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Understanding the origin of superconductivity in correlated two-dimensional materials is a key
step in leveraging material engineering techniques for next-generation nanoscale devices. The recent
demonstration of superconductivity in Bernal bilayer and rhombohedral trilayer graphene [1, 2], as
well as in a large family of graphene-based moiré systems, indicate a common superconducting
mechanism across these platforms. Here we combine first principles simulations with effective low-
energy theories to investigate the superconducting mechanism and pairing symmetry in rhombohe-
dral stacked graphene multilayers. We find that a phonon-mediated attraction can quantitatively
explain the main experimental findings, namely the displacement field and doping dependence of
the critical temperature and the presence of two superconducting regions whose pairing symmetries
depend on the parent normal state. In particular, we find that intra-valley phonon scattering favors
a triplet f -wave pairing out of a spin and valley polarized normal state. We also propose a new
and so far unexplored superconducting region at higher hole doping densities nh ≈ 4× 1012 cm−2,
and demonstrate how this large hole-doped regime can be reached in heterostructures consisting of
monolayer α-RuCl3 and rhombohedral trilayer graphene.

Recently, superconducting phases have been discovered
both in Bernal bilayer graphene (BBG) and in rhombo-
hedral trilayer graphene (RTG) [1–3]. These discover-
ies follow an intense investigation into superconducting
states of twisted bilayer and trilayer graphene, where the
superconducting mechanism has been ascribed to either
electron-phonon interactions or the enhanced electron-
electron correlations arising in flat bands [4–6]. Similar
explanations have been proposed for RTG [7–12], where
a high density of states at the Fermi energy can be ob-
tained via gate tuning in a perpendicular displacement
field, leading to van Hove singularities at small but fi-
nite doping. More recently, the proximity to WSe2 has
been shown to increase the critical temperature of BBG
by a factor ten [13, 14], which may be explained by the
suppression of order parameter fluctuations due to an in-
duced Ising spin-orbit coupling [15].

The similar phenomenology across these material plat-
forms indicates a common mechanism underlying their
superconductivity. To gain further insight into the su-
perconducting mechanism of rhombohedral multilayer
graphene, we have performed extensive first princi-
ples calculations of RTG and rhombohedral hexalayer
graphene (RHG) to evaluate the phonon contribution

∗ emil.bostrom@mpsd.mpg.de
† angel.rubio@mpsd.mpg.de

to the superconducting pairing within Eliashberg the-
ory. The results are in good quantitative agreement
with experimental findings in RTG [1, 2], and predict
two superconducting regions with critical temperatures
Tc ∼ 100 mK whose gap symmetries depend on the par-
ent normal state. In particular, for a spin- and valley-
polarized (SVP) parent state we find for the first time
a gap with triplet f -wave symmetry stabilized purely
through electron-phonon interactions. The quantitative
improvement over previous studies of phonon-mediated
pairing [11, 12] can be assigned to the additional retar-
dation effects included in the Eliashberg function, which
localize the gap function to the electronic Fermi surface.
We analyze the symmetry of the superconducting gap
and find an extended s-wave pairing domain arising from
inter-valley scattering and originating from a spin- and
valley-unpolarized normal state. In addition, we find a
smaller superconducting region with f -wave symmetry
at lower doping levels, which is due to intra-valley scat-
tering and arises out of an SVP normal state. This is in
good agreement with the superconducting regions identi-
fied in recent experiments [1, 2]. Compared to RTG, we
find RHG shows a slightly increased critical temperature.

We also discover a new superconducting region in both
RTG and RHG at higher hole doping densities. This re-
gion coincides with a second set of van Hove singularities
further below the Dirac cone, arising from the top of
the split-off valence bands. We investigate the symme-
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Max 200 words. Understanding superconductivity in correlated low-dimensional systems is a
promising route towards new low-dissipation devices. The recent demonstrations of similar forms
of superconductivity in Bernal bilayer and rhombohedral trilayer graphene, as well as in a large
family of graphene moiré systems, indicate a common microscopic superconducting mechanism
across these platform. Here we combine first principles simulations with effective low-energy theories
to shed light on the superconducting mechanism and pairing symmetry in rhombohedral stacked
graphene multilayers. We find that a phonon mediated attraction can quantitatively explain the
main experimental findings, namely the magnitude of the critical temperature and the appearance
of two superconducting regions with different pairing symmetries depending on the original normal
state. This later results follows from the fact the inter-valley (intra-valley) scattering favors s-wave
(f -wave) pairing. We also find a new superconducting region at higher dopings (nh ∼ 4 × 1012

cm−1), and show that this regime can be reached in heterostructures of monolayer α-RuCl3 and
rhombohedral stacked graphene.

Main max 3000 words
Methods max 3000 words.
Up to 6 figures with captions below 350 words.
Up to 50 references.

INTRODUCTION

Superconductivity is the paradigmatic manifestation
of macroscopic quantum coherence, and a subject of
great practical importance for device technology. Re-
cently superconducting phases have been discovered both
in Bernal bilayer graphene (BBG) as well as in rhombo-
hedral trilayer graphene (RTG) [1–3]. This follows an in-
tense investigation into superconducting states of twisted
bilayer and trilayer graphene, where the superconducting
mechanism has alternatingly been ascribed to electron-
phonon interactions or enhanced electron-electron cor-
relations arising in the moiré flat bands [4–6]. Similar
explanations have been proposed in RTG [7–12], where a
high density of states at the Fermi energy can be gener-
ated through the application of a perpendicular displace-
ment field, leading to van Hove singularities at small but
finite doping. More recently the proximity interaction
with WSe2 has been shown to increase the critical tem-
perature of BBG [13–15]

To gain further insight into the superconducting mech-
anism of RTG and rhombohedral hexalayer graphene
(RHG), we have performed extensive first principles cal-
culations to evaluate the phonon contribution to the su-
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FIG. 1. Atomic structure of rhombohedral trilayer and
hexalayer graphene. a, Side view of the unit cell of rhom-
bohedral trilayer and hexalayer graphene. The inter-layer
hopping amplitudes ti included in the tight-binding descrip-
tion of the system are indicated. b, Top view of rhombohedral
stacked multi-layer graphene. The intra-layer hopping ampli-
tude t0 is indicated.

perconducting pairing within Eliashberg theory. The re-
sults are in good quantitative agreement with experimen-
tal results on RTG [1, 2], predicting two superconducting
regions with gap symmetries depending on the initial nor-
mal state and a critical temperature Tc ∼ 100 K. This
provides a significant improvement over previous stud-
ies of phonon-mediated pairing [11, 12], which we assign
to a localization of the gap function to the electronic
Fermi surface induced by retardation effects. We ana-
lyze the symmetry of the superconducting gap and find
an extended s-wave pairing domain arising from inter-
valley scattering and originating from a spin- and valley-
unpolarized normal state. In addition, we find a smaller
superconducting region with f -wave symmetry at lower
doping levels, which is due to intra-valley scattering and
arises out of a spin- and valley-polarized normal state.
This is in good agreement with the SC1 and SC2 regions
identified in experiment [1, 2]. Compared to RTG, we
find RHG shows a slightly increased critical temperature.

