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Abstract

Fractal fluctuations are a core concept for inquiries into human behavior and cognition from
a dynamic systems perspective. Here, we present a generalized variance method for multivariate
detrended fluctuation analysis (mvDFA). The advantage of this extension is that it can be applied
to multivariate time series and considers intercorrelation between these time series when estimating
fractal properties. First, we briefly describe how fractal fluctuations have advanced a dynamic system
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understanding of cognition. Then, we describe mvDFA in detail and highlight some of the advantages
of the approach for simulated data. Furthermore, we show how mvDFA can be used to investigate
empirical multivariate data using electroencephalographic recordings during a time-estimation task.
We discuss this methodological development within the framework of interaction-dominant dynamics.
Moreover, we outline how the availability of multivariate analyses can inform theoretical developments
in the area of dynamic systems in human behavior.

Keywords: Detrended fluctuation analysis; Multivariate analysis; Interaction-dominant dynamics; Time
estimation; Dynamic systems; R package

1. Introduction

Whether a question is empirical or metaphysical depends, in part, on methodological devel-
opments. Before a tangible theory of atoms with empirical content could be developed, certain
technological developments were necessary in order to observe matter and energy at certain
scales. The same direction was followed in applications of systems theory—and, in particu-
lar, dynamics systems theory—in psychology and cognitive science: System thinking is not
new to psychology and is prominently present in the works of eminent scientists such as
Lewin (1939), Bronfenbrenner (1976), or Köhler (1940). Just like the theories of atoms of the
ancients, these theories had a strong metaphorical character because they lacked a fundamen-
tal understanding of dynamic systems and the tools necessary to describe and measure system
properties (Favela, 2020) were not available.

Van Gelder (1998) argues that the dynamic hypothesis actually contains two hypotheses:
(1) That cognitive agents are dynamic systems. (2) That cognitive agents can be understood as
dynamic systems. Assuming that one tries to understand cognitive agents in terms of dynamic
systems, Van Gelder goes on to chart some of the differences between how “dynamicists”
view cognition in contrast to “computationalists,” who try to understand cognition mainly in
terms of computation. Briefly, he summarizes that a dynamic systems perspective on cog-
nition emphasizes a change in time and views the structure of cognition as being the result
of the interaction of time-dependent processes, while a computational perspective on cog-
nition emphasizes the presence of stable components that are all present at any moment in
time and whose internal complexity is the main source of cognitive activity. In the latter case,
complex dynamics observed in a cognitive agent are just the result of the activity of these
components, which themselves only interact weakly (Simon, 1973). This set of assumptions
about cognition has been called the component-dominant view (Van Orden, Holden, & Tur-
vey, 2003)—the dynamics of a system are dominated by the features of the components that
make up the system.

A central problem for the component dominant view is posed by the number of com-
ponents: As Van Gelder (1998) describes, the number of components needs to be stable
and all components need to be always present. As new components are discovered, a better
understanding of the cognitive system is reached. Here, interaction effects in basic cognitive
tasks pose a challenge: Either they point to the fact that the manipulation at hand did not
cleanly target the different cognitive components researchers aim at manipulating (Sternberg,
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1969)—or they point to the fact that we need to introduce a new component that can explain
the interaction effect (Van Orden, Pennington, & Stone, 2001). However, to the extent that
such interaction effects continue to be found in basic cognitive tasks and new components
are introduced to explain the results, there may be concern that there is no stable set of
components that can be discovered and upon which a computational theory of cognition can
be built (Van Orden & Kloos, 2003).

To develop a tangible dynamic systems perspective on this problem and to explain its pres-
ence, we remind ourselves of van Gelder’s (1998) earlier description of the epistemic dynamic
hypothesis: Cognition is not the result of the internal structure of cognitive components but
rather the result of interactions of components over time. However, to make a concrete con-
nection between interaction effects in cognitive tasks and the understanding of dynamical sys-
tems required the concept of fractal scaling, first observed in human data by Gilden, Thornton,
and Mallon (1995) who studied time estimates.

Gilden et al. (1995) had participants perform a repeated timing task, where participants
were asked to press a response key repeatedly at a pre-specified time interval. The time series
of timing intervals, however, were not uncorrelated but displayed fractal scaling, a.k.a. long
memory. Fractal scaling means that there is a relation between two quantities so that one
increases (or decreases) as a power-law function of the other (for an introduction to the topic,
see Brown & Liebovitch, 2010). In Gilden et al.’s (1995) case, this meant that successive time
intervals were not uncorrelated, or only correlated across a few lags (i.e., short memory), but
showed long-memory correlations across a wide range of trials, where the decay of these
correlations is characterized by a power-law relationship.

