5: Transmission after optimising for the fundamental 00 mode which corresponds
to the highest peak in the figure. The neighbouring peaks are the first and second order
modes, their intensity distributions are depicted in figure 4.3. One can notice the equidistant
spacing of these modes to each other, this is described by the transverse mode spacing v1gm
(see equation (4.18)).

between the TEMy; and TEMge modes.

The difference in frequency between neighbouring modes is described by the so called
transverse mode spacing vrgy and stems from the added phase component for higher
modes that emerged in equations (2.29) and (2.30) [55]. This value depends on the free
spectral range vpggr, and the Gouy phase shift g that is gained per round trip for higher
modes.

G
VTEM = VFSR (5_77 . (4-18)

Therefore, this spacing can also be derived from the geometrical properties of the resonator
since this sets constraints on the modes that build up in the resonator.

To characterise the Gouy phase shift for the cavity used here, we first have to regard the
Gouy phase acquired by the fundamental mode between positions z; = 0 and 22 = d of
the mirrors:

ve(z1 = 229) = arctan<2> — arctan(ﬂ> = arctan(i) . (4.19)

20 20 20

For a higher mode of order (I,m) the Gouy phase obtained is

d
Oim (21 = 22) = (I4+m+1) pa(z1 — 22) = (I+m+1) arctan(z—> . (4.20)
0
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4.3. Transmitted Intensity Signals

For one round trip in the resonator, this phase is doubled, making the phase difference of
neighbouring (where their respective [+m differs by one) modes

d
oo = 2arctan<%) . (4.21)

With equation (4.18), this leads to an expected transverse mode spacing of

vreM = 153.52 MHz . (4.22)

The difference to the measured mode spacing could be caused by the shapes of the
mirrors (especially their ROC) differing from the expected parameters. This changes the
Gaussian beam parameters and therefore the Gouy phase, leading to a different mode
spacing. The inconsistencies could also stem from errors of the frequency calibration,
causing the measured values to be shifted.

Additionally, it can be observed how the transmission peaks become a lot more asymmet-
rical for faster scan speeds. As the frequency is swept over the resonance, the built up
intensity inside the resonator leaks out over time and leads to a ‘tail’ in the transmission.
This appears to be visible in figure 4.6. Ref. [56] offers a good description of the expected
transmission signals for different scan speeds. The observed exponential tail is consistent
with a cavity ringdown signal, but the observed time constant is much larger (by two
orders of magnitude) than expected from our finesse. Therefore, the observed effect seems
to be dominated by the response time of the detector.
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Figure 4.6: Transmitted intensity signal of the single mode at a faster scan. For a faster scan
speed over the laser frequency, the transmission peaks appear broader and more asymmetrical.
The reason for this asymmetry is a combination of the ring-down effect of the cavity (with
the built-up light inside the resonator being stored for some time and leaking out gradually)
and the response time of the combination of photodiode and oscilloscope.
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5 Pound-Drever-Hall Results

This chapter presents the steps that were taken to realise the PDH locking in our setup.
Initial electronic signals were exceedingly noisy, the source of which was identified as
detailed in section 5.1. Section 5.2 describes the first locking attempts and gives estimates
of the laser stability. Finally, section 5.3 will go over future measures that can be taken
to improve the setup and increase the laser stability.

5.1 Signal Noise Investigations

The first step from the successfully coupled cavity towards the PDH setup is to add the
EOM for phase modulation (see figure 3.5).

This induces frequency sidebands in the laser light and means that the PDH signal
can be observed if the reflection signal is processed according to earlier discussions
in sections 2.2.2 and 3.2. This first PDH signal is shown in figure 5.1 alongside the
transmission signal.

The sidebands are visible in the transmission signal and the characteristic PDH error
signal can be recognised, but we observe that the overall noise level in both signals is very
high. In the transmission, the height of the peaks fluctuates constantly and the shape, for
which we expect a Lorentzian lineshape with a potential asymmetric exponential decay
due to the scan speed, also shows large amounts of noise. Fluctuations in the maximum
could maybe be explained for very fast scans and undersampling by the oscilloscope, but
the effects are also visible for low scan speeds.

The noise is also very visible in the PDH error signal, especially in the relevant linear
segment around the resonance. It is too noisy to close the feedback loop and lock the
setup, even after we tried to get a better signal-to-noise ratio by amplifying the relevant
reflection signal. This did not have the desired effect and the reflection signal as well as
the resulting error signal remained very noisy.

Instead of the biased photodiode with separate signal amplification used initially, we
chose to implement a new amplified photodiode!. We expect a better signal-to-noise
ratio and indeed we see an improvement, but it is still very noisy and not good enough
to engage the lock. The amplifier from before used together with this new photodiode
did also not improve the signal noise.