We finally discover a new superconducting region in
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FIG. 2. Band structure and density of states of rhom-
bohedral multilayer graphene. Low-energy band struc-
ture and density of states (DOS) of rhombohedral trilayer
(RTG, a) and hexalayer (RHG, b) graphene around the K+

point. The reciprocal momentum is measured in units of
G = 4π/

√
3a.

high-doping regime we consider a heterostructure consist-
ing of monolayer α-RuCl3 in proximity to RTG, where
the large work function mismatch of about W ≈ 1.6 eV
leads to significant doping of both structures. Interest-
ingly, we also find pristine α-RuCl3 at a doping level of
0.25e per Ru ion to be superconducting with a critical
temperature of Tc ≈ 200 mK. We finally discuss the in-
terplay of RuCl3 and RTG superconductivity in the high
doping regime.

RESULTS

Tri- and hexalayer rhombohedral stacked graphene
at finite displacement field

The low-energy band structure of multilayer graphene
is well-captured by a tight-binding description including
the pz-orbitals of the C atoms [16, 17]. Close to the Dirac
cones at Ks, with s = ±, the electronic Hamiltonian can
be written as

Hs =
∑
k

ΨkHksΨk. (1)

For an n-layer system Hks is a 2n × 2n matrix explic-
itly given in the Methods section below, and the hop-
ping processes included in Hks are illustrated in Fig. 1.
Depending on the stacking order, the bands around the
Fermi level have different characteristics: For rhombohe-
dral stacking the highest valence band is approximately
flat for k ≈ Ks, leading to a sharp van Hove singularity in
the density of states (DOS). This is in contrast to Bernal
stacked graphene layers, where the highest valence band
approximately retains the linear dispersion of an isolated
graphene sheet. The band structure and density of states
(DOS) of RTG and RHG are shown in Fig. 2.

The DOS at the van Hove singularity can further be
tuned by applying a displacement field perpendicular to
the graphene layers [1]. To lowest order in the electronic
screening such a displacement field can be treated as a
symmetric potential ∆ applied across the layers, and the
resulting DOS as a function of ∆ is shown in Fig. 3. For
RTG the displacement field leads to an increase in the
DOS due to a gap opening at Ks and the highest valence
band bending into a double-well shape. In contrast, for
RHG the DOS decreases with increasing displacement
field, since the highest valence band is approximately flat
already for ∆ = 0.

FIG. 3. Displacement field dependence of density of
states of rhombohedral stacked graphene. Low-energy
density of states (DOS) of rhombohedral trilayer (RTG, a)
and hexalayer (RHG, b) graphene around the K+ point. For
RTG the application of a perpendicular displacement field
opens a gap and leads to an increase in the DOS around
ε = εF . For RHG the highest valence band is already approx-
imately flat, and a perpendicular displacement field leads to
a slight reduction in the DOS. The displacement field D is
included via an effective potential ∆, given in meV, and the
reciprocal momentum is measured in units of G = 4π/

√
3a.

FIG. 4. Fermi surface evolution of rhombohedral tri-
and hexalayer graphene. a-c, Electronic Fermi surface of
rhombohedral trilayer graphene (RTG) for zero displacement
field D = 0 at Fermi levels εF = −7.4 meV, εF = −7.8 meV
and εF = −10.2 meV. d-f, Electron Fermi surface of rhombo-
hedral hexalayer graphene (RHG) for zero displacement field
D = 0 at Fermi levels εF = −3.9 meV, εF = −4.5 meV and
εF = −10.7 meV. The Fermi level is measured from the Dirac
cone.

Fermi surface evolution

Recent experiments have found two superconducting
regions in rhombohedral trilayer graphene (RTG) as a
function of displacement field and doping [1], denoted
SC1 and SC2. The superconducting phases were found
to be associated with a change in the Fermi surface topol-
ogy, which for finite displacement field and as a function
of doping evolves from three well-separated hole-pockets,
via an annular Fermi surface, to an approximately circu-
lar Fermi surface (see Fig. 4). Similarly, the Fermi surface
of RHG undergoes a transition from three isolated and
strongly warped hole pockets into first an annular Fermi
surface, and subsequently into a single large hole pocket.
Compared to RTG the trigonal warping of the Fermi sur-
face is more pronounced, and the total Fermi surface area
larger leading to a larger DOS.

e

f

FIG. 1. Electronic structure of rhombohedral trilayer and hexalayer graphene. a, Side view of the unit cell of
rhombohedral trilayer and hexalayer graphene. The inter-layer hopping amplitudes ti included in the tight-binding description
of the system are indicated. b, Top view of rhombohedral stacked multi-layer graphene. The intra-layer hopping amplitude
t0 is indicated. c, Low-energy band structure and density of states (DOS) of rhombohedral trilayer graphene (RTG) around
the K+ point. d, Low-energy band structure and DOS of rhombohedral hexalayer graphene (RHG) around the K+ point. e,
Electronic Fermi surface of RTG for zero displacement field at Fermi levels εF = −7.4 meV, εF = −7.8 meV and εF = −10.2
meV. f, Electronic Fermi surface of RHG for zero displacement field at Fermi levels εF = −3.9 meV, εF = −4.5 meV and
εF = −10.7 meV. The Fermi level is measured from the Dirac cone.

also find pristine α-RuCl3 at a doping level of 0.25e per
Ru ion to be superconducting with a critical temperature
of Tc ≈ 200 mK. We finally discuss the interplay of RuCl3
and RTG superconductivity in the high doping regime.

Tri- and hexalayer rhombohedral graphene in a
finite displacement field

The low-energy electronic structure of multilayer
graphene is well-captured by a tight-binding description
including the pz-orbitals of the C atoms [16, 17]. Close
to the Dirac points Ks (with s = ±), the electronic
Hamiltonian can be written as Hs =

∑
kσ ΨkσsHksΨkσs

where k is the momentum measure from Ks and σ la-
bels spin. For an n-layer system Hks is a 2n× 2n matrix
in each spin sector, and includes the hopping processes
illustrated in Fig. 1. Depending on the stacking order,
the bands around the Fermi level have different charac-
teristics: For rhombohedral stacking the highest valence
band is approximately flat for k ≈ Ks, leading to a sharp
van Hove singularity in the density of states (DOS). This
is in contrast to Bernal stacked graphene layers, where
the highest valence band approximately retains the lin-

ear dispersion of an isolated graphene sheet. The band
structure and density of states (DOS) of RTG and RHG
are shown in Fig. 1.