Van Orden et al. (2003) realized that this provided an important link of human measure-
ments to properties of self-organization (Van Orden et al., 2003), particularly the concept of
self-organized criticality (SOC). SOC is a concept that aims to explain how dynamic systems
that are made up of many interacting components can evolve and can exhibit a critical state
in which small disturbances or events can trigger large-scale cascades or reactions (Jensen,
1998).

In self-organized critical systems, there is no set of modules that act as a central controller.
Rather, such systems are driven by feedback loops between their components, which lead
them to naturally settle into a critical state that allows them to be highly responsive—and
it has been suggested that SOC is the basic structure of living organisms (Bak, 1996). A
crucial aspect of SOC is that its behavior exhibits fractal scaling—the traces of long memory
observed by Gilden et al. (1995).

Accordingly, this allowed Van Orden et al. (2003) to interpret interactions in basic cog-
nitive tasks, not as a problem of finding the right components that are the building blocks
of cognition, but rather as a consequence of a dynamic system whose components interact
over time, and are thus so sensitive to changes in external conditions, such as different
experimental setups, as to quickly adapt to such conditions and change their behavior
accordingly—yielding new behavior that inferential statistics would recover as interaction
effects. Accordingly, this perspective provided an interaction-dominant view of cognition,
where it is not the internal structure of cognitive modules, but rather the interactions between
them, that dominate cognitive dynamics. In order to make this link, methods that can reliably
quantify the strength, type, and complexity of long-memory properties of time series (viz.,
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1/f noise, fractal fluctuations, flicker noise, or colored noise) were needed—which have since
been found in many human behavioral and neurophysiological measures (for reviews, see
Kello et al., 2010; Van Orden, Kloos, & Wallot, 2011).

Scaling analyses such as detrended fluctuation analysis (DFA) are at the center of debates
about psychological measurement theory (Holden, Choi, Amazeen, & Van Orden, 2011;
Kelty-Stephen & Mangalam, 2022) as well as debates on whether and how cognition can be
understood as a dynamical system (Kelty-Stephen & Wallot, 2017; Wallot & Kelty-Stephen,
2018; Van Orden et al., 2003; Van Orden, Holden, & Turvey, 2005; Wagenmakers, Farrell,
& Ratcliff, 2004, 2005). However, by their very definition, systems are composed of many
components; and, conversely, many research designs yield multivariate time series data, for
instance, eye tracking, postural sway, motion capture, and electroencephalography (EEG).
While univariate fractal scaling has helped to understand cognitive activity from a dynamic
systems perspective, it also carries with it the notion that the different components of such
systems are interdependent—but the currently available time series analysis methods only
allow the quantification of fractal scaling properties for each measured variable separately.
To gain new insights into the behavior of whole subsystems, or systems on a global level,
combining information from all the measured variables at once might be necessary.

Hence, we present a multivariate extension of the DFA method that estimates long-range
correlations of multivariate (i.e., multidimensional) time series. Note that Xiong and Shang
(2017) already proposed a multivariate DFA approach for independent time series. Xiong’s
and Shang’s (2017) proposal for a multivariate fractal analysis is thus similar to the total
variance method described in this paper. However, we also propose a new, generalized vari-
ance method that takes the correlations between the different time series into account. It is
an important step because multiple variables measured from the same system are likely to be
correlated in most of the cases, and these correlations are not taken into account by Xiong’s
and Shang’s (2017) method.

In the following, we begin by explaining the standard DFA formalism and subsequently
derive two multivariate extensions (mvDFA) that capture (mono-)fractal properties of mul-
tivariate time series. Both versions are tested on artificial data and EEG data from a timing
study and are then compared to the standard formalism. Furthermore, we show how mvDFA
can be used to test hypotheses on inherently multivariate datasets. The data can be accessed
here: https://osf.io/h2kqb/. Data analyses and implementation of the package mvDFA (Irmer
& Wallot, 2023) have been done in R (R Core Team, 2022). Further information about the
mvDFA package can be found on GitHub (https://github.com/jpirmer/mvDFA).