'Thorlabs PDA05CF2
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Figure 5.1: Initial transmitted intensity and the simultaneously measured PDH error signal
of the phase-modulated light of the fundamental resonator mode. The sideband power is
about 15 % of the carrier power, corresponding to a modulation depth 3 of about 0.7, see
equations (2.59) and (2.60), and the second sidebands at twice the modulation frequency are
only just visible. The error signal, and especially the linear slope at the resonance, is very
noisy such that a stable lock will not be possible. Subsequent changes to the setup that
improved the signal are discussed in the text.
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Figure 5.2: Two different beat notes between the free-running fibre laser and the frequency
comb. (a) During this measurement the laser piezo modulation input was connected to the
TEM Messtechnik lockbox that had been used for all the scans this far, and that also has
locking capabilities. However, the FWHM of this beatnote is approximately 250 kHz which
is larger than expected from the laser and comb linewidths. (b) This beatnote sigal was
measured when the input to the laser piezo was turned off. An immediate improvement to
the one before is evident and the FWHM is now about 20 kHz. There was no observable
change in the shape and width of the beatnote when connecting a new module, this time the
Toptica PID 110.

As a new approach, the laser light was investigated with the frequency comb by forming
a beat note. The frequency comb in our lab has a spacing of 80 MHz, so the furthest
the laser frequency can be from a comb tooth is 40 MHz and there is always a beatnote
between 0 MHz and 40 MHz. Since our laser, according to its specifications, already
has quite a narrow linewidth, we expect a narrow beat note with the frequency comb.
However, what we saw was a very noisy and wide beatnote, depicted in figure 5.2a,
with a FWHM of about 200kHz to 250 kHz, which is much larger than expected. More
importantly, it is larger than beatnotes between the frequency comb and other lasers,
therefore the observed noise is caused by our fibre laser.

Eventually, we found that a main cause for the noise is the lockbox that was used to
drive the piezo input of the fibre laser, which was still connected while the beatnote was
measured. With this device switched off or removed we obtained a more narrow beatnote
which can be seen in figure 5.2b. Here, the FWHM is about 20 kHz, already an order of
magnitude better than before.

A different PID box? was used to supply the electric signal to the laser piezo following this

2Toptica PID 110
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discovery. It was confirmed that no additional noise was added by this new component;
no broadening of the beatnote was observed when connecting this module.

The resulting transmission, reflection, and PDH error signals can be seen in figure 5.3. It
is immediately apparent that the noise levels have drastically improved.

A cleaner reflection signal also means we now give a value for the incoupling efficiency.
However, the reflection signal in figure 5.3 looks different than anticipated. What we
expect is the opposite of the transmission, with a constant value for all the reflected
light for most of the scan and Lorentzian shaped dips in the intensity at the carrier and
sideband resonances. Instead, if we zoom into the reflection signal (see figure 5.4) around
the resonance, we see oscillations in the signal.

These oscillations can be explained by interference effects when scanning the laser
frequency across the resonance of a high-finesse cavity [56]. When the scan reaches the
resonance frequency, intensity builds up inside the resonator, is stored for some time
(the ringdown time) and gradually leaks out. All the while, the frequency scan continues
to off resonance frequencies which are totally reflected without entering the resonator.
Hence, the light that is directly reflected is superimposed with light leaking from the
cavity. This causes a beating on the observed signal since the immediately reflected light
will be frequency shifted due to the scan with respect to the on-resonance light leaking
from the resonator. Additionally, due to the finite cavity linewidth, light of different
frequencies enters the cavity, leading to interferences that would be visible in both the
reflection and the transmission signal (in the latter it is likely obscured by the detector
response).

The observed oscillations therefore depend on the scan speed. Since this is a phe-
nomenon that only shows up because of the frequency scan, it will not impact the locking
performance.

Using the description of the electric fields during a frequency sweep in [56] qualitatively
similar oscillating behaviour in reflected signals could be reproduced. Depending on scan
parameters, the interference also alters the depth and width of the on-resonance dip
in reflected intensity. Even for a lossless perfectly aligned cavity where the reflection
resembles an inverted Lorentzian for a vanishing scan speed, the signal becomes wider
and the dip less deep.

Therefore, the minima of the measured signal can still be used to give a lower bound for
the incoupling efficiency . At off-resonance frequencies, the measured reflection signal
is

Vinax = 434(1) mV, (5.1)
which corresponds to the carrier intensity I. and twice the sideband intensity I5.