The DOS at the van Hove singularity can further be
tuned by applying a displacement field perpendicular to
the graphene layers [1]. To lowest order in the electronic
screening, such a displacement field can be treated as a
symmetric potential ∆ applied across the layers, and the
resulting DOS as a function of ∆ is shown in Fig. 2. For
RTG the displacement field leads to an increase in the
DOS due to a gap opening at Ks and the highest valence
band bending into a double-well shape. In contrast, for
RHG the DOS decreases with increasing displacement
field, since the highest valence band is approximately flat
already at ∆ = 0.

Fermi surface evolution

Recent experiments have found two superconducting
regions in rhombohedral trilayer graphene (RTG) as a
function of displacement field and doping [1], denoted
SC1 and SC2. The superconducting phases were found
to be associated with a change in the Fermi surface topol-

FIG. 1. Electronic structure of rhombohedral stacked trilayer and hexalayer graphene. a, Side view of the unit cell
of rhombohedral stacked trilayer and hexalayer graphene. The inter-layer hopping amplitudes ti included in the tight-binding
description of the system are indicated. b, Top view of rhombohedral stacked multi-layer graphene. The intra-layer hopping
amplitude t0 is indicated. c, Low-energy band structure and density of states (DOS) of rhombohedral trilayer graphene (RTG)
around the K+ point. d, Low-energy band structure and DOS of rhombohedral hexalayer graphene (RHG) around the K+

point. e, Electronic Fermi surface of RTG for zero displacement field at Fermi levels ϵF = −7.4 meV, ϵF = −7.8 meV and
ϵF = −10.2 meV. f, Electronic Fermi surface of RHG for zero displacement field at Fermi levels ϵF = −3.9 meV, ϵF = −4.5
meV and ϵF = −10.7 meV. The Fermi level is measured from the Dirac cone and the DOS is calculated with a Gaussian
smearing of width σ = 2 meV.

try of this new superconducting region, and again find
a dominant s- or f -wave pairing depending on the spin-
and valley-polarization of the parent normal state. As a
mean to reach the high-doping regime we consider a het-
erostructure consisting of RTG and monolayer α-RuCl3,
where the large work function mismatch leads to signif-
icant doping of both structures. We finally discuss the
interplay of RuCl3 and RTG superconductivity in the
high doping regime.

Trilayer and hexalayer rhombohedral graphene in a
finite displacement field

The first principles electronic structure of multi-
layer rhombohedral stacked graphene, as obtained from
density functional theory (DFT) calculations, is well-
captured around the Dirac cones by a tight-binding de-
scription of the C pz-orbitals including the hopping pro-
cesses illustrated in Fig. 1 [16, 17]. Depending on the
stacking order, the bands around the Fermi level have
different characteristics: For rhombohedral stacking the
highest valence band is approximately flat for k ≈ Ks,

leading to a sharp van Hove singularity in the density
of states (DOS). This is in contrast to Bernal stacked
graphene layers, where the highest valence band ap-
proximately retains the linear dispersion of an isolated
graphene sheet. The band structure and density of states
(DOS) of RTG and RHG are shown in Fig. 1.

The DOS at the van Hove singularity can further be
tuned by applying a displacement field perpendicular to
the graphene layers [1] (see Supplementary Fig. S1). To
lowest order in the electronic screening, such a displace-
ment field can be treated as a symmetric potential ∆ ap-
plied across the layers. For RTG the displacement field
leads to an increase in the DOS due to a gap opening at
Ks and the highest valence band bending into a double-
well shape. In contrast, for RHG the DOS decreases with
increasing displacement field, since the highest valence
band is approximately flat already at ∆ = 0.

Recent experiments have found two superconducting
regions in rhombohedral trilayer graphene (RTG) as a
function of displacement field and doping [1], denoted
SC1 and SC2. These superconducting phases were found
to be associated with a change in the Fermi surface topol-
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FIG. 2. Superconducting critical temperature of rhombohedral tri- and hexalayer graphene. a-b, Superconducting
critical temperature Tc of rhombohedral trilayer graphene (RTG, a) and rhombohedral hexalayer graphene (RHG, b) as a
function of Fermi level and displacement potential. The Fermi level εF is measured from the Dirac cone at ∆ = 0. c-d,
Electronic DOS (blue) and superconducting critical temperature Tc (red) of RTG (c) and RHG (d) as a function of energy in
the high doping regime.

only phonons with q = 0 or q = Q = K+ − K− con-
tribute significantly to the superconducting pairing. The
Eliashberg function can then be represented as a series
of peaks, such that the effective electron-phonon coupling
λ is given by λ =

∑
νq λνq. Here λνq = γνq/(πρFω

2
νq)

is the contribution to λ from mode (νq). The super-
conducting critical temperature can now be obtained
from the McMillan equation [18], where the the average
screened electron-electron interaction µ∗ is taken to have
the typical value µ∗ = 0.2. All the quantities needed to
evaluate Tc have been calculated from first principles as
discussed below.

Critical temperature

The critical temperatures of RTG and RHG, assuming
a spin- and valley-unpolarized normal state, are shown
in Fig. 2. The results for RTG are in good quantitative
agreement with the experiments of Ref. [1], although the
critical temperature is overestimated by about a factor of
four. This is expected since in two-dimensional systems,
strong fluctuations not accounted for here tend to lower
the critical temperature. Due to the higher DOS of RHG

as compared to RTG, the critical temperature in this sys-
tem is further enhanced by a factor 2 − 3. To account
for the superconducting region SC2, arising out of a spin-
and valley-polarized state, we assume the effective DOS
in the active channel is increased by a factor of four (since
all electrons are accumulated in one spin and valley sec-
tor), and that inter-valley scattering is negligible. This
gives a superconducting region at lower Fermi energies,
and with slightly lower Tc compared to the phase SC1,
in good agreement with experiment.