2. Detrended fluctuations analysis and its multivariate extensions

The standard DFA function estimates how variance in a time series changes with sam-
ple size (Peng, Havlin, Stanley, & Goldberger, 1995). This change is summarized by a scal-
ing exponent H (Hurst exponent) that captures the scaling relation between the length of
a time series and the associated variance. If H = 0.5, the variance of the time series con-
forms to white noise (but is not guaranteed to be independently and identically distributed.,
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however—e.g., Mandelbrot, 1997). If H > 0.5, the time series contains persistent long mem-
ory, with variance growing faster over time than expected by the central limit theorem, and
potentially nonstationary averages (persistent fluctuations; Holden, 2005). If H < 0.5, this is
called antipersistent fluctuations. Mathematically, the DFA proceeds in the following steps
(see also Fig. 1). First, integrate the time series by cumulative summation of deviations from
the mean:

y (t ) ≡
t∑

k=1

[xk − x̄] , t = 1, · · · , N, (1)

where x is the original time series, y is the new time series consisting of the cumulative sum
of the centered values of x, N is the length of time series x (and y), t is the index for values
of x and y representing time, and k is the number of data points over which the cumulative
summation is performed.

Next, root-mean square (RMS) is computed over each of the non-overlapping subseries
v, of different lengths s. Here, the data profile is detrended by a polynomial of the user’s
choice (yv). Commonly used trends are linear, exponential, or quadratic. However, higher
order detrending fluctuations or adaptive detrending (Riley, Bonnette, Kuznetsov, Wallot, &
Gao, 2012) are possible. Note that the higher the order of the polynomial used, the larger the
minimum subseries size needs to be to retain variance in the residuals. Moreover, detrending
can be done in a more continuous manner, such as using overlapping windows (particularly
if the time series is not an integer multiple of the base of the logarithmic function used; so
that some part of the time series would otherwise not be represented in the scaling function;
Kantelhardt et al., 2002) or smoothly connecting the detrending functions across windows
(Riley et al., 2012). These choices depend on the properties of the data at hand. For non-
overlapping subseries, the RMS is defined as

RMS (v, s) ≡ 1

s

s∑
t=1

{y [(v − 1) s + t] − yv (t )}2, v = 1, · · · , Ns, (2)

where v is the index for the subseries of length s, s is the number of subseries of a certain
length, Ns ≡ int(N/s), and yv is the value of polynomial fit in subseries v. Then, an aggregated
RMS value is derived across the same length category of the corresponding subseries s (i.e.,
the same timescales):

RMS (s) ≡
{

1

s

s∑
v=1

RMS (v, s)

} 1
2

, (3)

where RMS is root-mean-square fluctuations.
Finally, the Hurst exponent is the estimated slope L of the linear relationship of the loga-

rithm of RMS and the logarithm of s, so that H = L:

RMS (s) ∼ sL, (4)

where L is the slope of the regression line, estimating H.
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(a)

(b)

(c)

Fig. 1. DFA procedure: (A) The time series is converted into a cumulative profile; (B) the profile is divided into
non-overlapping subseries and the local trend is removed—this procedure is then repeated for subseries of different
lengths; (C) The logarithm of the subseries length (bin size) is plotted against the logarithm of average variance of
the residuals (RMS). The slope of a linear trend line fitted to this plot is an estimate of the Hurst exponent H.
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To extend the univariate DFA algorithm to a multivariate algorithm, we need to extend the
calculation of the variances in Step 2. A multidimensional time series consists of multiple (D
> 1) dimensions or component time series y(t) = (y1(t),…,yD(t))’. Hence, for each subseg-
ment as computed in (2), we have multiple variances (the RMS′) and covariances, which can
be summarized in a variance–covariance matrix C:

C =

⎡
⎢⎢⎢⎣

Vard1(v,s) Covd1,d2(v,s)

Covd2,d1(v,s) Vard2(v,s)
· · · Covd1,dD(v,s)

Covd2,dD(v,s)
...

. . .
...

CovdD,d1(v,s) CovdD,d2(v,s) · · · VardD(v,s)

⎤
⎥⎥⎥⎦ , (5)

where d is a dimension (component time series) of the multidimensional time series yd, D is
the number of dimensions (component time series) of the multidimensional time series yd,
Vard(v,s) is the variance (i.e., RMS fluctuation) of subseries v of length s, and Covd,d′(v,s) is
the covariance of the fluctuations for subseries v of length s of the components d and d′, with
d,d′ = 1, …, D, with d �= d′.