Vinax = a(I. + 2I5) , (5.2)
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Figure 5.3: Signals of the transmission, reflection and the PDH error signal with improved
noise levels after switching to a new lockbox. In comparison to the signals in figure 5.1, a large
improvement is obvious. (@) The shape of the transmitted intensity peaks is a lot cleaner than
before, they appear more asymmetrical due to the faster scan speed of the new module, this
asymmetry still being dominated by the detector effects. (b) The expected reflection signal
is an inverted Lorentz curve which is not what we can observe here. Additional oscillations,
better resolved and explained in more detail in figure 5.4, alter the signal. (c) Since the PDH
error signal is derived from the reflection signal, the oscillations mentioned above are also
observed here. They can be explained by effects from the frequency scan which means that

they will not impact the locking performance.
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Figure 5.4: A closer look at the reflection signal of the carrier resonance from figure 5.3,
taken after the noise level of the setup was improved. The oscillations are visible after the
initial expected dip in intensity when reaching the resonance frequency. This can be explained
by interference of light directly reflected from before entering the cavity and light leaking
from the cavity after some power has built up at resonance. While the directly reflected part
has a frequency according to the moment in the scan, the light leaking from the resonator
fulfills the resonance condition. This difference leads to a beat signal that is visible here.
More information on the reflection shape can be found in the text. We still calculate a value
for the incoupling efficiency from this signal. Typically, if the reflection signal vanishes at the
resonance, then the incoupling efficiency is 100 %, but for one, the sidebands contribute to the
total intensity and are always reflected at the carrier resonance, and second, the oscillations
alter the signal, including reducing the depth of the minimum. Therefore, the observed dip in
the intensity gives a lower bound of 19.3(7) % for the incoupling efficiency.
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where « describes the detector efficiency. The signal decreases to

Ve = 368(1) mV (5.3)
at the carrier resonance and to

Ve =425.2(4) mV (5.4)

at the sideband resonances. At each of these frequencies, only a fraction of the laser light
according to incoupling efficiency is coupled into the resonator, and only the part of it
fulfilling the resonance condition. This means

Vinax — Ve = aele,
Vinax — Vs = aely . (5.6)

Together with equation (5.2) the minimum incoupling efficiency follows as

Vmax - ‘/C + 2Vmax - 2‘/;
‘/Inax (57)
= 19.3(7) %.

E =

The actual incoupling efficiency is likely higher due to the aforementioned reasons.

5.2 PDH Locking and Stability Estimates

With the cleaner and less noisy signals after switching to better electronics, it was possible
to enable the feedback loop with the PID controller to engage the lock. For a good lock,
we expect the monitored error signal to vanish and to stay at 0 and only move around
it a little as the feedback loop counteracts small variations. Similarly, we expect the
transmission to go to a maximum and stay there at a relatively constant value. Typical
signals we observe when the lock engages after optimizing the PID parameters can be
seen in figure 5.5. The continuously transmitted intensity indicates a successful lock, but
the fluctuation in intensity and deviation of the error signal from zero show that the
feedback loop is unable to fully compensate perturbations.

During this measurement, the feedback loop is connected to the piezo input of the laser.
A reason for the high noise level could be that the speed of the modulation feedback (the
modulation bandwidth) is not quick enough to counteract the frequency noise broadening
the laser. According to fibre laser’s specifications the maximum modulation bandwidth
of the piezo input is 20 kHz. This might be too slow for our purposes.

Instead of the fibre laser piezo, it is also possible to use the AOM to control the laser
frequency (see figure 3.4), to potentially reach a significantly higher feedback bandwidth;
the limit for the frequency modulation of the oscillator driving the AOM is 7 MHz which
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Figure 5.5: Observed signals for an enabled lock. (@) Here, the transmitted intensity
is depicted while the PDH feedback loop is closed. Instead of reaching a maximum and
constantly staying there, the intensity fluctuates to less than half the peak value it reaches.
(b) The error signal is expected to stay at 0 for a successful lock, with only small fluctuations
and potential regular oscillations in case the lock is too strong. What we see is a lot more
noisy, as there seem to be noise components that the feedback loop cannot compensate, or
too many external perturbations. The amplitude of the rather large fluctuations of the error
suggest a change in the resonance frequency of the order of 10 kHz.

should be sufficient. However, when we engage the lock this way we get similar results to
the ones pictured in figure 5.5.

The bandwidth of the PID module could also be insufficient as it has a limit of 100 kHz.
Therefore, we plan to switch to a Toptica FALC lockbox instead in the future. This
module has a modulation bandwidth of up to 50 MHz.