For both RTG and RHG the critical temperature is
found to closely follow the electronic DOS, which is a
consequence of the fact that the electron-phonon self-
energy Π ∼ ρ2

F so that α2F (ω) ∼ ρF . Since the DOS in-
creases (decreases) with increasing displacement field in
RTG (RHG), the critical temperature follows the same
trends. We note that compared to conventional BCS the-
ory [11, 12], the main consequence of including phonon
retardation effects is to localize the superconducting pair-
ing to the electronic Fermi surface. This leads to a su-
perconducting state appearing in a much more narrow
range of Fermi levels (or equivalently dopings), and to
an overall reduction of the critical temperature by a fac-
tor 5− 10.

FIG. 2. Superconducting critical temperature of rhombohedral tri- and hexalayer graphene. a-b, Superconducting
critical temperature Tc of rhombohedral trilayer graphene (RTG, a) and rhombohedral hexalayer graphene (RHG, b) as a
function of electron doping density ne and displacement potential ∆. c-d, Electronic density of states (DOS, blue) and
superconducting critical temperature Tc (red) of RTG (c) and RHG (d) as a function of doping density in the high doping
regime. Here ∆ = 0 since the bands far below the Dirac cone are insensitive to the displacement field, and the DOS is calculated
with a Gaussian smearing of width σ = 2 meV.

ogy, which for finite displacement field and as a function
of doping evolves from three well-separated hole-pockets,
via an annular Fermi surface, to an approximately circu-
lar Fermi surface (see Fig. 1). Similarly, the Fermi sur-
face of RHG undergoes a transition from three isolated
and strongly warped hole pockets into first an annular
Fermi surface, and subsequently into a single large hole
pocket. Compared to RTG the trigonal warping of the
Fermi surface in RHG is more pronounced, and the total
Fermi surface area larger leading to a larger DOS.

Eliashberg theory of phonon-mediated
superconductivity

To obtain the superconducting critical temperature in
RTG and RHG resulting from phonon-mediated pair-
ing, we use Eliashberg theory. Crucially, this approach
takes into account the frequency dependence of the re-
tarded electron-phonon interaction, which is found to
have important consequences for the present systems.
The key quantity of this approach is the Eliashberg func-
tion α2F (ω), which is obtained from the spectral func-
tion of the electron-phonon self-energy Πνq(ω, T ) (see
Methods for a detailed discussion). To evaluate the self-
energy it is sufficient to calculate the electronic dispersion

ϵnk, the phonon frequencies ωνq, and the electron-phonon
couplings gmnν(k,q).

Due to the structure of the Eliashberg equations, elec-
tronic states contributing to the formation of a low-
temperature superconducting instability are highly re-
stricted to the Fermi surface. In both RTG and RHG
this constitutes a very small region of the Brillouin zone
(see Fig. 1), and therefore only phonons with q = 0
or q = K± contribute significantly to the supercon-
ducting pairing. The Eliashberg function can then be
represented as a series of peaks, such that the effective
electron-phonon coupling λ is given by λ =

∑
νq λνq.

Here λνq = γνq/(πρFω
2
νq) is the contribution to λ from

the phonon mode in branch ν and with momentum q,
γνq is the phonon linewidth, and ρF the density of states
at the Fermi level. The superconducting critical tem-
perature follows from the McMillan equation [18], where
the average screened electron-electron interaction is ac-
counted for by the effective parameter µ∗. All quantities
needed to evaluate Tc have been calculated from first
principles as discussed in the Methods.
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Critical temperature

First, we calculate the critical temperature Tc of the
superconducting transition in RTG (RHG) assuming an
unpolairzed normal state as shown in Fig. 2. The results
for RTG are in good quantitative agreement with the ex-
periments of Ref. [1], although the critical temperature
is overestimated by about a factor of four. This discrep-
ancy is expected due to the shortcomings of Eliashberg
theory to incorporate the effect of strong quantum fluc-
tuations in two-dimensional systems, which tend to sup-
press the critical temperature. Due to the higher DOS
of RHG as compared to RTG, the critical temperature
in this system is enhanced by a factor 2 − 3. To ac-
count for the superconducting region SC2 arising out of
an SVP state, we assume that the effective DOS in the
active channel is increased by a factor of four (since all
electrons are accumulated in one spin and valley sector),
and that inter-valley scattering is negligible. This gives
a superconducting region at lower doping with slightly
lower Tc compared to the phase SC1, in good agreement
with experiment.

For both RTG and RHG the critical temperature is
found to closely follow the electronic DOS, which is a
consequence of the self-energy scaling like Π ∼ ρ2F , such
that α2F (ω) ∼ ρF . Since the DOS increases (decreases)
with increasing displacement field in RTG (RHG) (see
Supplementary Fig. S1), the critical temperatures show
the same trends. We note that compared to conventional
BCS theory [11, 12], the main consequence of including
phonon retardation effects is an overall reduction of the
critical temperature by a factor 5 − 10 and the range of
dopings over which superconductivity is found.

The DOS and critical temperature in the high doping
regime are also shown in Fig. 2. The density of states
is similar to that found in the low doping regime, and
the corresponding critical temperature is therefore of the
same order. Since the active bands in the high doping
regime arise from the intermediate layers of the RTG and
RHG stacks, their energies are largely insensitive to the
displacement field.

Linearized gap equation

Next, we analyze the symmetry of the leading super-
conducting order parameter in both doping regimes. The
gap function can be obtained by solving the linearized
gap equation [19, 20]

∆mk = π
∑
np

χmnkp
tanh(βξnp)

βξnp
∆np, (1)

where β is the inverse temperature, ξnk = ϵnk − ϵF and
the susceptibility is

χmnkp =
∑
ν

2|gmnν(k,q)|2

NkρFωqν
δ(ξmk)δ(ξnp). (2)

Here it is implicitly assumed that the phonon momentum
satisfies q = p− k. This equation is of the same form as
the standard BCS gap equation, however with the inter-
action restricted to the Fermi surface. The main differ-
ence between BCS and Eliashberg theory is that the lat-
ter includes retardation effects from the electron-phonon
interaction, which give rise to a non-trivial frequency
dependence in the effective electron-electron interaction
(see Methods). This frequency dependence significantly
improves the temperature dependence of the theory, and
in the low temperature limit localizes the susceptibility
to the Fermi surface [19, 20]. For many systems, where
the Fermi surface occupies a significant portion of the
Brillouin zone, this effect is rather small. For RTG and
RHG however, where the Fermi surface occupies a tiny
portion of the full Brillouin zone, the quantitative differ-
ence between the two approaches is quite dramatic. In
general Eliashberg theory is expected to be more accu-
rate than BCS theory, since it captures the dynamical
aspects of the electron-phonon interaction.