The different RMS′ for the subseries with a length s of a dimension (component time series)
d of the original multidimensional time series x can be computed analogously to Eq. 2:

Vard (v, s) = RMSd (v, s) ≡ 1

s

s∑
t=1

{
yd [(v − 1) s + t] − yv,d (t )

}2
, v = 1, · · · , Ns, d = 1, · · · , D, (6)

where Ns is the number of subseries of a certain length, Ns ≡ int(N/s).
The covariances between each pair of subseries with length s of the dimensions d and d′

dimensions (with d,d′ = 1, …, D, and d �= d′) of the original multidimensional time series x
can be computed by

Covd,d’ (v, s) ≡ 1

Ns

Ns∑
t=1

{
yd [(v − 1) s + t] − yv,d (t )

} ∗ {
yd ′ [(v − 1) s + t] − yv,d ′ (t )

}
,

v = 1, · · · , Ns, d, d’ = 1, · · · , D, d �= d ′. (7)

Now, we propose two ways to determine the average multivariate root-mean-square fluctu-
ations for the different subsequences from Eq. 5, the total variance (RMStot) or the generalized
variance (RMSgen). RMStot simply involves the sum of the diagonal elements of C, that is, its
trace:

RMStot (v, s) ≡
{

1

Ns

Ns∑
v=1

tr
(
Cv,s

)} 1
2

, (8)

where tr is the trace, C is the variance–covariance matrix of subseries v of length s for the
different dimensions of the multidimensional time series y, and Ns is the number of subseries
of a certain length, Ns ≡ int(N/s).

As the total variance approach does not take the covariances of the time series into
account, we propose RMSgen as the determinant of the variance–covariance matrix between
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8 S. Wallot et al. / Topics in Cognitive Science 00 (2023)

the dimensions, which is a measure of linear dependence:

RMSgen (v, s) ≡
{

1

Ns

Ns∑
v=1

det
(
Cv,s

)} 1
2

, (9)

where det is the determinant.
This results in an adjustment of the global variance by the covariances between the dif-

ferent dimensions of a multivariate time series in a linear manner. It also implies that the
fastest timescale that can be investigated (i.e., the smallest subsequence) needs to be greater
than D. Otherwise, the generalized variance cannot be calculated as the determinant would
always be zero. The fluctuation function and the Hurst exponent based on RMStot (Htot) can
then be computed via Eq. 4: Htot = L. While the Hurst exponent based on RMSgen (Hgen) is
calculated analogously, we subsequently need to adjust it by the number of dimensions of the
multivariate time series, so that Hgen = L/D.

We note that the trace of a covariance matrix is dominated by the largest variance. Con-
sequently, a component with comparably much higher variance may dominate the behavior
of the trace across timescales and, therefore, the estimated Hurst exponent. This behavior is
comparable to the dependence of the component selection of principal component analysis
(PCA), where variables with higher variance result in higher weights. This is why usually the
correlation matrix is used as an input for PCA. Similar considerations should apply for the
total variance version and a standardized version of the time series might be a good default
approach. Then again, if all variables are measured in the same metric, the actual differences
in variance—and hence, the differential influence of the individual component time series on
the overall result—might be meaningful, such as for the Lorenz system. In any case, this is
not an issue with the generalized variance method.

Finally, a practical note on the application of multivariate DFA: As with any multivariate
technique, the choice of the set of dependent variables is crucial. Researchers need to have
some minimal understanding of which variables can be meaningful. Moreover, consider the
case where one assumes that two variables, both measured from one system, show very dif-
ferent Hurst exponents. One shows H = 0.5, the other H = 1.5. Just by itself, this does not
necessarily imply that these two time series should not be analyzed together. For example,
if we suspect that the system is poised to stay near a critical state globally and that this is
indicated by system-level behavior that shows fluctuations of H around 1.0, but might have
to archive this by complementary dynamics spread across the system, then this might be two
variables that can be meaningfully analyzed together.