Instead of a lacking modulation bandwidth, the stability of the lock could also be held
back by the length stability of the resonator. The amplitude of the fluctuations in the
error signal in figure 5.5 suggests short-term instabilities of the order of 10 kHz. This
corresponds to a fractional instability of 107!'. On longer timescales of tens of seconds
to minutes, frequency drifts of hundreds of kHz to MHz could be observed which equals
a fractional uncertainty on the 1079 level.

In the following, there will be an overview of how we expect the external perturbations
discussed in section 2.2.3 to impact the fractional instability, whether they might be
responsible for the observed instabilities and on what level they should be controlled for
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optimal performance. For this, we consider the optimal performance to be at a linewidth
and stability uncertainty of about 1 Hz which is what the frequency comb can reach when
locked to a stabilised laser. This means the fractional frequency instability has to be
reduced to the order of 10715, Setups with similar ULE cavities have reached below the
10716 level [54].

First, we want to take a look at the impact of temperature instabilities. As discussed
in section 3.1, the coefficient of thermal expansion of the cavity is expected to be on
the order of 107" K~!. Length changes caused by a shift in temperature contribute to
instabilities on longer timescales and are not likely a reason for the fast noise observed
in figure 5.5. However, the observed slow drifts on the order of 1072 would translate
to temperature changes of 10 mK. Even though we have a temperature shielding, this
could be plausible. The housing is mounted on the laser table and is only protected from
radiative heat transfer, not conductive transfer through the table. The cavity spacer is
subject to both radiative and conductive heat transfer through air from the housing. The
influence is often quantified with the thermal response time which is ideally made as
high as possible to filter away fast temperature fluctuations and reduce the rate of length
change.Often, several heat shields are used to achieve this which can lead to thermal
response times of the order of hours or even days. Some rough estimations suggest that
in our case the heat transfer to the cavity is dominated by thermal conduction through
the air and the thermal response time is not more than two hours.

In equation (2.68) and ref. [49] we have seen that a change in pressure AP is proportional
to the fractional instability. For the fast instabilities on the order of 10~ this would
correspond to pressure fluctuations of 4 - 107> mbar over a short period of time. On
slightly longer timescales, the expected fluctuations at atmospheric pressure are on
the order of 10~% mbar per second. Therefore, it is possible that the noise we see in
figure 5.5 is dominantly caused by pressure fluctuations. The observed slow drifts could
be explained by slow pressure changes around 4 - 10~3 mbar, which is very plausible.
Since the fractional frequency instability scales with absolute pressure changes, putting
the resonator in a vacuum should show an immediate improvement. If the fractional
pressure fluctuations stay the same, even a medium vacuum of 10~ mbar to 10~2? mbar
could be enough to reach the desired fractional uncertainty of 107'°. In case pumping
leads to larger fluctuations, it is desirable to go to lower pressures.

External vibrations can cause deformations in the cavity spacer that change the length.
The relevant vibrations that cause this effect are slower than 100 Hz. Typically, most
mountings of ULE spacers show a vibration sensitivity on the order of 100 kHz/(m/s?).
For a cavity with very similar parameters (length and material) and mounting configura-
tion (optimised position of mounting holes) to ours, the vibration sensitivity was measured
to be 1.5kHz/(m/s?) and 14kHz/(m/s?) in the vertical and horizontal directions, re-
spectively [53]. This would correspond to a fractional frequency sensitivity between
1071%(m/s?) and 107!? (m/s?). In a quiet laser lab we expect less than 1073 ms2
vibrations which would then lead to fractional uncertainties between 10~!3 and 10717,
This already seems better than the perturbation effects addressed above and it would
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mean that this is not the cause of the observed noise level. Once the other potential
noise sources are taken care of, this can be revisited, and measurements and simulations
can be made to characterise the vibration sensitivity further.

The build-up of large intracavity intensities leading to localised heating and length
changes, as well as effects from residual amplitude modulation are less relevant for the
current locking circumstances and will therefore not be discussed here. Once the lock is
more stable they will become more significant and will have to be considered.

5.3 Future Measurements

Once the lock engages and provides a stable transmission and error signal, some further
measurements can be taken.

A cavity ring-down measurement can be done once the lock is stable. When the laser is
locked, the laser power is turned off abruptly (e.g. using the AOM) and the exponential
decay in the transmitted intensity yields a value for the lifetime of the light in the
resonator. From this value, the finesse can be calculated, which should give a more
accurate value than the lower limit specified from the manufacturing.