Superconducting symmetry in the low-doping
regime

Fig. 3 shows the superconducting gap of RTG for a dis-
placement field potential ∆ = 20 meV and the Fermi level
at ϵF = −26 meV, corresponding to a hole doping density
of nh ≈ 0.4 × 1012 cm−2. As can be clearly seen the gap
is symmetric under inversion, ∆−k = ∆k, indicating a
singlet pairing. Further, in each valley the gap has three-
fold rotational symmetry with a non-trivial nodal struc-
ture. Together these observations are consistent with an
extended s-wave symmetry. A similar gap structure is
found for RHG, again consistent with an extended s-wave
symmetry (see Supplementary Fig. S2). This dominant
pairing is found to arise from inter-valley scattering, cor-
responding to the exchange of virtual phonons with mo-
menta q ≈ K, as expected from a symmetry analysis (see
Methods for an extended discussion).

Artificially suppressing the inter-valley scattering, as
appropriate for a superconducting state arising out of an
SVP normal state, we find an odd gap ∆−k = −∆k.
This indicates an unconventional triplet f -wave pairing,
and that superconductivity in RTG arises from a com-
petition between inter- and intra-valley scatterings fa-
voring different superconducting symmetries. Again, the
results for RHG are qualitatively similar (see Supplemen-
tary Fig. S2). These findings are in good agreement with
the experimental results of Ref. [1], where the supercon-
ducting region SC2 was found to violate the Pauli limit
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K− K+ K− K+

FIG. 3. Superconducting gap of rhombohedral trilayer graphene. Superconducting gap ∆k of rhombohedral trilayer
graphene around the K− and K+ valleys, including the attractive interaction from both inter- and intra-valley phonon scattering
(a), or only intra-valley scattering (b). The dominant inter-valley scattering favors s-wave pairing (a), while the sub-dominant
intra-valley scattering favors f -wave pairing (b). c-d, Superconducting gap ∆k of rhombohedral trilayer graphene around
the K− and K+ valleys, including the attractive interaction from both inter- and intra-valley phonon scattering (a), or only
intra-valley scattering (b). The dominant inter-valley scattering favors s-wave pairing (a), while the sub-dominant intra-valley
scattering favors f -wave pairing (b). In all panels the momentum runs over a region ka ∈ [−0.1, 0.1] around the Ks point.

symmetry by their properties under inversion, since s-
and d-wave gaps have to be singlets (∆−k = ∆k), while
p- and f -waves gaps have to be triplets (∆−k = −∆k).

For the low-energy bands of RTG and RHG, the wave
function is mainly localized to the dangling sites A1 and
BN (with N the number of layers), such that inter-
sublattice pairings are strongly suppressed. Therefore,
the dominant pairing in these bands is expected to be ei-
ther s- or f -wave. However, for the lower valence bands
at ∼ −0.5 eV, other pairing channels might become com-
petitive through inter-sublattice scattering in the inter-
mediate layers.

Superconductivity in the low-doping regime

Fig. 3 shows the superconducting gap of RTG for a
displacement field potential ∆ = 20 meV and the Fermi
level at εF = −26 meV. As can be clearly seen the gap
is symmetric under inversion, ∆−k = ∆k, indicating a
singlet pairing. Further, in each valley the gap has three-
fold rotational symmetry with a non-trivial nodal struc-
ture. Together these observations are consistent with an
extended s-wave symmetry. A similar gap structure is
found for RHG, again consistent with an extended s-wave
symmetry. This dominant pairing is found to arise from
inter-valley scattering, corresponding to the exchange of
virtual phonons with momenta q ≈ K, as expected from

the symmetry analysis.

Artificially suppressing the inter-valley scattering, as
appropriate for a superconducting state arising out of a
spin- and valley-polarized normal state, we instead find
an odd gap ∆−k = −∆k. This indicates an unconven-
tional triplet f -wave pairing, and that superconductivity
in RTG arises from a competition between inter- and
intra-valley scatterings favoring different superconduct-
ing symmetries. This finding is in good agreement with
the results of Ref. [1], where the superconducting region
SC2 was found to violate the Pauli limit by more than an
order of magnitude, strongly indicating unconventional
superconducting pairing.

Superconductivity in the high-doping regime

Very similar results are found for RTG in the high-
doping regime, where inter-valley (intra-valley) scatter-
ing is found to favor an extended s-wave (f -wave) pair-
ing. The superconducting gap at zero displacement field
and a Fermi level of εF = −350 meV is shown in Fig. 3.
We note that the critical temperature in the high doping
regime is comparable but slightly lower than that of the
low doping regime, as expected from the respective DOS.
These results therefore indicate a new and so far unex-
plored region of superconductivity in RTG, arising from
the van Hove singularities of the lower valence bands.

FIG. 3. Superconducting gap of rhombohedral trilayer graphene. a-b, Superconducting gap ∆k of rhombohedral
stacked trilayer graphene for a hole doping density nh ≈ 0.4 × 1012 cm−2, including the attractive interaction from both
inter- and intra-valley phonon scattering (a) or only intra-valley scattering (b). The dominant inter-valley scattering favors
s-wave pairing (a), while the sub-dominant intra-valley scattering favors f -wave pairing (b). c-d, Superconducting gap ∆k of
rhombohedral stacked trilayer graphene for a hole doping density nh ≈ 3.9 × 1012 cm−2, including the attractive interaction
from both inter- and intra-valley phonon scattering (c), or only intra-valley scattering (d). The dominant inter-valley scattering
favors s-wave pairing (c), while the sub-dominant intra-valley scattering favors f -wave pairing (d). In all panels the momentum
runs over a region ka ∈ [−0.1, 0.1] around the Ks point.

by more than an order of magnitude, strongly indicating
unconventional superconducting pairing.

The f -wave pairing is likely stabilized by a combina-
tion of Fermi surface topology and the spin and valley
polarization of the parent state. In fact, for an unpolar-
ized parent state with momentum-independent electron-
phonon scattering, the s- and f -wave pairings are found
to be degenerate (see Supplemental Material). This in-
dicates a highly non-trivial interplay of electronic corre-
lations and phonon-mediated pairing, where the former
stabilizes the parent state and the latter the f -wave pair-
ing.

Superconducting symmetry in the high-doping
regime

Similar results are found for both RTG and RHG in
the high-doping regime, where inter-valley (intra-valley)
scattering is found to favor an extended s-wave (f -wave)
pairing. The superconducting gap for RTG at zero dis-
placement field and a Fermi level of ϵF = −350 meV,
corresponding to a hole doping density of nh ≈ 3.9×1012

cm−2, is shown in Fig. 3. We note that the critical tem-
perature in the high doping regime is comparable but
slightly lower than that of the low doping regime, as ex-
pected from the respective DOS. These results indicate

a new and so far unexplored region of superconductivity
in RTG, arising from the van Hove singularities of the
lower valence bands.