3. Application 1: Test on artificial multidimensional time series with nonlinearly
interacting dimensions

In the following section, the mvDFA algorithm will be tested on data generated by the
Lorenz system (Lorenz, 1963), which exhibits fractal scaling properties (Yang & Zheng,
2010). The Lorenz system is an ordinary differential equation system and consists of the
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Table 1
Average Hurst exponents, standard deviations, and confidence intervals of the Lorenz system obtained from uni-
variate and multivariate DFA

Method Mean H SD H
Lower Bound of 95%
Confidence Interval

Upper Bound of 95%
Confidence Interval

Htot 0.900 0.015 0.870 0.931
Hgen 0.822 0.004 0.813 0.832
Huni 0.910 0.007 0.896 0.922
Hx_uni 1.008 0.016 0.976 1.040
Hy_uni 0.926 0.016 0.893 0.958
Hz_uni 0.650 0.22 0.608 0.691

Note. The estimates were obtained from 1,000 simulations of the Lorenz system. Htot is the total variance
mvDFA, Hgen is the generalized variance mvDFA, Huni is an averaged univariate DFA. Hx-uni, Hy-uni, and Hz-uni are
the univariate DFA exponents computed separately for the three dimensions of the Lorenz system. The confidence
intervals are related to the individual distributions and do not reflect differences between the methods.

following three equations (Eq. 10):

dx

dt
= σ · (y − x) ,

dy

dt
= x · (ρ − z) − y,

dz

dt
= x · y − β · z. (10)

In order to test the mvDFA algorithms, we ran 1,000 simulations using the parameter val-
ues of s = 10, s = 28, and b = 8/3, and initial starting values of x = y = z = 0.1 + e, where
e was drawn from a uniform distribution, U[−0.1, 0.1] for each run and parameter. Within
these parameter settings, the Lorenz attractor stays in the chaotic regime of a strange attrac-
tor. In this manner, 100k data points were simulated in each run, each yielding a separate
instantiation of the Lorenz system dynamics, on which mvDFA was performed. We used both
multivariate extensions, RMStot and RMSgen, but also applied the univariate DFA algorithm
for each dimension separately and subsequently averaged across the three dimensions.

The resulting three calculations of the Hurst exponent, Huni (i.e., univariate averaged), Htot,
and Hgen were compared on the average fit of the linear scaling function (R2), and the resulting
estimated Hurst exponents H for the behavior of the three-dimensional system. The param-
eters used for all analyses were a minimum bin size of 200, a maximum bin size of 1/8 of
the size of the time series, and trends removed up to quadratic. Inferential statistics were
conducted as paired-sample t-tests with stats-package in R. The results are summarized in
Table 1.

The following is apparent from Table 1: First, when examining the different dimensions
of the Lorenz system univariately, the resulting Hurst exponents differ substantially. They
do not converge to a single value that characterizes the system’s dynamics. Second, their
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Multivariate Coefficients Univariate Coefficients

1.0 1.5 2.0 2.5 3.0 3.5 1.0 1.5 2.0 2.5 3.0 3.5

0.0
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7.5

log(S)

lo
g(

R
M

S
) Method

Generalized
Total
X
Y
Z

Fig. 2. Example scaling functions for the different methods. The left panel displays the results from the multivariate
analyses, and the right panel displays the results from the univariate analyses. All methods reveal multiscale
fluctuations with a break point between 1.5 and 2.0 log(s). This is most pronounced for the generalized variance
approach.

average differs from the multivariate estimates, which is corroborated by central averages and
confidence intervals in Table 1, where Huni is larger than Htot, which in turn is larger than
Hgen. When investigating the fit of the scaling function, the average univariate method yields
an R2

uni = 0.910 (SD = 0.007), the total variance method yields an R2
tot = 0.942 (SD =

0.006), and the generalized variance method results in R2
gen = 0.847 (SD = 0.012).

In sum, the individual dimensions do not converge on the same estimates for H, and their
average is different to the multivariate approaches. However, all approaches do classify the
fluctuations of the Lorenz system to be persistent. While the total variance method also
exhibits a better fit for the scaling function, this is not the case for the generalized vari-
ance method. Moreover, the fit for the scaling function of the generalized variance method
is worse than the average of the univariate analyses. One reason for this could be that the
relations among the dimensions of the Lorenz system are highly non-linear so that the linear
approximation of these correlations inherent in the generalized variance methods biases the
results.