Once the lock engages and is stable, we want to quantify the laser linewidth and its
improvement with the PDH lock. To get linewidth measurements, one ideally uses a
second narrower or equally narrow laser source of the same wavelength and analyses the
beatnote. The setup described in this thesis in the first laser in our lab to be stabilised
by a cavity, but there may be a chance to measure it against a cavity-stabilised one being
assembled as part of a project in a different division.

Alternatively, one could employ the technique of self-heterodyne detection, where the
laser source is referenced against a frequency-shifted part of itself to get a measure of its
linewidth [57]. To ensure that the noise in the two beams is uncorrelated, one of them is
sent through a long optical delay-line fibre. Such a fibre has already been ordered and
should soon be available for this application.
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6 Conclusion and Outlook

Within the scope of this work, a PDH frequency stabilisation laser system was set up and
a first closed feedback loop was characterised. It is built for the goal of performing high
precision spectroscopy on highly charged ions by locking a frequency comb, which can be
used for referencing different spectroscopy lasers, to the stabilised fibre laser operating at
1550 nm. While the current locking signals suggest a large amount of noise that prevents
this step, the areas where improvements are needed to reach it, have been identified.

The assembly of the setup had different parts, starting with the mounting of the cavity.
The cavity itself consist of a 10 cm ULE spacer with optically contacted silicon mirrors
at both ends. A bronze housing was designed and built which acts as a shield against
short-term temperature fluctuations. It also holds the pins that hold up the ULE cavity
spacer, their positions and those of the mounting holes being optimised for minimal
length changes through external vibrational perturbations. The chamber was already
constructed with the potential for a future vacuum system in mind. It is not under
vacuum yet because we had a short window of time for the coupling of the laser beam
into the cavity and it was not possible to move the cavity after this step.

This incoupling of the laser beam consisted of two parts. The laser beam’s wavefronts
need to match the surfaces of the cavity mirrors, to reach the correct Gaussian beam
parameters a lens is used. It was calculated that in our case, with an averaged initial
beam radius of 992 nm, a lens with a focal length of approximately 750 mm was needed
to match the resonator mode.

To overlap the incoming laser beam with the cavity axis two mirrors were used to adjust
the pointing. The better the overlap the more power is coupled into the fundamental
mode of the resonator; for slight misalignments, higher cavity modes might be excited
instead. After some initial trial and error using the total transmitted intensity as a guide
for the alignment process, it was evident that a camera to monitor the spatial intensity
distribution of the transmission is necessary (at least for a high finesse cavity such as
we have here). Monitoring the cavity modes on the camera, the alignment became an
iterative procedure of finding the lowest order visible across the frequency spectrum and
changing the alignment for the highest possible intensity of this mode. Finally, a lower
limit for the incoupling efficiency of the fundamental resonator mode that was achieved
was determined to be 19.3(7) %.

Once the fundamental resonator mode was incoupled successfully, issues with excessive
noise in electronic signals became apparent and had to be fixed. We observed that the
transmission signal did not resemble a Lorentzian shape very well, and the error signal
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was too noisy to enable the PDH lock. By taking beat note measurements between our
(free-running) fibre laser and the frequency comb and seeing that it was also showing
a large amount of noise, we knew that the problem could not concern the resonator.
The source for the majority of the noise could be identified as the electronic lockbox
connected to the piezo input of the laser. After replacing this part, the beatnote showed
improvement, and expected levels of noise.

With this modification, the electronic signals of the PDH setup were also a lot less noisy,
and the feedback loop could be enabled. The remaining noise and drifts visible in the
locking signal were estimated to be at a fractional frequency instability of about 10~
and 1077, respectively. On the one hand, the possible improvements to reduce these levels
include upgrading the locking electronics to increase the feedback modulation bandwidth.
At the moment, this is limited to 100 kHz by the PID module which might not be high
enough to counteract higher frequency contributions to the laser noise spectrum.

On the other hand, it is possible for the observed noise and drift to be caused by instabil-
ities of the reference resonator. Influences of different sources of external perturbations on
the cavity were estimated. Fluctuations of the temperature can induce a length change
of the cavity spacer which could be the cause of the drifts that we see on the order
of seconds and minutes. Changes in pressure might be responsible for the faster noise
that was observed, as well as some drifting on longer timescales. In our estimations,
external vibrations causing length changes were less significant, but once the setup has
been improved concerning the two previous issues, it should be possible to give a better
estimation of this.

Since operating the cavity in vacuum has been foreseen in the design, it will be straightfor-
ward to implement and reach at least a low vacuum. Additionally, electronics suitable for
setting up a higher bandwidth feedback loop are available to replace the ones currently in
use. Along with the other steps sketched in this work, this is expected to bring significant
improvements to the achieved stability in the near future.
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