Reaching the high-doping regime

To reach the high doping regime, we consider a het-
erostructure consisting of RTG and a monolayer of the
Mott-Slater insulator α-RuCl3. This heterostructure
has recently been found to realize a heavily hole-doped
regime of graphene, with a Fermi level ∼ 0.6 eV below
the Dirac cone [21]. More specifically, due to the large
work function mismatch of about 1.6 eV, there is a signif-
icant charge transfer from the graphene multilayer into
α-RuCl3 resulting in an overall doping of approximately
−0.07e per Ru atom [21, 22]. Since the charge transfer
is mainly localized to the interface, the charge transfer
corresponds to a hole doping of 0.01e per C atom, or
equivalently a doping density of 4.2 × 1012 cm−2, in the
layer adjacent to α-RuCl3.

The band structure of the heterostructure was calcu-
lated in a 5 × 5 and 2 × 2 supercell for the RTG and
α-RuCl3 sub-systems respectively, is shown in Fig. 4.
The local interactions in the active Ru manifold are de-
scribed by a Hubbard-Kanamori Hamiltonian [23, 24]
treated within the unrestricted Hartree-Fock approxima-
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FIG. 4. Superconductivity of a rhombohedral trilayer
graphene and α-RuCl3 heterostructure. a, Supercell of
the rhombohedral trilayer graphene (RTG) and monolayer α-
RuCl3 heterostructure considered, containing 8 Ru atoms (or-
ange) and 150 C atoms (gray). b, Electronic band structure of
the heterostructure, with the flat bands originate from the Ru
t2g orbitals and the dispersive bands from the C pz orbitals.
c, Electronic density of states of the hybridized rhombohedral
trilayer graphene (RTG) and monolayer α-RuCl3 heterostruc-
ture. d-e, Estimated electron-phonon coupling λest = g2ρ/ω
for the electron-phonon coupling gg = 200 meV and phonon
frequency ω = 200 meV. Panel b shows λest for different val-
ues of gr at fixed hybridization ∆ = 10 meV, while panel c
shows λest for different hybridization strengths at gr = 20
meV.

To account for the coupling between the systems we
assume that the orbitals of the graphene layer adjacent
to α-RuCl3 hybridize with the Ru orbitals as further
discussed in the Methods and Ref. [17]. Diagonaliz-
ing the coupled system gives the electronic band struc-
ture of Fig. 4, where avoided crossings are clearly seen
at the band intersections. We note that a gap opens
for the RTG bands around the Dirac cone, in agree-
ment with first principles calculations, indicating that
the heterostructure sets up an intrinsic displacement field
through the charge transfer.

Superconductivity of the RTG-RuCl3
heterostructure

We now use Eliashberg theory to obtain the critical
temperature of the heterostructure. To estimate the
Fermi level dependence of Tc we calculate the dimen-
sionless variable λest = g2ρ/Ω (see Fig. 4), which is
closely related to the dimensionless electron-phonon cou-

pling λ. The electron-phonon couplings of the separate
subsystems, obtained from first principles calculations,
are found to be on the order of gRTG ≈ 200 meV [25]
and gRuCl3 ≈ 20 − 40 meV, and assuming a typical op-
tical phonon energy of Ω = 200 meV as appropriate for
graphene, we find λest ≈ 1 around the graphene van Hove
singularities. This estimate is in good agreement with the
more detailed calculations for RTG based on Eq. 7.

Depending on the electron-phonon coupling in RuCl3
as well as on the hybridization strength between the
subsystems, the superconducting λest of the heterostruc-
ture can be of order unity (Fig. 4). However, while a
stronger electron-phonon coupling in α-RuCl3 is found
to enhance λest, a stronger hybridization predominantly
reduces the effective electron-phonon coupling in RTG
dominated bands (a small enhancement can be observed
for α-RuCl3). This effect can be attributed to the much
smaller Fermi surface of RTG as compared to α-RuCl3,
which makes the contribution to λest from RTG much
more sensitive to the hybridization than the contribution
from α-RuCl3.

DISCUSSION

Combining first principles calculations of the electron-
phonon coupling with effective low-energy models of the
electronic structure of RTG, RHG and α-RuCl3, we find
all these systems to be superconducting at temperatures
below Tc ∼ 100 mK. In particular, we find that includ-
ing retardation effects in the phonon-mediated attrac-
tion leads to a substantial reduction of both the criti-
cal temperature and the phase space region in which su-
perconductivity is found. This drastically improves the
agreement between theory and experiments [1, 2], mak-
ing phonon mediated superconductivity a likely mecha-
nism to explain superconductivity across a wide range of
graphene platforms[1, 2, 4–6].

Additionally, we find that including both inter-valley
and intra-valley scattering in the description, phonon me-
diated pairing can favor superconductivity of both s- and
f -wave symmetry. In particular, we find that depending
on the spin- and valley-polarization of the initial normal
state, s-wave pairing is dominant symmetry arising out
of the unpolarized state while f -wave pairing dominates
out of the spin- and valley-polarized normal state. This
is again in good agreement with previous experiments.

Finally we demonstrate that interfacing RTG with
monolayer α-RuCl3 allows to reach a new and so far un-
explored superconducting region stemming from the van
Hove singularity of the lower valence bands. Although a
strong inter-layer hybridization is found to suppress su-
perconductivity in the simple unit cell considered here,
we speculate that maximizing the Fermi surface overlaps
of the two subsystems, e.g. via layer twisting, might lead
to an enhancement of Tc. It might also be the case that

FIG. 4. Superconductivity of a rhombohedral trilayer
graphene and α-RuCl3 heterostructure. a, Supercell of
the rhombohedral trilayer graphene (RTG) and monolayer α-
RuCl3 heterostructure considered, containing 8 Ru atoms (or-
ange) and 150 C atoms (gray). b, Electronic band structure of
the heterostructure, with the flat bands originate from the Ru
t2g orbitals and the dispersive bands from the C pz orbitals.
c, Estimated electron-phonon coupling λest (blue) for the
electron-phonon couplings gRTG = 200 meV and gRuCl3 = 20
meV, and a phonon frequency ω = 200 meV, as well as the
corresponding critical temperature Tc. The gray dashed line
indicates the Fermi level of the heterostructure.

tion. The interaction between the subsystems is treated
as a position and orbital dependent hybridization [17],
which largely restricts the coupling to the graphene layer
adjacent to α-RuCl3 (see Supplemental Material). We
note that the band structure displays clear avoided cross-
ings at the band intersections, and that a gap opens at
the Dirac cone of the RTG bands. This effect is in agree-
ment with first principles calculations (see Supplemen-
tary Fig. S3), indicating that the heterostructure sets up
an intrinsic displacement field through the charge trans-
fer process.