However, another reason becomes apparent when investigating the scaling functions visu-
ally (Fig. 2). There is a scale break in the scaling function between 1.5 and 2.0 log(s), most
pronounced for the generalized variance method. This could be due to different behavior of
the Lorenz system at different scales or simply a function of accuracy of the numerical inte-
gration of the system. The latter leads to highly correlated data points on the fast timescales,
in which fluctuations are not very reflective of the dynamics of the system. If we only fit the
scaling function to bin sizes log(s) > 1.5, the fits improve to R2

uni = 0.952, R2
gen = 0.950, and

R2
tot = 0.984. If we only consider log(s) > 2.0, the fits improve even more to R2

uni = 0.980,
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R2
gen = 0.990, and R2

tot = 0.993. Under these conditions, the generalized variance method
also exhibits a better fit than the univariate approach, albeit by a slim margin.

Another interesting test to compare the two methods is how they capture a change of behav-
ior in the system. For example, Stephen, Boncoddo, Magnuson, and Dixon (2009) provided
a moving-window analysis for the Lorenz system going through a phase transition from a
homoclinic orbit to strange attractor dynamics. Here, they showed that the change in fractal
exponents indicates when the system leaves one phase into the phase transition and finally
settling into the new phase. Here, we used each of the individual dimensions of the Lorenz
system to conduct such an analysis as well as the multivariate total and generalized variance
methods. Fig. 3 shows that the exponents from the univariate analyses fluctuate a lot, while
the total variance method provides a somewhat better distinction between the two phases.
However, only with the generalized variance method do we see a high stability of the scaling
exponents within each phase on the one hand and a clear change in scaling exponents at the
phase transition on the other hand.

4. Application 2: Test on 64-channel EEG during time estimation

A common source of multivariate time series is neurophysiological recordings, for exam-
ple, EEG or functional magnetic resonance imaging. In this section, we present data of a time
estimation task with continuous EEG recordings. Based on this dataset, we will further test
the mvDFA algorithms. Moreover, we outline how mvDFA can be used to evaluate hypothe-
ses about global changes in fractal dynamics of multivariate time series as well as interactions
between neurophysiology and behavior considering the question of control organisms.

While conventionally, control in humans is thought to flow from neurophysiological pro-
cesses to behavior, it is discussed as a matter of timescales in complex systems theory and
SOC: Observing power-law behavior in human data that show persistent fluctuations has led
to the proposal that processes on slower timescales usually constrain processes on faster
timescales (Van Orden, Hollis, & Wallot, 2012). However, what follows from this conjec-
ture is not quite clear for the question of control between neurophysiological and behavioral
processes because both, behavioral and neurophysiological data, exhibit fractal fluctuations
over time (e.g., Goldberger et al., 2002; He, 2011; Holden et al., 2011; Kuznetsov & Wallot,
2011; Lutzenberger, Elbert, Birbaumer, Ray, & Schupp, 1992). In other words, both contain
systematic patterns of variation on longer timescales disguising which of the two resides on
slower timescales, hence, constraining the other more strongly.

Here, the hypothesis has been extended (Van Orden, 2010; Van Orden et al., 2011, 2012)
to contain (mutual) constraints between physiological and behavioral processes that are con-
tingent on temporal regularities in behavioral (and by extension social and environmental)
processes. That is, while neurophysiological processes control behavior, they are themselves
co-controlled by the temporal regularities of the behavioral processes that they cause. This
also suggests a pathway for the emergence of scales in otherwise scale-free processes, such
as neurophysiological processes captured in EEG recordings. Behavioral regularities (which
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12 S. Wallot et al. / Topics in Cognitive Science 00 (2023)

Fig. 3. The Lorenz system going through a phase transition (middle 20% of the data) from a homoclinic orbit
(first 40% of the data; parameter settings: s = 10, s = 28, and b = 8/3) to strange attractor (last 40% of the data;
parameter settings: s = 15, s = 25, and b = 3.5). The univariate analysis (bottom three rows), but also the total
variance method (top panel), shows very variable coefficients. The generalized variance method (second panel)
provides the clearest picture of the transition process.
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are themselves contingent on task properties) introduce temporarily preferred scales into neu-
rophysiological processes.

To investigate this proposal, we conducted a timing study similar to Kuznetsov and Wallot
(2011), who had participants perform a simple time-estimation task by pressing a response
key every time they thought a second had passed. Participants either received visual feedback
about their performance or not. The introduction of feedback did not change the standard
deviation of time interval estimates, but DFA revealed a change in long-range correlations of
the time interval estimates. The introduction of feedback significantly reduced the degree of
long-range correlation in participants’ time interval estimation performance. This suggested
an increased coupling between motor-cognitive timing processes and environmental regular-
ities (Kuznetsov & Wallot, 2011; Van Orden, 2010).