Superconductivity of the RTG-RuCl3
heterostructure

We now use Eliashberg theory to obtain the critical
temperature of the heterostructure. To estimate Tc we
calculate the dimensionless variable λest = g2ρ/Ω (see
Fig. 4), which is closely related to the dimensionless
electron-phonon coupling λ. The electron-phonon cou-
plings of the separate subsystems, obtained from first
principles density functional perturbation theory calcu-
lations, are found to be on the order of gRTG ≈ 200

meV [25] and gRuCl3 ≈ 20 − 40 meV, and assuming a
typical optical phonon energy of Ω = 200 meV as appro-
priate for graphene, we find λest ≈ 1 around the graphene
van Hove singularities. This estimate is in good agree-
ment with the more detailed calculations for RTG based
on the Eliashberg function. The resulting critical tem-
perature agrees well with Fig. 2 around the van Hove
singularities, and is on the order of a few mK close to the
heterostructure Fermi level.

Depending on the electron-phonon coupling in α-
RuCl3 as well as on the sub-system hybridization
strength, the effective coupling λest of the heterostruc-
ture can be modified by a few percent. However, while
a stronger electron-phonon coupling in α-RuCl3 is found
to enhance λest, a stronger hybridization predominantly
reduces the effective electron-phonon coupling in RTG
dominated bands. This effect can be attributed to the
much smaller Fermi surface of RTG as compared to α-
RuCl3, which makes the contribution to λest from RTG
much more sensitive to the hybridization than the contri-
bution from α-RuCl3. A small enhancement of Tc with
increasing hybridization can be observed for bands with
a dominant projection on α-RuCl3.

DISCUSSION

By combining first principles calculations with effective
low-energy models, we have investigated the phenomenol-
ogy of phonon-mediated superconductivity in RTG, RHG
and RTG-α-RuCl3 heterostructures. Including retarda-
tion effects of the phonon-mediated attraction we find
a substantial reduction of both the critical tempera-
ture and the region of doping and displacement fields
in which superconductivity appears. These effects lead
to a substantial improvement between theory and exper-
iments [1, 2], promoting phonon mediated superconduc-
tivity as a strong contender to explain superconductivity
across a wide range of graphene platforms [1, 2, 4–6].

More surprisingly, we find that inter-valley and intra-
valley phonon scattering favors superconductivity with
different symmetry, such that phonon mediated pairing
can stabilize both extended s-wave as well as unconven-
tional f -wave triplet pairing. More specifically, we find
that s-wave pairing is dominant when superconductivity
arises out of an unpolarized parent state, while f -wave
pairing dominates when the parent state is SVP. If veri-
fied, this would be the first time phonons are found to sta-
bilize unconventional triplet superconductivity [26]. Fur-
ther, the interplay of electronic correlations and phonon-
mediated pairing demonstrated by the f -wave pairing,
indicates a path to realize unconventional triplet pairing
in conventional phonon-mediated extended s-wave super-
conductors.

We finally demonstrate that a new and so far unex-
plored superconducting region, stemming from the van
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Hove singularity of the lower valence bands, can be
reached in heterostructures of RTG and monolayer α-
RuCl3. Although a strong inter-layer hybridization is
found to suppress superconductivity in the supercell con-
sidered here, it is possible that maximizing the Fermi sur-
face overlaps of the two subsystems [17], e.g. via layer
twisting, could lead to an enhancement of Tc. It might
also be the case that reducing spin fluctuations in the het-
erostructure by breaking the spin rotational symmetry
could lead to an enhancement of the critical temperature
for spin triplet pairings, as have recently been proposed
for Bernal bilayer graphene in proximity to WSe2 [2, 15].
In fact, our first principle calculations show a small in-
duced Ising spin-orbit coupling of ∼ 1 meV in the het-
erostructure (see Supplementary Fig. S3).

Further work is needed to conclusively determine the
superconducting mechanism in RTG and RHG, taking
into account electron-phonon as well as electron-electron
interactions on an equal footing. In any case our work
shows that the exotic and unconventional superconduct-
ing phenomenology of RTG is consistent with a phonon-
mediated pairing.
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METHODS

Electronic structure, phonon dispersion and
electron-phonon coupling

The electronic structure of rhombohedral and Bernal
stacked trilayer and hexalayer graphene were calculated
as a function of displacement field using the Abinit elec-
tronic structure code. The electronic ground state was
calculated within the local density approximation (LDA)
on a 72×72 k-point grid, using a plane wave cut-off of 20
Ha. The displacement field was included via a coupling to
the polarization as described within the modern theory of
polarization [27]. The Kohn-Sham Bloch functions were
subsequently transformed to maximally localized Wan-
nier functions using the Wannier90 code, including the
lowest lying 15 (30) bands for trilayer (hexalayer) sys-
tems. The Wannier functions were used to interpolate
the electronic band structure to arbitrary k-points, al-
lowing to calculate the density of state (DOS) on a very
dense k-point grid with 1200 × 1200 grid points.

The phonon band structure was obtained using den-
sity functional perturbation theory (DFPT) as imple-
mented in the Abinit electronic structure code. The
atomic structure was first relaxed to obtain maximal
forces below 5 · 10−6 Ha/Bohr, after which the phonon
frequencies where calculated on a 12 × 12 q-point grid.
To calculate the electron-phonon coupling the electronic
bands were interpolated using star functions [28], allow-
ing to densely sample the region of the Brillouin zone
around the K± points (with a density corresponding to
a 720×720 k-point grid). Similarly, the derivatives of the
Kohn-Sham potential were Fourier interpolated to obtain
the electron-phonon coupling on an arbitrarily dense q-
point grid, here taken to consist of 72 × 72 points.