In the current study, 10 participants (students and faculty from Aarhus University) were
presented with auditory stimuli at 10 one-second time intervals and then asked to consecu-
tively press a key at that interval for 1,100 times. Here, participants saw the number “1” in a
circle on a screen to remind the participants to keep pressing the key at 1-s intervals. Every
time they pressed the response key, the circle flickered briefly to indicate that the response
had been recorded.

In the feedback condition, participants were provided with visual feedback after each tap,
indicating how much they deviated from the target interval (in milliseconds). Here, partic-
ipants also saw the number “1” in a circle on a screen to remind the participants to keep
pressing the key at 1-s intervals. Additionally, after having pressed the button, participants
saw a message about their performance for 400 ms below the circle. If they pressed the button
X milliseconds too early, the message read “X ms early.” If they pressed the button X millisec-
onds too late, the message read “X ms late.” In the no-feedback condition, no such feedback
was provided, of course. The order in which the conditions were presented was randomized
between participants.

The study was evaluated and received an ethics waiver from the ethics committee of the
Central Denmark Region and was conducted in accordance with the Declaration of Helsinki.
Written consent was obtained from all participants.

EEG was collected with 64 active Ag/AgCl electrodes that were arranged according to
the international 10–20 system in an elastic electrode cap. Two electrodes (sites PO9 and
PO10) were applied next to and below the left eye to monitor eye movements and blinks. The
ground electrode was placed at site AFz, and FCz was used as the online reference electrode.
The signal was amplified with an actiCHamp amplifier and continuously recorded with the
BrainVision Recorder software (BrainProducts GmbH). Data were sampled at 1 kHz with an
online 0.1 Hz high-pass filter. No offline filter was applied to the data. Based on the elec-
trooculogram, an automatic artifact rejection was carried out with a cutoff value of 150 μV.
EEG data were then downsampled to 250 Hz to reduce computation time. Furthermore, the
time series were standardized to distribute weights evenly to all components for the general-
ized and total variance methods. Subsequently, we conducted averaged univariate DFA, total-
variance mvDFA, and generalized-variance mvDFA on the pre-processed μV-time series. For
averaged univariate DFA, the μV-time series for each electrode was subjected to standard
univariate DFA, and then coefficients were averaged over all electrodes. For the multivariate
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14 S. Wallot et al. / Topics in Cognitive Science 00 (2023)

Fig. 4. Depiction of the average fluctuation function for total variance mvDFA (RMStot), generalized variance
mvDFA (RMSgen), and averaged univariate DFA (RMSuni).

methods, μV-time series for all electrodes entered the analysis simultaneously. The calcula-
tion of the respective Hurst exponents was performed separately over the whole approximate
20-minute EEG recordings in the feedback and no-feedback conditions for each participant,
respectively.

We expected to find a break in the scale-free, fractal fluctuations of the EEG data around
1 Hz due to participants pressing a response key approximately every second during the
time-estimation task. This should then translate into a change in scaling relations for fractal
fluctuations below and above bin sizes of 250 data points. Fig. 4 shows the average fluctuation
functions across conditions and participants for the three types of mvDFA. It seems that
multiscale fluctuations around log10(s) = 2.4 (i.e., a subseries length of 250 data points) are
most visible for the generalized variance method.

To validate the visual impression, we ran two types of mixed-linear models on the fluctua-
tion function data for each method, participant, and trial, with RMSuni, RMStot, and RMSgen as
dependent variables, respectively. The first model only incorporated log10(s) as the predictor,
thus, modeling the assumption that there is only one homogenous scale-free process:

log10(RMSi, j ) = γ00 + γ01log10 (s) + u0 j + ei, j, (M1)

where log10(RMSi,j) is a dependent variable containing the logarithmized average RMS
fluctuations at specific subseries lengths s, γ00 is a fixed intercept, γ10 is the fixed slope for
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Table 2
Model comparison for including the predictor log10(s)SLOW into fitting the fluctuation function for averaged
univariate, total, and generalized variance DFA

DV �AIC �BIC χ 2 df p

RMSuni −0.6 −3.9 2.55 1 .110
RMStot −0.1 −4.4 1.98 1 .159
RMSgen −217.5 −213.1 219.54 1 <.001

Note. DV: dependent variable; DAIC: difference in Akaike’s information criterion (M2 – M1); DBIC: difference
in Bayesian information criterion (M2 – M1).

predictor log10(s), log10(s) is a predictor variable containing logarimized subseries lengths s,
u0 j is a random intercept for participants, ei, j is residual, i is an index for RMS fluctuations at
a specific subseries length within participants, and j is an index for participants.