Eliashberg theory of phonon-mediated
superconductivity

To obtain the superconducting critical temperature in
RTG and RHG resulting from phonon-mediated pair-
ing, we use Eliashberg theory. Crucially, this approach
takes into account the frequency dependence of the re-
tarded electron-phonon interaction, which is found to
have important consequences for the current systems.
The key quantity of this approach is the Eliashberg func-
tion α2F (ω), defined as

α2F (ω) =
1

NqρF

∑
νq

γνq
ωνq

δ(ω − ωνq) (3)

where Nq is the number of q-points for the phonons, ρF
the electronic density of states (per spin) at the Fermi
energy, and γνq and ωνq is the linewidth and frequency
of phonon mode (νq). The phonon linewidth is related to

the phonon self-energy by γνq = 2 Im Πνq(ωνq, T ), where
the self-energy results from electron-phonon scattering is
given by

Πνq(ω, T ) =
2

Nk

∑
kmn

|gmnν(k,q)|2(fnk − fm,k+q)

ϵnk − ϵm,k+q − ω − iη
. (4)

To evaluate the self-energy it is sufficient to calculate
the electronic dispersion ϵnk, the phonon frequencies ωνq,
and the electron-phonon couplings gmnν(k,q).

Due to the presence of the Fermi functions in Eq. 4,
the sum over momenta is at low temperatures highly re-
stricted to the electronic Fermi surface. In both RTG and
RHG this constitutes a very small region of the Brillouin
zone (on the order of 10−3G, see Fig. 1), and therefore
only phonons with q = 0 or q = Q = K+ − K− con-
tribute significantly to the superconducting pairing. The
Eliashberg function can then be represented as a series of
peaks, such that the effective electron-phonon coupling λ
is given by

λ =

∫
α2F (ω)

ω
dω =

∑
νq

λνq. (5)

Here λνq = γνq/(πρFω
2
νq) is the contribution to λ from

mode (νq). The superconducting critical temperature
can now be obtained from the McMillan equation [18]

Tc =
ωlog

1.2
exp

[
−1.04(1 + λ)

λ(1 − 0.62µ∗) − µ∗

]
, (6)

where ωlog is a logarithmic average of the phonon fre-
quencies, and µ∗ is the average screened electron-electron
interaction strength (here taken to have the typical value
µ∗ = 0.2). All the quantities needed to evaluate Tc have
been calculated from first principles as discussed below.

Gap equation

Within Eliashberg theory, the gap equation is of the
form [19, 20]

Znk(iωm) = 1 + πkBT
∑

m′n′k′

(ωm′/ωm)√
ω2
m′ + ∆2

n′k′(iωm′)

× λnk,n′k′(iωm − iωm′) (7)

Znk(iωm)∆nk(ωm) = πkBT
∑

m′n′k′

∆n′k′√
ω2
m′ + ∆2

n′k′(iωm′)

× [λnn
′

kk′ (iωm − iωm′) −NFU
nn′

kk′ ] (8)

where Unn′

kk′ is the screened Coulomb interaction between
momenta k and k′ on the Fermi surface, and the electron-
phonon coupling is

λnn
′

kk′ (iω) = N−1
F

∑
ν

2ωqν

ω2
qν + ω2

|gnn′(k,q)|2 (9)
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× δ(ϵk − ϵF )δ(ϵ′k − ϵF ).

In this equation the phonon momentum has to satisfy
q = k′ − k. Assuming Z ≈ 1 and taking the static limit,
we find the gap equation

∆nk = πkBT
∑
in′k′

∆n′k′√
ω2
i + ∆2

n′k′

[λnn
′

kk′ − Unn′

kk′ ] (10)

λnk,n′k′(iω) =
∑
ν

2|gnn′(k,q)|2

NFNkωqν
δ(ϵk − ϵF )δ(ϵk′ − ϵF ).

Linearizing this equation we find an equation of the same
form as the BCS gap equation,

∆nk = π
∑
n′k′

λnk,n′k′
tanh(βξn′k′)

βξn′k′
∆n′k′ , (11)

although with the interaction restricted to the Fermi sur-
face.

As a check on this result, the effective electron-phonon
coupling can be compared to that derived from the
electron-phonon self-energy. Recalling that the phonon
linewidth is

γqmnν(T ) = −2ωqν

Nk

∑
kk′mn

|gmnν(k,q)|2δ(ϵkn − ϵF ) (12)

× δ(ϵk′m − ϵF ).

This results in the electron-phonon coupling

λnkn′k′ =
∑
ν

2|gnn′(k,q)|2

πNFNkωqν
δ(ϵk − ϵF )δ(ϵk′ − ϵF ) (13)

From these considerations, we note that the approximate
Eliashberg gap equation is obtained from the BCS gap
equation by including a factorN−1

F δ(ϵkn−ϵF )δ(ϵk′n′−ϵF )
in the susceptibility. The main difference between these
approaches is therefore that the Eliashberg treatment lo-
calizes the susceptibility to the Fermi surface. For most
metallic systems, where the Fermi surface occupies a
significant portion of the Brillouin zone, this difference
might not be so severe. For multilayer graphene systems
however, where the Fermi surface is a tiny portion of the
full Brillouin zone, the difference between the approaches
is quite dramatic.

Gap symmetry analysis

The symmetry of the gap is determined by the point
group of the material, and rhombohedral multilayer
graphene belongs to the point group D3d. The wave
functions at K+ and K− therefore have to satisfy the
symmetry constraint C3ψ(r)C−1

3 = e(2πi/3)τzσzψ(R3r),
where τz (σz) is a Pauli matrix in valley (sublattice)
space. In both RTG and RHG, intra-valley pairing is

associated with finite momentum Cooper pairs and will
therefore be strongly suppressed. This follows from the
inequivalence ϵτn(k) ̸= ϵτn(−k), where τ and n are val-
ley and band indexes, such that no nesting conditions are
met (see Fig. 1). It is therefore expected that inter-valley
pairing is the dominant mechanism in these systems.

For inter-valley Cooper pairs, the symmetry constraint
implies that intra-sublattice pairings are invariant under
C3 symmetry, while inter-sublattice pairings will acquire
a net phase. The former property is expected of s- and
f -wave pairings (C3∆kC

−1
3 = ∆k), while the later is ex-

pected for p- and d-wave pairings (C3∆kC
−1
3 = eiϕ∆k).

Therefore, s- and f -wave symmetries can be distin-
guished from p- and d-wave symmetries by looking at
how the gap transforms under three-fold rotations. Simi-
larly, s-wave symmetry can be distinguished from f -wave
symmetry by the behavior under inversion, since s- and
d-wave gaps have to be singlets (∆−k = ∆k), while p-
and f -waves gaps have to be triplets (∆−k = −∆k).

For the low-energy bands of RTG and RHG, the wave
function is mainly localized to the dangling sites A1 and
BN (with N the number of layers), such that inter-
sublattice pairings are strongly suppressed. Therefore,
the dominant pairing in these bands is expected to be ei-
ther s- or f -wave. However, for the lower valence bands
at ∼ −0.5 eV, other pairing channels might become com-
petitive through inter-sublattice scattering in the inter-
mediate layers.
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