The second model included an additional predictor log10(s)SLOW, which captures devia-
tions from the overall scaling function for the slower fluctuations (i.e., bigger bin sizes) larger
than 1 second:

log10(RMSi, j ) = γ00 + γ01log10 (s) + γ02log10 (s) SLOW + u0 j + ei, j (M2)

where γ02 is the fixed slope for a predictor and log10(s)SLOW is a predictor variable
containing logarimized subseries lengths s for s > 250 data points (i.e., fluctuations bigger
than 1 second).

Model comparison between (M1) and (M2) for RMSuni, RMStot, and RMSgen revealed a
significant contribution for adding the predictor log10(s)SLOW to the model if the fluctua-
tion function is based on the generalized variance method (see Table 2). That is, the model
provides evidence for a scale-break around 1 second, if we take the correlations among the
multivariate EEG data into account. However, no break is suggested by the data if we treat
them as independent.

Accordingly, we found evidence for the hypothesis that behavioral and neurophysiological
processes interact: One interpretation is that one set of processes (here behavioral) changed
the fractal scaling so that we see the emergence of a dominant scale in the neurophysiological
data. The results suggest that control can flow from behavior to neurophysiology in that envi-
ronmental regularities (feedback) constrain behavioral regularities (button pressing behavior)
which, by virtue of proprioception, constrain timing-related processes in the nervous system.
However, we only find this pattern of results using the generalized variance mvDFA. Note
that we also ran a model including interactions with condition (i.e., feedback vs. no feed-
back), but feedback did not moderate the effect of multivariate scaling. Furthermore, there
is a moderate degree of variability in the Hurst exponents across the 62 univariate analyses
for each channel: The average standard deviation (within each participant) of H was 0.08 (for
both, the condition with, and without feedback).
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5. Conclusion

In this paper, we addressed a question that has both a theoretical and a methodological
aspect. Our starting point was the strong view of interaction-dominant dynamics in which
in a system that runs on SOC; each component reflects the whole system dynamics. The
consequence would be that there is little need to measure multiple parts of a system. We
demonstrated how univariate DFA, which is a key technique to capture traces of SOC in
human data, can be extended to multivariate DFA. For a model system, the Lorenz attrac-
tor, we demonstrated the application of mvDFA, and how multivariate methods improve the
analysis of such systems over univariate approaches. Based on EEG data, we showed how
mvDFA (i.e., the generalized variance method) uncovers results that cannot be observed with
a univariate approach. Because the total variance method treats the different component time
series as independent, it yielded similar results to the averaged univariate analysis.

Further developments of these methods need to consider the potentially complex relation-
ship between the component time series of one system. If the system is interaction dominant,
and the interactions within the system are nonlinear (as suggested by observed multifractal
fluctuations in human data; e.g., Kelty-Stephen & Mangalam, 2022), then the assumption of
linearity in the relations between the component time series inherent in the generalized vari-
ance approach can only be seen as a first approximation. Ideally, it needs to be replaced by
model-free correlation techniques or proper (nonlinear) correlation functions. This, however,
requires substantial knowledge of the phenomena at hand.

Theoretically, our results suggest that the strong version of the interaction-dominant inter-
pretation of SOC in human organisms does not hold. Regarding the human mind and body,
the results of our EEG data suggested that the dynamics of one component do not reflect the
system as a whole. In our view, however, this result does by no means undermine the notion of
interaction-dominant dynamics, or SOC as a driving force in the organization of organisms.
It rather points to the need to refine such theorizing and to consider the necessity of more
encompassing, multivariate measures of complex systems to understand them. The multivari-
ate extension of DFA presented here might be one tool to conduct such research because the
notion of “system” carries with it the understanding that something consists of multiple parts.
From the perspective of dynamic systems, it is of interest to better understand how these parts
interact and lead to global, coordinated behavior.
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